81 research outputs found

    Application of Mathematical and Computational Models to Mitigate the Overutilization of Healthcare Systems

    Get PDF
    The overutilization of the healthcare system has been a significant issue financially and politically, placing burdens on the government, patients, providers and individual payers. In this dissertation, we study how mathematical models and computational models can be utilized to support healthcare decision-making and generate effective interventions for healthcare overcrowding. We focus on applying operations research and data mining methods to mitigate the overutilization of emergency department and inpatient services in four scenarios. Firstly, we systematically review research articles that apply analytical queueing models to the study of the emergency department, with an additional focus on comparing simulation models with queueing models when applied to similar research questions. Secondly, we present an agent-based simulation model of epidemic and bioterrorism transmission, and develop a prediction scheme to differentiate the simulated transmission patterns during the initial stage of the event. Thirdly, we develop a machine learning framework for effectively selecting enrollees for case management based on Medicaid claims data, and demonstrate the importance of enrolling current infrequent users whose utilization of emergency visits might increase significantly in the future. Lastly, we study the role of temporal features in predicting future health outcomes for diabetes patients, and identify the levels to which the aggregation can be most informative

    Robust Optimization Framework to Operating Room Planning and Scheduling in Stochastic Environment

    Get PDF
    Arrangement of surgical activities can be classified as a three-level process that directly impacts the overall performance of a healthcare system. The goal of this dissertation is to study hierarchical planning and scheduling problems of operating room (OR) departments that arise in a publicly funded hospital. Uncertainty in surgery durations and patient arrivals, the existence of multiple resources and competing performance measures are among the important aspect of OR problems in practice. While planning can be viewed as the compromise of supply and demand within the strategic and tactical stages, scheduling is referred to the development of a detailed timetable that determines operational daily assignment of individual cases. Therefore, it is worthwhile to put effort in optimization of OR planning and surgical scheduling. We have considered several extensions of previous models and described several real-world applications. Firstly, we have developed a novel transformation framework for the robust optimization (RO) method to be used as a generalized approach to overcome the drawback of conventional RO approach owing to its difficulty in obtaining information regarding numerous control variable terms as well as added extra variables and constraints into the model in transforming deterministic models into the robust form. We have determined an optimal case mix planning for a given set of specialties for a single operating room department using the proposed standard RO framework. In this case-mix planning problem, demands for elective and emergency surgery are considered to be random variables realized over a set of probabilistic scenarios. A deterministic and a two-stage stochastic recourse programming model is also developed for the uncertain surgery case mix planning to demonstrate the applicability of the proposed RO models. The objective is to minimize the expected total loss incurred due to postponed and unmet demand as well as the underutilization costs. We have shown that the optimum solution can be found in polynomial time. Secondly, the tactical and operational level decision of OR block scheduling and advance scheduling problems are considered simultaneously to overcome the drawback of current literature in addressing these problems in isolation. We have focused on a hybrid master surgery scheduling (MSS) and surgical case assignment (SCA) problem under the assumption that both surgery durations and emergency arrivals follow probability distributions defined over a discrete set of scenarios. We have developed an integrated robust MSS and SCA model using the proposed standard transformation framework and determined the allocation of surgical specialties to the ORs as well as the assignment of surgeries within each specialty to the corresponding ORs in a coordinated way to minimize the costs associated with patients waiting time and hospital resource utilization. To demonstrate the usefulness and applicability of the two proposed models, a simulation study is carried utilizing data provided by Windsor Regional Hospital (WRH). The simulation results demonstrate that the two proposed models can mitigate the existing variability in parameter uncertainty. This provides a more reliable decision tool for the OR managers while limiting the negative impact of waiting time to the patients as well as welfare loss to the hospital

    Healthcare Literacy Strategies to Mitigate Healthcare Utilization and Rising Costs

    Get PDF
    Low health literacy can adversely affect individuals and groups without access to health information. Health insurance leaders who lack strategies to decrease low health literacy may lose their ability to provide quality health services and control care costs. Grounded in the health belief model and the Andersen health service model, the purpose of this qualitative multiple case study was to identify the strategies private health insurance leaders use to increase medical utilization to reduce healthcare costs. The three participants were from two private insurance companies in Las Vegas, Nevada. Data were gathered through semistructured, open-ended interviews via videoconferencing, a review of public documents, and journal notes. Data were analyzed using thematic analysis, and four themes emerged: (a) patient case management engagement to achieve compliance, (b) continuous patient health education, (c) health service utilization review, and (d) providers-patient collaboration. The key recommendation for private health insurance managers is to ensure patient interaction through case management. The implications for positive social change include the potential to improve health literacy knowledge, thereby increasing adequate medical utilization for the population and reducing healthcare costs for individuals and insurance companies

    Access and Resource Management for Clinical Care and Clinical Research in Multi-class Stochastic Queueing Networks.

    Full text link
    In healthcare delivery systems, proper coordination between patient visits and the health care resources they rely upon is an area in which important new planning capabilities are very valuable to provide greater value to all stakeholders. Managing supply and demand, while providing an appropriate service level for various types of care and patients of differing levels of urgency is a difficult task to achieve. This task becomes even more complex when planning for (i) stochastic demand, (ii) multi-class customers (i.e., patients with different urgency levels), and (iii) multiple services/visit types (which includes multi-visit itineraries of clinical care and/or clinical research visits that are delivered according to research protocols). These complications in the demand stream require service waiting times and itineraries of visits that may span multiple days/weeks and may utilize many different resources in the organization (each resource with at least one specific service being provided). The key objective of this dissertation is to develop planning models for the optimization of capacity allocation while considering the coordination between resources and patient demand in these multi-class stochastic queueing networks in order to meet the service/access levels required for each patient class. This control can be managed by allocating resources to specific patient types/visits over a planning horizon. In this dissertation, we control key performance metrics that relate to patient access management and resource capacity planning in various healthcare settings with chapters devoted to outpatient services, and clinical research units. The methods developed forecast and optimize (1) the access to care (in a medical specialty) for each patient class, (2) the Time to First Available Visit for clinical research participants enrolling in clinical trials, and (3) the access to downstream resources in an itinerary of care, which we call the itinerary flow time. We also model and control how resources are managed, by incorporating (4) workload/utilization metrics, as well as (5) blocking/overtime probabilities of those resources. We control how to allocate resource capacity along the various multi-visit resource requirements of the patient itineraries, and by doing so, we capture the key correlations between patient access, and resource allocation, coordination, and utilization.PhDIndustrial and Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116770/1/jivan_1.pd

    Rational Patient Apathy

    Get PDF

    Strategies to Minimize the Bullwhip Effect in the Electronic Component Supply Chain

    Get PDF
    Supply chain leaders in the information technology industry face challenges regarding their ability to mitigate amplified demand and supply variability in a supply chain network--the bullwhip effect--and reduce adverse implications on their component supply chain networks. The purpose of this multiple case study was to explore the strategies supply chain leaders in the United States used to reduce the bullwhip effect. Bullwhip effect theory served as the conceptual framework. Participants in the study were 5 purposefully selected supply chain leaders in the state of Texas who successfully implemented strategies to reduce the bullwhip effect on their networks. Data were collected from semistructured interviews and analysis of documents from the participants\u27 websites. The data were analyzed using the 5 data analysis steps consistent with Yin\u27s approach: collection, stratification, reassembly, interpretation, and conclusion. Four themes emerged from data analysis: (a) collaboration strategy, (b) communication strategy, (c) component shortage reduction strategy, and (d) resource management strategy. Supply chain leaders might use the findings of this study to reduce the bullwhip effect within their networks and improve their profitability. The implications for positive social change include the potential for leaders to improve environmental sustainability by using effective supply chain strategies to reduce the accumulation of excess inventories, reduce transportation fuel usage, and lessen the consumption of natural resources

    Joint optimization of allocation and release policy decisions for surgical block time under uncertainty

    Get PDF
    The research presented in this dissertation contributes to the growing literature on applications of operations research methodology to healthcare problems through the development and analysis of mathematical models and simulation techniques to find practical solutions to fundamental problems facing nearly all hospitals. In practice, surgical block schedule allocation is usually determined regardless of the stochastic nature of case demand and duration. Once allocated, associated block time release policies, if utilized, are often simple rules that may be far from optimal. Although previous research has examined these decisions individually, our model considers them jointly. A multi-objective model that characterizes financial, temporal, and clinical measures is utilized within a simulation optimization framework. The model is also used to test “conventional wisdom” solutions and to identify improved practical approaches. Our result from scheduling multi-priority patients at the Stafford hospital highlights the importance of considering the joint optimization of block schedule and block release policy on quality of care and revenue, taking into account current resources and performance. The proposed model suggests a new approach for hospitals and OR managers to investigate the dynamic interaction of these decisions and to evaluate the impact of changes in the surgical schedule on operating room usage and patient waiting time, where patients have different sensitivities to waiting time. This study also investigated the performance of multiple scheduling policies under multi-priority patients. Experiments were conducted to assess their impacts on the waiting time of patients and hospital profit. Our results confirmed that our proposed threshold-based reserve policy has superior performance over common scheduling policies by preserving a specific amount of OR time for late-arriving, high priority demand

    Overview of Noninterpretive Artificial Intelligence Models for Safety, Quality, Workflow, and Education Applications in Radiology Practice

    Get PDF
    Artificial intelligence has become a ubiquitous term in radiology over the past several years, and much attention has been given to applications that aid radiologists in the detection of abnormalities and diagnosis of diseases. However, there are many potential applications related to radiologic image quality, safety, and workflow improvements that present equal, if not greater, value propositions to radiology practices, insurance companies, and hospital systems. This review focuses on six major categories for artificial intelligence applications: study selection and protocoling, image acquisition, worklist prioritization, study reporting, business applications, and resident education. All of these categories can substantially affect different aspects of radiology practices and workflows. Each of these categories has different value propositions in terms of whether they could be used to increase efficiency, improve patient safety, increase revenue, or save costs. Each application is covered in depth in the context of both current and future areas of work
    • …
    corecore