
Performance study of a COTS
Distributed DBMS adapted for

multilevel security

Moses Garuba

Technical Report
RHUL–MA–2004–2

23 July 2004

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Abstract

Multilevel secure database management system (MLS/DBMS) products no
longer enjoy direct commercial-off-the-shelf (COTS) support. Meanwhile,
existing users of these MLS/DBMS products continue to rely on them to
satisfy their multilevel security requirements. This calls for a new approach
to developing MLS/DBMS systems, one that relies on adapting the features
of existing COTS database products rather than depending on the traditional
custom design products to provide continuing MLS support.

We advocate fragmentation as a good basis for implementing multilevel
security in the new approach because it is well supported in some current
COTS database management systems. We implemented a prototype that
utilises the inherent advantages of the distribution scheme in distributed
databases for controlling access to single-level fragments; this is achieved by
augmenting the distribution module of the host distributed DBMS with MLS
code such that the clearance of the user making a request is always compared
to the classification of the node containing the fragments referenced; requests
to unauthorised nodes are simply dropped.

The prototype we implemented was used to instrument a series of ex-
periments to determine the relative performance of the tuple, attribute, and
element level fragmentation schemes. Our experiments measured the impact
on the front-end and the network when various properties of each scheme,
such as the number of tuples, attributes, security levels, and the page size,
were varied for a Selection and Join query. We were particularly interested in
the relationship between performance degradation and changes in the quan-
tity of these properties. The performance of each scheme was measured in
terms of its response time.

The response times for the element level fragmentation scheme increased
as the numbers of tuples, attributes, security levels, and the page size were in-
creased, more significantly so than when the number of tuples and attributes
were increased. The response times for the attribute level fragmentation
scheme was the fastest, suggesting that the performance of the attribute level
scheme is superior to the tuple and element level fragmentation schemes. In
the context of assurance, this research has also shown that the distribution of
fragments based on security level is a more natural approach to implementing
security in MLS/DBMS systems, because a multilevel database is analogous
to a distributed database based on security level.

Overall, our study finds that the attribute level fragmentation scheme
demonstrates better performance than the tuple and element level schemes.
The response times (and hence the performance) of the element level frag-
mentation scheme exhibited the worst performance degradation compared to

1

the tuple and attribute level schemes.

2

Performance study of a COTS Distributed

DBMS adapted for multilevel security

Moses Garuba

Royal Holloway, University of London

A thesis submitted for the degree of

Doctor of Philosophy

December, 2003

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 5

1.3 Aims of this research . 6

1.4 Contributions of this research . 7

1.5 Contents of the thesis . 8

2 Review of Basic Concepts 9

2.1 Introduction . 9

2.2 Database systems . 9

2.3 The relational data model . 11

2.3.1 Integrity constraints . 11

2.3.2 Structured query language . 12

2.4 Access control . 14

2.4.1 Discretionary access control (DAC) 15

2.4.2 Mandatory access control (MAC) 15

2.4.2.1 Ordered sets . 15

2.4.2.2 Lattices . 15

2.4.2.3 Bell-LaPadula model (BLP) 16

2.5 The multilevel relational model . 20

2.5.1 MLS database integrity constraints 21

2.5.2 Levels of granularity . 23

2.6 Distributed database systems . 25

2.6.1 Relation fragmentation . 25

2.6.2 Query processing . 26

2.7 Summary . 27

3 Related Research and Developments 28

3.1 Introduction . 28

3.2 Overview of MAC models . 29

i

CONTENTS ii

3.3 Architectures for multilevel database systems 30

3.3.1 The integrity lock (or spray paint) architecture 30

3.3.2 The kernelized architecture . 30

3.3.3 The replicated architecture . 32

3.3.4 The trusted subject architecture . 33

3.4 Multilevel secure prototypes . 33

3.4.1 SeaView prototype . 35

3.4.2 Lock Data Views prototype . 36

3.4.3 A1 Secure DBMS prototype . 38

3.4.4 The SWORD prototype . 40

3.4.5 Purple Penelope . 41

3.5 Commercial MLS/DBMS products . 43

3.6 Multilevel network security systems . 45

3.6.1 A distributed secure system . 45

3.6.2 NRL pump . 47

3.7 Database benchmarking . 48

3.7.1 A Trusted Database Management System (TDBMS) performance study 50

3.8 Summary . 50

4 A Conceptual Model for Access Control 52

4.1 Introduction . 52

4.2 Basic properties of the model . 53

4.2.1 Multilevel relations . 53

4.3 Access to multilevel relations . 54

4.3.1 Insert operation . 54

4.3.2 Update operation . 55

4.3.3 Delete operation . 55

4.3.4 Select operation . 56

4.4 Summary . 56

5 Software Architecture of a COTS DBMS 57

5.1 Introduction . 57

5.2 The Stargres distributed DBMS . 57

5.3 Software modules of distributed server . 58

5.3.1 Global DDL compiler (GDC) . 58

5.3.2 Distributed query handler (DQM) 61

5.3.3 Query transformer module (QTM) 61

5.3.4 Distributed query optimiser module (DOPM) 61

5.3.5 Distributed query execution engine (DQEM) 61

CONTENTS iii

5.3.6 Remote access module (RAM) . 61

5.3.7 Coordinator database module (CDM) 62

5.4 Software facilities of the underlying DBMS 62

5.4.1 Applications and utilities facility (AUF) 62

5.4.2 Query processor facility (QPF) . 64

5.4.3 Transaction management facility (TMF) 64

5.5 Database creation in Stargres . 64

5.6 Table creation in Stargres . 64

5.7 Summary . 66

6 Adaptation of the Stargres DBMS 67

6.1 Introduction . 67

6.2 Architectural overview . 67

6.3 Augmenting the distributed server with MLS information 68

6.3.1 Capturing and Storing MLS information 69

6.3.2 Registering nodes in the cluster . 69

6.3.3 Creating user accounts . 70

6.3.4 Creating databases . 70

6.3.5 Creating tables . 71

6.3.6 Altering the tables . 75

6.3.7 Query processing . 75

6.4 Summary . 80

7 Performance Study of Fragmentation Schemes 82

7.1 Introduction . 82

7.2 Organisation of the experiments . 83

7.3 Experimental database structure . 83

7.4 Identifying the inhibitors and investigating their effects 85

7.5 Select-All query . 86

7.5.1 Impact of varying the number of tuples 86

7.5.2 Impact of page size on the back-end processing costs in section 7.5.1 87

7.5.3 Impact of varying the number of attributes 88

7.5.4 Impact of varying the number of security levels 89

7.5.5 Impact of changing the number of users on CPU Load 91

7.6 Join query . 91

7.6.1 Impact of varying the number of tuples 92

7.6.2 Impact of page size on the back-end processing costs in section 7.6.1 93

7.6.3 Impact of varying the number of attributes 93

7.6.4 Impact of varying the number of security levels 94

CONTENTS iv

7.6.5 Impact of changing the number of users on CPU Load 95

7.7 Updates . 97

7.7.1 Impact of updating the encounter relation 97

7.8 Analysis of experimental results . 98

7.8.1 Impact of varying the inhibitors on network performance 98

7.8.2 Impact of varying the inhibitors on front-end processing 99

7.8.3 Impact of executing an UPDATE operation 100

7.9 Summary . 101

8 Conclusions and Further Research 102

8.1 Contributions and conclusions . 102

8.1.1 Summary of contributions . 103

8.1.2 Conclusions . 104

8.2 Security analysis of MST . 106

8.2.1 Processing Scenarios . 106

8.2.2 Threats and their sources . 107

8.2.3 Impact of security threats . 108

8.3 Further research and future issues . 109

A Database Structure 119

B Lattice Routine Algorithm 122

List of Figures

2.1 A department relation (or table). 11

2.2 Security levels in total order and security levels in partial order showing the

dominates ≤ relationship between elements. 16

2.3 Tuple security labelling. 24

2.4 Attribute-level labelling. 24

2.5 Element-level labelling. 25

3.1 The integrity lock (or spray paint) architecture. 31

3.2 Vulnerability of the integrity lock architecture. 31

3.3 The kernelized architecture. 32

3.4 The replicated architecture. 33

3.5 The trusted subject architecture. 34

3.6 Conceptual structure of the distributed secure system. 45

5.1 Software architecture showing two nodes connected by a third node run-

ning the Distributed server component. The Distributed server uses a dedi-

cated coordinator DBMS and database to manage the nodes in its domain.

The system provides interfaces that support programmatic and interactive

queries. Application programs and interactive users connect to the system

from remote workstations or via a virtual private network (VPN). 59

5.2 Detailed software architecture of the Distributed server node depicted in

figure 5.1. It shows the interaction between the modules of the Distributed

server and the host DBMS. The Distributed server adds the GDC, DQM,

QTM, DOPM, DQEM, RAM, and CDM modules to the DBMS layer below. 60

6.1 A flowchart illustration of how the Distributed server handles an arbitrary

DML query. 77

7.1 Impact of varying the number of tuples to 112, 212, 312, 412, and 512; fix

of attributes at 9; fix # of security levels at 16; fix user’s clearance level;

fix page size at 8. (Select-All Query). 87

v

LIST OF FIGURES vi

7.2 Vary the page size to 2, 4, 6, and 8. Fix # of tuples in each node at 105; fix

of attributes at 9; fix # of security levels at 16; fix user’s clearance level.

(Select-All Query). 88

7.3 Vary number of attributes to 2, 4, 6, and 8; fix # of tuples at 512; fix # of

security levels at 16; fix user’s clearance level; fix page size at 8. (Select-All

Query). 89

7.4 Vary number of security levels to 2, 4, 6, 8, 10, 12, 14, and 16; fix # of tuples

at 512; fix # of attributes at 9; fix user’s clearance level; fix page size at 8.

(Select-All Query). 90

7.5 Vary # of concurrent users. Fix # of tuples at 512; fix # of attributes at

9; fix user’s clearance level; fix # of security levels at 16; fix page size at 8.

(Select-All Query). 92

7.6 Impact of varying the number of tuples to 380, 680, 980, 1280, and 1680.

Fix # of attributes at 48; fix # of security levels at 16; fix user’s clearance

level; fix page size at 8. (Join Query). 93

7.7 Vary the page size to 2, 4, 6, and 8. Fix # of tuples in each node at 105; fix

of attributes at 48; fix # of security levels at 16; fix user’s clearance level.

(Join Query). 94

7.8 Vary number of attributes to 8, 16, 24 , 32, 40, and 48; fix # of tuples at

1680; fix # of security levels at 16; fix user’s clearance level; fix page size at

8. (Join Query). 95

7.9 Vary # of security levels to 1, 2, 4, 6, 8, 10, 12, 14, and 16. Fix # of tuples

at 1680; fix # of attributes at 48; fix user’s clearance level; fix page size at

8. (Join Query). 96

7.10 Vary # of concurrent users. Fix # of tuples at 1680; fix # of attributes at

48; fix user’s clearance level; fix # of security levels at 16; fix page size at 8.

(Join Query). 96

7.11 Vary # of tuples; fix # of concurrent users; fix # of attributes at 9; fix user’s

clearance level; fix # of security levels at 16; fix page size at 8. 97

A.1 The Department relation. 119

A.2 The Nurse relation. 120

A.3 A subset of the Patient relation. 121

Acknowledgements

I am sincerely grateful to my thesis advisers: Professor Dieter Gollmann for his time,

support, and encouragement beyond the call of duty, and Professor Chris Mitchell for his

moral support and counsel, for providing the necessary administrative support, and for

proof reading the thesis.

I am also grateful to Commander Kurt Henry of the U.S. Defense Advanced Re-

search Projects Agency (DARPA) and Professor Thomas Keefe of Penn State University

for enlightening discussions regarding multilevel database security.

vii

Abstract

Multilevel secure database management system (MLS/DBMS) products no longer en-

joy direct commercial-off-the-shelf (COTS) support. Meanwhile, existing users of these

MLS/DBMS products continue to rely on them to satisfy their multilevel security require-

ments. This calls for a new approach to developing MLS/DBMS systems, one that relies

on adapting the features of existing COTS database products rather than depending on

the traditional custom design products to provide continuing MLS support.

We advocate fragmentation as a good basis for implementing multilevel security in

the new approach because it is well supported in some current COTS database manage-

ment systems. We implemented a prototype that utilises the inherent advantages of the

distribution scheme in distributed databases for controlling access to single-level fragments;

this is achieved by augmenting the distribution module of the host distributed DBMS with

MLS code such that the clearance of the user making a request is always compared to

the classification of the node containing the fragments referenced; requests to unauthorised

nodes are simply dropped.

The prototype we implemented was used to instrument a series of experiments to

determine the relative performance of the tuple, attribute, and element level fragmentation

schemes. Our experiments measured the impact on the front-end and the network when

various properties of each scheme, such as the number of tuples, attributes, security levels,

and the page size, were varied for a Selection and Join query. We were particularly inter-

ested in the relationship between performance degradation and changes in the quantity of

these properties. The performance of each scheme was measured in terms of its response

time.

The response times for the element level fragmentation scheme increased as the

numbers of tuples, attributes, security levels, and the page size were increased, more sig-

nificantly so than when the number of tuples and attributes were increased. The response

times for the attribute level fragmentation scheme was the fastest, suggesting that the

performance of the attribute level scheme is superior to the tuple and element level frag-

mentation schemes. In the context of assurance, this research has also shown that the

distribution of fragments based on security level is a more natural approach to imple-

menting security in MLS/DBMS systems, because a multilevel database is analogous to a

viii

LIST OF FIGURES ix

distributed database based on security level.

Overall, our study finds that the attribute level fragmentation scheme demonstrates

better performance than the tuple and element level schemes. The response times (and

hence the performance) of the element level fragmentation scheme exhibited the worst

performance degradation compared to the tuple and attribute level schemes.

Chapter 1

Introduction

Organisations have long known the importance of restricting access to sensitive information

to prevent competitors from learning about plans, new products, or changes in strategies.

Confidentiality, integrity, and availability are considered as some of the most important

aspects of information assets that must be protected [38]. For most organisations, the

database is the primary repository of information; it therefore follows that this asset is the

target of many security efforts aimed at protecting it from being compromised. A number

of models have been proposed in the past for protecting database management systems; a

few product developments and deployments have followed. However, for products based on

the multilevel approach, direct support is no longer provided by vendors, even though users

have sought it [53]. This thesis addresses this need by proposing and demonstrating the

feasibility of an alternative approach to implementing multilevel security, one that exploits

the distribution and query processing features of a distributed COTS DBMS.

The next section provides background information about database management

systems (DBMSs) and the evolution of computer security models. Section 1.2 elaborates on

the problems that motivated this research. Our research aims are described in Section 1.3.

The contributions of this research are reviewed in Section 1.4. Section 1.5 provides a guide

to the rest of the thesis.

1.1 Background

Database management systems first appeared in the 1960s and have been subject to rapid

changes in concepts and technology for over thirty years. A DBMS is a computer system

which is responsible for the storage and maintenance of databases [59]. A DBMS is es-

sentially a software system but, in order to make the management of data more efficient,

it may contain specialised hardware such as special disk drives that support faster access

to the data, and multiprocessors that support parallelism [59]. In addition, DBMSs pro-

vide for the safety of information through backup, concurrency, and recovery mechanisms.

1

CHAPTER 1. INTRODUCTION 2

These fundamental database concepts are now well defined and understood [35, 59]. Three

major DBMS models have been proposed: the Hierarchical Data Model, the Network Data

Model, and the Relational Data Model [35, 59]. The relational model is a database that

is perceived by its users as a collection of tables (and tables only) [38]. It has become the

predominant model, and it is the model that will be used in this thesis. We will return

to the subject of DBMSs with a more detailed description later in Chapter 2. Another

important concept which is central to our discourse, and that evolved in parallel with the

relational data model, is computer security.

A number of definitions have been proposed for computer security, but most of

the definitions embody the confidentiality, integrity, and availability aspects of protecting

information. However, for the purposes of this thesis, computer security is defined as the

prevention and detection of unauthorised actions by users of a computer system [38]. Most

of the early work in computer security focused on military security. The U.S. Department of

Defense funded the initial efforts because of its need to control the disclosure of information

which could damage U.S. national security interests [30, 31]. A multilevel security hierarchy

with four levels of increasing sensitivity was developed. The levels from lowest to highest

are: Unclassified (U), Confidential (C), Secret (S), and Top Secret (TS), ignoring for now

additional categories within levels such as (Secret [Nuclear]) versus (Secret [Conventional])

[26, 72]. The four level system and its categories was designed to capture only a very

specific “militaryÔ security policy. Later, we will consider systems that use different sets of

security levels. Data in a multilevel secure computer system is required to be labelled with

its security classification. Users of the data are required to have the appropriate clearance

level to access the data in the system. Secure computer systems compare the clearance of

the user to the classification of the data and mediate the access of the users to the data

in accordance with specified security rules. For example, a basic security rule incorporated

in the Bell-LaPadula disclosure model (BLP) [7, 8] is that no user can read any data with

a greater classification than the user’s clearance (e.g., a Secret user cannot have access to

Top Secret data). Since both clearances of users and classifications of data are constructed

in the same manner, they will both be referred to using the term level.

The BLP model [7, 8] was the first mathematical specification of a multilevel security

policy; it was central to the development of basic computer security standards and laid the

groundwork for a number of later security models, and their application in U.S. government

security standards. The model is described in terms of objects (a file, data, memory, I/O

devices, etc.), subjects (users or a process acting on behalf of a user) and their corresponding

security levels. The goal of preventing unauthorised disclosure can be satisfied if a user, or

a subject acting on behalf of a user, is restricted to those objects whose level is dominated

by the user. The BLP is the basis of the multilevel security policy in DBMSs with which

we are concerned here.

CHAPTER 1. INTRODUCTION 3

Major research efforts were undertaken in the early 1980’s to incorporate multilevel

security principles into relational database management systems [30]. The latter effort,

known as multilevel secure database management systems, generated much progress in

the years that followed. A multilevel secure DBMS (MLS/DBMS) extends the classical

relational data model to include security classification attributes and further integrity con-

straints. We will postpone a detailed treatment of these concepts until later in Chapter 2.

Database systems based on the classical relational data model are used in a wide variety of

application areas, including banking systems, reservation systems, and military intelligence

systems.

As a result of the diversity of application domains for database systems, a number of

different security models and techniques have been proposed to counter the various threats

against security. A security model is implemented on the basis of a specific access control

policy; this could be a discretionary access control (DAC) or a mandatory access control

(MAC) policy. With a DAC policy, users at their discretion can specify to the system

who can access their files. In the case of secure database systems for use in applications

that call for multilevel security (such as those of the U.S. Department of Defense where

data security is of primary importance), discretionary access controls are not adequate,

and more stringent restrictions on the sharing of information are required. A MAC policy

provides the required restrictions. In contrast to a DAC policy, a MAC policy is a “system

enforcedÔ policy that restricts access to objects based on the classification of the object

and the clearance of the user to access information at that sensitivity level; this type of

policy forms the basis of the work described in this thesis. Discretionary and mandatory

access controls are described in more detail in Chapter 2.

Most systems supporting DAC store access rules in an access control matrix. In its

simplest form the rows of the matrix represent subjects, the columns represent the objects,

and the intersection of a row and a column contains the access type or types for which a

subject is authorised with respect to the object. The access matrix model as a basis for

discretionary access controls was formulated by Lampson [57] and subsequently refined by

Denning [25]. Other models that support DAC include the Take-Grant model [49] and the

Action-Entity model [14]. A formal description of DAC will be presented in Chapter 2.

MAC policies address a higher level of threat than discretionary policies because,

in addition to controlling access to data, they can also be used to control the flow of data.

MAC requirements are often stated using the BLP model, and are formalised using two

rules. The first, the simple property, protects the database information from unauthorised

disclosure, and the second, the *-property, prevents the unauthorised downgrading of data

by restricting information flow from high security levels to low security levels. Some of the

models that support MAC include the SeaView model [28], the Jajodia-Sandhu model [48],

the Smith-Winslett model [75], and the Multilevel Relational model [20]. These models will

CHAPTER 1. INTRODUCTION 4

be described in more detail in Chapter 3.

Providing a database system with multilevel security, or bringing a model to life as

a prototype or a commercial product, is fraught with difficulties. A number of approaches

have been proposed; one such approach advocates designing the security mechanisms into

the database system itself and then trusting the database to enforce the security policy [2].

In practice this results in a low assurance system; that is, the separation between security

policy and enforcement is weak [2]. This kind of database system is useful, but cannot

interconnect the diverse population of users expected for the new information infrastructure.

The reason for the low assurance is the complexity and size of modern database systems.

Less straightforward but more effective approaches use a reference monitor to enforce the

security policy. The reference monitor is evaluated for high assurance and the database

system is designed to function under the security constraints enforced by the reference

monitor.

In a search for a more effective solution, the Multilevel Data Management Security

Summer Study [1] recommended three approaches to solving the multilevel database se-

curity problem. The three approaches are: integrity lock, kernelized, and replicated. The

integrity lock approach, also known as the spray paint architecture, uses a trusted front-

end, a single untrusted back-end database system, and encryption techniques to protect

data. In the kernelized approach, the multilevel database is partitioned into single-level

databases, which are then stored separately under the control of a trusted security kernel

that enforces a MAC policy. In addition, there is a separate DBMS for each security level.

In the replicated approach, a separate DBMS is used to manage data classified at or below

each security level. Unlike the kernelized approach, each database in the replicated ap-

proach maintains data at its level and below. We will discuss all three approaches in more

detail in Chapter 3.

Building on the above models, a number of development efforts to build MLS proto-

types and high assurance commercial MLS/DBMS products were initiated. The SeaView

model was developed as a prototype MLS/DBMS that uses viewlike mechanisms for access

control; the Lock Data Views (LDV) prototype, the A1 Secure DBMS (ASD) prototype,

the SWORD prototype, and the Purple Penelope demonstration system followed after-

wards. A number of commercial products were also deployed as a result of the pioneering

efforts of database vendors such as Oracle, Ingres, Sybase, and Informix, but these systems

are no longer being supported.

In order to be certified at a particular level of security, the prototypes and prod-

ucts must be evaluated (and tested) in an adversarial manner. The originally used criteria

for evaluating secure computer systems are contained in the U.S. Department of Defense

“Trusted Computer System Evaluation CriteriaÔ (TCSEC), also known as the Orange Book

[7, 8, 64], although this has since been replaced by the Common Criteria [67]. For high

CHAPTER 1. INTRODUCTION 5

assurance systems that must provide a strong separation between security policy and en-

forcement, the protection mechanisms must be simple and easy to evaluate. Protection

critical components must contain only protection mechanisms and must mediate every ac-

cess by each user. In general, these systems are more carefully engineered and crafted

than most computer systems. Protection critical components must be scrutinized in an

adversarial way in order to ensure that malicious code is not present in the system. The

Orange Book proposed three protection critical concepts, the Reference monitor, the Se-

curity kernel, and the Trusted Computing Base (TCB) as the central notions of a trusted

system [38, 64]. The reference monitor is an access control concept that refers to an ab-

stract machine that mediates all accesses to objects by subjects [64]. The security kernel

is the hardware, firmware, and software elements of a trusted computing base that im-

plements the reference monitor concept. It must mediate all accesses, be protected from

modification, and be verifiable as correct [64]. The TCB refers to the totality of protection

mechanisms within a computer system – including hardware, firmware, and software – the

combination of which is responsible for enforcing a security policy [64].

1.2 Problem statement

The MLS/DBMS products that were developed and distributed in the eighties and nineties

by vendors such as Ingres, Oracle, Sybase, and Informix are no longer being supported.

The decline in vendor support has been attributed mainly to a scaling back of research

and development grants by the U.S. Department of Defense, the catalyst behind many

development efforts. As a consequence of the withdrawal of government funding, many of

the vendors were unwilling to continue supporting these products, already considered to be

too complex and unprofitable.

The number of existing users of COTS MLS/DBMS products, however, remains

significant; these users have invariably found themselves in a precarious situation with lim-

ited or no vendor support. Some of these users sought alternatives to MLS-based systems;

others continued to operate on MLS policies. There are no new products currently on the

market to fill the void left by this absence of support. These existing users will need COTS

MLS/DBMS support for as long as they continue to operate using MLS policies. This calls

for new COTS MLS/DBMS initiatives that meet that need.

A multilevel database consisting of relations (tables), which are fragmented based

on security level, is logically the same as a distributed database. However, none of the

existing MLS/DBMSs use the inherent advantages of distributed DBMSs to access or to

provide security to single-level fragments. These distributed DBMS techniques support the

fragmentation of relations and the distribution of their fragments at the tuple, attribute,

and element levels of granularity. Although we suggest fragmentation as a good basis for

CHAPTER 1. INTRODUCTION 6

implementing MLS security, the relative performance of the tuple, attribute, and element-

level fragmentation schemes needs to be determined through investigation. The benchmark

information that this investigation provides is necessary to inform organisations that are

interested in implementing an MLS/DBMS based on our approach.

While MLS/DBMSs have been widely criticised for their inefficiency and complex-

ity [53], we are only aware of one benchmark study that has sought to investigate their

performance. The study by Thuraisingham and Kamon [77] was based on the distributed

architecture approach recommended by the Multilevel Data Management Security Summer

Study [1, 6]. The purpose of the benchmark study was to investigate the performance of

query processing algorithms in this particular implementation. The study did not inves-

tigate the performance of the fragmentation schemes that are of interest to our research

as it was based on a trusted DBMS that supported only one type of partitioning scheme.

Furthermore, only a limited number of variables were subject to observations to determine

their impact on the system.

1.3 Aims of this research

The work contained in this thesis is motivated by the need to demonstrate the feasibility of

using a cluster of machines and a COTS distributed DBMS software to implement multilevel

security. This need became apparent because of the absence of COTS support for existing

users of MLS/DBMS products, and the lack of an alternative system that satisfies the

security needs of these users. To that end, we will draw on the query processing techniques

and fragmentation features developed for distributed databases to more efficiently enforce

security in MLS/DBMSs which are implemented as kernelized architectures. We demon-

strate this concept by augmenting the Stargres distributed database management system1

with multilevel code to deliver security at three levels of granularity: tuple, attribute, and

element.

We have adapted Stargres, based on the kernelized approach, to provide multilevel

database security. Henceforth, we refer to this adapted distributed DBMS as the Multilevel

Stargres (MST) prototype. MST enforces a strong MAC protection policy and provides

the performance and full data management capabilities of conventional industry-standard

database management systems. It also uses physical separation as its primary protection

mechanism. The MST prototype consists of a framework for mandatory access security,

that includes local DBMSs, and a Distributed server.

In our benchmark study, we investigated the performance of our proposed kernelized

approach to multilevel security to determine how it performs under the tuple, attribute, and

element-level fragmentation schemes for the Select-All and Join queries. Our experiments
1Stargres is a product of Johns Hopkins University Applied Physics Laboratory, Maryland.

CHAPTER 1. INTRODUCTION 7

compared the performance impact of varying such diverse variables as tuples, attributes,

security levels, number of users, and the page size. It is important to determine how a

variation in the quantity of each variable impacts the performance of each fragmentation

scheme, so as to identify potential bottlenecks, and to suggest the combination of variable

quantities that will optimise the performance of each scheme.

1.4 Contributions of this research

The work described in this thesis builds upon prior research in a number of different fields,

and is up to date as of Spring 2000 — the date of its original submission. There have

been further developments in MLS/DBMSs research since Spring 2000 although we have

not attempted to cover them here.

This section summarises how our research contributes to this body of knowledge.

Our work:

• demonstrates that the query processing and distribution techniques developed in dis-

tributed databases can be used to implement security in MLS/DBMSs which are im-

plemented as kernelized architectures. This concept was elucidated (or brought to life)

by adapting a COTS distributed database management system to provide multilevel

security.

• proposes a conceptual MLS/DBMS model that is largely based on models oriented to-

wards representing data ‘truthfully’, e.g., the SWORD approach rather than those that

are oriented towards representing data ‘honestly’, e.g., the Jajodia-Sandhu model. Al-

though the model uses the Jajodia-Sandhu definition of a multilevel relational model,

its operational semantics is mostly based on the SWORD approach.

• demonstrates the feasibility of adapting a COTS DBMS to provide multilevel security;

it shows that the same techniques used in the adaptation can also be utilised by

subscribers to MLS policy who no longer enjoy direct vendor support.

• demonstrates that the adaptation of a COTS DBMS can be achieved solely by identi-

fying the critical modules that handle data objects and administrative/user requests,

and then augmenting them with MLS security code. This process need not be as

complex as the implementation of an MLS/DBMS from scratch.

• investigates the relative performance of the three fragmentation schemes supported by

our prototype by conducting a number of experiments using variables such as tuples,

attributes, security levels, number of users, and the page size, for a Select-All and Join

query.

CHAPTER 1. INTRODUCTION 8

• shows, through our observations, that the performance of the attribute-level fragmen-

tation scheme is superior to the tuple and element-level fragmentation schemes, and

that the element-level scheme suffers from the worst performance degradation.

We will return to this list of contributions at the conclusion of this thesis and

elaborate on each contribution.

1.5 Contents of the thesis

In this chapter, we have described the background to our research, outlined the subject

matter of this thesis, provided an overview of multilevel security, and described the scope

of our work. Chapter 2 reviews the basic concepts used throughout the thesis.

In Chapter 3, we review some previous efforts at protecting data from unautho-

rised disclosure, and the state-of-the-art in multilevel security focusing on MLS models,

architectures, prototypes, and product development.

In Chapter 4, we present a conceptual MLS/DBMS model that is oriented towards

representing data ‘truthfully’, e.g., the SWORD approach, but that also incorporates fea-

tures from approaches that represent data ‘honestly’, e.g., the Jajodia-Sandhu model. We

also describe the axioms and salient features of the proposed model.

In Chapter 5, we present the architecture of the Stargres distributed database man-

agement system, including a description of its constituent facilities and modules, and how

they cooperate in processing queries.

In Chapter 6, we describe the technical details of our proposed MST prototype,

focusing on the Distributed server and the modules that were adapted to provide MLS

functionality. We also discuss the hardware configuration and usage of the prototype.

In Chapter 7, we investigate the performance of the MST prototype’s three frag-

mentation schemes for a Select-All query and a Join query. In our study, we examine the

impact of varying properties such as the number of tuples, number of attributes, number

of security levels, and the page size, on the front-end and the network.

In Chapter 8, we summarise our contributions and point to further areas of research

that can be developed to build upon the work done in this thesis.

Chapter 2

Review of Basic Concepts

2.1 Introduction

This chapter introduces a number of basic concepts that will be used throughout this thesis.

The discussion consists of five sections. Section 2.2 describes database systems in general,

focusing on their constituent software components. Section 2.3 presents the relational data

model and some of its Structured Query Language (SQL) operators. In section 2.4 we

present discretionary access control and mandatory access control, including ordered sets,

lattices, and the Bell-LaPadula model. The multilevel relational model, an extension of

the standard relational model, is described in section 2.5. Section 2.6 highlights some

important features of distributed database systems that are important to the discussion of

the COTS distributed DBMS architecture introduced in Chapter 5, these features include

relation fragmentation and query processing. Section 2.7 summarises the chapter.

2.2 Database systems

A database system is a computerised system to keep track of information. The information

in the database system consists of both data and information about the data (metadata)

such as the relationship of one data item to another. A database system can be viewed as

having four parts [24]: data, users, hardware, and software.

Data: These are raw information that a business, government agency, or some other

group of individuals collect to fulfil their goals or missions. Individual data

items are collected into sets of related data items called records. A collection

of interrelated records is called a database.

Users: The various individuals and groups of people who use information are defined

as users.

9

CHAPTER 2. REVIEW OF BASIC CONCEPTS 10

Hardware: Hardware typically consists of physical devices such as disks, printers, I/O

devices and the processor itself, with its associated memory.

Software: The interface between the physical data and the user of the data is the

Database Management System (DBMS). The DBMS is essentially a software

system, but may contain specialised hardware in order to make the manage-

ment of data more efficient [59]. Such hardware may include special disk

drives that support fast access to the data, and multiprocessors that support

parallelism [59].

The DBMS provides the various users of the database with different ways of looking

at the data depending on their uses of the data. These different ways of looking at the

data represent distinct levels of abstraction of the underlying data: the Physical level is

the lowest level of abstraction. Typically, this level is of interest to the designers of the

DBMS software who are concerned with how the data are physically stored (e.g., the disk

address of a record). The Conceptual level is the middle level of abstraction, concerned

with describing what data are in the database and the relationships between data items.

This level is of interest to Database Administrators and Security Administrators. The View

level is the highest level of abstraction. Typically, this level is the way the end-user sees the

data. Each end-user can have a tailor-made view of the data which are of interest to him

or her. This view of the data does not require the user to know or understand the internal

characteristics of the data (such as how they are represented or stored).

Database models permit differentiation between the description of the database,

which is specified in the schema, and the collected contents or values of the data items in

the database at any particular time, which is called the instance. The database schema is

specified using a data definition language (DDL). The manipulation of actual data in the

database (inserting, deleting, updating, or retrieving data values) is accomplished using a

data manipulation language (DML).

The DBMS uses a complex set of software components in order to perform its func-

tion. These components include the data manager which provides an interface to physical

data stored in the database, the query processor which translates the query language into

instructions for the data manager, the data manipulation language precompiler which trans-

lates DML statements from applications programs to host language calls, and works with

the query processor, and the data definition language compiler which translates DDL state-

ments into tables of metadata. Metadata are stored in the data dictionary, which includes

the structure of the database or the schema and data integrity constraints (e.g., age must

be numeric and between 0 and 120), and security constraints (data item x is secret).

The relational data model is described next. This is the model that forms the basis

of the work described in this thesis.

CHAPTER 2. REVIEW OF BASIC CONCEPTS 11

2.3 The relational data model

We stated in Chapter 1 that a database is represented by the relational model as a col-

lection of tables (see figure 2.1). More importantly, the model is directly related to the

mathematical concept of a relation; it is comprised of:

1. a structural part. A database schema is a collection of relation schemas and a

database is a collection of relations.

2. an integrity part. Primary keys and foreign keys.

3. a manipulative part. Relational algebra and relational calculus.

Formally, a relation R is a subset of D1 × . . . × Dn where D1, . . . , Dn are the

domains of n attributes A1, . . . , An. The elements in the relation are n-tuples (v1, . . . , vn)

with vi ∈ Di, i.e., the value of the ith attribute has to be an element from Di. The elements

in a tuple are often called fields. When a field does not contain any value, we represent this

by entering a special null value in this position, meaning ‘there is no entry’ rather than

‘entry is unknown’.

DN Dept_Name Manpower Dept_Location Manager

D10 Records 43 241 East Annex Cantor
D11 Obstetrics 13 601 Main Building Baker
D12 Laboratory 8 202 Drew Building Ebert
D13 Geriatrics null B16 Basement Xavier

Figure 2.1: A department relation (or table).

2.3.1 Integrity constraints

Integrity constraints restrict the set of theoretically possible tuples to a set that is practically

meaningful. Let X and Y denote sets of one or more of the attributes Ai in a relation

schema. We say Y is functionally dependent on X, written X → Y , if and only if it is not

possible to have two tuples with the same value for all the attributes in X but different

values for any of the attributes in Y . Functional dependencies represent the basis for most

integrity constraints in the relational model. As not all possible relations are meaningful

in an application, only those that satisfy certain integrity constraints are considered. From

the large set of proposed integrity constraints, entity integrity and referential integrity are

of major importance.

• the entity integrity constraint states that each tuple must be uniquely identified

by a key and a key attribute cannot be null;

CHAPTER 2. REVIEW OF BASIC CONCEPTS 12

• the referential integrity constraint states that an n-tuple in one relation that

refers to another relation must refer to an existing n-tuple in that relation; this is

expressed by means of foreign keys.

These two rules are application-independent, and must be valid in each relational

database. In addition, many application-dependent semantic constraints may exist.

A candidate key of a relation schema R is a minimal set of attributes on which all

other attributes of R are functionally dependent. The primary key of a relation schema R

is one of its candidate keys that has been specifically designated as such. A foreign key of

a relation schema R is a set of attributes in a relation schema that forms a primary key

of another relation. For a more detailed treatment of the relational model including its

core integrity properties, see [35, 59]; for now, we consider how queries against relations

are expressed.

2.3.2 Structured query language

The relational model has resulted in query languages such as the relational algebra, which

is the procedural query language for the relational model, and the relational calculus, which

is the declarative counterpart of the relational algebra and is based on first-order predicate

calculus [59]. Relational calculus provides the theoretical underpinning of the Structured

Query Language (SQL), the commercial relational query language used in most DBMSs

[59]. A description of the relational algebra, relational calculus, and SQL operations may

be found in many references discussing the relational model, see [18, 24, 59].

SQL was developed during the 1970’s at IBM as part of the System R1 project and

was standardised during the 1980’s by the International Standards Organisation (ISO).

In the following, we introduce a subset of SQL operations that will be used later in this

thesis, including the Retrieve, Insert, Update, and Delete operations. The operations will

be illustrated using the Department and Nurse relations shown in Appendix A.

RETRIEVE statement

SELECT attribute_list

FROM table_list

WHERE selection_condition

The SELECT statement selects data from a table and stores it in a result-set. Only those

tuples which satisfy the selection_condition are included in the result-set which has the

same schema as the original table. The operations allowed in a selection_condition include

=, !=, <, >, and LIKE.
1System R is a relational DBMS prototype developed by IBM at the San Jose Research Laboratory in California.

CHAPTER 2. REVIEW OF BASIC CONCEPTS 13

Example: A retrieval from a single table, to find the Dept_Name with a DN value of D12

and its corresponding Manpower value in the Department table.

SELECT Dept_Name, Manpower

FROM Department

WHERE DN = ‘D12’;

Example: A retrieval from two tables (JOIN), to find the names of all departments, their

corresponding manpower, and the specialties of their nurses from the Department and Nurse

tables where the DN values in the Department table corresponds to the DN values in the

Nurse table, and the manager is Cantor.

SELECT Department.Dept_Name, Department.Manpower, Nurse.N_Specialty

FROM Department, Nurse

WHERE Department.DN = Nurse.DN

AND Department.Manager = ‘Cantor’;

INSERT statement

INSERT INTO table_name (attribute1, attribute2, . . .)

VALUES (value1, value2, . . .)

The INSERT statement inserts new tuples in a table. The attribute names may be omitted

if both their number, and the order in which the values to be inserted appear, agree with

the original table.

Example: To INSERT a tuple in the Department table.

INSERT INTO Department (DN, Dept_Name, Manpower, Dept_Location, Manager)

VALUES (‘D30’, ‘Psychiatry’, 16, ‘105 South Wing’, ‘Smith’);

UPDATE statement

UPDATE table_name

SET attribute_name = new_value

WHERE selection_condition

The UPDATE statement sets the attribute_name specified to the corresponding value for

all those tuples in the specified relation that satisfy the selection_condition. If no condition

CHAPTER 2. REVIEW OF BASIC CONCEPTS 14

is given, all tuples are updated.

Example: To UPDATE an attribute in the Department table.

UPDATE Department

SET Manpower = 16

WHERE DN = ‘D12’;

DELETE statement

DELETE FROM table_name

WHERE selection_condition

The DELETE statement deletes tuples in a table. If the selection_condition is specified,

all the tuples for which this condition holds are deleted. An unqualified deletion will empty

the table (without destroying its structure).

Example: To DELETE a tuple from the Department table.

DELETE FROM Department

WHERE DN = ‘D12’;

2.4 Access control

As the security of the relational database model is the main theme of this thesis, this section

contains a review of some of the basic notions of access control. Access control ensures that

all direct accesses to database objects occur only according to the models and rules fixed

by protection policies [50]. Earlier in Chapter 1, we introduced two types of access control

policies, namely DAC and MAC. These access control policies provide different levels of

protection to the relations in a system, they are based on the concept of a set of subjects

S (e.g., users, groups of users, or transactions operating on behalf of users), to whom we

grant or deny access, a set of objects O (e.g., relations, tuples), to which access is either

granted or denied, the set of access operations A = {read, write, append, execute, grant,

delegate, revoke}, a set of predicates P , used to represent content-based access (for DAC),

and a set L of security levels with a partial ordering ≤ (for MAC) (see subsection 2.4.2)

[7, 38].

CHAPTER 2. REVIEW OF BASIC CONCEPTS 15

2.4.1 Discretionary access control (DAC)

In DAC, a predicate p ∈ P defines the permissions of subject s ∈ S on object o ∈ O. The

tuple < o, s, a, p > is called an access rule and a function f is defined to determine if an

authorisation f(o, s, a, p) is valid or not:

f : O × S × A× P → {True, False}.

For any < o, s, a, p >, if f(o, s, a, p) is True, subject s has authorisation a to access

object o within the range defined by predicate p. An important property of discretionary

security models is the support of the principle of delegation of rights where a right is the

(o, a, p)-portion of the access rule. A subject si who holds the access right (o, a, p) may

be allowed to delegate that right to another subject sj(i 6= j). This flexibility to delegate

(grant) access rights in DAC makes it a popular choice for implementing commercial and

industrial security policies. A more detailed treatment of DAC can be found in [15, 38].

2.4.2 Mandatory access control (MAC)

While DAC is concerned with controlling access to objects, MAC is in addition concerned

with the flow of information between different security levels in a system. MAC requires that

objects and subjects are assigned to certain security levels represented by a label. The label

for an object is called its classification and a label for a user is called its clearance. MAC

makes access control decisions by comparing these labels on the basis of rules described in

subsection 2.4.2.3. Security labels form a partially ordered set (and often a lattice).

2.4.2.1 Ordered sets

In the following definition of a partially ordered set, let L be a set. A partial order on L is

a binary relation, ≤, on L such that for all a, b, c ∈ L

• a ≤ a,

• a ≤ b and b ≤ a imply that a = b,

• a ≤ b and b ≤ c imply that a ≤ c.

These three conditions are referred to as reflexivity, antisymmetry and transitivity,

respectively. A set L equipped with a partial order is called a partially ordered set.

2.4.2.2 Lattices

A lattice (L,≤) consists of a set L and a partial ordering ≤, with the property that, for

every two elements a, b ∈ L there exists a least upper bound u ∈ L and a greatest lower

bound l ∈ L, i.e.,

CHAPTER 2. REVIEW OF BASIC CONCEPTS 16

• a ≤ u, b ≤ u, and for all v ∈ L: (a ≤ v ∧ b ≤ v) ⇒ (u ≤ v)

• l ≤ a, l ≤ b, and for all k ∈ L: (k ≤ a ∧ k ≤ b) ⇒ (k ≤ l)

In MLS policy, if a ≤ b, we say that a is dominated by b. If there exists a security

level that is dominated by all other levels, it is called System-low. If there exists a security

level that dominates all other levels, it is called System-high. Typical examples of lattices

are illustrated in figure 2.2. Figure 2.2(A) shows a totally ordered set of security levels

where Top Secret dominates Secret, Confidential, and Unclassified; Secret dominates Con-

fidential, and Unclassified; and Confidential dominates Unclassified. Figure 2.2(B) shows a

partially ordered set of security levels proposed for firewalls where System high dominates

inside, outside, and System low, inside and outside dominate System low, and inside is

incomparable to outside.

Figure 2.2: Security levels in total order and security levels in partial order showing the dominates ≤
relationship between elements.

2.4.2.3 Bell-LaPadula model (BLP)

The BLP model is a state machine model capturing the confidentiality aspects of access

control, where access to objects is controlled by a strict set of rules that are enforced by

the system. Access permissions are defined both through an access control matrix and

through security levels represented by labels. The downwards flow of information from a

CHAPTER 2. REVIEW OF BASIC CONCEPTS 17

high security level to a low security level is prohibited by the model when a subject observes

or alters an object. The model enforces a multilevel security (MLS) policy [7, 8].

We present a formal description of the BLP model using the set of objects, subjects,

access operations, and partially ordered security levels. The access operations of the BLP

model are: execute, read, append, and write. The current states will be described in these

terms. This leads to a state set B ×M× F , where:

• B = P(S × O × A) is the class of all possible sets of access operations currently

permissible within the system. An element b ∈ B is a collection of tuples (s, o, a),

indicating that subject s currently performs operation a on object o.

• M is the set of access permission matrices M = (Mso)s∈S,o∈O.

• F ⊂ LS × LS × LO is the set of security level assignments. An element f ∈ F is a

triple (fs, fc, fo), where:

– fs : S → L gives the maximal security level each subject can have,

– fc : S → L gives the current security level of each subject,

– fo : O → L gives the classification of all objects.

The current level of a subject cannot be higher than its maximal level, hence fc ≤ fs.

The reason for introducing fc will become clear as this discussion continues. The maximal

security level is sometimes called the subject’s clearance. Other sources use clearance only

to denote the security level of users. Defining the state set is the major issue in BLP. We

do not have to describe inputs, outputs, or the precise structure of state transitions, to give

the BLP security properties.

Security policies

BLP defines security as the property of states. Multilevel security policies allow a subject

to read an object only if the subject’s security level dominates the object’s classification.

These multilevel security policies are also called mandatory security policies. The BLP

model defines two properties (rules) for mediating the access of subjects to objects; these

properties are the simple security property rule (ss-property) and the *-property. Both

properties must hold in order for security to be maintained [7, 8, 58]:

ss-property. A state (b,M, f) satisfies the ss-property, if for each element

(s, o, a) ∈ b where the access operation a is read, the security level of the subject

s dominates the classification of the object o, i.e., fo(o) ≤ fs(s). This property

captures the traditional No Read-up (NRU) security policies.

CHAPTER 2. REVIEW OF BASIC CONCEPTS 18

The ss-property is, however, not sufficient to prevent a low-level subject from reading

the contents of a high-level object. It could create a high-level Trojan horse which reads

the high-level object and copies it (writes its contents) into a low-level object. Thus, we

also have to control write access through the *-property.

*-property. A state (b,M, f) satisfies the *-property, if for each element (s, o, a) ∈
b where the access operation a is append, the current level of the subject s is dom-

inated by the classification of the object o, i.e., fc(s) ≤ fo(o). This is a No Write

Down (NWD) security policy. Furthermore, if there exists an element (s, o, a) ∈ b

where the access operation a is append or write, then we must have fo(o
′) ≤ fo(o)

for all objects o′ with (s, o′, a′) ∈ b and a′ is read or write.

This definition immediately implies that a high level subject cannot send information

to a low-level subject. There are two ways to escape from this restriction:

• Temporarily downgrade a high level subject. This is the reason for introducing the

current security level fc.

• Identify a set of subjects that are permitted to violate the *-property. These subjects

are called trusted subjects.

The first approach assumes that a subject forgets all it knew at a higher security level

the moment it is downgraded. This looks implausible if you view subjects as human beings,

but BLP is about modelling computers. There, subjects (processes) have no memory of

their own. The only thing they ‘know’ are the contents of the objects (files) they are allowed

to observe. In this situation, a temporary downgrade indeed solves the problem.

In a second interpretation, fs specifies a user’s clearance. Users are allowed to login

below their clearance and fc indicates at which level a user has actually logged in.

When adopting the second approach, the *-property only has to hold for subjects

which are not trusted. By definition, a trusted subject may violate the security policy.

Although it has the ability to violate the security policy of the system, it is trusted not to

actually do so.

Discretionary access control in BLP is also expressed by an access control matrix

and captured by the discretionary security property (ds-property).

ds-property. A state (b,M, f) satisfies the ds-property, if for each element of

(s, o, a) ∈ b we have a ∈ Mso.

A state is called secure if all three security properties are satisfied.

The Basic Security Theorem

A transition from state v1 = (b1,M1, f1) to state v2 = (b2,M2, f2) is said to be secure, if both

v1 and v2 are secure. To see which checks have to be performed to determine whether the

CHAPTER 2. REVIEW OF BASIC CONCEPTS 19

new state is secure, consider, for example, the ss-property. The state transition preserves

the ss-property if and only if:

1. each (s, o, a) ∈ b2\b1 satisfies the ss-property with respect to f2; (b2\b1 denotes the set
difference between b2 and b1) and

2. if (s, o, a) ∈ b1 does not satisfy the ss-property with respect to f2, then (s, o, a) /∈ b2.

Preservation of the *-property and of the ds-property can be described in a similar

way. We are now in a position to state an important property of the BLP model.

Basic security theorem. If all state transitions in a system are secure and if

the initial state of the system is secure, then every subsequent state will also be

secure, no matter which input occurs.

A formal proof of this theorem would proceed by induction over the length of input

sequences. The proof would build on the fact that each state transition preserves security

but would not refer to the specific BLP security properties. In practice, the basic security

theorem limits the effort needed to verify the security of a system. You are allowed to

check each state transition individually to show that it preserves security and you have to

identify a secure initial state. As long as a system starts in this secure initial state, it will

remain secure.

Tranquility

McLean [62] triggered a heated discussion in 1985 about the value of the BLP model by

putting forward a system that contained a state transition, which

• downgraded all subjects to the lowest security level,

• downgraded all objects to the lowest security level,

• entered all access rights in all positions of the access control matrix M .

The state reached by this transition is secure according to the definitions of BLP.

Should such a state be regarded as secure? As BLP says it is secure, does BLP then capture

security correctly? There are two opinions:

• The case against BLP (McLean): Intuitively, a system that can be brought into

a state where everyone is allowed to read everything is not secure. Therefore, BLP

has to be improved.

• The case for BLP (Bell): If the user requirements call for such a state transition,

then it should be allowed in the security model. If it is not required, then it should not

be implemented. This is not a problem of BLP but a problem of correctly capturing

the security requirements.

CHAPTER 2. REVIEW OF BASIC CONCEPTS 20

At the root of this disagreement is a state transition that changes access rights. Such

changes are certainly possible within the general framework of BLP but the originators of

the model were really contemplating systems where access rights are fixed. The property

that security levels and access rights never change is called tranquility. Operations that do

not change access rights are called tranquil.

Aspects and limitations of BLP

Although BLP is an important security model and has played an important role in the

design of secure systems, it does not cover all aspects of security. I has been criticised

for: 1) only dealing with confidentiality without addressing integrity, 2) not addressing the

management of access control, 3) containing covert channels.

The absence of integrity policies in BLP gave rise to an issue referred to as blind

writes. Blind writes has been shown to introduce integrity problems in systems complying

with the BLP model’s NRU and NWD rules. This situation arises when a user is allowed

to insert, modify, or delete a record, but is also not allowed to observe the effect of these

operations. For example, if a user logged-in at System-low writes a record at System-high,

it is generally safe computing practice for the user to observe the contents of the record

being modified to make sure that the operation succeeded; however, with BLP, a user

at System-low cannot observe the effects of changes at System-high. Blind write raises

concerns because the same user deemed unsuitable for viewing a record is permitted to

make arbitrary changes to that record. This may cause integrity problems that can only

be dealt with by imposing requirements that may change the BLP rules. For example,

prohibiting a no write up rule and allowing only writes to records that are at the same

security level as the user will restrict the model and shift its focus from disclosure to a

combination of integrity and disclosure. Because of this potential integrity problem, few

developers have opted to implement the BLP rules as they are written; many have opted

instead for a modified version of the rules. Modified versions of the BLP rules have a

tendency to be more restrictive, such as disallowing blind writes so that users can only

write records at their own security level.

2.5 The multilevel relational model

In the multilevel relational model, relations, tuples, attributes, or elements are assigned

security classifications. This thesis uses the definition of a multilevel relation captured

by the Jajodia-Sandhu model [47]. The model is based on the security classifications

introduced in the BLP model, and it formally defines a multilevel relation as consisting of

the following two parts:

1. a state-independent multilevel relation schema R(A1, C1, ..., An, Cn, TC), where each

CHAPTER 2. REVIEW OF BASIC CONCEPTS 21

Ai is a data attribute defined over domain Di, each Ci is a classification attribute for

Ai, and TC is the tuple-class attribute.

2. a collection of state-dependent relation instances Rc(A1, C1, ..., An, Cn, TC), where one

such instance exists for each access class c from the set of security levels. Each instance

is a set of distinct tuples of the form (a1, c1, ..., an, cn, tc) where tc is the least upper

bound of the classes of the attributes in the tuple, and tc indicates the lowest user level

that can see the tuple. The instance of a relation at a given access class represents the

version of the relation at that class [47, 50]. Basically, each element t[Ai] in a tuple t

is visible in instances at access class t[Ci] or higher; t[Ai] is replaced by a null value

in an instance at a lower access class.

A single-level relation is a relation whose elements have the same security classifi-

cation.

2.5.1 MLS database integrity constraints

In order to meet the requirements of MLS databases, the two core integrity constraints of

the relational model described earlier were adapted, and two further constraints introduced.

In the standard relational model, a key is derived by using the concept of functional de-

pendencies. In the MLS relational model such a key is called the apparent key (AK) which

we assume is a user-specified primary key consisting of a subset of the data attributes Ai

[46]. The notion of apparent key is also discussed by Castano et al. in [15].

MLS integrity property 1: Entity integrity.

Let AK be the apparent key of a relation R. A multilevel relation R satisfies entity integrity

if, and only if, for all instances Rc of R and t ∈ Rc

1. Ai ∈ AK ⇒ t[Ai] 6= null,

2. Ai, Aj ∈ AK ⇒ t[Ci] = t[Cj], i.e., AK is uniformly classified, and

3. Ai /∈ AK ⇒ t[Ci] ≥ t[CAK] (where CAK is defined as the classification of the apparent

key)

This property is an extension of the entity integrity property of the standard re-

lational model designed to deal with security classifications. It means that the apparent

key must not have a null value, must be uniformly classified, and its classification must be

dominated by the classification of all the other attributes.

CHAPTER 2. REVIEW OF BASIC CONCEPTS 22

MLS integrity property 2: Null integrity.

A multilevel relation R satisfies null integrity if, and only if, for each instance of Rc of R,

the following two conditions hold:

1. For all t ∈ Rc, t[Ai] = null ⇒ t[Ci] = t[CAK], i.e., null values are classified at the level

of the key.

2. Rc is subsumption free, i.e., it does not contain two distinct tuples such that one

subsumes the other. A tuple t subsumes a tuple s, if for every attribute Ai, either

t[Ai, Ci] = s[Ai, Ci] or t[Ai] 6= null and s[Ai] = null.

The null integrity property requires that the null values in a tuple be classified at

the level of the key, and that for subjects cleared at higher security levels, the null values

visible at lower security levels are replaced by the proper values automatically.

The next property deals with consistency between the different instances of a rela-

tion. The inter-instance property was first defined by Denning [28].

MLS integrity property 3: Inter-instance integrity.

A multilevel relation R satisfies inter-instance integrity if, and only if, for all c′ ≤ c, Rc′ =

σ(Rc′ , c
′), where the filter function σ produces the c′-instance Rc′ from Rc as follows:

1. For every tuple t ∈ Rc such that t[CAK] ≤ c′, there is a tuple t′ ∈ Rc′ , with t′[AK,CAK]

= t[AK,CAK] and for Ai /∈ AK

t′[Ai, Ci] =

{

t[Ai, Ci] if t[Ci] ≤ c′

〈null, t[CAK]〉 otherwise

2. There are no additional tuples in Rc′ other than those derived by the above rule.

3. The end result Rc′ is made subsumption free by exhaustive elimination of subsumed

tuples.

The inter-instance property is concerned with consistency between relation instances

of a multilevel relation R. The filter function σ maps R to different instances of Rc′ (one

for each c′ < c). By applying the filter function, users are restricted to only that portion

of the multilevel relation for which they are cleared.

If c′ dominates some security levels in a tuple but not others then, during query

processing, the filter function σ replaces all the attribute values that the user is not cleared

to see with null-values. A shortcoming in the Jajodia-Sandhu model arising from the use

of this filter function was pointed out by Smith and Winslett [75]. Smith and Winslett

observed that the filter function σ introduces an additional semantics for nulls. In the

Jajodia-Sandhu model, a null value can mean ‘information available but hidden’ and this

CHAPTER 2. REVIEW OF BASIC CONCEPTS 23

null value cannot be distinguished from a null value representing the semantics ‘value exists

but not known’ or a null value with the meaning ‘this property will never have a value’.

We stated earlier that the definition of key in the standard relational model is based

on functional dependencies (i.e., the value of key attributes functionally determines the

values of all the other attributes). Therefore, two tuples with the same values for the

primary key attributes must not exist in a relation. Requiring this constraint to hold

in multilevel relations may cause indirect release of sensitive information to users with

inadequate clearances. The model therefore introduces the notion of apparent primary key,

which we described earlier, to distinguish between the apparent key and the actual primary

key in a relation. The actual primary key is defined according to the polyinstantiation

integrity property.

MLS integrity property 4: Polyinstantiation integrity.

A multilevel relation R satisfies polyinstantiation integrity if, and only if, for every Rc′ , for

all Ai : AK,CAK , Ci → Ai.

The polyinstantiation integrity property asserts that the apparent key AK specified

by a user, its classification, together with the classification of an attribute, functionally

determines the value of this attribute. The primary key of a multilevel relation is implicitly

defined by this property as the union of the apparent key attributes, their classifications, and

the classifications of all the non-key attributes. Formally, the primary key of a multilevel

relation is AK ∪ CAK ∪ CR, where AK is the set of data attributes constituting the user-

specified primary key, CAK is the classification attribute for data attributes in AK, and CR

is the set of classification attributes for data attributes not in AK. This is because it follows

from polyinstantiation integrity that the functional dependency AK ∪ CAK ∪ CR → AR

holds, where AR denotes the set of all attributes that are not in AK. Note that for

single-level relations, CAK and CR will be equal to the same constant value in all tuples.

Therefore, in this case, polyinstantiation integrity implies thatAK → AR, which is precisely

the definition of the primary key in relational theory.

2.5.2 Levels of granularity

Security levels can be assigned to data at different levels of granularity. Assigning labels to

entire relations can be useful but is generally considered inconvenient. For example, if some

salaries are secret but others are not, these salaries must be placed in different relations [27].

Assigning labels to an entire column of a relation is similarly inconvenient in the general

case [27]. The finest granularity of labelling is at the level of individual data elements —

i.e, element-level labelling. This offers considerable flexibility. Most commercial products

offered labelling at the level of a tuple. Although not so flexible as element-level labelling,

this approach is considered more convenient than using relation or attribute-level labels

CHAPTER 2. REVIEW OF BASIC CONCEPTS 24

[27]. The following examples illustrate the three labelling schemes used in this thesis.

Although the Jajodia-Sandhu model does not specify how the security labels should be

stored, the labels are stored as extra columns in the tuple-level and element-level relation

instances of our examples as they are specific to relation instances. In the attribute-level

example, the labels could be stored either in the relation instance or the schema. Storing

the labels in the instance rather than the schema requires significantly more storage space.

1. For tuple-level labelling, the Jajodia-Sandhu definition of a multilevel relation rep-

resents each tuple t in a relation R without the classification attribute Ci corresponding

to each attribute Ai. Instead each tuple t has a corresponding tuple classification at-

tribute TC. The security label for each tuple t[TC] is stored in the relation instance.

An example is illustrated in figure 2.3.

DN Dept_Name Manpower Dept_Location Manager TC

D10 Records 43 241 East Annex Cantor S
D11 Obstetrics 13 601 Main Building Baker TS
D12 Laboratory 8 202 Drew Building Ebert S
D13 Geriatrics 12 B16 Basement Xavier S

Figure 2.3: Tuple security labelling.

2. For attribute-level labelling, the Jajodia-Sandhu definition of a multilevel relation

requires that each attribute Ai in a relation R be associated with a corresponding

security level Ci, i.e., the tuple classification attribute TC is not required. An example

is shown in figure 2.4.

DN C1 Dept_Name C2 Manpower C3 Dept_Location C4 Manager C5

D10 U Records C 43 C 241 East Annex S Cantor TS
D11 U Obstetrics C 13 C 601 Main Building S Baker TS
D12 U Laboratory C 8 C 202 Drew Building S Ebert TS
D13 U Geriatrics C 12 C B16 Basement S Xavier TS

Figure 2.4: Attribute-level labelling.

3. For element-level labelling, the Jajodia-Sandhu definition of a multilevel relation

requires that each element or attribute value t[Ai] in a relation be associated with a

corresponding security level t[Ci]. The tuple classification attribute TC is not required.

The security label for each element t[Ai] is stored in the relation instance. An example

is shown in figure 2.5.

CHAPTER 2. REVIEW OF BASIC CONCEPTS 25

DN C1 Dept_Name C2 Manpower C3 Dept_Location C4 Manager C5

D10 U Records TC 43 U 241 East Annex C Cantor U
D11 U Obstetrics C 13 C 601 Main Building U Baker C
D12 U Laboratory TS 8 U 202 Drew Building C Ebert S
D13 U Geriatrics C 12 C B16 Basement U Xavier TS

Figure 2.5: Element-level labelling.

2.6 Distributed database systems

A distributed database as defined by Ozsu and Valduriez [68] is a collection of multiple, log-

ically interrelated, databases distributed over a computer network. A distributed database

management system (DDBMS) is also defined in [68] as the software system that permits

the management of the distributed database and makes the distribution transparent to

users. These two definitions emphasise logically interrelated and distributed over a network

as the property that distinguishes them from other types of systems that have been de-

scribed as distributed. However, physical distribution does not imply that the computer

systems be geographically far apart; they could actually be in the same room. It implies

that the communication between them is done over a network instead of through shared

memory, with the network as the only shared resource. The DBMS must periodically

synchronize the scattered databases to ensure data consistency.

2.6.1 Relation fragmentation

Relations in distributed databases are commonly divided into smaller fragments which are

treated as separate relations in their own right. This is commonly done for performance,

availability, and reliability reasons. There are three general types of fragmentation alter-

natives. In one case, called horizontal fragmentation, a relation is partitioned into a set of

sub-relations each of which is a subset of the tuples (rows) of the original relation. The

second alternative is vertical fragmentation, where each sub-relation is defined on a subset

of the attributes (columns) of the original relation. A less common alternative is the ele-

ment fragmentation, where sub-relation subsets are defined on the elements of the original

multilevel relation. The following fragmentation rules taken directly from [68] are required

to ensure that the database does not undergo semantic change during fragmentation.

1. Completeness: If a relation instance R is decomposed into fragments R1, R2, ..., Rn,

each data item (tuple or attribute) that can be found in R can also be found in

one or more of the Ri’s. This property, which is identical to the lossless decomposition

property of relational database normalization, is also important in fragmentation since

it ensures that the data in a global relation is mapped into fragments without any loss.

CHAPTER 2. REVIEW OF BASIC CONCEPTS 26

2. Reconstruction: If a relation R is decomposed into fragments R1, R2, ..., Rn, it must

always be possible to reconstruct the global relation R from its fragments. This

condition is necessary to ensure that global relations can be reconstructed if necessary

from the fragments stored in the distributed database. The reconstructability of the

relation from its fragments also ensures that constraints defined on the data in the

form of dependencies are preserved.

3. Disjointness: If a relation R is horizontally decomposed into fragments R1, R2, ..., Rn

and data item di is in Rj, it is not in any other fragment Rk (k 6= j). This criterion

ensures that the horizontal fragments are disjoint. If relation R is vertically decom-

posed, its primary key attributes are typically repeated in all its fragments. Therefore,

in the case of vertical partitioning, disjointness is defined only on the nonprimary key

attributes of a relation.

Our proposed kernelized approach to multilevel database security draws on these

fragmentation techniques for fragmenting and distributing multilevel relations based on se-

curity level. A distributed database is logically similar to a multilevel database composed

of relations which are fragmented and distributed on the basis of security level. If the gran-

ularity of the security levels is at the tuple-level, the single-level fragments are logically the

same as a horizontally distributed database. Attribute-level granularity results in vertically

distributed databases. If the granularity is based on element-level labels, the distribution

represents neither a horizontally distributed database nor a vertically distributed database.

2.6.2 Query processing

The retrieval function of the data manipulation language (DML) is typically executed more

often than the update function and has become a specialised function referred to as query

processing. Questions are directed at a database using high level query languages such as

SQL. A disadvantage of using high level languages to write queries is that it is possible to

write queries that take a very long time to execute. Because of this, much research has

been conducted into query optimisation techniques. Good general treatments are included

in most books discussing the relational model [24, 35]. A more advanced treatment of query

processing may be found in [54].

The fragmentation of database relations introduces a new problem, that of handling

user queries that were specified on entire relations but now have to be performed on sub-

relations. Specifically, the issue is one of finding a query processing strategy based on the

fragments rather than the relations, even though the queries are specified on the latter.

Typically, this requires a translation from what is called a global query to several fragment

queries.

The studies of query processing that have had the most influence on this thesis

CHAPTER 2. REVIEW OF BASIC CONCEPTS 27

are those involving distributed query processing [16, 18, 19, 68]. These sources contain

detailed treatments of the process of converting global queries into their horizontal, vertical

and mixed fragment equivalents. These query fragments are processed at the appropriate

databases. While the process was developed for reasons other than security (for example,

economies of scale), the theory behind query processing in distributed databases is useful

in ensuring security in multilevel databases. This thesis builds on this recognition of the

similarities in the two processes for the treatment of single-level fragments.

2.7 Summary

A database system is a computerised system to keep track of information. A relational

database model represents a database as a set of tables. This simple idea makes it easy

to understand the model. More importantly, the relational model is directly related to the

mathematical concept of a relation. This mathematical basis has resulted in the definition

of languages (relational algebra and relational calculus) which can be used to express the

operations that can be performed on the tables.

While the classical relational model is concerned with data without security classifi-

cations, the concern of the multilevel relational model is data with security classifications.

The security labels in a multilevel relational model are drawn from a set of partially ordered

elements. Relations may be single level or multilevel. In single-level relations, all of the

attributes have the same security classification. In multilevel relations, the attributes have

different security levels.

The BLP model defines the read and write rules that must hold in an MLS system

in order for security to be preserved. These rules are based on the simple security property

and the *-property. The simple property states that in order to ‘read’ an object, the

subject’s security level must dominate the object’s security level. The *-property states

that in order to ‘write’ an object, the object’s security level must dominate the subject’s

security level.

A distributed database is defined as a collection of multiple, logically interrelated

databases distributed over a computer network. A distributed database management sys-

tem (DDBMS) is also defined as the software system that permits the management of the

distributed database and makes the distribution transparent to users. Of particular interest

to our research is the fragmentation and query processing features of a DDBMS.

Chapter 3 will present a review of related research and developments in MLS/DBMS

with an emphasis on the models, prototypes and products that have had the most impact

on our research.

Chapter 3

Related Research and Developments

3.1 Introduction

Research on multilevel security models began in earnest in the early 1970s with the aim

of producing high-level, software-independent, conceptual models that describe the protec-

tion mechanisms of a system [15, 58]. In order to have assurance that a given model would

perform as specified, researchers also recognised the need to formalise these models. Many

of the models were based on the military model of security, but there were some notable

studies of security policy in the commercial sector [13, 15]. The SeaView model was the

first formal MLS model. Efforts at implementing MLS systems began in the early 1980s;

these efforts were either research-driven, resulting in a prototype, or commercially-driven,

resulting in a commercial product. Prototypes developed in the former category include

SeaView, Lock Data Views, A1 Secure DBMS, and SWORD. Products that resulted from

efforts in the latter category include Trusted Oracle 7, Sybase Secure SQL Server 11.6,

INFORMIX-OnLine/Secure DBMS 5.0, and Open INGRES/Enhanced Security 1.2. Al-

though it is widely accepted that implementing a MLS/DBMS is a highly complex task,

only one study by Thuraisingham and Kamon [77] examines the impact of this complexity

on performance.

The next section will briefly review some of the MLS models that have had some

influence on this thesis. Section 3.3 considers the architectures for multilevel database

systems that resulted from the Multilevel Data Management Security Summer Study (or

Woods Hole study group) [1]; these include the integrity lock, kernelized, replicated, and

trusted subject architectures. Section 3.4 presents a number of MLS/DBMS prototypes

that have been developed over the last two decades, mainly in response to the proposals

of the Woods Hole study group. A survey of commercial MLS/DBMS products that were

developed to address security concerns in different application areas is presented in sec-

tion 3.5. Section 3.6 describes one previous effort at building a distributed secure system

from a collection of COTS components, and another effort which proposed using a hardware

28

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 29

device to filter communication between System-high and System-low LANs. A brief review

of some database benchmarking suites and a database performance study are presented in

section 3.7. The chapter is summarized in section 3.8.

3.2 Overview of MAC models

The SeaView model [28] was the first formal MLS relational model. It was subsequently

developed as a prototype of an MLS/DBMS based on the view mechanism. In the SeaView

model, data elements are classified at the element-level and stored as single-level fragments.

The single-level fragments are created from multilevel relations which are partitioned based

on security level. Each of the single-level fragments contains the primary key of its parent

relation. When a user requests information, a view is created consisting of those single-level

fragments that the user is authorised to access. The Jajodia-Sandhu model [46, 48, 50] is

based on the SeaView model and addresses some of the flaws identified in the SeaView

model [46, 48, 50] such as the proliferation of tuples during updates, and spurious joins.

The Commutative Filter Model [26], advocates replacing the reference monitor that enforces

mandatory access control with a trusted filter inserted between the user and the DBMS

which would intercept returning query answers from the database and remove all data

the user is not entitled to see; it is derived from the maximal authorized view approach

proposed by Downs and Popek [32].

The Keefe et al. query modification approach [52] modifies a query by searching a

security constraints database for all rules involving the query in question. The restrictions

in these rules are then added to the original query in order to make it safe. Data objects in

the database are assigned security labels by the model based on its own security constraints.

The Smith-Winslett model [15, 75] addresses the semantics of an MLS database based on the

concept of belief, where a user sees and believes the contents of the database at its own level,

and sees the data objects at lower security levels. For example, a Secret user can see Secret,

Confidential, and Unclassified objects, but it believes only that Secret objects accurately

represent the real world situation, and it makes no assumptions about Confidential and

Unclassified objects. The Smith-Winslett model is also known as belief-based semantics.

Unlike the Jajodia-Sandhu model, this model does not support classification at the level of

each single attribute. Instead, access classes can be assigned only to key attributes and to

tuples as a whole. The most recent of the MLS data models, theMultilevel Relational model

(MLR) [20, 50] was proposed by Chen and Sandhu and is substantially based on the Jajodia-

Sandhu model. It combines ideas from SeaView, belief-based semantics, and the Lock Data

Views model in trying to eliminate ambiguity whilst retaining upward information flow.

This model supports labelling at the element-level of granularity. A detailed description of

these models may be found in [15, 38, 58].

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 30

3.3 Architectures for multilevel database systems

Mandatory access control is often implemented by classifying both users and data at var-

ious security levels; however, it can also be implemented by classifying the sensitive data

only at system high. This approach requires all users to be cleared at system high. The

major advantage with this approach is that existing DBMSs can be used with no change;

however, it suffers from certain drawbacks. First, it is very expensive since the cost of

clearance is high. Second, it involves additional security risk since more people are given

the highest clearance. In order to try and resolve this problem, the Woods Hole study

group, organized by the U.S. Air Force in 1982 [1, 6], considered different architectures

for building MLS/DBMSs. The study group proposed requirements for a purpose-built

multilevel DBMS as well as solutions that looked at how existing DBMS technology could

be reused to build MLS/DBMSs [33]. Among the many architectures proposed by this

study for the physical storage of multilevel data, three solutions became prominent; these

include: the Integrity lock (or spray paint) architecture, the Kernelized architecture, and

the Replicated architecture [1].

3.3.1 The integrity lock (or spray paint) architecture

This architecture uses a single DBMS to manage all levels of data [39]. Figure 3.1 is de-

picted with the four security levels introduced in our earlier example of a simple lattice in

figure 2.2(A). The trusted front end (TFE) (or trusted filter) acting as the TCB is responsi-

ble for enforcing multilevel protection; it does this by attaching security labels to database

objects in the form of a cryptographically generated stamp (or paint) which it then assigns

to every data item. While retrieving data, the TFE checks the stamp on the data item

and makes sure that the simple-security property of the BLP policy is met. Since a user’s

query has access to the entire database, a clever user can infer higher level information

by formulating a query that modulates its output based on high level data. For example,

consider the relation in figure 3.2, and suppose a Secret user submits the following query:

If(Manpower > 50) return 1, else return 0

The value that is returned to the Secret user in response to this query will not have

a stamp that is higher than Secret, but information can still be inferred from the query.

This architecture can thus be exploited to open up high bandwidth covert channels.

3.3.2 The kernelized architecture

In this architecture, illustrated in figure 3.3, the multilevel database is partitioned into

single level databases, which are then stored separately [1, 42, 60]. In this architecture,

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 31

Figure 3.1: The integrity lock (or spray paint) architecture.

DN Dept_Name Manpower Dept_Location Manager Stamp

D10 Records 40 241 East Annex Cantor S
D11 Obstetrics 83 601 Main Building Baker TS
D12 Laboratory 45 202 Drew Building Ebert S
D13 Geriatrics 32 B16 Basement Xavier S

Figure 3.2: Vulnerability of the integrity lock architecture.

there is a separate DBMS for each security classification. The trusted front-end ensures

that the user’s queries are submitted to the DBMS with the same security level as that of

the user, while the trusted back-end makes sure that a DBMS at a specific security level

accesses data without violating the mandatory security policies. Processing a user’s query

that is requesting data from multiple security levels involves expensive Joins that may

degrade performance, since the different levels of data are stored separately. On the other

hand, since this architecture has separate DBMSs for each security level, the scheduler that

is responsible for concurrency control can also be separated for each level as it need not

be part of the TCB [1, 60]. Its concurrency control technique has to address two basic

challenges: security and data availability. When a high level process wants to read a low

level data item, it cannot set a read lock on the data item since this process would introduce

a covert channel – the locking and unlocking of low level data can be observed by a low

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 32

level process. Trying to eliminate this problem causes the high user to wait for the low

level data, which creates a problem of data availability. A solution suggested in [1, 60] is

to use multiversioning, hence allowing high users to read older versions of low data. Other

researchers [1, 60] have also suggested that the number of versions be restricted to two, one

for the subjects at the same level of data item and one for subjects at higher levels.

Figure 3.3: The kernelized architecture.

3.3.3 The replicated architecture

This architecture, illustrated in figure 3.4, uses a separate database management system

to manage data at or below each security level [22]; a database at a security classification

contains all information at its class and below; lower level data are therefore replicated

in all databases containing higher level data. The replicated architecture suffers from the

following two difficulties, arising since lower level data is replicated in higher level databases.

First, propagating updates of the lower level data to higher level DBMSs in a secure and

correct manner is not simple. Second, this architecture is impractical when there are a

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 33

large number of security levels.

Figure 3.4: The replicated architecture.

3.3.4 The trusted subject architecture

The long-term solution proposed by the summer study group was to build a completely

trusted DBMS from scratch; this is referred to as the Trusted subject architecture and is

illustrated in figure 3.5. In this architecture, all DBMS data is stored with the DBMS label,

and only DBMS code can be executed by a subject with the DBMS label. Subjects with a

DBMS label are trusted and are thus exempt from mandatory access control restrictions.

Since the DBMS is trusted, a trusted front-end is not required in this architecture. In-

stead, users communicate with the DBMS through an Untrusted Front End (UFE) at their

respective classification level.

3.4 Multilevel secure prototypes

In response to the Woods Hole summer group proposals, a number of development efforts

were initiated; some of these efforts resulted in the deployment of MLS/DBMS prototypes

or products. This section describes the prototypes resulting from some of these efforts.

Trusted systems, especially DBMSs, tend to be quite large with respect to the

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 34

Figure 3.5: The trusted subject architecture.

amount of code needed for their implementation. Although we stated the desirability of

high assurance for trusted systems in section 3.3.4, with today’s technology a complete

formal proof of the specifications of such large systems is not yet possible; a great deal

of research on formal specification and verification is ongoing. The enormous amount of

code necessary for implementing trusted DBMSs was largely responsible for the conservative

approach taken by most trusted DBMS developers in exploiting an approach known as TCB

subsetting; the use of this approach is recommended for achieving higher levels of assurance.

The approach requires trusted DBMS developers to reuse and build on previously built and

verified trusted systems. TCB subsetting was identified as a strategy for building trusted

DBMSs in the Trusted Database Management System Interpretation (TDI) [66]. This

section discusses the most prominent projects undertaken over the past ten years which

have had the goal of building systems that meet the requirements of the higher levels of

trust specified in the TDI evaluation criteria.

We have identified four major efforts over this period to design and implement

trusted relational database prototypes. The first effort was a prototype of the SeaView

Trusted DBMS implemented by Stanford Research Institute (SRI) International, Gemini

Computers, and Oracle Corporation. The second effort was an implementation of the

Lock Data Views (LDV) approach by Honeywell. The third implementation, called the A1

Secure DBMS, originated from an internal TRW research and development project. The

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 35

SWORD Multilevel Secure DBMS was the fourth effort, developed by the UK’s Defence

Research Agency.

3.4.1 SeaView prototype

The most ambitious proposal for the development of a trusted DBMS came from the SeaV-

iew project [60, 61]. The goal of this project was to design a prototype MLS/DBMS based

on the SeaView model.

The most significant contribution of SeaView was the realisation that multilevel

relations need only exist at a logical level and can be decomposed into single-level base

relations. The advantage of this observation was mostly practical. In particular, single

level base relations can be stored using conventional DBMSs and commercially available

TCBs can be used to enforce mandatory controls with respect to single level fragments.

The architectural approach taken by the SeaView project was to implement the

entire DBMS on top of the commercially available Gemsos TCB, which uses a dedicated

hardware platform [74]. Gemsos provided user identification and authentication, mainte-

nance of tables containing clearances, as well as a trusted interface for privileged security

administrators. Multilevel relations were implemented as views over single-level base rela-

tions. The single-level relations are transparent to users; they are stored using the storage

manager of an Oracle DBMS engine. From the viewpoint of Gemsos, every single-level

relation is a Gemsos object of a certain access class. Gemsos enforces a mandatory access

security policy based on the BLP security paradigm. A label comparison is performed

whenever a subject attempts to bring a storage object into its address space. A subject

is prevented from accessing storage objects not in the subject’s current address space by

means of hardware controls included in Gemsos.

In addition to mandatory access controls, the SeaView security policy requires that

no user is given access to data unless that user has also been granted discretionary au-

thorisation to the data. DAC protection is performed outside Gemsos and allows users to

specify which users and groups are authorised for specific modes of access to particular

database objects, as well as which users and groups are explicitly denied authorisation to

particular database objects.

Since a multilevel relation is stored as a set of single-level fragments, two algorithms

are necessary:

• A decomposition algorithm which breaks multilevel relations into single-level frag-

ments.

• A recovery algorithm to reconstruct the original multilevel relation from the frag-

ments. It is obvious that the recovery process must be lossless (i.e., it must recover

the multilevel relation in its entirety), otherwise recovery is incorrect.

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 36

In SeaView, the decomposition of multilevel relations into single-level ones is per-

formed by applying vertical and horizontal fragmentation; recovery is performed by Union

and Join operations. As an example, consider a conceptual multilevel relation R with

the schema: R(A1, C1, . . . , An, Cn, TC), where each Ai is an attribute defined over a do-

main Di, and each Ci is a security classification drawn from the set: [U,C, S, TS], where

U ≤ C ≤ S ≤ TS. We assume that A1 is the apparent primary key. The original SeaView

decomposition algorithm consists of the following three steps:

• Step 1: The multilevel relationR is vertically partitioned into n projectionsR1[A1, C1],

R2[A1, C1, A2, C2], . . . , Rn[A1, C1, An, Cn].

• Step 2: Each Ri is horizontally fragmented into one resulting relation Rij (1 ≤ j ≤ 4)

for each security level. Obviously, for the set of classification levels [U,C, S, TS], this

results in 4n relations.

• Step 3: In a further horizontal fragmentation, the relations Rij, 2 ≤ i ≤ n, (i.e.,

4n− 4 relations) are further decomposed into at most 4 resulting relations. This final

decomposition is necessary because of SeaView’s support for polyinstantiation.

A performance analysis of this algorithm by Jajodia and Sandhu [46] pointed out

that the decomposition algorithm leads to unnecessary single-level fragments, and that

performing the recovery of multilevel relations requires repeating joins that may lead to

spurious tuples. The performance of SeaView is thus highly dependent on the efficiency of

these decomposition algorithms.

3.4.2 Lock Data Views prototype

Lock Data Views (LDV) [42] is another MLS/DBMS prototype that was developed during

the same period as SeaView. It was hosted on the Lock TCB and prototyped at the

Honeywell Secure Computing Technology Center (SCTC) and MITRE. It supported a

discretionary and a mandatory security policy. One aspect of this prototype that was of

special interest for the increased functionality of its TCB is type enforcement.

The general concept of type enforcement in Lock and its use in LDV is discussed

in [42]. The main idea is that the accesses of a subject to an object are restricted by the

role the subject is performing in the system. This is done by assigning a domain attribute

to each subject and a type attribute to each object, both maintained within the TCB.

Entries in the domain definition table correspond to a domain of a subject and to a type

list representing the set of access privileges the subject has within the domain. Lock’s type

enforcement mechanism made it possible to encapsulate LDV in a protected subsystem, by

declaring the database objects to be special Lock types (Lock files) which are only accessible

to subjects executing in the DBMS domain. Since only DBMS programs are allowed to

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 37

execute in this domain, only DBMS processes can access the Lock types holding portions of

the database. A solution to the problem of secure release of data from the DBMS domain

to the user domain was made possible through Lock’s support for the implementation of

assured pipelines.

Two basic extensions to the Lock security policy were implemented in LDV [43].

Both extensions concern the proper classification of data. The first extension deals with

the insert and update of data. During insert and update, the data is assigned to the

Lock type classified with the lowest level at which the tuple can be stored securely. The

second extension is concerned with query results. The result of a query is transferred from

Lock types into ordinary objects and the appropriate security level of the query result is

derived. The two policies are enforced in LDV by using three assured pipelines. These

three pipelines are the query/response pipeline, the data/input pipeline, and the database

definition/metadata pipeline.

The query/response pipeline is the query processor of LDV. The pipeline consists of

a set of processes which execute multi-user retrieval requests, integrate data from different

Lock types, and output the information at an appropriate security level. First, a user-

supplied query is mapped from the application domain to the DBMS domain, then the

query is processed, the result is labelled and finally it is exported to the user. In order to

mitigate against the possibility of logical inference over time, the response pipeline included

a history function. This mechanism was designed to trace the queries already performed

for a particular user and to deny access to relations based on the query history of the user.

The data/input pipeline is responsible for actions that need to be taken whenever a

user issues an insert, modify, or delete request. First, the request has to be mapped from

the application domain to the DBMS domain where the request can then be processed.

LDV does not support blind writes; for example, a delete request will only affect data at a

single classification level. For consistency reasons, data is not actually removed but marked

as deleted. Before the actual removal takes place, certain consistency checks are performed.

More complicated is the case where the request is an insert operation. Classification rules

that may be present in the data dictionary (see database definition/metadata pipeline) may

make it necessary that the relation tuple is decomposed into different subtuples that are

stored in separate files, each with a different classification. The modify request operates in

a similar way to the insert operation.

The database definition/metadata pipeline interacts with the LDV data dictionary

and was used to create, delete, and maintain metadata. Metadata may either correspond

to definitions of the database structure (relations, views, attributes, domains) or the clas-

sification constraints. Classification constraints are rules that are responsible for assigning

proper classification levels to the data. The use of the metadata pipeline is restricted to

a database administrator or database security officer (DBSO). Here, again, Lock type en-

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 38

forcement mechanisms were used to isolate the metadata in files that can only be accessed

by the DBMS domain and the DBSO domain, and not by the application domain.

Furthermore, data is distributed across Lock files by assigning a set of files per

security level. The data/input pipeline determines the appropriate assignment of data to

files by examining the classification constraints stored in the data dictionary. In LDV, there

is no replication of data across different security levels. The advantage of this approach

is the simplicity of updates. However, there is an inherent and significant performance

penalty for retrieval requests arising from the necessity for a recovery algorithm in LDV;

this is described in [42].

3.4.3 A1 Secure DBMS prototype

The A1 Secure DBMS (ASD) [83], implemented on top of an existing DBMS called ASD,

was an MLS/DBMS prototype developed by a research project at TRW. ASD can be

operated in three different modes. Under the first mode of operation, ASD can function

as a DBMS server on a local area network. Under the second mode of operation, ASD

can serve as a back-end DBMS for various single-level or multilevel host computers. Under

the third mode of operation, ASD can serve as a resident DBMS within a multilevel host

running a secure operating system.

The mandatory object of protection in ASD is the tuple of a table. The mandatory

security policy enforced satisfies the BLP security policy. Tuples also inherit their discre-

tionary access from the tables in which they are located. Discretionary access is specified

for tables in terms of permissions for access and denials of access. Permissions and de-

nials may be specified with respect to individual users, groups of users, or ‘public’. The

permissions are Select, Insert, Delete, and Update. The most specific discretionary access

specification takes precedence over a less specific discretionary access specification and a

denial (at a given specificity) takes precedence over a permission. For example, a user is

more specific than a group which is more specific than public.

ASD also enforces the Biba integrity model [10] which states that a subject may

read a tuple if, and only if, the integrity level of the tuple dominates the integrity level of

the subject. A subject may write a tuple if, and only if, the integrity level of the subject

dominates the integrity level of the tuple.

The ASD system code is divided into two groups: trusted code and untrusted code.

Earlier, in subsection 3.3.4, we stated that a trusted subject is one which is exempt from

mandatory access control; conversely, an untrusted subject is one which is not exempt from

mandatory access control. The trusted code in ASD is part of its TCB. The untrusted code

is replicated by security level into separate, untrusted processes. The TCB ensures that

each untrusted process can send and receive data only at the security level of the process.

Each untrusted process supports a single user. The security level of the user’s untrusted

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 39

process is the same as the user’s session. If the user is accessing ASD while operating on

a multilevel secure operating system, then the level of the ASD process is the same as the

level of the user’s process on the multilevel operating system. If the user is accessing ASD

from a single security level host or workstation, then the security level of the ASD process

is the same as the security level of the user’s workstation or host. The secure operating

system provides the following services to the DBMS:

• separation of trusted processes from untrusted processes and untrusted processes from

each other;

• secure communication services between untrusted processes and the DBMS kernel via

message passing to the secure operating system;

• protection of the file holding the database data, such that only the DBMS kernel can

have direct access to it;

• user authentication;

• trusted path.

The file containing the database data is protected by the mandatory access policy

of the secure operating system. The database file is labelled at System-high, the same

level at which the DBMS kernel is running. The secure operating system also enforces

discretionary access control on the DBMS data file. The DBMS data file can only be

accessed by the special user “DBMSÔ. In addition, the DBMS file is assigned a special

integrity compartment, to prevent any process other than the trusted DBMS kernel from

modifying the data in the file, including the security labels of the rows.

In operation, a query is formulated in the host (or application process if ASD is

used in a stand-alone mode) and sent to the ASD server. The trusted interface ensures

that the request is serviced by the appropriately classified untrusted DBMS code. This

code processes the request and sends requests to trusted DBMS reference monitor code to

actually retrieve the data. Various trusted utilities are present in the system to create and

maintain the ASD database.

ASD has the capability for running multiple instantiations of the untrusted DBMS

code, each at the same level as the host application process that it is supporting. This

process is only given the data it is permitted to see according to the ASD security policy.

It is only given access to data whose security level it dominates. It can only write objects

at the same level as the process in which it is currently executing. The security levels of

newly created tuples are equal to the security level of the untrusted DBMS process that

requested the tuple creation.

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 40

Since ASD will operate under the control of a secure operating system, some security

functions such as identification and authentication, that are normally associated with a

secure system, are not part of ASD, but are provided by the secure operating system.

3.4.4 The SWORD prototype

Driven by concerns about the adverse effects of polyinstantiation on integrity constraints,

SWORD [85] was developed as an MLS/DBMS at the Defence Research Agency of the

United Kingdom to offer an alternative approach to confidentiality control. SWORD en-

forces security at the element-level of granularity. Previous approaches to protecting the

confidentiality of information have relied mainly on classifying views or polyinstantiation.

The abstract idea that is the basis of SWORD is referred to as the Insert Low Approach.

This approach allows the DBMS to check whether integrity constraints are upheld without

compromising the confidentiality of information.

A major design consideration for SWORD was the threat of covert channels that

could emerge from information flows. The insert low approach controls the insertion and

deletion of records in a table in such a way that a user may only insert into or delete from

a table if no other user exists with a lower or incomparable clearance that can access the

table. For example, a user with a clearance of Unclassified is always permitted to insert

and delete rows because any user with a higher clearance, say Top Secret, that receives

information as a result of these insert or delete operations must be cleared to handle it

anyway because upwards information flow is permitted. The insert low technique is further

generalised in SWORD by designating a different ‘bottom’ classification to each table: the

table classification.

The concept of place holders also emerged from the SWORD DBMS effort. Place

holders are described in [85] as fields inserted into a table by a user cleared at level System-

low. These fields have a classification that dominates the user’s clearance (i.e., they are

‘overclassified’ relative to the user’s clearance). From a confidentiality point of view, the

data within the place holder is only overclassified and is not considered important. Place

holders are used in the first part of what is a two stage operation to insert a record. In

the first stage of the operation, a user cleared at level System-low inserts a record into the

table, comprised of data elements with different security classifications. Any field that is

designated for data elements classified above the Unclassified level is given a place holder

value. In the second stage of the operation, the place holder is replaced with the relevant

data that was really intended for that field. This update query is performed by a user

cleared above the Unclassified level, say a Secret user; this user is not permitted to change

the classification of the field. Unclassified users cannot detect this update as they are

prevented from observing the contents of Secret fields.

SWORD supports the basic operations of Insert, Select, Update, and Delete. The

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 41

SWORD DBMS interface is accessible through Secure SQL (SSQL), essentially a standard

SQL extension that can handle classifications. The insertion of rows is accomplished using

place holders; the fields of a row may contain any classification level that dominates the

clearance of the user but, without further constraints, this could open the possibility for

a denial of service problem. As an example of this denial of service problem, a user could

insert a place holder field in a record and assign it a Top Secret classification. Although

the field value is unimportant, users whose security clearance is greater than Unclassified

and less than Top Secret, e.g. Secret users, can no longer get complete answers to their

queries.

A retrieval operation is permitted only if a user’s clearance dominates the classifica-

tion of the table and, more specifically, only if the clearance of the user dominates the field’s

classification. The data in a field is replaced by a special value if a user cannot examine

it; this value will indicate that they are not cleared to see it. However, the classification

of a field is not hidden as all classifications are assigned by Unclassified users. In order to

update a field, the clearance of the user must be dominated by the classification of the field;

this implies that users can update fields that they cannot observe. Rows in a table can be

deleted by a user if, and only if, the clearance of the user either equals the classification of

the table or is at System-low.

3.4.5 Purple Penelope

Purple Penelope [84] was developed as a prototype secure system at the Defence Research

Agency of the United Kingdom to show that the security functionality of Windows NT1 can

be extended to provide labelling, and other security mechanisms, to support users who must

handle sensitive information. The architecture provides each user with a private desktop in

which to work, along with services for sharing data. Within a desktop, the user is helped

to attach security labels to his or her data. When data is shared, labelling prevents acci-

dental disclosure, but other measures defend against other forms of compromise. Although

Windows NT does not provide any direct support for labelling functionality, the prototype

customises Windows NT to provide discretionary labelling, easy to use role-based access

controls, and effective accounting and audit measures for shared files.

The functionality provided by the system is intended for use within domains that

work in System-high or compartmented mode — it was not designed to be appropriate

for multilevel mode. The assured discretionary labelling functionality prevents those users

with inadequate clearance from observing some data directly, but users with adequate

clearance may use their discretion to relabel data, typically by copying it and giving the

copy a lower label than the original. Tighter controls are imposed on the exchange of

data between domains. In particular, assured controls prevent data being exported from
1Windows NT is a product of Microsoft Corporation.

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 42

a domain without this being sanctioned by one of the domain’s members using a trusted

path. Accounting and audit functionality is used to monitor what data is exported in order

to detect, at a later date, inappropriate behaviour amongst users. Firewalls are deployed

to prevent, in a proactive way, any inter-domain communication that is not required.

The Windows NT operating system, and the Microsoft applications that run on

it, contain many open extensible interfaces which allow them to be customised with third

party value-added services. The ‘Purple Penelope’ prototype has exploited these interfaces

to extend Windows NT’s security functionality. The author points out that the additional

security functionality provided by Purple Penelope was implemented with a modest amount

of code, and works in systems with a heterogeneous mixture of Windows NT and Unix

servers, including Secure Unix servers such as compartmented workstations.

Windows NT already provides assured security functionality, but this only allows

access to data to be controlled according to user identity rather than by security label.

Purple Penelope exploits the native security functionality of Windows NT as the basis for

an implementation of discretionary labelling whose assurance is largely derived from that of

the base product. The visible manifestation of the additional security is the appearance of

a stripe across the top of the screen. This displays the security marking of the application

or data that currently has focus. Depending upon the application, the marking may be

associated with an entire application, an individual document or a database field. The

screen stripe also displays the marking associated with the data in the clipboard. The

marking of other data which is visible on the screen, but which does not have focus, is not

displayed in the stripe, although some applications may display markings in their window

alongside their data.

Purple Penelope provides each user with a private filestore and access to a shared

filestore. Applications are free to read and write files in the user’s private filestore, but they

cannot access the private filestore of any other user. Applications can read files in the shared

filestore if the user has sufficient clearance and role-based access rights, but applications

cannot modify any shared files. Applications may export files to the shared filestore by

copying them, removing files from the shared store, or re-labelling shared files; however,

these are accountable actions which must be sanctioned by the user and are subject to

role-based (access) controls. The software which solicits the user’s approval establishes a

trusted path and cannot be bypassed by the applications.

The marking applied to selected data may be changed using a dialogue box activated

by clicking on the screen stripe. For data which is private to the user, the action is not

audited, even if a lower marking is applied. For shared files, however, the action is subject

to role-based controls and is noted so the users can later be held to account for their

actions. Users can exchange messages, which may have attached files. Independent labels

are applied to the message body and any attachments. Checks are made to ensure messages

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 43

cannot be sent to users with inadequate clearances. Users may access services hosted on

Unix servers. Services provided by the prototype include discretionary labelling, role-based

controls, track management system, export sanction control, and accounting and audit

functionality.

3.5 Commercial MLS/DBMS products

Besides the research prototypes described in the previous section, during the same pe-

riod, several vendors also released commercial systems that supported mandatory access

controls. This section surveys a number of commercial MLS database products and their

functionalities. These products provided security within the database application itself.

The products include Ingres, Oracle, Informix, and Sybase. Three of these products are

no longer being supported by their respective vendors; the fourth, Oracle, only receives

partial support, provided in the form of a supplementary ‘labelled security’ add-on feature

for the standard distribution of Oracle DBMSs. This feature may be added to the standard

Oracle DBMS distribution to provide additional security, but is not supplied as a separate

autonomous application.

Open INGRES/Enhanced Security 1.2 was developed, distributed, and supported

by Computer Associates until August 2000 as a fully featured multilevel relational DBMS

offering an ANSI compliant SQL interface. In addition to the standard discretionary ac-

cess controls, it provided security auditing and mandatory access control features. IN-

GRES/Enhanced Security acted as the primary component in the security of the system

by providing a set of database security functions that covered the areas of identification,

DAC, MAC, accountability, audit, and object reuse. The product provided support for a

variety of decision support and application tools including the OpenINGRES/Replicator,

Open Road products (such as Vision and Windows4GL) as well as various third generation

languages.

Trusted Oracle 7 was supplied by Oracle Corporation as a multilevel relational

DBMS, providing all the features of Oracle 7, with the added functionality of mandatory

access control and labelling. Trusted Oracle 7, release 7.2, included all the security function-

ality of Oracle 7 release 7.2, including granular privileges for enforcement of least privilege,

user-configurable roles for privilege management, flexible auditing, stored procedures and

triggers for enhanced access control and alert processing, row-level locking, robust repli-

cations and recovery mechanisms, secure distributed database communications and the

ability to use external authentication mechanisms. In addition, Trusted Oracle 7 provided

a full set of multilevel security functionality including flexible label management and pol-

icy enforcement, multiple security architectures, and information flow and dissemination

control. The SeaView prototype and Trusted Oracle 7 are both based on the kernelized

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 44

architecture approach. Although Oracle continues to provide a ‘labelled security’ extension

for its standard DBMS, its support for Trusted Oracle came to an end in 1998.

INFORMIX-OnLine/Secure DBMS 5.0 was distributed by Informix Software Ltd

as a relational DBMS for multilevel, multi-user, multi-tasking UNIX platforms and is based

on the commercial INFORMIX-OnLine database server. The DAC policy is implemented

by permitting owners of DBMS objects to grant various privileges on those objects, allowing

them to be shared with other users. It is completely separate from the DAC policy enforced

by the operating system. Resources subject to the DAC policy include the DBMS databases

and tables. Appropriate database privileges must be held by users who want to access tables

within a specific database, in addition to privileges to the specific target table. In addition

to the DAC mechanisms, OnLine/Secure extends the system-wide MAC policy to DBMS

objects. This extension enables the assignment of labels to databases, tables and rows. The

MAC mechanism provides control over the distribution of data protected by the system

to only those users with appropriate authorisations, and enforce a policy which is fully

consistent with the BLP security policy. OnLine/Secure relies on the operating system

administrator to define the labels that are to be used in the enforcement of the system-

wide policy. Operating system services are used to aid in the enforcement of the security

policy when accessing DBMS objects. Informix Software ceased supporting this product in

October 1999.

Sybase Secure SQL Server 11.6 was a security enhanced version of the Sybase SQL

Server running on an HP-UX operating system platform. It was distributed by Sybase

Inc. until 2000 and included security mechanisms for identification and authentication,

MAC, DAC, configurable auditing, groups, and roles, as well as integrity features such

as triggers, stored procedures, and declarative and procedural referential integrity. Its

identification and authentication mechanism is separate from that of its HP-UX operating

system platform. The Secure SQL Server provides flexible DAC through the SQL grant and

revoke mechanism. Groups, roles, and individuals may have access granted or revoked to

databases, tables, views, stored procedures, and columns. Subsequent grants and revokes

can affect all or part of the privileges previously granted or revoked, providing the ability to

define complex access control policies with a series of simple grant and revoke commands.

Additionally, it enforces a MAC security policy on the subjects and objects under its control

by associating them with sensitivity labels provided by the operating system, and utilizing

operating system label-comparison functions to mediate access. Labelled objects include

databases, tables, views, stored procedures, rows, messages, defaults, user datatypes, and

rules. Subjects correspond to user DBMS sessions, and each has a sensitivity label range

that determines the objects that it may observe and modify. The subject label range is

always constrained by the user’s operating system session label.

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 45

3.6 Multilevel network security systems

As an alternative to using MLS operating systems as the basis of security, we now examine

the use of MLS as a foundation for network security. We consider two efforts that influenced

this thesis, the seminal work by Rushby and Randell [71], and the work by Kang, Moore

and Moskowitz [51]. The systems proposed by both efforts implement multilevel security

and are primarily concerned with secure communication between computers in a network.

3.6.1 A distributed secure system

The focus of Rushby and Randell’s work [71] was on constructing a distributed secure

system, rather than a secure operating system. The proposed system, illustrated in fig-

ure 3.6, combines a number of different security mechanisms to provide a general-purpose

distributed computing system.

Figure 3.6: Conceptual structure of the distributed secure system.

The approach involves interconnecting small, specialised, trusted systems and a

number of larger, untrusted host machines. Each untrusted host machine provides services

to a single security level. The trusted components mediate access and communications

between the untrusted hosts; they also provide specialized services such as a multilevel

secure file store and a means for changing the security level to which a given host belongs.

The approach requires no modifications to the untrusted host machines, allowing them to

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 46

provide their full functionality and performance. Furthermore, the approach allows the

mechanisms of security enforcement to be isolated, single purpose, and simple.

The approach to the design of the secure system is based on the key notions of sep-

aration and mediation, distinct logical concerns whose mechanisms must be kept distinct

for ease of development and verification. The proposed system uses four different sepa-

ration mechanisms: physical, temporal, logical, and cryptographic. Physical separation

is achieved by allocating physically different resources to each security level and function.

The authors suggest that trusted reference monitors can be used to control communication

between the distributed components and to perform other security-critical operations. Due

to the cost of providing physical separation for each security level and reference monitor,

only the untrusted computing resources (hosts) and the security processors that house the

trusted components are physically separate. Temporal separation allows the untrusted host

machines to be used for activities at different security levels by separating those activities

in time. The system state is re-initialised between activities belonging to different security

levels.

The security processors in the system can each support a number of different sep-

aration and reference monitor functions, and also some untrusted support functions, by

using a separation kernel to provide logical separation between those functions. The fourth

technique, cryptographic separation, uses encryption and related (checksum) techniques to

separate different uses of shared communications and storage media.

The four separation techniques provide the basis for a heterogeneous distributed

secure system comprising both untrusted general-purpose systems and trusted specialised

components, and to be useful it must operate as a coherent whole. To this end, the

mechanism for providing security is built on a distributed system called Unix United. A

Unix United system is composed of a (possibly large) set of interlinked standard Unix

systems, or systems that can masquerade as Unix at the kernel interface level, each with

its own storage and peripheral devices, accredited set of users, and system administrator.

A secure Unix United system is composed of standard Unix systems (and possibly

some specialised servers that can masquerade as Unix) interconnected by a local area net-

work (LAN). All the components of the Unix United system are assumed to be untrusted;

the security of the overall system therefore does not depend on assumptions concerning

their behaviour – except that the LAN provides the only means of communication. The

consequence of not trusting the individual systems is that the unit of protection must be

those systems themselves and not some sort of communal utility. Although there is no

security within the individual Unix systems, the strategy of the approach is to enforce

security on the communication of information between systems. To this end, a trusted

mediation device called a trusted network interface unit (TNIU) is placed between each

system and its network connection. The purpose of the TNIUs is to permit communica-

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 47

tion between machines belonging to the same security level. Controlling which hosts can

communicate with one another is a reference monitor function, but because the LAN can

be subverted or tapped, the TNIUs must also provide a separation function to isolate and

protect the legitimate host-to-host communication channels. This separation function is

provided cryptographically, with TNIUs encrypting all communications sent over the LAN.

Encryption is traditionally used to protect communications between parties with a

shared interest in preserving the secrecy of their communications, but this is not the case

here. Host machines are untrusted and may attempt to thwart the cryptographic protection

provided by their TNIUs. For this reason, the encryption must be managed very carefully

to prevent unauthorised communication between host machines, or between a host machine

and a wiretapping accomplice.

3.6.2 NRL pump

Kang, Moore and Moskowitz [51] proposed the NRL pump as a device for enforcing multi-

level security between LANs. It is a hardware device similar to the TNIU described earlier

in section 3.6.1, and it is configured as a single device that interconnects a System-high

LAN and a System-low LAN. In essence, the pump places a buffer between System-high

and System-low, pumps data from System-low to System-high, and probabilistically mod-

ulates the timing of the acknowledgement from System-high to System-low on the basis of

the average transmission times from the System-high LAN to the pump. The applications

that have to interact in the System-low and System-high enclaves communicate with the

pump through special interfacing software components, called wrappers, which implement

the pump protocol. In particular, each wrapper is made of an application-dependent part,

which supports the set of functionalities that satisfy application-specific requirements, and

a pump dependent part, which is a library of routines that implement the pump protocol.

Each message that is received and forwarded by the wrappers includes 7 bytes of header

field, containing information about the data length, some extra header, and the type of

message (data or control).

The pump can be considered as a network router. For security reasons, each pro-

cess that uses the pump must register its address with the pump administrator, which is

responsible for maintaining a configuration file that contains a connection table with reg-

istration information. The pump provides both recoverable and non-recoverable services 2.

Our discussions will concentrate on non-recoverable applications such as FTP.

The procedure for establishing a connection between System-low and System-high

LANs through the pump is as follows. Initially, the System-low LAN sends a connection

request message to the main thread (MT) of the pump, which identifies the sending System-
2Recoverability safety assumes that any message sent will be delivered to the System-high system, even if connection

failures occur.

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 48

low process and the address of the receiving System-high process. If both addresses are

valid (i.e., they have been previously registered in the configuration file managed by the

pump administrator), MT sends back a connection valid message; otherwise it sends a

connection reject message. In the first case, the connection is managed by a trusted System-

low thread (TLT) and a trusted System-high thread (THT), which are created during the

connection setup phase to interact with the System-low LAN and the System-high LAN,

respectively. Registered System-high processes are always ready to accept a connection from

the pump through the handshake mechanism described above. Once the new connection is

established, the pump sends a connection grant message to both systems with initialisation

parameters for the communication.

During the connection between System-low and System-high LANs, TLT receives

data messages from the System-low LAN, then stores them in the connection buffer. More-

over, it sends back the acknowledgements (which are special data messages with zero data

length) in the same order that it received the related data messages, by introducing an ad-

ditional stochastic delay computed on the basis of the average rate at which THT consumes

messages. On the other hand, THT delivers to the System-high LAN any data message

contained in the connection buffer. The pump protocol also requires the System-high LAN

to send back to THT the acknowledgement messages related to the received data messages.

If the System-high LAN violates this protocol, THT aborts the connection. In such a

case, as soon as TLT detects that THT has died, it immediately sends all the remaining

acknowledgements and a connection exit message to the System-low LAN. Another special

data message is connection close, which is sent at the end of a normal connection from the

System-low LAN to the pump.

3.7 Database benchmarking

Benchmarks are vital tools in the performance evaluation and measurement of relational

DBMSs. A database benchmark is defined as a standard set of executable instructions

which are used to measure and compare the relative and quantitative performance of two

or more database systems through the execution of controlled experiments [44]. Standard

benchmarks such as the Wisconsin [12], TPC-A [79], TPC-B [80], TPC-C [81], and AS3AP

[82] benchmarks have been used to assess the performance of relational DBMS software.

A wide variety of users have been dependent upon these benchmarks to select systems, to

determine bottlenecks, and to verify technology improvement. The Wisconsin and AS3AP

benchmarks are widely considered as the standard relational query benchmarks [44], al-

though the AS3AP is also a complex mixed workload benchmark.

The Wisconsin Benchmark described in [12] was the result of the first effort to

systematically measure and compare the performance of relational database systems with

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 49

database machines. The benchmark is a single-user and single-factor experiment using a

synthetic database and a controlled workload. It measures the query optimization per-

formance of database systems with 32 query types to exercise the components of the

proposed systems. The query suites include Selection, Join, Projection, Aggregate, and

simple Update queries. The test database consists of four generic relations. Two data

types, namely small integer number and character string are utilized. Data values are uni-

formly distributed. The primary metric is the query elapsed time. The main criticisms of

the benchmark [40, 41] include the nature of single-user workload, the simplistic database

structure, and the unrealistic query tests. A number of efforts have been made to extend

the benchmark to incorporate the multi-user test. However, they have not received the

same degree of acceptance as the original Wisconsin benchmark, except for an extension

called the AS3AP benchmark.

The ANSI SQL Standard Scalable and Portable (AS3AP) Benchmark described in

[82] models complex and mixed workloads, including single-user and multi-user tests, and

operational and functional tests. There are 39 single-user queries consisting of Selection,

Join, Projection, Aggregate, and Bulk Updates. The four multi-user modules include a

concurrent random read test or pure information retrieval (IR) test to execute a one-row

selection on the same relation, a concurrent random write test or pure on-line transaction

processing (OLTP) test to execute a one-row update on the same relation, a mixed IR

test, and a mixed OLTP test. The concurrent random read test measures the maximum

number of concurrent users that can be handled by the system when a retrieval operation

on the same relation is being performed. The concurrent random write test measures the

maximum number of concurrent users that can be handled by the system when the same

relation is being updated. The mixed IR test and the mixed OLTP test measure the effects

of the cross-section of queries on the system with concurrent random reads or concurrent

random writes. The test database consists of four generic relations, each having the same

number of fields and the same number of records. The database scales up by increasing

the number of records in each table. A number of data types are used, including long

integer number, double precision floating point number, decimal number, money, datetime,

fixed-length and variable-length character strings. Data values are created with uniform

and non-uniform distributions. A new performance metric, the equivalent database size,

is defined to measure the largest database size the proposed system can process within a

12-hour time limit. The benchmark tries to provide a balanced workload to test the system

performance on utilities, access methods, query optimization, and concurrency control.

As one of the main objectives of our research is to instrument a performance study

of a prototype MLS/DBMS, we considered 1) using one of the standard DBMS benchmark

suites such as the Wisconsin and AS3AP Benchmarks, since there is no publicly avail-

able MLS/DBMS benchmarking suite, or 2) implementing a prototype and instrumenting

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 50

performance experiments with real rather than synthetic variables. We chose the latter

approach because, although the standard benchmarks are generally considered sufficient

for benchmarking standard DBMSs, they were not designed to benchmark MLS/DBMSs.

Standard DBMS workloads are not representative of MLS/DBMS workloads which must,

in addition to such factors as database size, and number of concurrent users, consider data

and users at different security levels. A major factor that impacts the performance of

MLS/DBMS systems is the overhead imposed by the processing algorithms that handle

these multilevel data and users. Existing benchmarking suites do not simulate the impact

of this processing overhead. In the following subsection, we consider an MLS/DBMS per-

formance study that was instrumented to measure the cost of alternative query processing

strategies; this study was not undertaken using a DBMS benchmark suite.

3.7.1 A Trusted Database Management System (TDBMS) performance study

A performance study by Thuraisingham and Kamon [77] was based on a trusted database

management system (TDBMS). The authors implemented and benchmarked a TDBMS

based on the distributed architecture approach recommended by the Woods Hole study

group [6]. The objective of this study was to validate the security policy for the query

operation and to analyze the performance of query processing algorithms in the TDBMS

implementation. This was the first major performance study of an MLS/DBMS. A com-

mercial SYBASE DBMS running on a Berkeley Unix 4.2 operating system was used as the

back-end DBMS for the study. The database contained two relations which may be hori-

zontally partitioned across security levels. The Select-All and Join query operations were

used to interrogate the database as the number of tuples in the relations were varied. The

authors considered a variety of query processing strategies for their cost and suitability.

The performance measurements were based on the response time of each query; this metric

is also used in this thesis. Some of the conclusions from the study were: 1) it was more

beneficial to perform Join operations at a back-end machine rather than the front-end;

2) performance was unaffected by polyinstantiation as long as lower level polyinstantiated

tuples were not removed from a user’s view.

3.8 Summary

A U.S. Air Force sponsored summit to address issues relating to MLS/DBMS design pro-

posed that different architectures be considered for building MLS/DBMSs. These include

the integrity lock architecture, kernelized architecture, replicated architecture, and trusted

subject architecture. Each of these architectures provide a way for storing data and con-

trolling access to it. A number of MLS/DBMS prototypes were developed over the past

two decades based on proposals made at the summit, including the SeaView prototype,

CHAPTER 3. RELATED RESEARCH AND DEVELOPMENTS 51

the LDV prototype, the ASD prototype, and the SWORD prototype. None of these pro-

totypes became a commercial product, but some commercial database products promising

varying degrees of security were also developed, shipped, and withdrawn during the same

time period. These include Trusted Oracle 7, Ingres, Informix, and Sybase.

The prototypes and systems differed in the granularity of objects that they sup-

ported. For example, SeaView supported labelling at an individual attribute value level,

LDV supported tuple-level labelling, SWORD supported element-level labelling, and in

ASD the security object was a materialized view. Some of the commercial systems also

supported security labelling at the relation level or even the database level.

Benchmarks are crucial tools in the performance evaluation of database systems.

Relational database benchmarks, such as the Wisconsin and the AS3AP, have been widely

used to develop performance models, to compare alternative designs, to pinpoint system

bottlenecks, to select software, and to predict system behaviour. They serve as indis-

pensable tools in assisting academics, practitioners, programmers, benchmarkers, and even

managers, to validate database research results, to verify software prototype improvement,

and to facilitate the systems selection and procurement process.

A notable performance benchmark study of an MLS/DBMS system was conducted

by Thuraisingham and Kamon. This study, for the first time, gave some measure of the

performance overhead imposed by MLS processing on standard database operations.

Chapter 4 presents a hybrid conceptual model for mandatory access control including

a description of its salient features.

Chapter 4

A Conceptual Model for Access

Control

4.1 Introduction

This chapter presents a conceptual description of a MAC model for the protection of data

in MLS/DBMSs. Access control is governed by axioms slightly stricter than those of the

BLP model. A TCB enforces the MAC policy, mediating the access requests of subjects to

objects such that there is no unauthorised disclosure. Although the emphasis of the model

is on the protection of the confidentiality of information, a number of integrity issues that

arose as a result of the protection mechanisms of the model are also addressed. Most of the

existing MLS/DBMS models were designed to be incorporated into a DBMS at the design

phase of development rather than post-development. The model described in this chapter is

proposed specifically to address the needs of an organization that wishes to adapt its existing

COTS DBMS to provide MLS at a reasonable cost. Earlier in chapter 3 we described two

approaches for representing and controlling access to data, the polyinstantiation approach

and the SWORD approach. Our model incorporates features from both approaches but

draws more heavily from the SWORD approach, specifically from its insert low approach

and its concept of place holders.

The following section describes the basic properties of the proposed model and

where it fits between the polyinstantiation approach and the SWORD approach. It also

describes how the proposed model incorporates features from the two camps. Section 4.3

describes the BLP axioms for controlling access to objects and provides a description of

the interpretation of these axioms in data processing operations including insert, update,

delete, and select. Section 4.4 summarizes the chapter.

52

CHAPTER 4. A CONCEPTUAL MODEL FOR ACCESS CONTROL 53

4.2 Basic properties of the model

The proposed model is largely oriented towards models that represent data ‘truthfully’,

e.g., the SWORD approach, rather than those that are oriented towards representing data

‘honestly’, e.g., the Jajodia-Sandhu model. Although the model uses the Jajodia-Sandhu

definition of a multilevel relational model, its operational semantics is based largely on the

insert low approach advocated by SWORD. The choice between these two approaches was

determined in part by integrity and performance considerations. We wanted a model that

incorporated the desirable features of the SWORD and the polyinstantiation approaches,

without inheriting their problems. For example, a problem with adopting the polyinstanti-

ation approach in its entirety is its lack of support for element-level constraint enforcement,

and its inability to guarantee that the values in a column are unique. Furthermore, using

the polyinstantiation approach would inevitably introduce performance penalties because

any increase in the number of security levels will result in a corresponding increase in the

number of instances that must be processed in response to a query.

Although the model inherits most of the query processing techniques of the SWORD

approach, including the concept of place holders, its data labelling feature is not only

at the element-level, and is not augmented with a table classification as is the case in

SWORD. Furthermore, in adopting the insert low approach, the model does inherit the

potential problem of a denial of service attack that could be launched by a low subject that

overclassifies a data object.

Earlier in sections 3.4.5 and 3.6.2, we described Purple Penelope and the NRL

pump, respectively. Unlike Purple Penelope, our approach does not support discretionary

and role-based access control policies — a main feature of Purple Penelope. In addition,

our approach, in contrast to Purple Penelope, does not permit users at all security levels

to label data objects. In the case of the NRL pump, as an application-independent device

that enforces access control ‘remotely’, it contrasts with our approach which enforces access

control locally — at the DBMS layer. Furthermore, because the NRL pump was not

designed to enforce security within the individual System-high LAN and System-low LAN,

there is no mechanism to prevent access control violations within the individual LANs if

the pump is bypassed.

4.2.1 Multilevel relations

The model represents a multilevel relation as sets of relation fragments, with each set

comprised of fragments with the same security classification. Relation fragments in a set

share the same schema, and are generated by the application of decomposition algorithms

to a larger relation in accordance with the fragmentation rules described earlier in sec-

tion 2.6. Therefore, all the relation fragments are disjoint and are not replicated at each

CHAPTER 4. A CONCEPTUAL MODEL FOR ACCESS CONTROL 54

security level. The model, like the Jajodia-Sandhu model, supports classification at the

tuple, attribute, and element levels of classification, but differs from the latter’s support

for polyinstantiation.

Read and write operations on the relations are controlled and restricted to those

satisfying the ‘No Read-Up’ and ‘No Write-Down’ axioms of the BLP model. A null value

in a field indicates that the subject is not cleared to observe that field. The same semantic

obtains in the Jajodia-Sandhu model and the SWORD approach.

Earlier in section 2.4.2.3 we defined a trusted subject as a subject that may violate

the BLP security policy. The same definition holds for the proposed model. However,

the proposed model uses the current security level fc to escape from the strict restric-

tions imposed by the *-property of BLP. The current security level allows a subject to be

temporarily downgraded before it can execute an insert operation.

4.3 Access to multilevel relations

This section describes the axioms for mediating the access of subjects to objects, and how

these rules translate into specific database operations. The two axioms that regulate the

access of the subjects in the database are:

1. Write access

A database insert and delete request is only granted to subjects at System-low. For

update requests to be permitted, the subject must have a clearance corresponding to the

object’s classification.

The write access rule corresponds to the No Write-Down principle in BLP. However,

it is stronger than the BLP constraints in that insert requests are only permitted from

subjects at System-low.

2. Read access

A database read request from a subject at level l is only permitted if the object requested

is at level l and below.

The read rule corresponds to the BLP No Read-Up principle.

In the following sections, we describe the translation of the write and read axioms above

into actual operations on objects. Write operations supported include insert, update, and

delete. The read operation supported is select.

4.3.1 Insert operation

Rows are inserted using place holders, as described earlier in section 3.4.4. A System-low

subject is permitted to label a new data object with any classification level that dominates

CHAPTER 4. A CONCEPTUAL MODEL FOR ACCESS CONTROL 55

his/her clearance. The Jajodia-Sandhu model, like the BLP model, permits insertions by

users only if the classification of the object dominates the clearance of the subject. The pro-

posed model, like the SWORD approach, considers this simple test to be insufficient for the

purposes of data integrity. It discourages blind-writes by offering a stricter interpretation

of the BLP model NWD property. It permits insertions only by subjects at System-low;

however, this alone cannot guarantee the integrity of data. Users cleared at System-high

must downgrade their clearance to System-Low in order to perform this operation. The

insert operation has the following form:

INSERT INTO table_name VALUES (value1, value2, . . .)

Depending upon which fragmentation scheme is being implemented, a specific valuei could

represent a security classification value.

4.3.2 Update operation

A subject may update an object only if the clearance of the subject is equal to the classifi-

cation of the object. This is a stricter interpretation of the BLP NWD property. It differs

from the Jajodia-Sandhu model and the SWORD approach because it only permits subjects

to update objects at their own security level and not at a higher level. The Jajodia-Sandhu

model and SWORD both permit update operations only if the classification of the data

object dominates the clearance of the subject. The update operation has the following form:

UPDATE table_name

SET attribute_name = new_value

WHERE selection_condition

4.3.3 Delete operation

A subject may delete an object only if the clearance of the subject is at System-low. Once

again, this operation, for the purposes of data integrity, is stricter than is required under

the BLP and Jajodia-Sandhu models. In BLP, a subject only needs to be dominated by

an object in order for a delete operation to be permitted. The delete operation is based on

that of the SWORD approach, but without the alternative requirement in SWORD for a

table classification to be dominated. The update operation has the following form:

DELETE FROM table_name

WHERE selection_condition

CHAPTER 4. A CONCEPTUAL MODEL FOR ACCESS CONTROL 56

4.3.4 Select operation

A subject may retrieve an object only if the clearance of the subject dominates the classi-

fication of the object being requested. This rule is in agreement with the BLP model NRU

property. It is also consistent with the interpretations provided by the Jajodia-Sandhu

model and SWORD approach. The update operation has the following form:

SELECT attribute_list

FROM table_list

WHERE selection_condition

The attribute list specified never contains the security classifications of the corresponding

attribute values.

4.4 Summary

This chapter gives an informal description of a conceptual model for enforcing mandatory

access control in an MLS/DBMS. The model is largely oriented towards representing data

‘truthfully’, as in the SWORD approach rather than representing data ‘honestly’, as in

the Jajodia-Sandhu model. The model uses the Jajodia-Sandhu definition of a multilevel

relational model, but its operational semantics is largely based on the insert low approach

advocated by SWORD.

The model complies with the BLP NWD and NRU security properties but, in the

case of the former, it offers a stricter interpretation of the rules. The primary concern of

the model is the confidentiality of information, but it also addresses, in a limited way, some

integrity issues pertaining to the insertion and deletion of data objects.

Implementing the model described in this chapter requires the identification of a

suitable target DBMS that can be augmented with the security policy captured by this

model. Chapter 5 presents the architecture of such a system — the Stargres distributed

database management system, a COTS DBMS product, including a description of its con-

stituent facilities and modules.

Chapter 5

Software Architecture of a COTS

DBMS

5.1 Introduction

This chapter describes the architecture of the Stargres distributed database management

system. This DBMS is one flavour of the open source Ingres distribution. Stargres is

comprised of a Distributed server component and the DBMS subsystems. The Distributed

server is a data manager that adds the functionality of a distributed relational DBMS to

Stargres. This chapter presents Stargres mainly from the viewpoint of the facilities and

modules that comprise each of its subsystems, our intention being to disentangle the code,

particularly the Distributed server code, and the interdependencies between its modules

before embarking on any kind of adaptation effort.

In the next section we briefly explain why we chose Stargres as a candidate for adap-

tation. Section 5.3 describes the software architecture of the Distributed server through its

component modules. Section 5.4 presents the software facilities of the underlying DBMS

and brief descriptions of their component modules. In section 5.5 we show how tables are

created in Stargres. Section 5.6 summarizes the chapter.

5.2 The Stargres distributed DBMS

Before we chose the Stargres DBMS as our candidate for adaptation, we also considered

other distributed DBMSs, namely Mnesia1, and Mariposa2. Mnesia was considered un-

suitable because it did not support the types of fragmentation schemes advocated in our

research; furthermore, it was developed primarily to address the needs of the telecommuni-

cations industry, and the source code was not completely open. Mariposa was considered
1Mnesia is a telecommunications industry deductive DBMS developed by EricssonTM.
2Mariposa is a wide area network distributed DBMS developed at the University of California at Berkeley.

57

CHAPTER 5. SOFTWARE ARCHITECTURE OF A COTS DBMS 58

unsuitable because each of its objects is constantly migrating and does not have a ‘fixed

home’; moreover, the latest release of Mariposa was found to be unstable in our operating

system environment.

Stargres is a large software system, which has of the order of hundreds of thou-

sands of lines of code. Its support for fragmentation and query decomposition through its

Distributed server feature set made it an ideal choice for implementing our design. Fur-

thermore, its collection of APIs makes handling of host application calls highly efficient.

Although we did not engage in a full-scale reverse engineering effort in order to disentangle

Stargres, we made extensive use of the documentation made available by its developers

and a reverse engineering toolkit called SWAG3 to determine the modular organisation and

their interdependencies.

The Stargres DBMS uses the star query language (StarQL), an extension of the

ANSI standard SQL [56]. StarQL was specially developed for Stargres and supports the full

range of features provided by standard SQL. StarQL also provides some additional features

and commands that extend the functionality of standard SQL; these will be introduced

in the following sections and in Chapter 6 as our description of the Stargres architecture

proceeds.

5.3 Software modules of distributed server

Figures 5.1 and 5.2 illustrate the high-level and detailed software architecture of the Stargres

DBMS respectively. In this architecture, the Distributed server component receives all

requests for data from users and forwards the requests to authorised local DBMSs; it

never directly accesses the data fragments stored in databases. A local DBMS accesses its

database and returns the results to the Distributed server which, in turn, forwards it to the

user. Modules belonging to the Distributed server perform all the central coordination and

global processing tasks associated with managing the distributed data. The DBMS modules

perform all the local processing tasks. This section will describe the facilities and modules

provided by the Distributed server component; these include: the Global DDL compiler

(GDC), the Distributed query handler (DQM), the Query transformer module (QTM), the

Distributed query optimizer (DOPM), the Distributed query execution engine (DQEM),

the Remote access module (RAM), and the Coordinator database module (CDM).

5.3.1 Global DDL compiler (GDC)

Administrative queries are routed to the GDC module by the Query router module (QRM)

for compilation. Global DDL statements are compiled and forwarded directly to the DQEM
3SWAG is a Toolkit developed by the Software Architecture Group at the University of Waterloo in Canada for extracting

and presenting software architectures; it supports the extraction of C, C++ code.

CHAPTER 5. SOFTWARE ARCHITECTURE OF A COTS DBMS 59

Figure 5.1: Software architecture showing two nodes connected by a third node running the Distributed
server component. The Distributed server uses a dedicated coordinator DBMS and database to manage the
nodes in its domain. The system provides interfaces that support programmatic and interactive queries.
Application programs and interactive users connect to the system from remote workstations or via a virtual
private network (VPN).

CHAPTER 5. SOFTWARE ARCHITECTURE OF A COTS DBMS 60

module for execution. Each of these statements affect the structure of relation fragments

maintained in the nodes or the profile of objects such as user accounts and nodes. The

CREATE DATABASE, CREATE TABLE, and CREATE USER statements add new def-

initions of either databases, tables, or users to the coordinator database (CDB) catalog.

The ALTER TABLE command changes the structure of an existing table by updating the

global schema in the CDB catalog; it is used to add or modify columns, change the type

of existing columns, or rename columns or the table itself. The REGISTER node state-

ment registers a new node with the Distributed server and updates the CDB catalog; the

converse of this command is the REMOVE node statement.

Figure 5.2: Detailed software architecture of the Distributed server node depicted in figure 5.1. It shows
the interaction between the modules of the Distributed server and the host DBMS. The Distributed server
adds the GDC, DQM, QTM, DOPM, DQEM, RAM, and CDM modules to the DBMS layer below.

CHAPTER 5. SOFTWARE ARCHITECTURE OF A COTS DBMS 61

5.3.2 Distributed query handler (DQM)

This module intercepts incoming global queries from the network server module (NSV) and

executes a simple syntax and verification check; it also assembles partial responses received

from local nodes. The module verifies the existence of all fragments referenced in the query

before forwarding it to the QTM module for the next phase in processing.

5.3.3 Query transformer module (QTM)

The QTM decomposes global queries against relations into sub-queries against relation

fragments. It constructs query responses using the Union, Join or a combination of Union

and Join to combine the relation fragments into a single relation. The module generates

sub-queries against relation fragments in two steps. First, it maps the distributed query into

sub-queries and substitutes each distributed relation by its reconstruction query expression;

second, it simplifies and restructures the fragment query according to the same rules used

during the query decomposition phase.

5.3.4 Distributed query optimiser module (DOPM)

The DOPM gets the sub-queries from the QTM module as input and generates a global

query execution plan as an output. The query execution plan identifies the sites where the

query needs to be executed, the partial order in which the query gets executed, and where

the final result needs to be sent. The data transfer operations for executing the global

query are specified in the execution plan.

5.3.5 Distributed query execution engine (DQEM)

The DQEM module provides functions that are used for the creation of relation fragments,

the updating or deletion of several databases within a transaction, and the transmission of

sub-queries to local sites for processing. A record of the transactions being processed by

this module is written to the coordinator database through the CDM which keeps track of

the completion status of each transaction. All newly created relations are registered with

the coordinator database through the CDM. The DQEM references the global CDB catalog

maintained in the coordinator database in order to successfully execute transactions. Local

transaction manager modules must check this catalog before beginning an operation.

5.3.6 Remote access module (RAM)

The RAM uses information stored about nodes by the CDM module during the registra-

tion of nodes, and the creation of databases, tables, and user accounts. This information

includes the node name, database name, table name, and the table location, as necessary in

CHAPTER 5. SOFTWARE ARCHITECTURE OF A COTS DBMS 62

order to direct queries and to distribute fragments to relevant nodes. It utilises a mixture

of graph and stack data structures to help distribute relation fragments, and tree data

structures for its distributed query processing. It contacts the NSV module in the Trans-

action Management Facility to open connections to the nodes that the user is authorised

to contact during a particular transaction.

5.3.7 Coordinator database module (CDM)

The CDM manages the CDB which maintains the catalogs that the Distributed server

uses to keep track of all the databases in the cluster. On receipt of a query, the DQM

module sends a request to the CDM to verify the existence of the tables referenced. If

the table verification is successful, the Distributed server then forwards the query to the

nodes for processing. Although the coordinator database is similar to any other database,

it is intended for use solely by the Distributed server. This module also manages the CDB

catalog containing the names of all relation fragments, their locations, and their status

(online or offline). The CDM also maintains the global log file on transactions; these

files are used to facilitate recovery operations. The coordinator database, managed by the

CDM, stores the mapping from global relation to fragments, and the mapping of fragments

to sites. The DQM, DQEM, and RAM modules access the database and its catalog through

the CDM. The CDB catalog is not replicated.

5.4 Software facilities of the underlying DBMS

Figure 5.1 also illustrates the software architecture of the underlying DBMS. The Dis-

tributed server relies on the functionality of this layer. Figure 5.2 is an expanded view of

the high-level architecture described in figure 5.1; it shows the software modules in all the

facilities except the Storage and Recovery Management Facilities, and portrays a view of

the control flow within the DBMS system. A pipeline architecture, described by Garlan

and Shaw [36], is used in the Query Processor Facility between the Data Manipulation

Language Precompiler (DMP) and the Query execution engine. For the sake of simplicity,

information flows back up the architecture have been omitted, and should be deemed as

implicit. For example, calling a simple SQL command, such as SELECT ?, would require

information to be brought back up the system. This section describes the Applications

and utilities facility (AUF), the Query processor facility, and the Transaction management

facility.

5.4.1 Applications and utilities facility (AUF)

The AUF accepts queries either interactively from a user or from an application program,

and screens the query for ‘prohibited administrative operations’ and syntax errors. In

CHAPTER 5. SOFTWARE ARCHITECTURE OF A COTS DBMS 63

the interactive mode, a user either enters a single SQL statement at a console using SQL

syntax such as SELECT, FROM, WHERE, AND, or enters several statements enclosed by

the keywords “beginÔ and “endÔ to get multiple results. In the application program mode,

an embedded SQL application submits a query through its API. SQL statements embedded

in application programs are prefixed by the EXEC SQL command, so that they are easily

distinguishable from the host language statements, and are terminated by a special symbol

such as a semicolon. Three modules in AUF handle the different kinds of queries that are

submitted to the DBMS. These modules can be seen in the layered DBMS architecture

diagram in figure 5.2, and include the Administrative utilities module (AUM), the Query

router module (QRM), and the Client/Query interface module (CQIM) (see below).

Administrative utilities module (AUM)

The AUM, in addition to performing syntax checks, provides a number of utilities for

carrying out administrative tasks such as registering nodes, creating user accounts, creating

or dropping databases and tables, schema definition, shutting down the server, and so

forth. Except for the CREATE table command, which is executable by all users, all the

other DDL commands require administrative privilege. In Stargres, two user accounts are

automatically created as part of the installation process and assigned to the DBA group.

The DBA group is one of the most important default groups that exists in Stargres; it gives

all administrative privileges to users who are members of this group, thus enabling them

to perform the administrative tasks.

Query router module (QRM)

The QRM directs queries to the appropriate pipeline for processing. When a request is

received, the QRM examines the query for a local or distributed switch statement. If a

local switch statement is encountered, the query is examined again to determine its type,

and then routed. DML queries are routed to the DMP module, and DDL queries are routed

to the DDC module. If a distributed switch statement is encountered, the query is routed

to the GDC module if it is a DDL query, otherwise it is routed to the DQM module.

Client/Query interface module (CQIM)

The CQIM provides the interface that facilitates interaction between users and the DBMS.

The module also imposes restrictions on the types of commands that can be executed by

non-administrative users; it enforces this constraint by responding with an error message

whenever it receives a request to execute the REGISTER node, REMOVE node, CREATE

database, DESTROY database, CREATE user, or DROP user command from a user. The

concept of ‘prohibited administrative operations’ takes account of environments where the

need exists to reserve certain types of operations for the administrator only.

CHAPTER 5. SOFTWARE ARCHITECTURE OF A COTS DBMS 64

5.4.2 Query processor facility (QPF)

The vast majority of interactions with the system occur when an application program

or user wishes to query stored data. These queries, which are specified using a DML,

are parsed and optimized by the query processor facility. This facility is represented as

a pipeline and filter architecture, where the result of the previous component becomes an

input or requirement to the next component. A query progresses through the DMP module,

the DDL compiler (DDC), the query parser (QPM), the query preprocessor (PPM), the

query optimiser (OPM), and the Query execution engine during processing.

5.4.3 Transaction management facility (TMF)

The purpose of this facility is to ensure that a transaction is logged and executed atomi-

cally. It does so with the aid of the concurrency control manager (CCM), the transaction

manager (TMM), and the log manager (LMM). The transaction manager is also respon-

sible for resolving any deadlock situations that occur and for issuing the COMMIT and

the ROLLBACK SQL commands. Furthermore, this facility is also responsible for servic-

ing connection requests to remote databases; it uses the NSV module to add the network

communication element to the architecture. The NSV is running on each node and is

responsible for opening and closing connections.

5.5 Database creation in Stargres

The CREATE database command is used by the RAM for creating Stargres databases; it

has the form: CREATEdb <database name> (<fragmentation option>). The database

name specifies the name of the database to be created. The name must be unique among all

Stargres databases in a particular installation. The fragmentation option, tuple, attribute,

or element, must be specified as a parameter in the CREATEdb statement. An error

message is returned if the database creation is unsuccessful. We give a more detailed

treatment of the CREATEdb statement in Chapter 6.

5.6 Table creation in Stargres

A CREATE table command is used by the RAM for creating and distributing relation

fragments in each of the fragmentation schemes; it has the form: CREATE table <ta-

ble name> (<attributei> <data type> <distribution criteria>, . . . , <attributen> <data

type> <distribution criteria>). The distribution criteria parameter is a rule that is speci-

fied on one or more attributes of a relation schema when the schema is defined. This rule

is expressed such that relation fragments can be distributed to designated nodes based on

CHAPTER 5. SOFTWARE ARCHITECTURE OF A COTS DBMS 65

the value of specified attributes. The distribution criteria routine of the Distributed server

uses this rule in deciding where to ship fragments; the creation of a table will fail if no rule

is defined.

Stargres does not define distribution criteria on any attribute that is designated as

the primary key, as it associates each attribute with the designated primary key attribute.

A ‘?’ parameter in the specification of the distribution criteria is used to indicate that all

values including ‘nulls’ of an attribute will be treated as if they were the same value for

the purposes of distribution. The distribution criteria are stored in the CDB catalog along

with relation schemas. In contrast to relation schemas which are stored globally, relation

instances are stored at the various sites maintaining fragments.

The manner in which tables are created in Stargres differs for each fragmentation

scheme. The following examples describe the command for creating tables; they are illus-

trated using the Department relation shown in Appendix A.

Tuple-level table creation

Tuple fragments are distributed to different nodes based on the distribution criteria specified

on an attribute. Distribution criteria can only be specified on one attribute during the

creation of a table. To send any tuple fragment with a Manager value of Cantor to Site-A

and a Manager value of Gerald to Site-B, the required command has the form:

• Command: CREATE table Department (DN NUMBER(4) WITH

(Dept_Name CHAR(25),

Manpower CHAR(10),

Dept_Location CHAR(25),

Manager CHAR(25)),

@ Site-A IF Manager = ‘Cantor’,

@ Site-B IF Manager = ‘Gerald’);

Attribute-level table creation

Attribute fragments are distributed to relevant nodes based on the distribution criteria

specified on the attributes of a relation during the creation of a table. The distribution

criteria routine examines the values of each attribute to determine if they satisfy the distri-

bution criteria. The specification of the distribution criteria on attribute values rather than

attributes can conceivably result in fragments that are not vertical fragments, because of

errors that arise during the specification of distribution criteria. A non-vertical fragment

will result if the distribution criteria refer to a specific attribute value (e.g., Manpower

CHAR(10) @ Site-B IF Manpower = ‘15’) instead of using the ‘?’ placeholder. Although

stored procedures can be used to reduce the possibility of these errors, they do not provide

CHAPTER 5. SOFTWARE ARCHITECTURE OF A COTS DBMS 66

a robust solution. To send the attribute fragments Dept_Name to Site-A, Manpower to

Site-B, Dept_Location to Site-C, and Manager to Site-D, the required command has the

form:

• Command: CREATE table Department (DN NUMBER(4) WITH

(Dept_Name CHAR(25) @ Site-A IF Dept_Name = ‘?’,

Manpower CHAR(10) @ Site-B IF Manpower = ‘?’,

Dept_Location CHAR(25) @ Site-C IF Dept_Location = ‘?’,

Manager CHAR(25) @ Site-D IF Manager = ‘?’));

Element-level table creation

The distribution of element fragments to nodes depends on the distribution criteria spec-

ified on the attributes of a relation; this rule must be specified on one or more attributes

during the creation of a table. Here, the distribution criterion is similar to that used in

the attribute-level example. To send an element fragment with a Dept_Name value of

‘Radiology’ to Site-A, a Manpower value of ‘15’ to Site-B, a Dept_Location value of ‘512

West Wing’ to Site-C, and a Manager value of ‘Cantor’ to Site-D, the necessary command

has the form:

• Command: CREATE table Department (DN NUMBER(4) WITH

(Dept_Name CHAR(25) @ Site-A IF Dept_Name = ‘Radiology’,

Manpower CHAR(10) @ Site-B IF Manpower = ‘15’,

Dept_Location CHAR(25) @ Site-C IF Dept_Location = ‘121 South Wing’,

Manager CHAR(25) @ Site-D IF Manager = ‘Cantor’));

5.7 Summary

In this chapter we have presented a description of the Stargres DBMS. The Stargres DBMS

is made up of two major subsystems: the DBMS, and the Distributed server; each of

these components is further sub-divided into facilities which consist of individual modules

that perform specific processing functions. The Distributed server component comprises a

number of modules including the GDC, DQM, QTM, DOPM, DQEM, RAM, and CDM.

The underlying DBMS server also presents the Distributed server layer above with critical

facilities such as the AUF, QPF, and TMF.

The next chapter describes how the Stargres DBMS was adapted to provide multi-

level security. It focuses on the critical modules of the DBMS and the Distributed server.

Chapter 6

Adaptation of the Stargres DBMS

6.1 Introduction

This chapter presents the technical details of the Stargres COTS DBMS components that

were adapted and systematically integrated with a computer cluster to enforce multilevel

security. We refer to this integration of software and hardware components as the Multilevel

Stargres (MST) prototype. Our description will focus mainly on the AUF and Distributed

server modules that we adapted. The AUF and Distributed server modules were augmented

with MLS code such that the rules for creating nodes, users, databases, relations, and for

distributing relation fragments relied on a security level parameter. We use the term ‘node’

to refer to a single-level machine in the cluster, and the term ‘Distributed server node’ to

refer to the node running the Distributed server software (see figure 5.1) in Chapter 5.

Section 6.2 presents an architectural overview of the prototype. Section 6.3 de-

scribes how the Distributed server was augmented with MLS information. In section 6.3.1,

we describe how the Distributed server was adapted to capture and store MLS informa-

tion. Section 6.3.2 describes how the prototype uses MLS information in registering nodes.

Section 6.3.3 describes how MLS information is used to create user accounts. Section 6.3.4

describes how databases are created in MST. Section 6.3.5 describes how tables are cre-

ated using MLS information. Section 6.3.6 describes the command used for altering tables.

Section 6.3.7 describes the processing of Select, Join, Insert, Update, and Delete queries in

all three fragmentation schemes. Section 6.4 summarizes the chapter.

6.2 Architectural overview

The MST prototype is based on the kernelized architecture approach described in sec-

tion 3.3.2. The prototype consists of a LAN cluster of single-level machines, each contain-

ing relation fragments of the same security classification. A designated machine, running

Distributed server software, provides the interface for programmatic and interactive user

67

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 68

queries. Programmatic applications and interactive users access the Distributed server

from remote workstations via the LAN or virtual private network (VPN). The Distributed

server is the only trusted component, it enforces MLS control by directing queries only to

authorised nodes (i.e. the set of nodes that a user is authorised to access), and by deny-

ing all connection requests to unauthorised nodes (i.e. the set of nodes that a user is not

authorised to access). It does this by comparing the user’s clearance with the levels of the

target nodes (i.e. the set of nodes containing the fragments referenced in a query), and

dropping all connection requests to nodes with classification levels higher than the user’s

clearance if the request is for a ‘read operation’ such as a SELECT SQL statement. All

connection requests to nodes with classification levels lower than the user’s clearance are

also denied if the request is for a ‘write’ operation such as an INSERT SQL statement.

At the highest level of abstraction, the two software subsystems of the MST pro-

totype include the DBMS and the Distributed server. These subsystems also consist of

facilities, which in turn are made up of modules. We will focus our discussion on those

facilities and modules that form the nucleus of the prototype — especially the Distributed

server modules; this by no means diminishes the importance of the other facilities and

modules which also contribute in varying measures to the operation of the prototype.

6.3 Augmenting the distributed server with MLS information

Our adaptation focused on the AUM and RAM. By default, these modules do not capture

or utilise security levels for nodes or users during their respective processing operations.

However, in order to deliver a robust MLS system, these critical modules had to be adapted

to capture, store, and utilise security level information in addition to any other processing-

specific information that may be required. The AUM was modified so that a security

lattice can be defined by the administrator using a DEFINE lattice command. The AUM

also requires the administrator to provide a security level when the REGISTER node or

CREATE user command is issued. The security level field cannot be empty; it must contain

an element from the lattice of security labels in use. Whenever a lattice element is entered

as a parameter in the REGISTER node or CREATE user command, a validation routine

compares the element with a set of valid security labels stored in the CDB, and an error

message is returned if the label entered is invalid.

The administrator is responsible for assigning security levels to all nodes and users.

A security lattice must have been defined in the system before the creation of a database

or the registration of a node can proceed. The lattice implements a partial ordering ≤ on

any set of elements of a newly defined data type called LABEL. Only elements from one

security lattice can be in use at any one time in a database. In Figure 2.2(B) we presented

an example of a lattice for a firewall; the examples in this chapter will be illustrated using

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 69

this lattice.

The DEFINE lattice routine specified in Appendix B, prompts the administrator to

provide a set of classification labels representing the elements of the security lattice. These

elements, of type LABEL, are stored in array structures. The ordering of the elements in

the arrays is not related to the dominates relationship that exists between elements in the

lattice.

The distribution criteria routine of the RAM was augmented with additional code so

that the shipping of fragments to relevant nodes based on the distribution criteria occurs

automatically for each fragmentation scheme. We also adapted the CREATE table and

ALTER table transactions to handle the attribute and element-level fragmentation schemes

such that whenever a classification attribute or attribute value is shipped, the attribute or

attribute value immediately preceding it in the schema must also be shipped along with it

as part of the same fragment. Furthermore, we adapted the CQIM of the AUF facility to

enforce a ‘prohibited administrative operations’ constraint on programmatic applications

and interactive users such that only unprohibited DDL commands can be executed by

users.

6.3.1 Capturing and Storing MLS information

The MLS information captured by the AUM includes the node name, node classification,

user clearance, fragmentation scheme information, and the classification level of fragments.

The node name and node classification information is captured at the point where the

REGISTER node command is issued by the administrator. The user clearance information

is captured when the administrator issues a CREATE user command; this information, like

the previous ones is written to the CDB catalog via the CDM. Security classification labels

are automatically inserted into a table’s schema whenever the CREATE table command

is executed. This additional attribute is also stored in the CDB catalog alongside other

attributes of the table.

The MLS information stored in the CDB catalog is available to other modules in

the Distributed server for use in processing. We are especially interested in how this

information is used by the RAM module to only direct queries to authorised nodes. In

the following sections we consider how this information is utilised in creating nodes, user

accounts, tables, and in query processing.

6.3.2 Registering nodes in the cluster

Each node must be registered with the Distributed server before it can be considered a

part of the cluster. The AUM handles node registrations for the Distributed server. To

register a node, an administrator uses the REGISTER node command; this command has

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 70

the form: REGISTER node <node name>1 (<security classification>, <login password>).

The Distributed server must know the security classification and the login passwords of all

member nodes in order to communicate requests to them. The administrative request to

register a node is compiled by the GDC module and forwarded directly to the DQEM

module which then executes the command and writes the node information into the CDB

via the CDM. This node classification information is also accessible to the RAM module.

A node continues to exist in the CDB until it is dropped. The following example describes

the command for registering a node called Inside with a classification of ‘inside’.

• REGISTER node Inside (inside, shhh002);

A node that is registered with the Distributed server can be removed using the

REMOVE node command; the command has the form REMOVE node <node name>

(<login password>). When a node is removed from the cluster, its registration information

in the CDB will no longer exist. The modified behaviour of the REMOVE node command

guards against the possibility of ‘dangling nodes’ or ‘dangling security labels’. There must

exist a corresponding node for each security label that is in use; if a node is removed using

the REMOVE node command, then its security label will be dropped and an exception

error returned whenever the label is detected in a REGISTER node command or any other

command that requires a security level parameter.

6.3.3 Creating user accounts

The CREATE user command is of the form: CREATE user <login name> (<clearance>,

<password>). The user’s security clearance was added to the parameter list to support

MLS. The CREATE user request is compiled by the GDC module; this module also checks

to see if the value entered for clearance is a valid lattice element. The request is forwarded

to the DQEM module for execution. The profile of the new account is written to the

CDB via the CDM. The user account profile, like the node registration information, also

continues to exist until it is dropped. The RAM uses the security clearance information,

stored in the user account profile, in combination with the node classification information

to direct sub-queries to authorised nodes.

6.3.4 Creating databases

The CREATE database command provided by the COTS DBMS has the form: CREATEdb

<database name> (<fragmentation option>). This command may only be executed by a

user with administrative privileges. The CREATE database transaction is executed by the

DQEM, which creates a distributed database, associates it with a specific fragmentation
1The process of registering a node relies on an earlier configuration procedure at the operating system level that associates

a name assigned to a machine with the ethernet address of that machine.

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 71

scheme, and builds and populates a CDB catalog. The fragmentation option switch is

used to specify a fragmentation scheme for tables of the newly created database; the only

available options are the tuple, attribute, or element schemes. A fragmentation scheme

specified by a CREATEdb statement persists until it is changed by a new CREATEdb

statement specifying a different option. For each fragmentation scheme, the distribution

criteria routine in the RAM module that administers its distribution criteria is activated

during database creation. The command SETdf <database name> is used to set a database

to the default database; it also resets the fragmentation scheme to that of the default

database. The following example is a command for creating a database under the tuple-

level fragmentation scheme.

• CREATEdb Hospital (tuple);

6.3.5 Creating tables

In contrast to the CREATE database command, new relations can be created by users

logged in at System-low using the CREATE table DDL command; the request is then routed

to the GDC module where it is compiled and forwarded to the DQEMmodule for execution.

This command, along with the distribution criteria routine of the RAM, were adapted to no

longer require the manual specification of the distribution criteria. The distribution criteria

are now part of a routine that executes automatically to distribute fragments. Users cleared

at any security level must downgrade their security clearance to System-low to be able to

execute the CREATE table command. Relations are created and populated using the

insert low approach described earlier in section 3.4.4. The CREATE table command of

the COTS DBMS has the form: CREATE table <table name> (<attributei> <type>

<size>, . . . , <attributen> <type> <size>). The ‘type’ parameter defines the datatype

of a field (e.g., CHARACTER, INTEGER, ALPHANUMERIC), and the ‘size’ parameter

defines the size of a field (e.g., 5, 10). In processing the CREATE table request, the DQEM

module generates an executable transaction that creates relation fragments based on the

fragmentation scheme of the default database; the RAM is invoked afterwards to distribute

the fragments based on the distribution criteria. Information on the newly created tables

and their locations is written to the CDB via the CDM.

The following sections describe how tables are created, how they are stored, and how

the Distributed server keeps track of them for each fragmentation scheme. The Department

relation in Appendix A will be used as the basis of our discussions.

Tuple-level table creation

In this scheme, the TC attribute, its type, and size are automatically inserted into the

schema whenever a new table is created, and the default type is LABEL. The tuple clas-

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 72

sification in the prototype is always named TC; TC is therefore reserved2 and may not be

used for naming other attributes. The following example is a command for creating a table

under the tuple-level fragmentation scheme.

• Command: CREATE table Department (DN NUMBER(4), Dept_Name CHAR(10),

Manpower CHAR(10), Dept_Location CHAR(10), Manager CHAR(10));

• Modified command with distribution criteria inserted: CREATE table De-

partment (DN NUMBER(4) WITH

(Dept_Name CHAR(25),

Manpower CHAR(10),

Dept_Location CHAR(25),

Manager CHAR(25),

TC LABEL(20)),

@ High Node IF TC = ‘System-high’,

@ Outside Node IF TC = ‘outside’,

@ Inside Node IF TC = ‘inside’,

@ Low Node IF TC = ‘System-low’);

Attribute-level table creation

In this scheme, the classification attributes denoted by Class_1, . . . , Class_n, their types,

and sizes are automatically inserted into the schema whenever a new table is created; the

default type is LABEL. Any attribute name of the form: ‘Class_i’, where i is any integer

value, is reserved in the system for the naming of attribute labels. The first tuple to be

inserted must contain values in all of its classification fields; this tuple must be inserted

by the administrator logged in at System-low, because it defines the classification level of

all the attribute fragments. Tuples inserted afterwards by users are not required to have

values in these fields. The distribution criteria routine scans only the classification fields

of the first row to determine the destination of fragments; it does not scan subsequent

entries. An attribute fragment is automatically shipped to a relevant node based on the

distribution criteria specified on the classification attributes in the distribution criteria

routine. This routine uses the node names captured by the AUM during node registration

in its processing. The following example describes the command used to create a table for

the attribute-level fragmentation scheme.

• Command: CREATE table Department (DN NUMBER(4), Dept_Name CHAR(10),

Manpower CHAR(10), Dept_Location CHAR(10), Manager CHAR(10));

• Modified command with distribution criteria inserted: CREATE table De-

partment (DN NUMBER(4), Class_1 LABEL(20), WITH
2Reserved words are maintained in an identifier file called idf.sys; this file includes both user and Stargres reserved words.

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 73

(Dept_Name CHAR(25), Class_2 LABEL(20),

@ High Node IF Class_2 = ‘System-high’,

@ Outside Node IF Class_2 = ‘outside’,

@ Inside Node IF Class_2 = ‘inside’,

@ Low Node IF Class_2 = ‘System-low’;

Manpower CHAR(10), Class_3 LABEL(20),

@ High Node IF Class_3 = ‘System-high’,

@ Outside Node IF Class_3 = ‘outside’,

@ Inside Node IF Class_3 = ‘inside’,

@ Low Node IF Class_3 = ‘System-low’;

Dept_Location CHAR(25), Class_4 LABEL(20),

@ High Node IF Class_4 = ‘System-high’,

@ Outside Node IF Class_4 = ‘outside’,

@ Inside Node IF Class_4 = ‘inside’,

@ Low Node IF Class_4 = ‘System-low’;

Manager CHAR(25), Class_5 LABEL (20),

@ High Node IF Class_5 = ‘System-high’,

@ Outside Node IF Class_5 = ‘outside’,

@ Inside Node IF Class_5 = ‘inside’,

@ Low Node IF Class_5 = ‘System-low’));

Element-level table creation

In this scheme, the classification attributes denoted by the reserved words Class_1, . . . ,

Class_n, their types, and sizes are automatically inserted into the schema whenever a new

table is created; the default type is LABEL. Like the attribute-level scheme, any attribute

name of the form: ‘Class_i’, where i is any integer value, is reserved for the naming of

attribute labels. The distribution criteria are specified on the classification attribute values

Class_1, . . . , Class_n of each element in the tuple. When new tuples are added to the

table, each element fragment will be examined automatically by the distribution criteria

routine and shipped to the relevant node based on the distribution criteria. The process

of creating tables under this fragmentation scheme is similar to that of the attribute-level

scheme, except that the classification values may vary, and the distribution criteria routine

must scan the classification values in every row to determine the destination of fragments.

The following example describes the command used to create a table for the element-level

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 74

fragmentation scheme.

• Command: CREATE table Department (DN NUMBER(4), Dept_Name CHAR(10),

Manpower CHAR(10), Dept_Location CHAR(10), Manager CHAR(10));

• Modified command with distribution criteria inserted: CREATE table De-

partment (DN NUMBER(4), Class_1 LABEL(20), WITH

(Dept_Name CHAR(25), Class_2 LABEL(20),

@ High Node IF Class_2 = ‘System-high’,

@ Outside Node IF Class_2 = ‘outside’,

@ Inside Node IF Class_2 = ‘inside’,

@ Low Node IF Class_2 = ‘System-low’;

Manpower CHAR(10), Class_3 LABEL(20),

@ High Node IF Class_3 = ‘System-high’,

@ Outside Node IF Class_3 = ‘outside’,

@ Inside Node IF Class_3 = ‘inside’,

@ Low Node IF Class_3 = ‘System-low’;

Dept_Location CHAR(25), Class_4 LABEL(20),

@ High Node IF Class_4 = ‘System-high’,

@ Outside Node IF Class_4 = ‘outside’,

@ Inside Node IF Class_4 = ‘inside’,

@ Low Node IF Class_4 = ‘System-low’;

Manager CHAR(25), Class_5 LABEL (20),

@ High Node IF Class_5 = ‘System-high’,

@ Outside Node IF Class_5 = ‘outside’,

@ Inside Node IF Class_5 = ‘inside’,

@ Low Node IF Class_5 = ‘System-low’));

Keeping track of fragments

The Distributed server keeps track of the status and location of fragments through the

registration information maintained in the CDB catalog. This information, captured during

the CREATE table operation, was described earlier in this section. More specifically, it

keeps track of the tuple fragments by associating each tuple with its parent relation in

the catalog, or, for attribute and element fragments, by associating each fragment with its

primary key and parent relation in the catalog. The relation schema of the parent relation

is necessary to unite all the disjoint fragments of the same table.

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 75

The distribution of fragments to relevant nodes is dependent on the relevant nodes

being accessible. A node may become inaccessible because it has been removed from the

cluster using the REMOVE node command, or for some other reason. Fragments cannot

be shipped to a node that has been ‘legally’ removed using the REMOVE node command,

as its location and registration information is no longer available for routing purposes; the

distribution criteria routine will not reference any node that is removed this way. If a node

is inaccessible for some other reason, the Distributed server will attempt to contact the

node, resulting in an error message. In this scenario, the shipping of all fragments of the

same table is treated as one atomic transaction; it must either succeed to all the nodes or

fail, thereby preserving the completeness property of a table.

6.3.6 Altering the tables

The ALTER TABLE commands work by constructing a temporary copy of the original table

from the single-level fragments. The addition or alteration is performed on the copy; the

copy is then fragmented, the original fragments are deleted, and the new ones are renamed

as the originals. This is done in such a way that all updates are automatically redirected

to the new fragments without any failed updates. While ALTER TABLE is executing, the

original table is readable by other clients. Updates and writes to the original fragments are

stalled until the new fragments are ready.

To add a column in a tuple-level fragmentation scheme, the necessary command

has the form ALTER TABLE <table name> ADD (<attributei> <type> <size>). For

the attribute and element-level fragmentation schemes, a classification attribute is auto-

matically added for each column that is affixed. We adapted the command to the form:

ALTER TABLE <table name> ADD (<attributei> <type> <size>, <Classi> <type>

<size>). Its effect is to create two columns; the first column takes the name specified by

the user, and the second column, inserted automatically, is named ‘Classi’ by default. To

alter a table by modifying the properties of an existing column, the generic command has

the form ALTER TABLE <table name> MODIFY (<attributei> <type> <size>). The

global schema in the CDB catalog is updated after the command is executed by the DQEM

module.

6.3.7 Query processing

Each request for data is forwarded by the Distributed server to the appropriate nodes

containing the referenced fragments. This process begins when a query is received by

the CQIM in the AUF facility. The query is filtered by a filter function in the CQIM

to prevent administrative operations, such as CREATE database, REGISTER node, or

REMOVE node, from being executed by non-administrative users. The filter function,

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 76

called Sievadmincmd, checks the commands in the query against a list of these prohibited

administrative commands; any command that is present in the list is rejected and an error

message is returned. Afterwards, if the query is considered legal, it is passed through the

Distributed server’s query processing pipeline.

In the pipeline, table references are verified by the DQM module, the query is

transformed, optimised, an execution strategy is developed, and the RAM is invoked to

distribute the sub-queries to local sites for further processing. The RAM uses the node

classification and user clearance information maintained in the CDB catalog when deciding

which nodes to contact. Queries to unauthorised nodes are silently dropped, and the

target nodes are never contacted. Sub-queries destined for other nodes in the cluster are

forwarded to the NSV module of the TMF facility. The NSV module opens a connection

to the NSV modules of the nodes authorised by the RAM. Recall that if the RAM chooses

not to forward the password of a remote node as part of its argument to the NSV module,

the NSV module will be unable to establish a connection. This feature places the NSV’s

outbound traffic under the direction of the RAM. The RAM uses the node name, node

address, and table location information maintained in the CDB catalog to determine which

nodes to contact; every fragment is associated with a specific node in a manner that allows

the DBMS to determine the nodes to be contacted for each request that it receives. A

diagramatic representation of the main processing steps for an arbitrary DML query is

illustrated in figure 6.1.

At each authorised local node, the query is passed through the pipeline of the

local query processor where it is parsed, preprocessed, subjected to integrity constraint

verification, and finally optimized before reaching the query execution engine. At the

execution engine, the query is executed locally using local resources and the partial result

is forwarded to the local NSV module which transmits it to the Distributed server node.

On receipt of incoming partial results, the NSV module running at the Distributed server

node forwards it to the DQM module for further processing. The DQM module combines

the partial results using Union operations for the tuple-level fragmentation scheme, Join

operations for the attribute-level fragmentation scheme, and a combination of Union and

Join operations for the element-level fragmentation scheme. The full result set is returned

to the application program or interactive user.

As a result of time and effort constraints, only the Select, Join, Insert, Update,

and Delete DML commands were adapted in the MST prototype. An error message will

be returned by the prototype if it encounters a DML query other than one of these five.

The following examples show how Select, Insert, and Update queries are processed for each

fragmentation scheme. The Department relation in Appendix A will be used as the basis

of our discussions.

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 77

Figure 6.1: A flowchart illustration of how the Distributed server handles an arbitrary DML query.

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 78

Tuple-level fragmentation scheme

Select queries and Join queries are handled in much the same way; the user’s clearance

must dominate the classification of a fragment referenced in order for its host node to be

contacted. For every sub-query that reaches the RAM, the user’s clearance is compared

with the classification of the target node. A connection request is denied to a node if the

user’s clearance does not dominate it, and the target nodes are never contacted in this

case. A query is only forwarded to nodes dominated by the user’s clearance. The following

example illustrates how a query is handled for a user with security clearance ‘outside’.

Example

• User Query: Select ? FROM Department

• Modified query with distribution criteria inserted: Select DN, Dept_Name,

Manpower, Dept_Location, Manager, TC FROM Department

@ Department.Hospital:Node[Outside, Low]

For the Insert and Update SQL queries, the user’s clearance must be at System-low

(for Insert) and equal to the node classification (for Update) in order to execute these

commands. As the processing of the Insert and Update requests also progresses in much

the same way, the following example illustrates the Insert query for a user with security

clearance ‘System-low’.

Example

• User Query: Insert INTO Department Values (D30, Psychiatry, 8, 64 South Wing,

Fraser, System-high);

• Modified query with distribution criteria inserted: Insert INTO Department

Values (D30, Psychiatry, 8, 64 South Wing, Fraser, System-high)

@ Department.Hospital:Node[High]

• Result: Insert Successful. Tuple inserted @ Node[High]

Attribute-level fragmentation scheme

In this scheme, the Select queries and Join queries are also handled in much the same way.

The user’s clearance must dominate the classification of each node containing fragments

referenced before it can be contacted. Whenever a sub-query reaches the RAM, the user’s

clearance is compared with the classification of the target node, and a connection request

is denied if the user’s clearance does not dominate a target node. A node is only contacted,

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 79

and a query forwarded to it, if it is dominated by the user’s clearance. The following ex-

ample illustrates how a query is handled for a user with security clearance ‘outside’.

Example

• User Query: Select ? FROM Department

• Modified query with distribution criteria inserted: Select DN, Class_1,

Dept_Name, Class_2, Manpower, Class_3, Dept_Location, Class_4, Manager,

Class_5 FROM Department @ Department.Hospital:Node[Outside, Low]

For the Insert and Update SQL queries, the user’s clearance must be at System-low

(for Insert) and equal to the node classification (for Update) in order to execute these

commands. The next example illustrates the Insert query, as it is handled in a similar

way to the Update query. Recall from section 6.3.5 that the first tuple that defines the

classification of each attribute fragment must be inserted by the administrator logged in

at System-low. Example 2 illustrates the Insert query for a user with security clearance

System-low.

Example: 1

• Administrator Query: Insert INTO Department Values (D30, System-low, Psychi-

atry, System-low, 8, inside, 64 South Wing, outside, Fraser, System-high);

• Modified query with distribution criteria inserted: Insert INTO Department

Values (D30, System-low, Psychiatry, System-low, 8, inside, 64 South Wing, outside,

Fraser, System-high) @ Department.Hospital:Node[High, Outside, Inside, Low]

• Result: Insert Successful. Tuple inserted @ Node[High, Outside, Inside, Low]

Example: 2

• User Query: Insert INTO Department Values (D30, Psychiatry, 8, 64 South Wing,

Fraser);

• Modified query with distribution criteria inserted: Insert INTO Department

Values (D30, System-low, Psychiatry, System-low, 8, inside, 64 South Wing, outside,

Fraser, System-high) @ Department.Hospital:Node[High, Outside, Inside, Low]

• Result: Insert Successful. Tuple inserted @ Node[High, Outside, Inside, Low]

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 80

Element-level fragmentation scheme

This scheme is very similar to the attribute-level scheme described earlier; the Select queries

and Join queries are also handled in much the same way, and the user’s clearance must

dominate the classification of the node containing referenced fragments before it can be

contacted. When a sub-query reaches the RAM, the user’s clearance is compared with

the classification of the target nodes, and connection requests are granted only to nodes

dominated by the user’s clearance; nodes not dominated by the user’s clearance are never

contacted. The following example illustrates how a query is handled for a user with security

clearance ‘outside’.

Example

• User Query: Select ? FROM Department

• Modified query with distribution criteria inserted: Select DN, Class_1,

Dept_Name, Class_2, Manpower, Class_3, Dept_Location, Class_4, Manager,

Class_5 FROM Department @ Department.Hospital:Node[Outside, Low]

For the Insert and Update SQL queries, the user’s clearance must be at System-low

(for Insert) and equal to the node classification (for Update) in order to execute these com-

mands. The following example illustrates the Insert query for a user with security clearance

System-low; it is handled in a similar way to an Update query.

Example

• User Query: Insert INTO Department Values (D30, System-low, Psychiatry, System-

low, 8, inside, 64 South Wing, outside, Fraser, System-high);

• Modified query with distribution criteria inserted: Insert INTO Department

Values (D30, System-low, Psychiatry, System-low, 8, inside, 64 South Wing, outside,

Fraser, System-high) @ Department.Hospital:Node[High, Outside, Inside, Low]

• Result: Insert Successful. Tuple inserted @ Node[High, Outside, Inside, Low]

6.4 Summary

In this chapter we have presented a technical description of how a COTS DBMS product

was adapted to provide multilevel security. Our adaptation efforts focused on the two

main subsystems of Stargres, namely the DBMS and the Distributed server. Although our

design focused on the adaptation of the Distributed server to capture, store, and use MLS

information in creating user accounts, creating tables, registering nodes, and distributing

CHAPTER 6. ADAPTATION OF THE STARGRES DBMS 81

queries, a number of modules provided by the DBMS component were also essential to the

design. Especially important were the AUM and CQIM modules of the AUF facility and

the NSV module of the TMF facility which, although external to the Distributed server,

are indispensable to a robust prototype.

Programmatic and interactive DML queries are screened for prohibited adminis-

trative operations at the AUF facility. Overall, the prototype relies on the Distributed

server component to prevent access to unauthorised fragments and to perform all the other

distributed tasks such as query optimisation, query decomposition, site selection, and the

coordination required between local DBMSs. However, the Distributed server still relies on

the local DBMSs to perform local optimisations and query execution on its behalf. The

order in which these operations are executed is entirely controlled by the Distributed server

in liaison with the local DBMSs.

Chapter 7 investigates the performance of the three fragmentation schemes sup-

ported by the prototype to determine the impact of varying the size and structure of the

database on the performance of the front-end and network.

Chapter 7

Performance Study of Fragmentation

Schemes

7.1 Introduction

This chapter presents a performance study of the tuple, attribute, and element-level frag-

mentation schemes of the MST prototype. An experimental database, theHospital database

comprising eight relations was created and populated to facilitate the study. The fragments

of the relations are distributed to the various nodes in the network according to their secu-

rity levels; this ensures that fragments can only be maintained at nodes with corresponding

security levels. Any number of nodes can be utilised, but the numbers must match the set

of labels in the security lattice of the database without redundancy.

In the design of our experiments to determine the relative performance of the three

fragmentation schemes, we identified two areas of investigation, namely the front-end and

the back-end. These areas are considered to be sufficiently sensitive to the effects of per-

formance inhibitors as to provide us with an adequate measure of their impact. The per-

formance of a distributed database management system depends on a number of different

factors; for example, if the DBMS references data over a database link, the performance

of the network infrastructure will have a direct bearing on the overall performance of the

system. In addition, activities such as snapshot refreshes and data propagation also impact

performance, and, to a large extent, their impact is related to the size of the database.

At the front-end, performance is affected by such things as user authentication and the

post-processing of query responses. The page size is one of the many factors that affect the

performance of the back-end DBMS. This work builds on a previous performance study

described in [77].

The following section describes the environment and organisation of the experiments.

Section 7.3 describes the structure of the database that was used in our experiments; this

structure is modified to fit the requirements of each fragmentation scheme. Section 7.4

82

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 83

identifies specific performance inhibitors that impact the performance of MLS/DBMS. Sec-

tions 7.5 and 7.6 present the experiments conducted and their results for the Select-All

and Join queries at all three levels of fragmentation. Section 7.7 presents the experiments

conducted and their results for Update operations at all three levels of fragmentation. Our

analysis of the results from all the experiments is presented in section 7.8. We conclude

with a summary of our observations in section 7.9.

7.2 Organisation of the experiments

The local area network that is the backbone of our implementation consists of sixteen

933MHz Pentium III machines. Each machine is fitted with a 100 Megabit network adapter

card, 512MB of primary memory, 256K of cache memory, and a 36GB SCSI hard disk. This

configuration was determined in part by the operational requirements of the DBMS. For

example, Stargres requires 512MB of primary memory in order to minimize paging and

operate optimally, and SCSI hard drives allow for multiple concurrent read/writes which is

ideally suited to I/O bound applications like DBMSs. Our network configuration was also

constrained by the number of machines and other hardware devices that we had available.

The examples in chapter 6 were illustrated using a lattice of 4 partially ordered

security labels. The experiments described in this chapter will utilise a lattice of 16 totally

ordered security labels (1, 2, . . . , 16). The experiments use the CPU response time (in

seconds) as metric. The measurements were captured at the Distributed server using a

Visual DBA monitoring tool provided by Stargres. For each query, the tool records the

time it takes for the system to respond to a query. In addition, we also utilise a Linux

network monitoring utility to monitor network traffic at the front-end.

For each experiment, we plot the response times in a graph as a function of the

variable whose impact is being investigated. All three fragmentation schemes are also

shown on the same graph for ease of comparison. Furthermore, for each experiment, the

set of response times is computed by taking the average response times of users at all

security levels in 16 repeat experiments. There are in total, 1680 tuples and 48 attributes

between the relations in the Hospital database. For each fragmentation scheme, the number

of fragments are equally distributed between 16 security levels in each experiment.

7.3 Experimental database structure

The Hospital database consists of eight inter-related tables of varying sizes. We chose

a database size that was sufficiently large to provide us with meaningful measurements,

but we are mindful of the fact that its size may have to be increased if our experiments

show that it does not sufficiently stress the system. In interrogating the database, in

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 84

order to ensure that the database is reasonably stressed we concentrated on two queries

for processing relation fragments: the Select-All query which selects all the tuples in a

relation, and the Join query which joins two relations. These two queries are amongst the

most expensive operations in query processing and have been used by other researchers

conducting performance studies [77]. The following schema represents the structure of the

relations in the database. A subset of the Patient, Department, and Nurse relations is

shown in Appendix A.

The patient table

Patient(P_SSN, P_Name, P_DOB, P_Status, P_Tel., INS_Name, PHY_Name, EC_Name, Patient #)

The Patient table provides information about patients who sought admission to the hospi-

tal; it has 9 attributes and 512 tuples. P_SSN is the primary key of this relation. We will

refer to this relation as R1 in our experiments and discussions.

The emergency contact (EC) table

EC(EC_SSN, EC_Name, EC_Tel., Relationship, State)

The Emergency Contact (EC) table provides information about a relative of each patient

that may be contacted in an emergency. The table has 5 attributes and 512 tuples, each

entry corresponds to an entry in the Patient relation. EC_SSN is the primary key of this

relation. We will refer to this relation as R2 in our experiments and discussions.

The insurance table

Insurance(INS_Name, INS_Location, INS_Tel., INS_Fax, INS_Contact)

The Insurance table contains information on the patient’s insurance provider; it has 5

attributes and 16 tuples. INS_SSN is the primary key of this relation. We will refer to

this relation as R3 in our experiments and discussions.

The department table

Department(DN, Dept_Name, Manpower, Dept_Location, Manager)

The Department table contains information about each department at the hospital; it has

5 attributes and 16 tuples. DN is the primary key of this relation. We will refer to this

relation as R4 in our experiments and discussions.

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 85

The physician table

Physician(PHY_SSN, PHY_Name, PHY_DOB, PHY_DOR, PHY_Salary, PHY_Specialty, DN, PHY_Tel.,

PHY_Pager)

The Physician table provides information about each physician at the hospital; it has 9

attributes and 32 tuples. PHY_SSN is the primary key of this relation. We will refer to

this relation as R5 in our experiments and discussions.

The nurse table

Nurse(N_SSN, N_Name, N_DOB, N_DOR, N_Salary, N_Specialty, N_Pager, DN, Manager)

The Nurse table provides information about each nurse at the hospital; it has 9 attributes

and 64 tuples. N_SSN is the primary key of this relation. We will refer to this relation as

R6 in our experiments and discussions.

The encounter table

Encounter(Patient #, Symptoms, Diagnosis, Condition, Date, Time, PHY_Name, N_Name, Action)

The Encounter table provides information about each patient encounter with the hospital;

it has 9 attributes and 512 tuples. Patient # is the primary key of this relation. We will

refer to this relation as R7 in our experiments and discussions.

The facilities table

Facilities(Facility, Location, Function, Status, Caretaker)

The Facilities table provides information about each surgical facility at the hospital, it has

5 attributes and 16 tuples. Facility is the primary key of this relation. We will refer to this

relation as R8 in our experiments and discussions.

7.4 Identifying the inhibitors and investigating their effects

The main inhibitors that affect the performance of multilevel DBMSs include the size

of the member relations (based on the number of tuples and attributes), the number of

security levels in the lattice, the page size, and the architecture of the DBMS. We also

recognise that things such as the Selectivity factor (how many result tuples or attributes

are produced by the query), or Join factor (how many source tuples, attributes, or elements

are being joined) also affect performance. In the investigations that follow, we identify some

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 86

specific performance inhibitors, and then design experiments to investigate their impact on

the front-end and back-end of the three fragmentation schemes using Select-All and Join

queries. The quantity of each inhibitor (or variable) will be varied a number of times to

study its effect on the response times.

7.5 Select-All query

The following experiments investigated the impact of varying the number of tuples, number

of attributes, number of security levels, user’s clearance level, and the page size on the

performance of the front-end and back-end of the three fragmentation schemes.

7.5.1 Impact of varying the number of tuples

This experiment was designed to determine if the cost of processing varying numbers of

tuples and shipping them across the network has a significant impact on the performance

of the front-end and back-end of each fragmentation scheme. We chose this experiment

because the size of a database is, in part, based on the number of its tuples (records), and

the number of tuples processed during each transaction could determine how long it takes

to return a response to a user. In addition, when the tuples are disjoint and distributed,

more time is expended by queries that must combine these disjoint fragments.

Operational conditions for figure 7.1

Fragmentation Scheme: Tuple, Attribute, and Element

Relations: R6

Original Query: Select-All FROM R6

Criteria: Vary number of tuples to 112, 212, 312, 412, and 512; fix # of attributes at 9;

fix # of security levels at 16; fix user’s clearance level; fix page size at 8.

X axis: # of tuples in relation R6.

Y axis: CPU time in seconds.

Observation and explanation of results

The response times exhibited linear growth as the number of tuples was increased (see

figure 7.1 for the Select-All query results and figure 7.6 for the Join query results). The

observed linear growth is an indication of the increased number of Unions (for the tuple-

level fragmentation scheme), Joins (for the attribute-level fragmentation scheme), Unions

and Joins (for the element-level fragmentation scheme), that were needed in reconstructing

the response. Although the response times observed in the experiments measured the

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 87

Figure 7.1: Impact of varying the number of tuples to 112, 212, 312, 412, and 512; fix # of attributes at
9; fix # of security levels at 16; fix user’s clearance level; fix page size at 8. (Select-All Query).

degradation at the front-end, it does not show how this degradation is affected by other

inhibitors at the back-end. We will investigate this question in the following experiment.

7.5.2 Impact of page size on the back-end processing costs in section 7.5.1

This experiment investigates the impact of the operating system page size on the back-end

processing costs. We designed this experiment in order to further investigate how other

less noticeable performance inhibitors at the back-end contribute to the overall processing

cost.

Operational conditions for figure 7.2

Fragmentation Scheme: Tuple, Attribute, and Element

Relations: R6

Original Query: Select-All FROM R6

Criteria: Vary the page size to 2, 4, 6, and 8. Fix # of tuples in each node at 105; fix #

of attributes at 9; fix # of security levels at 16; fix user’s clearance level.

X axis: Operating system page size (in Megabytes).

Y axis: CPU time in seconds.

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 88

Figure 7.2: Vary the page size to 2, 4, 6, and 8. Fix # of tuples in each node at 105; fix # of attributes
at 9; fix # of security levels at 16; fix user’s clearance level. (Select-All Query).

Observation and explanation of results

The default page size is 8MB. The response times increased significantly for all three

fragmentation schemes as the page size was reduced, (see figures 7.2 and 7.7). A reduction

in page size means that the unit of transfer between disk and memory (or the physical

record size) is reduced, thereby resulting in increased paging activity as the operating

system swaps these units in and out of the DBMS buffers in main memory.

7.5.3 Impact of varying the number of attributes

This experiment investigates the impact of another primary inhibitor, the attribute, which

may provide us with further information about the relative impact of all the factors exam-

ined so far. The rationale behind this inquiry is that, as the size of a database is a function

of its tuples and attribute numbers, it is reasonable to try and find out the relative weighting

of these variables on performance.

Operational conditions for figure 7.3

Fragmentation Scheme: Tuple, Attribute, and Element

Relations: R6

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 89

Original Query: Select-All FROM R6

Criteria: Vary number of attributes to 2, 4, 6, and 8; fix # of tuples at 512; fix # of

security levels at 16; fix user’s clearance level; fix page size at 8.

X axis: # of attributes in relation R6.

Y axis: CPU time in seconds.

Figure 7.3: Vary number of attributes to 2, 4, 6, and 8; fix # of tuples at 512; fix # of security levels at
16; fix user’s clearance level; fix page size at 8. (Select-All Query).

Observation and explanation of results

The response times for all three fragmentation schemes exhibited linear growth as the

number of attributes was increased, (see figures 7.3 and 7.8). As the number of attributes

increase, so also does the number of fragments that must be combined by Union and/or

Join operations to provide a response, and hence the growth in response times. The relative

impact of attributes on performance compared to, say, the number of security levels is still

undetermined. The next experiment investigates this question.

7.5.4 Impact of varying the number of security levels

We designed this experiment to investigate the impact of varying the number of security

levels on the performance of the three fragmentation schemes. The impact of security levels

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 90

is an appealing line of investigation because the distribution of relation fragments is based

on security level, and how these fragments are distributed in turn determines the cost of

the recovery algorithm that combines the fragments.

Operational conditions for figure 7.4

Fragmentation Scheme: Tuple, Attribute, and Element

Relations: R6

Original Query: Select-All FROM R6

Criteria: Vary number of security levels to 2, 4, 6, 8, 10, 12, 14, and 16; fix # of tuples

at 512; fix # of attributes at 9; fix user’s clearance level; fix page size at 8.

X axis: # of security levels in relation R6.

Y axis: CPU time in seconds.

Figure 7.4: Vary number of security levels to 2, 4, 6, 8, 10, 12, 14, and 16; fix # of tuples at 512; fix # of
attributes at 9; fix user’s clearance level; fix page size at 8. (Select-All Query).

Observation and explanation of results

The response times exhibited linear growth as the number of security levels was increased

(see figures 7.4 and 7.9). The result shows that, as the number of security levels are

decreased, there is a consequent effect on how many relation fragments are created, and

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 91

hence recovered. As indicated earlier in section 7.5.1, an increase in the number of fragments

to be recovered translates to an increase in the number of Union and/or Join operations

that must be performed in order to provide a response. A multilevel relation with 1 security

level is not dissimilar to a non-multilevel relation.

7.5.5 Impact of changing the number of users on CPU Load

This experiment was designed to investigate and compare the overall impact on CPU Load

when a single user submits a query as opposed to queries from 16 concurrent users and the

CPU Load on a single node. More specifically, we wish to determine if the CPU Load on

nodes with higher classifications is greater or smaller than the CPU Load on nodes with

lower classifications.

Operational conditions for figure 7.5

Fragmentation Scheme: Tuple, Attribute, and Element

Relations: R6

Original Query: Select-All FROM R6

Criteria: Vary # of concurrent users. Fix # of tuples at 512; fix # of attributes at 9; fix

user’s clearance level; fix # of security levels at 16; fix page size at 8.

X axis: # of concurrent users.

Y axis: CPU time in seconds.

Observation and explanation of results

Our observation revealed that the CPU Load increased as the number of concurrent users

were increased. The load distribution appears to be evenly spread between the different

nodes in the network for a single user at level-16, but increases significantly when the

number of users increases to 8 (see figures 7.5 and 7.10). The higher level nodes appear

to have less load compared to lower level nodes. This increase may be attributed to the

fact that lower level nodes are most frequently accessed because of their security level, as

opposed to higher level nodes which are only referenced by fewer user queries.

7.6 Join query

The experiments presented in this section use a Join query to explore the performance of

the MST prototype’s three fragmentation schemes. We plot the response times for varying

the number of tuples, the number of attributes, the number of security levels, the user’s

clearance level, and the page size. The Join operation now involves relations R1, R2, R3,

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 92

Figure 7.5: Vary # of concurrent users. Fix # of tuples at 512; fix # of attributes at 9; fix user’s clearance
level; fix # of security levels at 16; fix page size at 8. (Select-All Query).

R4, R5, R6, R7, and R8; as a result, the number of tuples has increased to 1680, and

the number of attributes has increased to 48. The number of security levels and the user

clearances remain unchanged.

7.6.1 Impact of varying the number of tuples

See section 7.5.1 for an explanation of this experiment and the results.

Operational conditions for figure 7.6

Fragmentation Scheme: Tuple, Attribute, and Element

Relations: R1, R2, R3, R4, R5, R6, R7, and R8

Original Query: Join R1 . . . R8

Criteria: Vary number of input tuples to 380, 680, 980, 1280, and 1680; fix # of attributes

at 48; fix # of security levels at 16; fix user’s clearance level; fix page size at 8.

X axis: # of tuples in all relations.

Y axis: CPU time in seconds.

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 93

Figure 7.6: Impact of varying the number of tuples to 380, 680, 980, 1280, and 1680. Fix # of attributes
at 48; fix # of security levels at 16; fix user’s clearance level; fix page size at 8. (Join Query).

7.6.2 Impact of page size on the back-end processing costs in section 7.6.1

See section 7.5.2 for an explanation of this experiment and the results.

Operational conditions for figure 7.7

Fragmentation Scheme: Tuple, Attribute, and Element

Relations: R1, R2, R3, R4, R5, R6, R7, and R8

Original Query: Join R1 . . . R8

Criteria: Vary the page size to 2, 4, 6, and 8. Fix # of tuples in each node at 105; fix #

of attributes at 48; fix # of security levels at 16; fix user’s clearance level.

X axis: Operating system page size (in Megabytes).

Y axis: CPU time in seconds.

7.6.3 Impact of varying the number of attributes

See section 7.5.3 for an explanation of this experiment and the results.

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 94

Figure 7.7: Vary the page size to 2, 4, 6, and 8. Fix # of tuples in each node at 105; fix # of attributes
at 48; fix # of security levels at 16; fix user’s clearance level. (Join Query).

Operational conditions for figure 7.8

Fragmentation Scheme: Tuple, Attribute, and Element

Relations: R1, R2, R3, R4, R5, R6, R7, and R8

Original Query: Join R1 . . . R8

Criteria: Vary number of attributes to 8, 16, 24 , 32, 40, and 48; fix # of tuples at 1680;

fix # of security levels at 16; fix user’s clearance level; fix page size at 8.

X axis: # of attributes in all relations.

Y axis: CPU time in seconds.

7.6.4 Impact of varying the number of security levels

See section 7.5.4 for an explanation of this experiment and the results.

Operational conditions for figure 7.9

Fragmentation Scheme: Tuple, Attribute, and Element

Relations: R1, R2, R3, R4, R5, R6, R7, and R8

Original Query: Join R1 . . . R8

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 95

Figure 7.8: Vary number of attributes to 8, 16, 24 , 32, 40, and 48; fix # of tuples at 1680; fix # of security
levels at 16; fix user’s clearance level; fix page size at 8. (Join Query).

Criteria: Vary # of security levels to 1, 2, 4, 6, 8, 10, 12, 14, and 16. Fix # of tuples at

1680; fix # of attributes at 48; fix user’s clearance level; fix page size at 8.

X axis: # of security levels in all relations.

Y axis: CPU time in seconds.

7.6.5 Impact of changing the number of users on CPU Load

See section 7.5.5 for an explanation of this experiment and the results.

Operational conditions for figure 7.10

Fragmentation Scheme: Tuple, Attribute, and Element

Relations: R1, R2, R3, R4, R5, R6, R7, and R8

Original Query: Join R1 . . . R8

Criteria: Vary # of concurrent users. Fix # of tuples at 1680; fix # of attributes at 48;

fix user’s clearance level; fix # of security levels at 16; fix page size at 8.

X axis: # of concurrent users.

Y axis: CPU time in seconds.

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 96

Figure 7.9: Vary # of security levels to 1, 2, 4, 6, 8, 10, 12, 14, and 16. Fix # of tuples at 1680; fix # of
attributes at 48; fix user’s clearance level; fix page size at 8. (Join Query).

Figure 7.10: Vary # of concurrent users. Fix # of tuples at 1680; fix # of attributes at 48; fix user’s
clearance level; fix # of security levels at 16; fix page size at 8. (Join Query).

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 97

7.7 Updates

The experiments described in this section investigated the performance impact of an up-

date operation on each of the three fragmentation schemes. The operation involved the

Encounter relation. The Encounter relation has 512 tuples, 9 attributes, and 4608 ele-

ments. In the experiment, we executed UPDATE statements on all the date fields in the

relation to 23/11/03 as the number of tuples was varied.

7.7.1 Impact of updating the encounter relation

Operational conditions for figure 7.11

Fragmentation Scheme: Tuple, Attribute, and Element

Relations: R7

Original Query: UPDATE R7; SET Date TO 23/11/03

Criteria: Vary # of tuples; fix # of concurrent users; fix # of attributes at 9; fix user’s

clearance level; fix # of security levels at 16; fix page size at 8.

X axis: # tuples updated.

Y axis: CPU time in seconds.

Figure 7.11: Vary # of tuples; fix # of concurrent users; fix # of attributes at 9; fix user’s clearance level;
fix # of security levels at 16; fix page size at 8.

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 98

Observation and explanation of results

Our observation reveals a clear disparity in CPU times between the fragmentation schemes

for update operations. The CPU time for executing updates in the element-level fragmen-

tation scheme was greater than for the attribute and tuple-level fragmentation schemes (see

figure 7.11). This result shows that the CPU time consumed during update operations is

significantly higher than that consumed during the query processing operations illustrated

in our earlier experiments.

7.8 Analysis of experimental results

This section presents an analysis of how changes in the variables presented in our study

affect the amount of operations performed by the prototype and the network traffic gener-

ated. Overall, the results have shown that the workload generated by each fragmentation

scheme impacts the performance of the prototype.

7.8.1 Impact of varying the inhibitors on network performance

All three fragmentation schemes exhibited linear growth as the number of tuples were

increased for both types of queries (see figures 7.1 and 7.6). However, the results also

show that the attribute-level fragmentation scheme performs better than the tuple and

element-level schemes. The worst performance was demonstrated by the element-level

fragmentation scheme, which exhibited considerable performance degradation. The impact

of network traffic on the performance degradation also appears to be significant; however,

this is true for distributed database systems in general. The response time of the element-

level fragmentation scheme is significantly higher than for the tuple and attribute-level

schemes.

The page size is shown to have a significant impact on performance (see figures 7.2

and 7.7). This observation was very evident during the experiments when a number of “seg-

mentation violation faultsÔ (when a process overflows its stack) occurred as we decreased

the page size below 8. The kernel recognised the violation but could not extend the stack

size up to a configurable limit as is common in many operating systems. The Linux kernel

does not keep track of each user thread’s stack, so it was unable to perform this function.

The implication of this observation for security is that the security domain of the MST

prototype could become compromised by a Trojan Horse if page faults and stack overflows

are a frequent occurrence.

There was evidence of performance degradation in all three schemes as the number

of attributes was increased (see figures 7.3 and 7.8). The attribute-level scheme continues

to exhibit superior performance relative to the tuple and element-level schemes. The worst

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 99

case scenario was demonstrated by the element-level scheme. The comparatively modest

impact shown as the number of attributes was increased left us wondering what would

occur if the number of security levels was varied? Could the impact be more pronounced

than, say, the impact of increasing the numbers of tuples or attributes?

Increasing the number of security levels gave a noticeable growth in response times.

This is illustrated in figures 7.4 and 7.9 for both types of queries. By varying the number

of security levels, we also vary the amount of ‘reconstruction’ required in computing a

response. If one security level were to be used, the amount of reconstruction (vertical or

horizontal) would be a fraction of that required for 16 security levels. The results show that

the performance of the attribute-level scheme is superior to that of the tuple and element-

level schemes; the element-level scheme continues to exhibit significant degradation. The

results also show a more pronounced difference if a case with one security level is compared

with one in which several security levels exist. Overall, it was found that a change in

the number of security levels had a noticeable impact on the performance of all three

fragmentation schemes.

As the number of users in the system increased, so did the overall CPU Load.

The variation in CPU Load between higher level nodes and lower level nodes was clearly

significant (see figures 7.5 and 7.10). The result reveals that nodes maintaining higher level

fragments have an increased workload in most instances because they have the clearance to

process fragments from several more nodes in the network. Contrast this with a Level-1 user

who may want to reference all the distributed fragments but is unable to do so; consequently

the workload of the Level-1 user’s node is diminished because the node performs only a

small fraction of the overall data processing task.

The cost of performing Join queries imposes additional overheads as was shown in

the results from all previous ‘Join’ experiments, resulting in further performance degra-

dation. We attribute the variations in response times between the three schemes to the

overhead cost of executing the recovery algorithm and the network overhead. The element-

level fragmentation scheme creates more fragments which must be combined to provide a

response; this operation of combining fragments, especially for the element-level scheme,

increases the network traffic significantly.

7.8.2 Impact of varying the inhibitors on front-end processing

As we increased the number of attributes in all three fragmentation schemes, the response

times increased as a function of the number of attributes (see figures 7.3 and 7.8). Varying

the number of attributes is implicitly the same as varying the size of the tuples; conse-

quently, as the number of attribute fragments increase, so does the size of the records

being retrieved in each fragment. There is a performance penalty inherent in processing

large records. Furthermore, additional processing and network cost is also incurred through

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 100

connection requests that must now be sent to more disjoint vertical fragments distributed

across the network nodes. The results show that the response times of all three fragmenta-

tion schemes exhibited linear growth, increasing as the number of attributes were increased.

The security label of each tuple, attribute, or element is also treated as an attribute in its

own right, and therefore has an impact as we increase the number of attributes. The

element-level scheme, however, continues to exhibit poor performance relative to the tuple

and attribute-level schemes.

The results of varying the number of security levels also shows linear growth (see

figures 7.4 and 7.9). This increase attests to the noticeable performance degradation in all

three schemes, especially in the element-level scheme. Overall, the attribute-level scheme

continues to exhibit superior performance relative to the tuple and element-level schemes.

The overall CPU Load increased significantly as the number of concurrent users in

the system increased (see figures 7.5 and 7.10). However, the fraction of the overall load

borne by higher level nodes was significantly higher than for lower level nodes. Again,

this observation shows that the inherent advantages (i.e. access to more information) that

come with the highest clearance in a security lattice also has its associated performance

penalties. Essentially, what this indicates is that higher level nodes may often examine

more data during query processing than lower level nodes, which are restricted by security

policies from doing so.

7.8.3 Impact of executing an UPDATE operation

The need to coordinate distributed transactions throughout the network imposes a signifi-

cant cost on the performance of all three fragmentation schemes. Although the prototype

uses a variant of the two-phase commit protocol that allows local machines to fail without

forcing a ‘global rollback’, significant performance gains are not evident. The relative per-

formance of the three fragmentation schemes is unchanged in this experiment — with the

element-level fragmentation scheme still exhibiting significant performance degradation.

The Stargres Visual DBA monitoring tool also revealed a significant demand in network

resources as the number of local DBMSs to which data must be distributed increases. This

observation was particularly evident for the element-level fragmentation scheme.

The amount of operations performed by the prototype is largely determined by the

fragmentation scheme. The more fragments and nodes that must be contacted in response

to a query, the higher the processing cost. This cost rises significantly for the element-level

fragmentation scheme and is partly responsible for the high performance degradation that

besets this approach. The implication for this study is that the fragmentation scheme that

processes the most amount of fragments is burdened as the various disjoint fragments are

assembled in response to a user’s query.

CHAPTER 7. PERFORMANCE STUDY OF FRAGMENTATION SCHEMES 101

7.9 Summary

Through a number of experiments, this chapter compared the performance of all three

fragmentation schemes of the MST prototype. We investigated the performances by varying

the numbers of tuples, attributes, security levels, user’s clearance level, and page size using

the Select-All and Join queries. All three fragmentation schemes exhibited linear growth as

the numbers of each variable were increased. However, the attribute-level scheme performed

better than the tuple and element-level schemes. The element level scheme exhibited the

worst case of performance degradation due to the numerous Union and Join operations

required to reconstruct its response relations. The attribute-level scheme exhibited the best

performance for both types of queries. The impact of varying the number of attributes and

the number of security levels was not as significant as the impact of varying the number of

tuples. The overhead imposed by network traffic continues to have a significant impact on

the response times; this impact increases with the number of nodes that must be contacted

in response to a user’s query. The processing cost is directly affected by the fragmentation

scheme; the scheme with the greatest number of fragments to process imposes a higher

load on the system. In addition, the type of query processing — be it a Join or a Union

— makes the impact on the front-end more pronounced.

The processing cost imposed by Join query operations had a significant impact on

system performance, resulting in an increased response time for all three schemes. The

increased response times compared unfavourably to the Select-All query operations. The

overall CPU Load also increased significantly as the number of concurrent users increased.

The cost of performing updates, although significantly higher than that for query

processing, did not contradict the growth pattern observed for all three fragmentation

schemes. The observed increase in processing activity during updates, particularly for the

element-level fragmentation scheme, amplified the performance degradation of the element-

level scheme to a level that may be unacceptably high for most database processing envi-

ronments.

In chapter 8, we present some conclusions from the adaptation effort of the Stargres

DBMS and the performance investigations presented in this chapter. We also suggest a

few areas that are in need of further work to enhance the MST prototype.

Chapter 8

Conclusions and Further Research

The development cost and complexity of MLS/DBMS software is cited by most vendors

as a major factor in their decision to cease supporting these software systems. Some

researchers also argue that the era of MLS/DBMS research and development has come

to an end, but only a few contend that the security concerns that instigated the early

research efforts have ceased to exist. In the presence of these concerns, it is important that

we continue to consider less complex and more cost effective alternatives to implementing

multilevel security in DBMSs. This thesis proposed one alternative approach that augments

an existing COTS DDBMS product with multilevel security, and that has been prototyped

in a limited adaptation effort.

In adapting the COTS DDBMS to provide multilevel security at the tuple, attribute,

and element-level fragmentation schemes, we encountered several research issues that had

a direct or indirect impact on the performance of each fragmentation scheme. In our

approach, we targeted and adapted specific modules in the COTS DDBMS, specifically

those modules in the query processing pipeline that are responsible for transforming and/or

routing an SQL query. The following section summarises our contributions, draws some

conclusions from our work, and discusses the effort involved and issues raised in adapting a

COTS DBMS to MLS/DBMS. Section 8.2 presents a brief MLS analysis of our prototype.

Section 8.3 points to areas requiring further research.

8.1 Contributions and conclusions

The major contributions of our work are related to the adaptation of the Stargres system,

and to the performance experiments that were instrumented using the system. The per-

formance experiments revealed information about the impact of different variables on the

performance of MLS/DBMSs implemented under three fragmentation schemes. It adds to

the work of Thuraisingham and Kamon [77], described in chapter 3, in the sense that the

impact of more variables was placed under observation, and at different levels of granularity.

102

CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 103

8.1.1 Summary of contributions

Collectively, the contributions of this thesis demonstrate the feasibility of adapting a COTS

DDBMS product to provide multilevel security. We also illuminated performance argu-

ments that must be considered by organisations that would wish to embark on a similar

adaptation effort. A summary of the main contributions of this thesis is as follows:

• Our proposed approach contends that the query processing techniques developed for

transforming global queries into query fragments in distributed databases can also be

used to efficiently implement multilevel security. To this end, we augmented a COTS

DDBMS code with multilevel logic such that the distribution of relation fragments and

sub-queries to relevant nodes is determined on the basis of security level only. This

ensures that sub-queries en-route to unauthorised nodes are intercepted and dropped

by the Distributed server.

• We developed a prototype that utilises the query decomposition and recovery feature

of distributed databases to recover relation fragments distributed across several nodes

in a network. We also show that the same techniques used for adapting the Stargres

COTS product, in which critical modules were augmented with MLS code, can also

be utilised by subscribers to MLS policy who no longer enjoy direct vendor support.

• We investigated the performance of the three fragmentation schemes supported by

the MST prototype to determine the impact of varying properties such as the number

of tuples, number of attributes, number of security levels, number of nodes, user

clearance, and page size on the front-end and the network for a Select-All and Join

query. A full analysis of experimental data was given in chapter 7; however, a summary

of the main findings from the performance study is as follows:

– All three fragmentation schemes exhibited linear growth as the number of tuples

and attributes were increased for the Select-All and Join queries; however, the

rate of performance degradation was more evident in the element-level fragmen-

tation scheme. The performance of the attribute-level fragmentation scheme was

comparatively superior to the tuple and element-level schemes (see sections 7.5.1

and 7.5.3).

– Performance is affected by the page size in all three fragmentation schemes; it

deteriorates as the page size decreases due to increased paging activity (see sec-

tion 7.5.2).

– A variation in the number of security levels affects the performance of all three

fragmentation schemes. As the number of security levels increases, so does the

amount of reconstruction needed to generate a response set, which in turn in-

creases performance degradation. The degradation in performance is linear with

CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 104

respect to the number of security levels. Its effect is more evident in the element-

level fragmentation scheme (see section 7.5.4).

– The number of concurrent users in the system also directly impacts performance.

As the number of users increases, so does the performance degradation. The degra-

dation is more pronounced at the element-level of granularity if all the concurrent

users are logged-in at System-high, because there are more fragments being pro-

cessed. This contrasts with a scenario where all the concurrent users are logged-in

at System-low and can only access a fraction of the overall number of fragments

available (see section 7.5.5).

8.1.2 Conclusions

Our approach provides organisations with a strategy for adapting their existing COTS

DBMSs to provide multilevel security. An MLS/DBMS can be deployed without the pro-

hibitive cost of investing in custom designed MLS/DBMSs. The main finding described

in the previous section will also provide these organisations with sufficient information to

determine if a particular type of system fits their requirements. There are several possible

system types that can be created as a result of the information provided by the study.

For example, an organisation could choose to implement the element-level fragmentation

scheme but with limits placed upon the number of security levels. We draw the following

conclusions about the effort and the performance experiments that were conducted.

• The performance variations between the three fragmentation schemes translates into

large cost differences. Based on the results of the performance experiments, the

attribute-level fragmentation scheme provides a better implementation option, that

is, if the main indicator of a system’s suitability is its response time.

• There is a significant network overhead, increasing as the number of fragments be-

ing processed increases. This is particularly true for the element-level fragmentation

scheme. An organisation’s network architecture and configuration should be a factor

in deciding which scheme to implement.

• Adapting an existing COTS DBMS, although a non-trivial task, can be accomplished

with modest resources and within a reasonable time. However the complexity of

the task and the possibility of success or failure is for the most part determined

by the internal structure of the target software. Overall, the AUF facility and the

Distributed server modules that were adapted, consisted of more than 57 functions

with approximately 4,860 lines of code in total. It should be recognised that not all

COTS DBMS products will be suitable candidates for the kind of adaptation effort

proposed in this thesis.

CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 105

• The COTS DBMS products individually do not provide high assurance solutions, and

the successful integration and operation of the constituent components was highly chal-

lenging. We encountered the following issues during the adaptation and configuration

effort:

– The identification of a suitable and stable open source DDBMS was not as ef-

fortless as we had anticipated. Many of the open source DBMS products that

are currently available do not possess a distributed feature set; distribution was

a necessary requirement in our design. Although Mnesia and Mariposa (see sec-

tion 5.2) were highly documented systems, Mnesia did not support fragmentation

— a key requirement in our target system; for Mariposa, the issue of objects mi-

grating to other nodes presented a security dilemma; controlling the movement of

objects was necessary to ensure security. After identifying Stargres as a suitable

target for adaptation, the next challenge was to successfully disentangle the code

to identify the modules that could be modified. Due to the size of the DDBMS,

it was impractical to undertake this task manually, and hence a SWAG reverse

engineering toolkit (see section 5.2) was utilised to identify the modules and their

interdependencies.

– The configuration of the network was accomplished using the LinuxConf utility;

this was for the most part, rather straightforward. However, by default, the

resolution of Internet Protocol (IP) addresses and host names was managed by a

Domain Name Server (DNS) outside of our experimental cluster. Dropping this

role and assigning it to the Distributed server node required a re-configuration

of the entire subnet such that 1) the Distributed server is not also acting as the

Domain Name Server for any node outside the cluster, and 2) nodes in the cluster

cannot contact a DNS outside the cluster to resolve host names. Our strategy

was to separate the cluster traffic from the pre-existing network traffic by routing

them through separate switches, thus providing our cluster with its own dedicated

switch. This part of the task was easily accomplished. A problem emerged because

of a requirement in the Linux DNS configuration that the hostnames and IP

addresses be listed in the host files of a primary and secondary DNS. Although

the traffic was separated, a node in the cluster that is unable to contact the

Distributed server node within a specific time frame will seek resolution at a

secondary DNS outside of the cluster, and, if that fails, it will default to other

nodes further up the network tree. This situation was an obvious security flaw

that required the editing of a file located at the /etc/host directory of each node

in the cluster.

– A significant part of the Stargres DBMS source code is uncommented, and, in

some cases, references to external files were not explicit. This introduced signifi-

CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 106

cant compilation problems during the adaptation effort, resulting in delays. The

most significant of the problems relates to the cascading nature of logic errors to

other modules after a function has been altered. For example, when the Register

node command was modified to require a security label entry, it generated several

referential errors and memory consistency errors in the RAM and CDM modules

of the Distributed server. This remains one of the major challenges involved in

the adaptation of a COTS DBMS software, or any other large software system for

that matter.

8.2 Security analysis of MST

The design of our proposed model (see chapter 4) was influenced largely by our thesis –

the adaptation of a COTS distributed DBMS for MLS. This resulted in a tradeoff between

security (covert channels) and the practicality of implementation. The complexity and size

of modern DBMSs also means that it is impractical for an entire DBMS system to be subject

to an exhaustive security analysis. Consequently, we only engaged in a limited MLS analysis

of the prototype’s trusted component, i.e., the Distributed server – recognising that covert

channels can never be totally eliminated in many practical high assurance systems. All the

other components of the prototype are untrusted (i.e., they are not exempt from mandatory

access control). The Distributed server mediates all accesses made by subjects to objects

using a set of mechanisms and modules that control access to objects, assign security levels,

maintain subject and object attributes, and perform logging functions. Compliance with

MLS policy, ensuring that information flows within the MST system does not lead to a

violation of the BLP’s two security properties, is considered in the context of four scenarios.

These scenarios include the Insert, Retrieve, Update, and Delete operations. For each of

these scenarios, we identify possible threats, their sources, and their impact.

8.2.1 Processing Scenarios

The following scenarios are typical of the kinds of operations that are requested of the

MST prototype by users. An analysis of the information flows during these operations

is necessary to determine the degree to which the prototype complies with MLS policy,

particularly the BLP properties.

• Insert operations. Users may only insert tuples if they are logged-in at System-low.

System-high users cannot insert tuples unless their security level is downgraded to

System-low.

• Retrieve operations. Users can only retrieve data classified at or below their security

levels. A user logged-in at System-low cannot view data classified at System-high.

CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 107

• Update operations. Users may only update tuples at their security levels only.

Upwards information flow is permitted.

• Delete operations. Users may only delete tuples if they are logged-in at System-

low. System-high users must downgrade their security levels to System-low in order

to delete a tuple.

8.2.2 Threats and their sources

Threats to the security of the MST prototype can be in different forms. We will only

consider threats arising from a denial of service attack, the insertion of a Trojan Horse in a

data communication device, and the presence of covert channels in the Distributed server.

These threats can result in sensitive data being made unavailable to authorised users, the

disclosure of sensitive information, or the illegal modification of data. The threats can also

occur intentionally or accidentally, but whatever the cause they are all damaging if they

are realised.

1. Denial of service attack. The database could be monopolised in such a way that

legitimate users cannot access complete records. For example, during insertion opera-

tions, a user logged-in at Level-1 could launch this type of attack by inserting a place

holder field in a record and assigning it a Level-16 classification, thereby preventing

all users (except Level-16 users) from getting complete answers to their queries (see

3.4.4).

2. Communication attack. The Distributed server has the special privilege of han-

dling communication between all the nodes in the cluster. This privilege makes it an

ideal target for attack. The communication link could be tampered with by inserting

a Trojan Horse at the switch designed to intercept and perhaps modify data commu-

nications between the nodes in the cluster. This threat is very much implementation-

dependent and any further analysis would be highly speculative. However, it is clear

that, wherever possible, the LAN devices and communication links should be designed

to minimise the threats.

3. Trojan Horse attack. Despite the mandatory access control mechanism of the Dis-

tributed server, it is still possible for a Trojan Horse running at the Distributed server

to covertly leak information. The MST prototype, like all multilevel systems, requires

information flow from System-low to System-high. Furthermore, reliability and atom-

icity1 of transactions are also integral components of high-assurance computing. In a

COTS DBMS, a user/process would wish to receive an acknowledgement of a success-

ful update. Without acknowledgements, necessary data may be written over, or may
1All or nothing without the appearance of interruptions.

CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 108

be lost during a crash. In a non-secure DBMS like the Stargres, there is no problem

with acknowledgements; however, in a secure DBMS like MST, acknowledgements can

allow a covert channel to exist between System-low and System-high. In the following,

we show how a Trojan Horse can exploit the Distributed server and cause the release

of sensitive information.

(a) A Trojan Horse running at the Distributed server could continuously monitor

inbound/outbound traffic at the NSV module of the Distributed server, noting

the type and classification label of each request, and transmitting this information

to a second Trojan Horse at a System-low node which could then store the data

for later use. Recall that the NSV module is aware of the address of all the nodes

in the cluster and will only contact them if authorised to do so by the Distributed

server.

(b) The contents of the CDB, specifically the classification of data objects and the

clearance of users, which unlike user passwords are unencrypted, could be at-

tacked by two cooperating Trojan Horses. A legal query could be launched by

the Trojan Horse running at the Distributed server against a specific CDB table

to retrieve its entries; this could then be written to a System-low node using the

same technique described in (a) above. This vulnerability, as we stated earlier, is

a consequence of the tradeoffs that had to be made in building the MST prototype

from several COTS components. Furthermore, our design assumed that, because

the Distributed server is trusted, additional security measures were perhaps un-

necessary to protect it from compromise. The basis of this assumption is that the

Distributed server will not fall victim to a Trojan Horse attack; however, this is

highly speculative. Further security measures could be employed to protect the

contents of the CDB from such an attack, but the performance penalty of applying

these measures must also be considered.

(c) A user at System-low can infer high-level information (Allen and Reuter’s salary)

by formulating a query such as: If (Allen’s salary > Reuter’s salary) return

1, else return 0. This query will modulate its output based on the value of

System-high data.

8.2.3 Impact of security threats

Next, we consider the impact of the threats identified in the previous section. If threat

#1 is successful, all (except Level-16 users) will be denied access to information to which

they are authorised, leading to a significant degradation in quality of service. Undoing the

impact of this damage will depend to a large extent on the number of data items that

are affected and that therefore must be re-classified. Should threat #2 become successful,

CHAPTER 8. CONCLUSIONS AND FURTHER RESEARCH 109

adherence to the BLP’s security policies will be gravely compromised as the Trojan Horse

could modify the security labels of fragments, the clearance of a user making a request, or

even the destination of a query or query response.

8.3 Further research and future issues

The MST prototype could be further enhanced to improve its efficiency and performance.

This section suggests two ways in which this might be accomplished, and points to two issues

which, although peculiar to distributed databases in general, have a particular implication

on our architecture and require further research. These issues include 1) the necessity

for novel query optimisation techniques to improve the performance of the prototype, and

2) the maintenance of security label information. Further work on enhancements to the

prototype could therefore proceed in these directions.

• A useful enhancement to the MST prototype would be the development of query opti-

misation techniques that consider the additional complexity inherent in MLS/DBMS

systems. This is of particular importance as the performance of the fragmentation

schemes, especially the element-level scheme, is in need of substantial improvement.

Innovative approaches to query optimisation are essential if the prototype is to achieve

acceptable performance and efficiency. The optimisation must take into account the

extra communication costs of moving data from site to site, as this is considerably

more complex in a non-replicated distributed DBMS network. Replicated and cen-

tralised DBMSs can exploit the advantages of locality of reference to improve the

speed of processing a request. The strength offered by relational expressions is at a

sufficiently high level to make query optimisation feasible. This contrasts with non-

relational systems where user requests are low level and optimisation is done manually

by the user. Semantic query optimisation techniques, that specify constraints on the

database schema, used in combination with other optimisation techniques, could be

exploited.

• In the current architecture, security classifications are stored alongside the data items,

thus requiring additional effort to suppress them in the response relation. This solu-

tion is sub-optimal and further work is required to 1) determine how labels could be

stored separately from data, and 2) decide how security labels can be associated with

their corresponding data without disclosure. The separate storage of classification in-

formation could introduce an additional performance overhead. In addition, the table

maintaining the security label information could become the target of attacks.

Glossary

The purpose of this glossary is to explicitly define some of the terms that occur most fre-

quently in this thesis. It is not a comprehensive list of information security terminology.

The definitions were taken mainly from Information security: an integrated collection of es-

says [2], Computer security basics [72], Computer security [38], An introduction to database

systems [24], and Stargres release 3.2 [55, 56].

*-property A Bell-LaPadula security model rule allowing a subject write access to

an object only if the security level of the subject is dominated by the

security level of the object. Also known as the no write down (NWD)

rule.

A1 The Highest level of trust described in the Orange Book.

API Application program interface. System access point or library function

that has a well-defined syntax and is accessible from application pro-

grams or user code to provide well-defined functionality.

Arity The number of attributes in a relation(s).

Assurance A measure of confidence that a system’s security features have been

implemented and work properly. Assurance is one of the primary issues

addressed by the Orange Book.

Attribute Each column in the table contains the values for a specific attribute of

the relation. A column name is known as an attribute.

Audit To record independently and later examine system activity (e.g., logins

and logouts, file accesses, security violations).

AUM Administrative utilities module. A module of the AUF that, in addi-

tion to performing syntax checks, provides a number of utilities for car-

rying out administrative tasks such as registering nodes, creating user

accounts, creating or dropping databases and tables, schema definition,

shutting down the server, and so forth.

110

Authentication The process of proving that a subject (e.g., a user or a system) is what

it claims to be. It is a measure used to verify the eligibility of a subject

and the ability of that subject to access certain information.

Base Relation A named relation in permanent storage that is not a derived relation

(i.e., base relations are autonomous). In practice, base relations are

those relations that have been judged to be sufficiently important (for

the database at hand) that the designer has decided it is worth giving

them a name and making them a direct part of the database – as opposed

to other relations that are more ephemeral in nature, such as the result

of a query [24].

BLP Bell-LaPadula model. The computer security policy model on which the

Orange Book requirements are based. It is a formal description of the

allowable paths of information flow in a secure system. The goal of the

model is to identify allowable communication where it is important to

maintain secrecy.

Cardinality The number of tuples in a relation.

CCM Concurrency control manager. A module of the TMF; it is responsible for

making sure that transactions are executed separately and independently.

It does so by acquiring locks on appropriate pieces of data from the

locking table that is stored in memory.

CDB Coordinator database. The database that maintains the catalogs that

the Distributed server uses to keep track of objects within the cluster.

CDM Coordinator database module. A Distributed server module that is re-

sponsible for managing the CDB which maintains the catalogs that the

Distributed server uses to keep track of all the databases in the cluster.

Classification The hierarchical portion of a sensitivity label (the non-hierarchical por-

tion is called the “category setÔ or the “compartmentsÔ). A classification

is a single level in a stratified set of levels. For example, in a military

environment, each of the levels UNCLASSIFIED, CONFIDENTIAL, SE-

CRET, and TOP SECRET is more trusted than the level beneath it.

Clearance A representation of the sensitivity level (the classification and the cate-

gories) associated with a user in a system supporting mandatory access

controls. A user with a particular clearance can typically access only

information with a sensitivity label equal to or lower than the user’s

clearance.

111

Confidentiality The assurance that information is not disclosed to unauthorised entities

or processes.

Covert Channel A communications channel not normally meant for information flow

but that could nevertheless be used by a process to signal information

in a way that violates a system’s security policy.

COTS Commercial off-the-shelf product. A combination of hardware, firmware,

and software that can be purchased commercially.

CQIM Client/Query interface module. A module of the AUF; it provides the

interface that facilitates the interaction between users and the DBMS. It

also imposes restrictions on the types of commands that can be executed

by non-administrative users.

DAC Discretionary Access Control. A means of restricting access to objects

based on the identity of users and/or groups to which they belong. DAC

is the most common type of access control mechanism found in trusted

systems.

Database An organised collection of logically related records or files.

DBA Database Administrator. The technical person responsible for imple-

menting and administering a database management system.

DBMS Database Management System. The collection of hardware and software

that organises, manages, and provides access to a database.

DDBS Distributed Database. A collection of multiple, logically interrelated

databases distributed over a computer network.

DDBMS Distributed Database Management System. The software system that

permits the management of the DDBS and makes the distribution trans-

parent to the users.

DDL Data Definition Language. A language used by database administrators

to create, store, and manage data in a database environment.

DML Data Manipulation Language. A language that allows users to inter-

rogate and access a computerised database system using English-like

statements.

DMP Data Manipulation Language Precompiler. A Distributed server module

that is responsible for compiling global DML statements.

112

Domain A set of data values from which specific attributes of specific relations

draw their actual values, e.g., the domain of the age attribute might be

integers from 0 to 120.

DOPM Distributed query optimiser module. A Distributed server module that

is responsible for generating global query execution plans.

DQEM Distributed query execution engine. A Distributed server module that

provides the functions used for creating and updating relation fragments,

deleting databases, and transmitting sub-queries to local sites for pro-

cessing.

DQM Distributed query handler. A Distributed server module that is respon-

sible for performing syntax and verification checks on queries.

Element An indivisible item of data.

Ethernet A local area computer network designed on the principle that one com-

puter wishing to communicate with another, broadcasts onto the net-

work. Acknowledgement establishes the link.

Firewall The generic name for any security system protecting the boundary of an

internal computer network. A bastion host is a computer system with

strong security as it is exposed to the outside world.

GDC Global DDL compiler. A Distributed server module that is responsible

for compiling global DDL statements.

Instance A set of tuples in the database for a specific relation at a specific time.

Integrity A security principle that keeps information from being modified or oth-

erwise corrupted either maliciously or accidentally. Integrity protects

against forgery or tampering. Synonymous with accuracy.

Kernelized Kernelized Architecture. A multilevel database is partitioned into single-

level databases, which are then stored separately. In this architecture,

there is a separate DBMS for each security class.

LMM Log manager module. A module of the TMF that is responsible for

logging every operation executed in the database. It does so by storing

the log on disk through the buffer manager. The operations in the log

are stored as DBMS commands. Thus, in the case of a system crash,

executing every command in the log will bring back the database to its

last stable state.

113

Login The process of identifying oneself to, and having one’s identity authen-

ticated by, a computer system.

MAC Mandatory Access Control. Unlike discretionary access control (DAC),

which allows users to specify, at their own discretion, who can and cannot

share their files, mandatory access control puts all such access decisions

under the control of the system.

Metadata A special database, also referred to as a data dictionary, containing de-

scriptions of the elements, (e.g., relations, domains, entities, or relation-

ships) of a database.

MST Multilevel Stargres prototype. Our proposed multilevel secure database

management system.

Multilevel Used to describe data or devices. Multilevel security allows users at

different sensitivity levels to access a system concurrently. The system

permits each user to access only the data that he or she is authorized to

access. A multilevel device is one on which a number of different levels

of data can be processed.

mSQL Mini SQL. Open Source Database distribution.

MySQL Open Source Database distribution.

NSV Network server module. A module of the TMF facility that adds the

network communication element to Stargres. Queries destined for re-

mote nodes are routed to this module by the QRM module. It is also

responsible for opening and closing network connections.

Object From the Orange Book definition: “A passive entity that contains or

receives information. Access to an object potentially implies access to

information it contains. Examples of objects are records, fields, files, and

programs.Ô

OPM Query optimiser module. A module of the QPF; it is responsible for

optimizing queries. It does this by analyzing the processed query to see

if it can take advantage of any optimizations that will allow it to process

the query more quickly. It uses indexes whenever possible and uses the

most restrictive index in order to first eliminate as many rows as possible

as soon as possible.

PC Personal Computer. A moderately priced microcomputer system in-

tended for personal use rather than commercial purposes.

114

Polyinstantiate A technique used by the DBMS to prevent inference. It allows the

DBMS to contain multiple instances of the same data item, each one

having its own classification level. In other words, different tuples with

the same key can exist at different classification levels if for example a

high-classified row already exists and a low-classified user requests the

insertion of a new row having the same key [15].

Primary-Key A unique set of attribute(s) which identify an individual tuple in a rela-

tion.

QPF Query processor facility. A facility that is responsible for parsing and op-

timizing DML statements. It consists of the DMPmodule, the DDL com-

piler (DDC), the query parser (QPM), the query preprocessor (PPM),

the query optimiser (OPM), and the Query execution engine (QEM).

QPM Query parser module. A module of the QPF; it is responsible for parsing

queries.

Query To ask for information. To make a request or interrogate a database for

information.

QR Query Response. The answer(s) returned to a user by the database in

response to the user’s query.

QRM Query router module. A module of the AUF that is responsible for direct-

ing DDL and DML queries to the appropriate pipelines for processing.

QTM Query transformer module. A Distributed server module that is respon-

sible for decomposing global queries against relations into sub-queries

against relation fragments.

RAM Remote access module. A Distributed server module; it uses information

stored about nodes by the CDM module during the registration of nodes,

and the creation of databases, tables, and user accounts to distribute

fragments to relevant nodes.

Reference Monitor From the Orange Book definition: “An access control concept that

refers to an abstract machine that mediates all accesses to objects by

subjectsÔ.

Relation A set of values collected as information about something of interest to the

user. Each relation is represented by a table with a name (the relation

or table name).

115

Response Time The time it takes the computer system to react to a given input, e.g., a

query. It is the interval between an event and the system’s response to

the event.

RPC Remote Procedure Call. A client/server infrastructure that increases the

interoperability, portability, and flexibility of an application by allowing

an application to be distributed over multiple heterogeneous platforms.

It insulates the application developer from the details of the various

operating system and network interfaces.

Schema The definition of a table (i.e., its name and attribute names) is called

the schema.

Secrecy A security principle that keeps information from being disclosed to any-

one not authorized to access it. Synonymous with confidentiality.

Security Freedom from risk or danger. Safety and the assurance of safety.

Security Domain A collection of nodes adhering to a particular security policy. A secu-

rity domain could have both trusted and untrusted nodes.

Security Kernel From the Orange Book definition: “The hardware, firmware, and soft-

ware elements of a Trusted Computing Base that implement the refer-

ence monitor concept. It must mediate all accesses, be protected from

modification, and be verifiable as correct.

Security Level A representation of the sensitivity of information, derived from a sensi-

tivity label (consisting of classification and categories).

Security Model A precise statement of the security rules of a system.

Security Policy From the Orange Book definition: “The set of laws, rules, and practices

that regulate how an organization manages, protects, and distributes

sensitive informationÔ.

Simple security property A Bell-LaPadula security model rule allowing a subject read

access to an object only if the security level of the subject dominates the

security level of the object. Also known as the no read up (NRU) rule.

Snapshot A named derived relation. Like base relations, they are also relation

variables. However, a snapshot is real, not virtual – i.e., it is represented

not only by its definition in terms of other named relations, but also (at

least conceptually) by its own separate data [24].

116

SSN Social Security Number. A unique identifier used by the U.S. government

to identify its citizens. It consists of nine digits, commonly written as

three fields separated by hyphens: AAA-GG-SSSS. The first three-digit

field is called the “area numberÔ. The central, two-digit field is called the

“group numberÔ. The final, four-digit field is called the “serial numberÔ.

SQL Structured Query Language. A database query language that was adopted

as an industry standard in 1986.

StarQL Stargres Query Language. The query language of the Stargres DBMS.

It is an extension of the standard SQL.

Subject From the Orange Book definition: “An active entity, generally in the form

of a person, process, or device that causes information to flow among

objects or changes the system stateÔ.

System high The highest security level supported by a system at a particular time or

in a particular environment.

System low The lowest security level supported by a system at a particular time or

in a particular environment.

TFE Trusted Front-end. A front-end application that has been evaluated for

its adherence to the security policy and whose incorrect or malicious

execution is capable of violating system security policy.

Trap Door A concealed entry-point to software in a computer system that allows

normal system protection to be circumvented.

Trojan Horse An independent program (software) that appears to perform a useful

function while doing something else (usually destructive).

Trust Reliance on the ability of a system to meet its specifications.

TCB Trusted Computing Base. The totality of protection mechanisms within

a computer system - including hardware, firmware and software - the

combination of which is responsible for enforcing a security policy.

TCSEC The Department of Defense Trusted Computer System Evaluation Cri-

teria (or Orange Book). The document that describes the evaluation

criteria used to assess the level of trust that can be placed on a particu-

lar computer system.

TDI The Department of Defense Trusted Database Management System In-

terpretation (or Lavender Book). The document that interprets Orange

Book requirements for database management system products.

117

TMF Transaction management facility. A facility that is responsible for en-

suring that a transaction is logged and executed atomically. It does so

with the aid of the concurrency control manager (CCM), the transaction

manager (TMM), and the log manager (LMM).

TMM Transaction manager module. A module of the TMF; it is responsible

for making sure that a transaction is logged and executed atomically. It

does so through the aid of the log manager and the concurrency control

manager.

TNIU Trusted Network Interface Unit. A trusted mediation device placed be-

tween each system and its network connection for the purpose of permit-

ting communication between machines belonging to the same security

level.

Trusted System A system designed and developed in accordance with Orange Book

criteria and evaluated according to those criteria.

Tuple Each row in the table contains the values for a member of the relation

set. A row is known as a tuple.

Uniprocessor A computer system with only one processor on its system board.

User A person or a process who accesses a computer system.

UFE Untrusted Front-end. A front-end application that has not been evalu-

ated or examined for adherence to the security policy. It may include

incorrect or malicious code that attempts to circumvent the security

mechanisms.

View A named derived relation that results from a relational query. Like

Snapshots and Base relations, they are also relation variables. Views

are also virtual – they are represented within the system solely by their

definitions in terms of other named relations [24].

VPN Virtual Private Network. A secure connection between gateways in two

subnets that are not directly connected. All traffic between the subnets

occurs through the gateways where cryptographic protection is added to

extend the security perimeter.

118

Appendix A

Database Structure

The following relation schema represents the structure of two relations from the Hospital

database. Figure A.1 shows a subset of theDepartment relation, Figure A.2 shows a subset

of the Nurse relation, and a subset of the Patient relation is shown in Figure A.3.

• Department(DN, Dept_Name, Manpower, Dept_Location, Manager)

• Nurse(N_SSN, N_Name, N_DOB, N_DOR, N_Salary, N_Specialty, N_Pager, DN, Manager)

• Patient(P_SSN, P_Name, P_DOB, P_Status, P_Tel., INS_Name, PHY_Name, EC_Name, Patient #)

DN Dept_Name Manpower Dept_Location Manager

D10 Records 43 241 East Annex Cantor
D11 Obstetrics 13 601 Main Building Baker
D12 Laboratory 8 202 Drew Building Ebert
D13 Geriatrics 12 B16 Basement Xavier
D14 Paediatrics 23 512 West Wing Gerald
D16 Ambulance 12 Emmergency Wing Leach
D17 Cathering 9 Kitchen Sachs
D18 Radiology 4 409 Drew Building Kain
D19 Tertiary Care 11 121 South Wing Usher
D21 Orthopaedics 9 714 South Wing Zalkin
D22 Neurology 17 305 Outpatient Wing Beaver
D23 ICU 24 513 West Wing Hagger
D25 Pharmacology 10 216 East Annex Carter
D26 Pathology 7 234 West Wing Marshall
D28 Supplies 6 B23 Basement Richards
D29 Management 4 120 Main Building Patterson

Figure A.1: The Department relation.

119

N_SSN N_Name N_DOB N_DOR N_Salary N_Specialty N_Pager DN Manager

200000 Abbott 110466 170788 23,000 Surgical 224 165 D11 Cantor
200050 Allen 240371 260793 19,000 Gerontology 321 675 D13 Xavier
200100 Ball 090562 250785 20,000 Midwifery 641 876 D11 Cantor
200150 Barclay 210474 230797 17,000 Psychiatry 986 521 D22 Beaver
200200 Chapman 090171 120795 16,900 Paediatrics 571 443 D14 Gerald
200250 Cheadle 230575 250798 16,600 Surgical 876 453 D22 Beaver
200300 Darby 250961 160785 21,000 Perinatal 721 887 D11 Baker
200350 Dorman 040668 220791 20,000 Child 443 654 D23 Hagger
200400 Evans 231269 280795 19,000 Gerontology 551 232 D13 Xavier
200450 Earl 290955 160778 26,000 Adult 896 467 D21 Zalkin
200500 Flutter 160461 150783 22,800 Perinatal 756 498 D14 Gerald
200550 Forster 201170 120793 21,000 Surgical 692 441 D13 Xavier
200600 Glover 041074 270798 23,500 Adult 521 886 D14 Gerald
200650 Gray 160875 180799 21,800 Perinatal 821 490 D11 Baker
200700 Hatcher 271065 210788 24,600 Psychiatry 941 724 D22 Beaver
200750 Heaton 230859 240783 30,580 Gerontology 578 452 D13 Xavier
200800 Hurst 061076 200799 21,341 Midwifery 790 442 D11 Baker
200850 Jenkins 020568 120793 23,670 Paediatrics 674 251 D14 Gerald
200900 Jervis 140973 190796 24,656 Geriatrics 322 890 D19 Usher
200950 Jessop 281072 110795 23,510 Surgical 983 221 D23 Hagger
201000 Kemp 131276 280798 24,970 Adult 452 775 D14 Gerald
201050 Knight 210677 220700 20,360 Perinatal 674 218 D11 Baker
201100 Lucas 260758 260784 32,000 Surgical 540 328 D13 Xavier
201150 Ludgate 080568 220790 24,800 Child 674 543 D23 Hagger
201200 Malcolm 061071 140793 21,723 Gerontology 353 769 D13 Xavier
201250 Mason 130173 260796 22,920 Adult 253 762 D21 Zalkin
201300 Neaves 160857 300779 33,200 Midwifery 663 741 D11 Baker
201350 Newman 041271 170794 22,700 Psychiatry 287 441 D22 Beaver
201400 Oscar 060475 220798 21,200 Perinatal 531 442 D11 Baker
201450 Oudes 230975 260798 22,100 Paediatrics 965 432 D14 Gerald
201500 Peace 221073 120795 22,000 Surgical 471 663 D23 Hagger
201550 Petrie 070564 230787 31,000 Geriatrics 421 875 D19 Usher
201600 Reuter 200771 180793 24,350 Adult 854 331 D14 Gerald
201650 Russell 120973 250795 23,800 Child 247 890 D23 Hagger
201700 Scales 191270 140793 23,900 Midwifery 421 776 D11 Baker
201750 Speller 130877 120798 22,000 Surgical 993 567 D23 Hagger
201800 Staples 220269 170793 21,788 Psychiatry 651 774 D22 Beaver
201850 Swanton 010775 120797 18,922 Child 531 442 D23 Hagger
201900 Tam 200181 220701 16,300 Child 661 476 D23 Hagger
201950 Tardif 220768 140790 27,600 Geriatrics 552 659 D19 Usher
202000 Taylor 100377 210799 21,677 Gerontology 542 774 D13 Xavier
202050 Turpin 241070 260792 24,344 Adult 471 922 D14 Gerald
202100 Vallis 140674 270796 21,300 Psychiatry 367 884 D22 Beaver
202150 Veitch 110674 120796 22,100 Perinatal 422 7791 D11 Baker
202200 Vernon 181072 160794 23,838 Paediatrics 472 1562 D14 Gerald
202250 Viner 080665 120787 30,700 Perinatal 674 228 D11 Baker
202300 Walker 110972 230795 23,650 Surgical 571 224 D23 Hagger
202350 Weaver 240363 170785 27,500 Gerontology 641 833 D13 Xavier
202400 Watson 110577 280799 22,150 Geriatrics 431 688 D19 Usher
202450 Waugh 310873 200795 22,200 Child 598 331 D23 Hagger

Figure A.2: The Nurse relation.

120

P_SSN P_Name P_DOB P_Status P_Tel. INS_Name PHY_Name EC_Name Patient #

100000 Aaron 120955 Outpatient 453 6645 BlueCross Piper Bolwell 124
100050 Baker 240351 Inpatient 324 8030 Geico Stanley Hussey 133
100100 Cantor 210265 Outpatient 463 6211 CareFirst Albert Lewis 212
100150 Davies 090552 Inpatient 393 2222 Humana Farah West 214
100200 Earl 160961 Outpatient 727 3323 Kaiser Duncan Dickson 109
100250 Fagin 271153 Inpatient 832 4357 Cigna Archer Butler 173
100300 Garrod 210464 Inpatient 442 4320 Aetna Wood Lloyd 663
100350 Hall 240360 Outpatient 442 9200 CapitalCare Wolfgang Ford 256
100400 Ian 010755 Inpatient 332 2630 PrimeHealth Brown Fraser 389
100450 James 131066 Inpatient 736 1775 Trigon Higgins Andrews 765
100500 Kain 230848 Outpatient 842 7621 Concordia Vinall Angus 932
100550 Laws 050150 Inpatient 338 2969 Potomac Piper Duncan 512
100600 Martin 120857 Outpatient 232 2232 AlliedHealth Booker Beasley 902
100650 Nash 280363 Inpatient 244 0800 Metropolitan Weaver Davies 767
100700 Oakley 041268 Outpatient 362 6120 Prudential Booth Morris 550
100750 Parker 180464 Inpatient 363 5803 Providence Collins Rider 700
100800 Qassem 291267 Inpatient 291 9341 Humana Conolly Bright 212
100850 Ratner 230253 Outpatient 723 6670 Concordia Fletcher Crane 908
100900 Sachs 020959 Inpatient 635 6563 Potomac Rahman Crompton 113
100950 Taylor 221148 Inpatient 398 5101 Metropolitan Freeman Wilson 141
101000 Usher 180456 Outpatient 724 9702 Trigon Gunn Gates 155
101050 Valdez 170365 Inpatient 582 6360 PrimeHealth Sumter Gardner 673
101100 Walker 111063 Outpatient 889 9745 Kaiser Pierce Hancock 326
101150 Xavier 290860 Inpatient 562 1188 Cigna Johnson Gould 182
101200 Yates 170951 Inpatient 234 1723 BlueCross Huskins Field 258
101250 Zalkin 081260 Outpatient 872 9200 Geico Foster Neville 193
101300 Able 300152 Inpatient 363 8060 Kaiser Keenan Blackwell 284
101350 Beaver 140363 Outpatient 466 4270 Potomac Warren Hughes 337
101400 Ceasar 170956 Inpatient 984 1800 Humana Abbott Harvey 792
101450 Dean 230448 Inpatient 652 9188 Metropolitan Warwick Potter 375
101500 Ebert 140658 Outpatient 547 2355 Concordia Walker Green 161
101550 Feeney 121061 Inpatient 466 8312 Prudential Clark Allen 982
101600 Gerald 160357 Outpatient 383 7451 AlliedHealth Preston Nash 158
101650 Henry 180960 Inpatient 331 7100 BlueCross Lawrence Ince 210
101700 Ingram 030262 Inpatient 328 9449 Humana Wesley Wood 112
101750 Jessup 090964 Outpatient 628 2209 Cigna Weiss Alderton 637
101800 Kerry 130667 Inpatient 237 1788 Geico Clifford Scott 818
101850 Leach 050565 Inpatient 635 5299 Potomac Sutton Cox 166
101900 Meadow 040360 Inpatient 828 4908 Trigon Gupta Gibbons 222
101950 Nelson 131252 Outpatient 955 9600 Concordia Peters Hall 313
102000 Oberst 201161 Inpatient 835 2041 CapitalCare Shepperd Fowler 111
102050 Peters 010858 Outpatient 508 6059 PrimeHealth Schneider Wright 180
102100 Quaye 260554 Inpatient 622 1904 Geico Bruce Roper 397
102150 Reaves 080750 Outpatient 554 8489 Metropolitan Yates Turner 788
102200 Scales 171251 Inpatient 289 9838 BlueCross Mercer Hamilton 285
102250 Temple 031259 Inpatient 829 4458 Kaiser Fulford Drake 135
102300 Ullman 021048 Outpatient 635 7025 Humana Rosenthal Carter 266
102350 Verdi 250961 Inpatient 965 0675 Providence Brendan Sullivan 377
102400 Wells 161163 Inpatient 463 0950 Trigon Rothman Facey 381
102450 Xhing 281258 Outpatient 546 3311 Aetna Griffin Murphy 214

Figure A.3: A subset of the Patient relation.

121

Appendix B

Lattice Routine Algorithm

Require: List of elements of type LABEL

Ensure: List of elements constitute a lattice

LABEL Element[64], SystemHigh, SystemLow, SecurityLabel, Res;

INT IsIndex = 0, MaxElem = 0, ArrayIndex = 0, track = 0, count = 0;

BOOL boolDominate[64][64]= FALSE, ArrayDominate[64] = FALSE, ArrayDominant[64] = FALSE;

while SecurityLabel 6= ‘.’ do

Input SecurityLabel

Element[ArrayIndex] = SecurityLabel; MaxElem++; ArrayIndex++;

end while

for (ArrayIndex = 0; Arrayindex < MaxElem; Arrayindex++) do

boolDominate[ArrayIndex][ArrayIndex] = TRUE;

end for

for (ArrayIndex = 0; ArrayIndex < MaxElem; ArrayIndex++) do

for (IsIndex = 0; IsIndex < MaxElem; IsIndex++) do

Output Does Element[ArrayIndex] Dominates Element[IsIndex]

Input Res;

if (Res = “YesÔ) then

boolDominate[ArrayIndex][IsIndex] = TRUE;

end if

end for

end for

for (ArrayIndex = 0; Arrayindex < MaxElem; ArrayIndex++) do

for (IsIndex = Arrayindex + 1; IsIndex < MaxElem; IsIndex++) do

for (m = 0; m < MaxElem; m++) do

if (boolDominate[ArrayIndex][m] = TRUE and boolDominate[IsIndex][m] = TRUE)

then

122

ArrayDominate[m] = TRUE;

end if

if (boolDominate[m][ArrayIndex] = TRUE and boolDominate[m][IsIndex] = TRUE)

then

ArrayDominant[m] = TRUE;

end if

end for

if (TRUE /∈ ArrayDominate[0..MaxElem] or TRUE /∈ ArrayDominant[0..MaxElem])

then

Failure: This set of labels is not a security lattice; STOP

end if

for (i = 0; i < MaxElem; i++) do

for (j = i + 1; j < MaxElem; j++) do

if (ArrayDominate[i] = TRUE and ArrayDominate[j] = TRUE) then

if (boolDominate[i][j] = TRUE) then

ArrayDominate[j] = FALSE;

else if (boolDominate[j][i] = TRUE) then

ArrayDominate[i] = FALSE;

end if

end if

if (ArrayDominant[i] = TRUE and ArrayDominant[j] = TRUE) then

if (boolDominate[i][j] = TRUE) then

ArrayDominant[i] = FALSE;

else if (boolDominant[j][i] = TRUE) then

ArrayDominant[j] = FALSE;

end if

end if

end for

end for

for (num = 0; num < MaxElem; num++) do

if (ArrayDominate[num] = TRUE) then

count++;

end if

if (ArrayDominant[num] = TRUE) then

track++;

end if

end for

if (count 6= 1 or track 6= 1) then

123

Failure: This set of labels is not a security lattice; STOP

end if

ArrayDominate[0..MaxElem] = FALSE; ArrayDominant[0..MaxElem] = FALSE;

track = 0; count = 0;

end for

end for

Success: This set of labels forms a lattice

124

Bibliography

[1] Multilevel data management security. Technical report, Air Force Studies Board Com-

mittee on Multilevel Data Management Security, Washington, DC, March 1983.

[2] M.D. Abrams, S. Jajodia, and H. Podell, editors. Information Security: An Integrated

Collection of Essays. IEEE Computer Society Press, Los Alamitos, California, 1998.

[3] J.P. Anderson. Computer security technology planning study. Technical Report ESD-

TR-73-51-1, U.S. Air Force Electronic Systems Division, Bedford, Massachusetts, Oc-

tober 1972.

[4] J.P. Anderson. Computer security technology planning study. Technical Report ESD-

TR-73-51-2, U.S. Air Force Electronic Systems Division, Bedford, Massachusetts, Oc-

tober 1972.

[5] ANSI. Database Language SQL. American National Standards Institute, Washington,

DC, x3.135-1992 edition, 1992.

[6] V. Atluri, S. Jajodia, and B. George. Multilevel Secure Transaction Processing. Kluwer

Academic Publishers, Boston, Massachusetts, 1999.

[7] D.E. Bell and L.J. LaPadula. Secure computer systems: Mathematical foundations

and model. Technical Report ESD-TR-73-278-1, MITRE Corporation, Bedford, Mas-

sachusetts, November 1973.

[8] D.E. Bell and L.J. LaPadula. Secure computer systems: Mathematical foundations

and model. Technical Report ESD-TR-73-278-2, MITRE Corporation, Bedford, Mas-

sachusetts, November 1973.

[9] P.A. Bernstein, V. Hadzilacos, N. Goodman, and V. Radzilacos. Concurrency Control

and Recovery in Database Systems. Addison-Wesley, Reading, Massachusetts, 1987.

[10] K.J Biba. Integrity considerations for secure computer systems. Technical Report

ESD-TR-76-372, U.S. Air Force Electronic Systems Division, Bedford, Massachusetts,

April 1977.

125

[11] H. Bidgoli and R. Azarmsa. Computer Security: New managerial concern for the 1980s

and beyond. Journal of Systems Management, 2:21–27, November 1989.

[12] D. Bitton, D.J. DeWitt, and C. Turbyfill. Benchmarking database systems: A system-

atic approach. In Proceedings, 9th International Conference on Very Large Databases,

pages 8–19, Florence, Italy, October 1983. Morgan-Kaufmann.

[13] D.F.C. Brewer and M.J. Nash. The Chinese Wall security policy. In Proceedings, IEEE

Symposium on Security and Privacy, pages 206–214, Oakland, California, May 1989.

IEEE Computer Society Press.

[14] U. Bussolati, M.G. Fugini, and G. Martella. A conceptual framework for security

systems: The action-entity model. In Proceedings, 9th IFIP World Conference, pages

127–132, Paris, France, September 1983. IFIP Press.

[15] S. Castano, M. Fugini, G. Martella, and P. Samarati. Database Security. Addison-

Wesley, Essex, England, 1994.

[16] S. Ceri, B. Navathe, and G. Wiederhold. Distribution design of logical database

schemas. IEEE Transactions on Software Engineering, 9(4):487–504, November 1983.

[17] S. Ceri, M. Negri, and G. Pelagatti. Horizontal data partitioning in database design. In

Proceedings, ACM SIGMOD International Conference on Management of Data, pages

128–136, Orlando, Florida, June 1982. ACM Press.

[18] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. McGraw-Hill,

New York, New York, 1984.

[19] S.K. Chang and W.H. Cheng. A methodology for structured database decomposition.

IEEE Transactions on Software Engineering, 6(2):205–218, March 1980.

[20] F. Chen and R. Sandhu. The semantics and expressive power of the MLR data model.

In Proceedings, IEEE Symposium on Security and Privacy, pages 128–142, Oakland,

California, April 1995. IEEE Computer Society Press.

[21] D.D. Clark and D.R. Wilson. A comparison of commercial and military computer

security policies. In Proceedings, IEEE Symposium on Security and Privacy, pages

184–194, Oakland, California, April 1987. IEEE Computer Society Press.

[22] O. Costich, J. McLean, and J. McDermott. Confidentiality in a replicated architecture

trusted database system: A formal model. In Proceedings of the Computer Security

Foundations Workshop VII, pages 60–65, Franconia, New Hampshire, June 1994. IEEE

Computer Society Press.

[23] C. Dalton and T.H. Choo. An operating system approach to securing e-services. Com-

munications of the ACM, 44(2):58–64, February 2001.

126

[24] C.J. Date. An Introduction to Database Systems. Addison-Wesley, Reading, Mas-

sachussetts, 8th edition, 2003.

[25] D.E. Denning. A lattice model of secure information flow. Communications of the

ACM, 19(5):236–243, May 1976.

[26] D.E. Denning. Commutative filters for reducing inference threats in multilevel database

systems. In Proceedings, IEEE Symposium on Security and Privacy, pages 134–146,

Oakland, California, April 1985. IEEE Computer Society Press.

[27] D.E. Denning, S.G. Akl, M. Heckman, T.F. Lunt, M. Morgenstern, P.G. Neumann, and

R.R. Schell. Views for multilevel database security. IEEE Transactions on Software

Engineering, 13(2):129–140, February 1987.

[28] D.E. Denning, T.F. Lunt, R.R. Schell, W. Shockley, and M. Heckman. The SeaView

security model. In Proceedings, IEEE Symposium on Security and Privacy, pages

218–233, Oakland, California, April 1988. IEEE Computer Society Press.

[29] D.J. DeWitt, S. Ghandeharizadeh, and D. Schneider. A performance analysis of the

Gamma database machine. SIGMOD Record (ACM Special Interest Group on Man-

agement of Data), 17(3):350–360, September 1988.

[30] DoD. Department of defense privacy program. Directive 5400.11, U.S. Department of

Defense, Washington, DC, June 1982.

[31] DoD. Security requirements for automated information systems (AISs). Directive

5200.28, U.S. Department of Defense, Washington, DC, March 1988.

[32] D. Downs and G.J. Popek. A kernel design for a secure database management system.

In Proceedings, 3rd International Conference on Very Large Databases, pages 507–514,

Tokyo, Japan, October 1977. IEEE Computer Society Press.

[33] P. Dwyer, G. Jelatis, and B.M. Thuraisingham. Multilevel security in database man-

agement systems. Computers and Security, 6(3):252–260, June 1987.

[34] C. Dye. Oracle Distributed Systems. O’Reilly & Associates Inc., Sebastopol, California,

1999.

[35] H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete Book.

Prentice Hall, Upper Saddle River, New Jersey, 2002.

[36] D. Garlan and M. Shaw. An introduction to software architecture. In V. Ambriola

and G. Tortora, editors, Advances in Software Engineering and Knowledge Engineer-

ing, volume 2, pages 1–39, River Edge, New Jersey, 1992. World Scientific Publishing

Company.

127

[37] M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold, New York,

1988.

[38] D. Gollmann. Computer Security. John Wiley & Sons, Chichester, England, 1999.

[39] R. Graubart. The integrity-lock approach to secure database management. In Pro-

ceedings, IEEE Symposium on Security and Privacy, pages 62–74, Oakland, California,

April 1984. IEEE Computer Society Press.

[40] J. Gray, editor. The Benchmark Handbook for Database and Transaction Systems.

Morgan-Kaufmann, San Francisco, California, 2nd edition, 1993.

[41] J. Gray and A. Reuter. Transaction Processing: Concepts and techniques. Morgan-

Kaufmann, San Francisco, California, 1993.

[42] J.T. Haigh, R.C. O’Brien, and D.J. Thomasen. The LDV secure relational DBMS

model. In S. Jajodia and C.E. Landwehr, editors, Database Security IV: Status and

prospects, pages 265–280. Elsevier Science, North-Holland, January 1991.

[43] Honeywell. Secure distributed data views — security policy extensions. Technical Re-

port A002, Honeywell Systems Research Center and Corporate Systems Development

Division, St. Anthony, Minnesota, April 1987.

[44] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for experi-

mental design, measurement, simulation, and modeling. John Wiley & Sons, Hoboken,

New Jersey, 1991.

[45] S. Jajodia and R. Mukkamala. Effects of SeaView decomposition of multilevel relations

on database performance. In S. Jajodia and C.E. Landwehr, editors, Database Security

V: Status and prospects, pages 203–225. Elsevier Science, North-Holland, January 1992.

[46] S. Jajodia and R. Sandhu. Polyinstantiation integrity in multilevel relations. In Pro-

ceedings, IEEE Symposium on Security and Privacy, pages 104–115, Oakland, Califor-

nia, May 1990. IEEE Computer Society Press.

[47] S. Jajodia and R. Sandhu. A novel decomposition of multilevel relations into single-

level relations. In Proceedings, IEEE Symposium on Security and Privacy, pages 300–

313, Oakland, California, May 1991. IEEE Computer Society Press.

[48] S. Jajodia and R. Sandhu. Towards a multilevel secure relational data model. In

J. Clifford and R. King, editors, Proceedings, ACM SIGMOD International Conference

on Management of Data, pages 50–59, Denver, Colorado, May 1991. ACM Press.

[49] A.K. Jones, R.J. Lipton, and L. Snyder. A linear time algorithm for deciding security.

In Proceedings, 17th IEEE Symposium on Foundations of Computer Science, pages

33–41, Houston, Texas, October 1976. IEEE Computer Society Press.

128

[50] N. Jukic, S. Vrbsky, A. Parrish, B. Dixon, and B. Jukic. A belief-consistent multilevel

secure relational data model. Information Systems Journal, 24(5):377–400, July 1999.

[51] M.H. Kang, A.P. Moore, and I.S. Moskowitz. Design and Assurance Strategy for the

NRL Pump. IEEE Computer, 31(4):56–64, April 1998.

[52] T.F. Keefe, M.B. Thuraisingham, and W.T. Tsai. Secure query-processing strategies.

IEEE Computer, 22(3):63–70, March 1989.

[53] K.Henry. Legacy multilevel secure database management systems: The future. Tech-

nical Report DARPA-DSO-SR-15, Defense Advanced Research Projects Agency, Ar-

lington, Virginia, May 2000.

[54] W. Kim, D. Reiner, and D. Batory, editors. Query Processing in Database Systems.

Springer-Verlag, London, England, 1985.

[55] R. Knapman, J. Bryant, and C. Martin. The Stargres release 3.2: Software struc-

ture. Technical Report APL-CAIR-328-3, Johns Hopkins University Applied Physics

Laboratory, Laurel, Maryland, April 2000.

[56] R. Knapman, M. Furst, D. Shtengel, and L. Freeman. The Stargres release 3.2: StarQL.

Technical Report APL-CAIR-328-4, Johns Hopkins University Applied Physics Labo-

ratory, Laurel, Maryland, October 2000.

[57] B. Lampson. Protection. ACM Operating System Reviews, 8(1):18–24, January 1974.

[58] C.E. Landwehr. Formal models for computer security. ACM Computing Surveys,

13(3):247–278, September 1981.

[59] M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond.

Springer-Verlag, London, England, 1999.

[60] T. Lunt, editor. Research Directions in Database Security. Springer-Verlag, New York,

New York, 1992.

[61] T.F. Lunt, R.R. Schell, W. Shockley, M. Heckman, and D. Warren. A near-term design

for the SeaView multilevel database system. In Proceedings, IEEE Symposium on

Security and Privacy, pages 234–244, Oakland, California, June 1988. IEEE Computer

Society Press.

[62] J. McLean. A comment on the ‘Basic Security Theorem’ of Bell and LaPadula. Infor-

mation Processing Letters, 20(2):67–70, February 1985.

[63] A. Motro. Integrity = validity + completeness. ACM Transactions on Database

Systems, 14(4):480–502, December 1989.

129

[64] NCSC. Department of defense trusted computer system evaluation criteria. Report

DoD 5200.28-STD, National Computer Security Centre, Washington, DC, December

1985. Orange Book edition.

[65] NCSC. Trusted network interpretation of the trusted computer systems evaluation

criteria (TCSEC). Report NCSC-TG-005, National Computer Security Centre, Wash-

ington, DC, July 1987.

[66] NCSC. Trusted database management system interpretation of the trusted computer

system evaluation criteria (TCSEC). Report NCSC-TG-021, National Computer Se-

curity Centre, Washington, DC, April 1991.

[67] NIST. Common criteria for information technology security evaluation. Report 2.1,

National Institute of Standards and Technology, Washington, DC, August 1999.

[68] M.T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice

Hall, Upper Saddle River, New Jersey, 2nd edition, 1999.

[69] G. Pfister. In Search of Clusters: The ongoing battle in lowly parallel computing.

Prentice Hall, Upper Saddle River, New Jersey, 2nd edition, 1998.

[70] C.P. Pfleeger and S.L. Pfleeger. Security in Computing. Prentice Hall, Englewood

Cliffs, New Jersey, 3rd edition, 2003.

[71] J. Rushby and B. Randell. A distributed secure system. IEEE Computer, 16(7):55–67,

July 1983.

[72] D. Russell and G.T. Gangemi. Computer Security Basics. O’Reilly & Associates Inc.,

Sebastopol, California, 1991.

[73] SCC. Locked workstation program LWS expanded environment study report. Technical

Report SCS-1-96, Secure computing corporation, San Jose, California, January 1996.

[74] R.R. Schell, T.F. Tao, and M. Heckman. Designing the gemsos security kernel for secu-

rity and performance. In Proceedings, 8th DoD/NBS Computer Security Conference,

pages 108–119, Gaithersburg, Maryland, May 1985. IEEE Computer Society Press.

[75] K. Smith and M. Winslett. Entity modelling in the MLS relational model. In Li-Yan

Yuan, editor, Proceedings, 18th International Conference on Very Large Databases,

pages 199–210, Vancouver, Canada, August 1992. Morgan-Kaufmann.

[76] M. Stonebraker and E. Wong. Access control in a relational database management

system by query modification. In Proceedings, 1974 ACM Annual Conference, pages

180–186, New York, May 1974. ACM Press.

130

[77] B. Thuraisingham and A. Kamon. Query processing in a trusted database manage-

ment system: Design and performance study. Technical Report MTP-292, MITRE

Corporation, Bedford, Massachusetts, June 1990.

[78] B. Thuraisingham and A. Kamon. Secure query processing in distributed database

management systems: Design and performance studies. In Proceedings, 6th Annual

Computer Security Applications Conference, pages 88–102, Tucson, Arizona, December

1990.

[79] TPC. TPC Benchmark A. Standard Specification Report TPC-A-2.0-94, Transaction

Processing Performance Council, San Francisco, California, June 1994.

[80] TPC. TPC Benchmark B. Standard Specification Report TPC-B-2.0-94, Transaction

Processing Performance Council, San Francisco, California, June 1994.

[81] TPC. TPC Benchmark C. Standard Specification Report TPC-C-5.2-03, Transaction

Processing Performance Council, San Francisco, California, December 2003.

[82] C. Turbyfill, C. Orji, and D. Bitton. AS3AP: A comparative relational database

benchmark. In Proceedings, 34th IEEE Computer Society International Conference,

pages 560–564, San Francisco, California, February 1989. IEEE Computer Society

Press.

[83] J. Wilson. A security policy for an A1 DBMS (a trusted subject). In Proceedings,

IEEE Symposium on Security and Privacy, pages 116–125, Oakland, California, May

1989. IEEE Computer Society Press.

[84] S.R. Wiseman. Purple Penelope: Extending the security of Windows NT. Technical

Report RSRE-97224, Defence Research Agency, Malvern, England, February 1997.

[85] A.W. Wood, S.R. Lewis, and S.R. Wiseman. The SWORD multilevel secure DBMS.

Technical Report RSRE-92005, Defence Research Agency, Malvern, England, May

1992.

131

Index

*-property, 3, 17

AS3AP benchmark, 49

A1 Secure DBMS prototype, 38

access class, 21

Access control, 14

access control matrix, 3, 16

access matrix model, 3

Action-Entity model, 3

Administrative utilities module, 63

ALTER TABLE commands, 75

apparent key, 21

Applications and utilities facility, 62

Attribute-level fragmentation scheme, 78

attribute-level labelling, 24

Attribute-level table creation, 65, 72

Bell-LaPadula disclosure model, 2

Bell-LaPadula model, 16

blind writes, 20

candidate key, 12

Client/Query interface module, 63

Common Criteria, 4

Commutative Filter Model, 29

Completeness, 25

computer security, 2

Conceptual level, 10

Coordinator database module, 62

COTS DBMS, 1

CREATE database command, 64, 70

CREATE table command, 64, 71

CREATE user command, 70

CREATEdb statement, 64

DAC, 3, 15

data definition language, 10

data definition language compiler, 10

data dictionary, 10

data manager, 10

data manipulation language, 10

data manipulation language precompiler,

10

database benchmark, 48

Database Management System, 10

database schema, 10

database system, 9

Defence Research Agency, 35

delegation of rights, 15

DELETE statement, 14

Denning, 3, 22

department table, 84

Disjointness, 26

distributed database, 25

Distributed query execution engine, 61

Distributed query handler, 61

Distributed query optimiser module, 61

distributed secure system, 45

distribution criteria, 65

element fragmentation, 25

Element-level fragmentation scheme, 80

element-level labelling, 24

Element-level table creation, 66, 73

emergency contact (EC) table, 84

encounter table, 85

entity integrity, 21

entity integrity constraint, 11

132

facilities table, 85

foreign key, 12

Gemini Computers, 34

Gemsos, 35

Global DDL compiler, 58

Honeywell Secure Computing Technology

Center, 36

horizontal fragmentation, 25

Hospital database, 82

INFORMIX-OnLine/Secure DBMS, 44

Insert Low Approach, 40

INSERT statement, 13

instance, 10

insurance table, 84

integrity lock (or spray paint) architecture,

30

inter-instance integrity, 22

Jajodia-Sandhu model, 3, 20, 29

Keefe et al. query modification approach,

29

kernelized architecture, 30

Lampson, 3

Lock Data Views prototype, 36

MAC, 3, 15

Mariposa, 57

maximal security level, 17

metadata, 10

MITRE, 36

MLR, 29

Mnesia, 57

multilevel relational model, 20

multilevel secure DBMS, 3

Multilevel Stargres (MST), 67

No Read-up (NRU) security policies, 17

No Write Down (NWD) security policy, 18

NRL pump, 47

null integrity, 22

nurse table, 85

Open INGRES/Enhanced Security, 43

Orange Book, 4

partially ordered set, 15

patient table, 84

Physical level, 10

physician table, 85

polyinstantiation integrity, 23

primary key, 12

Purple Penelope, 41

query processing, 26, 76

query processor, 10

Query processor facility, 64

Query router module, 63

Query transformer module, 61

Reconstruction, 26

reference monitor, 29, 39, 46

referential integrity constraint, 12

REGISTER node command, 69

relational algebra, 12

relational calculus, 12

relational model, 2, 11

Remote access module, 61

REMOVE node command, 70

Rushby and Randell, 45

SeaView model, 3, 29

SeaView prototype, 35

Security kernel, 5

SELECT statement, 12

simple security property rule, 17

Smith-Winslett model, 3, 29

Stanford Research Institute, 34

Stargres DBMS, 57

133

StarQL, 58

Structured query language, 12

SWAG, 58

SWORD prototype, 40

Sybase Secure SQL Server, 44

System R, 12

Take-Grant model, 3

TCB subsetting, 34

The replicated architecture, 32

totally ordered set, 16

TPC-A, 48

TPC-B, 48

TPC-C, 48

Transaction management facility, 64

Trusted Computing Base, 5

Trusted Database Management System In-

terpretation, 34

Trusted Oracle, 43

trusted subject architecture, 33

TRW, 34

Tuple-level fragmentation scheme, 78

tuple-level labelling, 24

Tuple-level table creation, 65, 71

type enforcement, 36

Unix United system, 46

UPDATE statement, 13

vertical fragmentation, 25

View level, 10

Wisconsin Benchmark, 48

Woods Hole study, 30

134

