1,947 research outputs found

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Enhancements to the XNS authentication-by-proxy model

    Get PDF
    Authentication is the secure network architecture mechanism by which a pair of suspicious principals communicating over presumably unsecure channels assure themselves that each is that whom it claims to be. The Xerox Network Systems architecture proposes one such authentication scheme. This thesis examines the system consequences of the XNS model\u27s unique proxy variant, by which a principal may temporarily commission a second network entity to assume its identity as a means of authority transfer. Specific attendant system failure modes are highlighted. The student\u27s associated original contributions include proposed model revisions which rectify authentication shortfalls yet facilitate the temporal authority transfer motivating the proxy model. Consistent with the acknowledgement that no single solution is defensible as best under circumstances of such technical and administrative complexity, three viable such architectures are specified. Finally, the demand for a disciplined agent management mechanism within a distributed system such as XNS is resoundingly affirmed in the course of these first-order pursuits

    Principled Elimination of Microarchitectural Timing Channels through Operating-System Enforced Time Protection

    Full text link
    Microarchitectural timing channels exploit resource contentions on a shared hardware platform to cause information leakage through timing variance. These channels threaten system security by providing unauthorised information flow in violation of the system’s security policy. Present operating systems lack the means for systematic prevention of such channels. To address this problem, we propose time protection as an operating system (OS) abstraction, which provides mandatory temporal isolation analogous to the spatial isolation provided by the established memory protection abstraction. In order to fully understand microarchitectural timing channels, we first study all published microarchitectural timing attacks, their countermeasures and analyse the underlying causes. Then we define two application scenarios, a confinement scenario and a cloud scenario, which between them represent a large class of security-critical use cases, and aim to develop a solution that supports both. Our study identifies competition for limited hardware resources as the underlying cause for microarchitectural timing channels. From this we derive the requirement that proper isolation requires that all shared resources must be partitioned, either spatially or temporally (time-shared). We then analyse a number of recent processors across two instruction-set architectures (ISAs), x86 and Arm, for their support for such partitioning. We discover that all examined processors exhibit hardware state that cannot be partitioned by architected means, meaning that they all have uncloseable channels.We define the requirements hardware must satisfy for timing-channel prevention, and propose an augmented ISA as a new, security-oriented hardware-software contract. Assuming conforming hardware, we then define the requirements that OS-provided time protection must satisfy. We propose a concrete design of time protection, consisting of a set of policy-free mechanisms, and present an implementation in the seL4 microkernel. We evaluate the efficacy and efficiency of the implementation, and show that it is highly effective at closing timing channels, to the degree supported by the underlying hardware. We also find that the performance overheads are small to negligible. We can conclude that principled prevention of timing channels is possible though mandatory, black-box enforcement by the OS, subject to hardware manufacturers providing mechanisms for scrubbing all shared microarchitectural state

    Secure Multi-Party Computation In Practice

    Get PDF
    Secure multi-party computation (MPC) is a cryptographic primitive for computing on private data. MPC provides strong privacy guarantees, but practical adoption requires high-quality application design, software development, and resource management. This dissertation aims to identify and reduce barriers to practical deployment of MPC applications. First, the dissertation evaluates the design, capabilities, and usability of eleven state-of-the-art MPC software frameworks. These frameworks are essential for prototyping MPC applications, but their qualities vary widely; the survey provides insight into their current abilities and limitations. A comprehensive online repository augments the survey, including complete build environments, sample programs, and additional documentation for each framework. Second, the dissertation applies these lessons in two practical applications of MPC. The first addresses algorithms for assessing stability in financial networks, traditionally designed in a full-information model with a central regulator or data aggregator. This case study describes principles to transform two such algorithms into data-oblivious versions and benchmark their execution under MPC using three frameworks. The second aims to enable unlinkability of payments made with blockchain-based cryptocurrencies. This study uses MPC in conjunction with other privacy techniques to achieve unlinkability in payment channels. Together, these studies illuminate the limitations of existing software, develop guidelines for transforming non-private algorithms into versions suitable for execution under MPC, and illustrate the current practical feasibility of MPC as a solution to a wide variety of applications

    Revista Economica

    Get PDF

    Performance study of a COTS Distributed DBMS adapted for multilevel security

    Get PDF
    Multilevel secure database management system (MLS/DBMS) products no longer enjoy direct commercial-off-the-shelf (COTS) support. Meanwhile, existing users of these MLS/DBMS products continue to rely on them to satisfy their multilevel security requirements. This calls for a new approach to developing MLS/DBMS systems, one that relies on adapting the features of existing COTS database products rather than depending on the traditional custom design products to provide continuing MLS support. We advocate fragmentation as a good basis for implementing multilevel security in the new approach because it is well supported in some current COTS database management systems. We implemented a prototype that utilises the inherent advantages of the distribution scheme in distributed databases for controlling access to single-level fragments; this is achieved by augmenting the distribution module of the host distributed DBMS with MLS code such that the clearance of the user making a request is always compared to the classification of the node containing the fragments referenced; requests to unauthorised nodes are simply dropped. The prototype we implemented was used to instrument a series of experiments to determine the relative performance of the tuple, attribute, and element level fragmentation schemes. Our experiments measured the impact on the front-end and the network when various properties of each scheme, such as the number of tuples, attributes, security levels, and the page size, were varied for a Selection and Join query. We were particularly interested in the relationship between performance degradation and changes in the quantity of these properties. The performance of each scheme was measured in terms of its response time. The response times for the element level fragmentation scheme increased as the numbers of tuples, attributes, security levels, and the page size were increased, more significantly so than when the number of tuples and attributes were increased. The response times for the attribute level fragmentation scheme was the fastest, suggesting that the performance of the attribute level scheme is superior to the tuple and element level fragmentation schemes. In the context of assurance, this research has also shown that the distribution of fragments based on security level is a more natural approach to implementing security in MLS/DBMS systems, because a multilevel database is analogous to a distributed database based on security level. Overall, our study finds that the attribute level fragmentation scheme demonstrates better performance than the tuple and element level schemes. The response times (and hence the performance) of the element level fragmentation scheme exhibited the worst performance degradation compared to the tuple and attribute level schemes

    Development of an M-commerce security framework

    Get PDF
    Research shows how M-Commerce has managed to find its way to previously inaccessible parts of the world as a major Information and Communication Technologies (ICT) tool for development due to widespread introduction of mobile phones in remote areas. M-Commerce has offered valuable advantages: anytime, anywhere, more personal, more location-aware, more context-aware, more age aware, always online and instant connectivity. But this is not without its problems, of which security is high on the list. The security issues span the whole M-Commerce spectrum, from the top to the bottom layer of the OSI network protocol stack, from machines to humans. This research proposes a threat-mitigation modular framework to help address the security issues lurking in M-Commerce systems being used by marginalised rural community members. The research commences with a literature survey carried out to establish security aspects related to M-Commerce and to determine requirements for a security framework. The framework classifies M-Commerce security threat-vulnerability-risks into four levels: human behaviour and mobile device interaction security, mobile device security, M-Commerce access channel security, wireless network access security. This is followed by a review of the supporting structures or related frameworks that the proposed framework could leverage to address security issues on M-Commerce systems as ICT4D initiatives. The proposed security framework based on the requirements discovered is then presented. As a proof-of-concept, a case study was undertaken at the Siyakhula Living Lab at Dwesa in the Eastern Cape province of South Africa in order to validate the components of the proposed framework. Following the application of the framework in a case study, it can be argued that the proposed security framework allows for secure transacting by marginalised users using M-Commerce initiatives. The security framework is therefore useful in addressing the identified security requirements of M-Commerce in ICT4D contexts

    Cognitive Machine Individualism in a Symbiotic Cybersecurity Policy Framework for the Preservation of Internet of Things Integrity: A Quantitative Study

    Get PDF
    This quantitative study examined the complex nature of modern cyber threats to propose the establishment of cyber as an interdisciplinary field of public policy initiated through the creation of a symbiotic cybersecurity policy framework. For the public good (and maintaining ideological balance), there must be recognition that public policies are at a transition point where the digital public square is a tangible reality that is more than a collection of technological widgets. The academic contribution of this research project is the fusion of humanistic principles with Internet of Things (IoT) technologies that alters our perception of the machine from an instrument of human engineering into a thinking peer to elevate cyber from technical esoterism into an interdisciplinary field of public policy. The contribution to the US national cybersecurity policy body of knowledge is a unified policy framework (manifested in the symbiotic cybersecurity policy triad) that could transform cybersecurity policies from network-based to entity-based. A correlation archival data design was used with the frequency of malicious software attacks as the dependent variable and diversity of intrusion techniques as the independent variable for RQ1. For RQ2, the frequency of detection events was the dependent variable and diversity of intrusion techniques was the independent variable. Self-determination Theory is the theoretical framework as the cognitive machine can recognize, self-endorse, and maintain its own identity based on a sense of self-motivation that is progressively shaped by the machine’s ability to learn. The transformation of cyber policies from technical esoterism into an interdisciplinary field of public policy starts with the recognition that the cognitive machine is an independent consumer of, advisor into, and influenced by public policy theories, philosophical constructs, and societal initiatives
    • …
    corecore