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Abstract  

The research presented in this dissertation contributes to the growing literature on 

applications of operations research methodology to healthcare problems through the 

development and analysis of mathematical models and simulation techniques to find practical 

solutions to fundamental problems facing nearly all hospitals.  

In practice, surgical block schedule allocation is usually determined regardless of the 

stochastic nature of case demand and duration. Once allocated, associated block time release 

policies, if utilized, are often simple rules that may be far from optimal. Although previous 

research has examined these decisions individually, our model considers them jointly. A multi-

objective model that characterizes financial, temporal, and clinical measures is utilized within a 

simulation optimization framework. The model is also used to test “conventional wisdom” 

solutions and to identify improved practical approaches.    

Our result from scheduling multi-priority patients at the Stafford hospital highlights the 

importance of considering the joint optimization of block schedule and block release policy on 

quality of care and revenue, taking into account current resources and performance. The 

proposed model suggests a new approach for hospitals and OR managers to investigate the 

dynamic interaction of these decisions and to evaluate the impact of changes in the surgical 

schedule on operating room usage and patient waiting time, where patients have different 

sensitivities to waiting time.  

This study also investigated the performance of multiple scheduling policies under multi-

priority patients. Experiments were conducted to assess their impacts on the waiting time of 

patients and hospital profit. Our results confirmed that our proposed threshold-based reserve 

policy has superior performance over common scheduling policies by preserving a specific 

amount of OR time for late-arriving, high priority demand.  
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Chapter 1 : Introduction 

Overview of the Problem and Motivation 

The competition among healthcare systems has escalated in recent years. Non-optimal 

decisions can lead to inefficiency, reduced profits and a loss of market share. According to BBC 

news on June 3rd 2014, the number of patients who died while waiting for heart surgery at two 

south Wales hospitals has risen in the past year. Between April 2013 and March 2014, 29 

patients died waiting for surgery at Cardiff's University Hospital of Wales and Morriston 

Hospital in Swansea. According to the Los Angeles Times on April 2014, the chairman of the 

Senate Veterans Affairs Committee pledged to convene a hearing on allegations that excessive 

wait times at a Phoenix Veterans Administration facility led to the deaths of 40 veterans. These 

real cases are just examples of the challenge all health care systems face daily. Each patient type 

has different sensitivity to the waiting time and an optimal scheduling policy needs to find the 

right balance of individual waiting cost while maximizing the efficiency. The methods that 

hospitals use to schedule their patients greatly determine the ultimate throughput. With improved 

scheduling, hospitals can better utilize fixed assets and better control the costs for variable 

resources. Surgery departments represent the largest cost centers and the greatest sources of 

revenue for most hospitals. Operating Room (OR) planning and scheduling is a key tool which 

can be used to improve the productivity level of ORs and their downstream resources. Basically, 

there are three OR scheduling strategies commonly employed:  

(1) Block scheduling strategy; (2) Open scheduling strategy; and (3) Modified scheduling 

strategy.  Most hospitals schedule their OR suites using case or block surgery schedules in which 

OR time is assigned to surgical specialists/surgeons. In open scheduling, OR time is shared 

among all specialists or surgeons based on first-come-first-serve order and finally, the Modified 

scheduling is a combination of these two strategies. Some percentages of the blocks are devoted 

to each specialty, but there are still some open blocks that are shared among all. 

Block schedules are concerned primarily with elective surgery. Elective surgery 

scheduling decisions consist of three stages; (1) determining the amount of OR time to allocate 

to each surgical specialty, individual surgeons or groups (or case mix planning), (2) creating a 

cyclic timetable, implementing the desired assignment of OR blocks to specialties (or surgery 
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master schedule), and (3) scheduling individual patients into available time (or case scheduling). 

The first stage decision reflects the long-term strategic goals of hospital, such as achieving 

desired levels of patient throughput by service line or maximizing revenue (Strum et al., 1999; 

Dexter et al., 1999; Blake and Carter, 2002; Gupta, 2007; Santibañez et al., 2007; Testi et al., 

2007, Aringhieri et al., 2015). The second stage is constructed on a medium-term horizon to 

build a specific cyclic schedule for specialties and is updated whenever the total amount of OR 

time changes or when the make-up of some specialties changes (Blake et al., 2002; McManus et 

al., 2003; Santibanez et al., 2005; Beliën and Demeulemeester, 2007; Testi et al., 2007; Chow et 

al., 2008; Van Ostrum et al., 2008; Price et al., 2011), and the third stage represents the short-

term operational decision of assigning a specific surgery and OR appointment slot to each patient 

over the planning horizon, which can range from one week to one month (Dexter et al., 2000; 

Guinet and Chaabane, 2003; Denton et al., 2007; Patrick and Puterman, 2008; Erdelyi and 

Topaloglu, 2009; Sauré et al., 2012).  

As evidenced by the references listed above, the vast majority of papers found in the 

literature only consider one decision level at a time although all of these decisions are 

interrelated and are sensitive to uncertainty with respect to case durations, arrival rates, patient 

and provider preferences, punctuality, cancellations, no-shows, etc. Hence, a fundamental 

objective of OR scheduling is to transition from the generality of the block schedule (stage 1) to 

the specificity of a detailed schedule for each day (stage 3) (Herring and Herrmann, 2011). 

Approaches dealing with more than one planning level simultaneously are indeed rare. Among 

these, Jebali et al. usees a two-phase approach to deal with both the case scheduling and 

allocation scheduling problems and proposes an integer programming model aimed at 

minimizing OR over-time and under-time costs as well as hospitalization costs related to the 

number of days patients are kept in the hospital waiting for an operation or procedure (Jebali 

et.al., 2006). Testi et al. presents a hierarchical three-phase approach to determine operating 

theater schedules. First, integer programming models are developed in order to divide the 

available OR time among the different surgical specialties. Then, they formulate a master 

surgery scheduling problem in order to assign a specific operating room and day of the planning 

horizon to the OR time blocks of each specialty. Finally, a discrete-event simulation model is 

used to evaluate the decisions concerning patients scheduled dates, OR and time assignments 



3 

 

(Testi et al., 2007). Tanfani and Testi propose a linear programming model to simultaneously 

address the decisions involved in the three-phases of the OR planning and scheduling problem 

described above, excluding only the most strategic ones dealing with the number and type of the 

ORs  and their operating hours. The objective of the model consists of minimizing a cost 

function that combines the patients’ waiting time since referral and urgency status. The solution 

approach is based on a sequential heuristic (Tanfani, and Testi, 2010). Aringhieri et al. adopt the 

idea proposed in Tanfani and Testi (2010) and extend it to incorporate both patient utility (by 

reducing waiting time costs) and hospital utility (by reducing production costs measured in terms 

of the number of weekend stay beds required by the surgery planning) (Aringhieri et al., 2015).  

These three scheduling levels mostly consider the forward planning aspects of the 

scheduling process and sometimes fail to capture the available capacity when allocated OR block 

times are not fully utilized. Having a portion of OR block time released in advance of the day of 

surgery allows schedulers to add cases to blocks that otherwise would be underutilized. In this 

case, a finite resource (OR time) must be allocated to competing surgical demands. These 

demands for surgery arrive over time and the decision makers must decide at the time of arrival. 

So, the main questions would be, “when to release the unfilled blocks, how much time from 

these blocks would be offered to which specialties, and who within a specialty is the best 

recipient for them”. Some hospitals have policies on “suggested block release times” based on 

experience but they may not be the optimal rules to follow. These questions represent 

fundamental problems facing nearly all hospitals to balance the costs of deferring waiting cases 

and blocking higher priority patients.  

Our model considers the joint impact of block schedules (all three stages) and block 

release policies on quality of care and hospital revenue, taking into account current resources and 

performance. The proposed model suggests a new approach for hospitals and OR managers to 

investigate the dynamic interaction of these decisions and to evaluate the impact of changes in 

the surgical schedule on operating room usage and patient waiting time. Both mathematical 

programming and simulation have been used to answer all of the above scheduling questions and 

are used to recommend the improved strategic, operational and tactical decisions. Not having a 

strategic methodology leaves decision makers to make critical changes based on prior 
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experiences, retrospective data, or even politics, without the benefit of a logical and systematic 

framework. 

Outline of this Dissertation 

The general content of this dissertation is presented in six chapters. Chapter 1 includes a 

brief introduction, an overview of the problem and the motivation for this research. Chapter 2 

provides a literature review and background on the problem of scheduling surgical patients into 

operating rooms at all stages, from case mix planning to elective case scheduling and continues 

with the different strategies that have been introduced to block scheduling strategy to improve 

block utilization and flexibility. At the end, we highlight the main contribution of this study both 

in research and practice.  

In Chapter 3, we address the model objective and its relation to yield management. We 

also devote this chapter to a case study of a hypothetical two OR-facility that demonstrates the 

practical aspects of implementation of the objective in joint optimization of block allocation 

decisions and block release policies. 

In Chapter 4, we develop and evaluate case scheduling policies from simple heuristic 

policies to more complex policies driven from a Markov Decision Process (MDP) model. We 

then present our results and insights from the case study for stochastic multi-priority scheduling. 

Our mathematical and computational results show how multi-priority scheduling can be 

optimized using reserved-based policies.  

Chapter 5 is devoted to the application of simulation/optimization at Stafford Hospital, a 

small-sized hospital with modified block scheduling and multi-priority patients. It continues with 

the application of the Design of Experiments method in reducing the dimensionality of the 

simulation model. We provide a summary of the results and contributions of this dissertation, 

discuss conclusions and highlight insights for the practitioner in Chapter 6. 
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Chapter 2 : Literature Review and Contribution of this Dissertation 

While the problem of scheduling elective surgical procedures has received extensive 

treatment in the operations-research literature, most of the previous works have centered on the 

level of individual decisions (case mix planning, surgery master schedule or case scheduling). 

However, no decision is made in isolation: every decision is constrained by the effects of 

previous decisions and creates its own downstream effects on future decisions (Santibañez et al. 

2007). Decisions about how to schedule elective surgeries are further complicated by the fact 

that elective surgeries are made on a different planning horizon than urgent non-elective 

surgeries. A survey of the literature on OR scheduling shows that there are very few studies that 

address this complexity in the decision-making process for assigning (OR) capacity.  

This dissertation’s research is aimed at filling this gap by improving surgical suite 

efficiency through a multi-level decision model. Improvement of the surgical suite’s efficiency 

not only may lead to increased productivity, in terms of the number of surgeries undertaken, but 

also may contribute to a reduction in surgery waiting lists. Costs involved in keeping a patient on 

the waiting list for surgery are high, both at the prevention and the maintenance level, even more 

so considering the user’s quality of life. Another major contribution of this study is that it 

integrates the costs of patients’ waiting time into its model.  Although most of the previous 

research in this area has centered on optimizing the use of OR capacity, few prior studies have 

explicitly addressed the costs generated when patients are forced to wait for needed or desired 

surgeries. Our model is able to optimize the yield of OR capacity by finding the best block 

release and allocation strategy to allocate limited OR capacity to the right patients at the right 

time with the lowest cost for patient, surgeon and hospital. 

We begin with a conceptual model (Figure 1) of the scheduling process to draw insight 

into the type of decisions that must be made in scheduling surgeries and to portray their 

interaction. Finally, this research makes a valuable contribution to the literature on OR 

scheduling by developing and testing the model using real world data. 

As noted above, within the scheduling process, all upstream decisions affect downstream 

decisions (Santibañez et al. 2007). The complex interrelationship among decisions must be 
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understood and carefully managed in order to achieve optimal use of the limited resource of OR 

capacity. One way that hospitals have begun to attempt to manage this interrelationship is to use 

block release policies. Effective block release policies can help hospital administrators manage 

the effects of such sources of variation in the scheduling process as variability in demand (not 

only arrival rates, but also patient preferences) as well as in case durations, cancellations, and no 

shows.  If resource managers make effective use of scheduling strategies, they can minimize both 

unused capacity and wait times. 

Improvements in release policies, in coordination with sequential decisions, can enhance 

efficiency and increase profits. Our research contributes to this effort by offering insight into 

how hospitals can achieve not only optimal profit but also higher levels of patient satisfaction.  

Decreasing the waiting time for surgery may not require that hospitals increase their overall 

capacity, but rather that they simply make better use of existing OR blocks. Implementing 

optimal release rules can essentially generate more usable capacity at no additional cost. 

 

 

  

 

 

 

 

 

 

 

  

  

Figure 1: The Conceptual Model 
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First stage: Determining the amount of OR time allocated to each surgical specialty 

(Case Mix Planning) 

Initially, the available total OR time is often determined by a hospital’s budget (revised 

annually). This finite capacity (OR time) must then be allocated to competing surgical demands. 

Each specialty gets a piece of the pie (Figure 2) based on different criteria, such as total cases per 

allocated block (i.e. historical utilization and target throughput), hospital costs and financial 

gains per allocated block, and demand for services (i.e. waiting time), etc. The choice of 

schedules and resource availability (OR time) directly affects the number of patients treated, 

cancellations, waiting times and ultimately the overall profit of a hospital. Hospitals can be 

assumed to seek an optimal patient mix and volume that can yield the maximum overall financial 

contribution under the given resource capacity. However, there is not an easy answer to the 

question of how to achieve this optimization since all of the factors listed above play 

fundamental, interacting roles. On the other hand, a systematic approach to OR time allocation 

can improve the transparency and fairness in surgeons’ time allocation. 

 

 

Figure 2: Capacity divided according to specialty/Surgeon 

 

Case Mix Planning Literature Review  

There is a growing pressure on health care providers to improve the financial contribution 

of their resources through efficient capacity allocation and management. Naturally, it is expected 

that the available resource capacity may match the stochastic patient demand as perfectly as 
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possible and the utilizations of hospital resources (i.e., hospital beds, operating rooms (ORs), 

nursing staff, etc.) may be coordinated as well as possible. Nevertheless, due to the scarcity of 

resources and the variability (e.g., the random patient arrivals, the variable length of stays 

(LOSs), etc.) within the patient flow, the capacity management problem seems to be quite 

complicated. A number of studies have addressed this complex problem using operational 

research methods, such as mathematical programming, discrete-event simulation, and so on (Ma 

and Demeulemeester, 2012).  

Strum et al. (1999) and Dexter et al. (1999) have employed statistical analyses of hospital 

historical data to predict the number of hours that should be allocated to surgical specialties. 

Hughes et al. (1985) and Robbins et al. (1989) applied linear programming to optimally and 

efficiently use the hospital's mix of services to maximize net contribution. Blake and Carter 

(2002) have proposed a methodology that uses two linear goal programming models to 

determine the trade-offs between service cost, mix volume and clinical necessity. Samanlioglu et 

al. (2010) have used a similar integer programming approach to determine block schedules that 

meet surgeons’ demand levels. Vissers (2005) proposed two mathematical models, one supports 

long-term decisions about the resources required to match the future patient mix demand (choose 

the patient mix that can bring maximum profits), and another supports decision making at the 

medium-term level for balancing the resource requirements of various types. Dexter et al. (2005) 

have incorporated two levels of capacity decisions: tactical and operational. Tactical decisions 

for the selective expansion of operating room resources incorporate financial criteria and 

operational decisions for any adjustment and are influenced by the uncertainty in subspecialties' 

future workloads. Numerous reasons have been presented to explain why tactical planning for 

the expansion of OR capacity should not be based on current or past utilization but instead on 

total contributions, while meeting certain constraints (Gupta, 2007; Wachtel and Dexter, 2008).  

A final group of papers has focused on finding block schedules that minimize the amount 

of time patients have to wait for surgery (Zhang et al., 2009; Tanfani and Testi, 2010). It has 

been shown mathematically that, when variation exists, buffer capacity is necessary to be certain 

of meeting demand. Thus, the optimal capacity is the result of a trade-off between excess 

capacity and patients’ waiting time (Pandit et al., 2010). Santibañez et al. (2007) have developed 

http://www.ncbi.nlm.nih.gov/pubmed?term=Hughes%20WL%5BAuthor%5D&cauthor=true&cauthor_uid=10310979
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a mixed integer programming model to explore the tradeoffs between OR availability, bed 

capacity, surgeons' booking privileges, and waiting time. The main focus of Testi et al. (2007) 

has been on improving the overall operating efficiency of OR time in terms of overtime and 

throughput as well as waiting list reduction. Vansteenkiste et al. (2012) introduced the concept of 

the individual patient deviation from the optimal due time (DT) (an acceptable time after the 

need for surgery is established) as a potential driver for OR (re-) allocation among surgical 

disciplines. They believe use of a DT-based model provides a transparent, acceptable system for 

regular reallocation of OR times between and within specialties. 

 

Second stage: Creating a block schedule with desired allocations (surgery master 

schedule) 

Once OR time has been allocated to each surgical group, the second stage of planning 

involves the development of a master surgery schedule (MSS). The time given to the 

surgeon/surgical group is named as allocated block time and it should be converted into a desired 

weekly scheduled time table (Figure 3). The master surgery schedule is a cyclic timetable that 

defines the number and type of operating rooms available, the hours that rooms will be open, and 

the surgical groups or surgeons who are to be given priority for the operating room time (Blake 

et al., 2002). Developing or adjusting a MSS is a complex problem that involves creating and 

allocating blocks of OR time to each specialty in such a way that it best satisfies some given 

objectives (such as, balancing patient queue lengths among different specialties, maximizing OR 

utilization and reducing overtime, maximizing profit, etc (Herring, 2011)) under various sets of 

realistic constraints (such as, recovery and downstream bed availability, limitations on patient 

waiting times, follow-ups, surgeons’ preferences and different levels of stochasticity (with 

respect to case)) which have remained fairly consistent in all of the previous research. Also, the 

master surgery schedule is often preferred to be as simple and repetitive as possible, which 

entails as few changes as possible from week to week (Blake et al. 2002). 

 

http://www.sciencedirect.com/science/article/pii/S0377221705006946#bib4
http://www.sciencedirect.com/science/article/pii/S0377221705006946#bib4
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Figure 3: Desired weekly schedule timetable 

 

Surgery Master Schedule Literature Review 

Block scheduling models have traditionally focused on implementing desired allocation 

levels without fully considering the downstream effect. They are often solved by mixed integer 

linear programming or goal programming. Blake et al. (2002) propose an integer programming 

model that minimizes the weighted average undersupply of operating room hours that are 

allocated to each surgical group (a number of operating room hours as close as possible to its 

target hours). Current models focus more on leveling hospital bed occupancy and minimizing 

overcapacity in a stochastic approach. In 2003, Ogulata and Erol presented a set of hierarchical 

multiple criteria mathematical programming models to generate weekly operating room 

schedules. The objectives considered in this study are maximum utilization of operating room 

capacity, balanced distribution of operations among surgeon groups and minimization of patient 
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waiting times. McManus et al. (2003) argued that much of the variability in hospital bed 

occupancy levels is caused by imbalances in the surgical schedule. Researchers have addressed 

these issues by incorporating patients’ lengths of stay into mathematical programming models 

and heuristic procedures (Beliën and Demeulemeester, 2007; Testi et al., 2007; Chow et al., 

2008; Van Ostrum et al., 2008; Price et al., 2011).  

The research that is most relevant to our work is presented by Santibañez et al. (2007) 

who used a system-wide optimization model for block scheduling that enables managers to 

explore trade-offs between operating room availability, booking privileges by surgeons, bed 

capacity, and waiting lists for patients. Mannino et al. (2012) introduced a new mixed integer 

linear model to find a suitable allocation of operating resources to surgical groups in a trade-off 

of two major variants of balancing patient queue lengths among different specialties, while 

minimizing overtime. These studies tried to ensure that the patient gets his/her surgery in a 

reasonable time while surgeons’ preference and hospital profit are satisfied. 

 

Third stage: Scheduling individual patients into available time (elective case 

scheduling) 

The third phase on individual patient scheduling is centered on daily decisions about the 

patient selection, room assignment, and the sequence of cases in each allocated block
1
. In 

general, patient scheduling studies can be summarized in three decision groups: choosing the 

right surgical cases to schedule, assigning cases to the right OR on the right day, and optimally 

sequencing cases within each OR. Usually, either the first two or last two of these decision 

groups are modeled, although some research focuses more narrowly on just one of these 

decisions (Herring, 2011). The first group, choosing the right surgical cases from a waiting list, 

is only applied in situations where patients are kept on a waiting list until an appropriate day is 

found for them. The next two decision groups are common in all online and waiting list 

scheduling. First, each surgical case is scheduled for a specific operating room and day 

(sometimes referred to as advance scheduling). Then, as it gets close to the day of surgery, either 

                                                 
1
 - This study excludes the sequencing of cases (or allocation scheduling) on the day of surgery since we are 

only interested in indirect waiting time  and not in waiting time on the day of surgery 
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each surgery is scheduled for specific periods in the day or the surgeries scheduled for the same 

day are simply ordered (allocation scheduling) (Marques et al. 2012).  

 

Elective Case Scheduling Literature Review 

This stage of surgery scheduling has more robust literature than earlier stages, because 

the earlier stages are only applied in the block scheduling strategy. Regardless of whether or not 

they use block scheduling, they must solve the problem of scheduling individual patients into 

specific OR times. The main goal in this body of research typically is either to minimize patient 

delays (waiting time) or maximize OR utilization (Guinet and Chaabane, 2003; Denton et al., 

2007).  This type of decision is very sensitive to efficiency and variability in the operating room. 

Ozkarahan (2000) proposed a goal-programming model that can produce schedules that best 

serve the needs of the hospital, i.e., by minimizing idle time and overtime, and increasing 

satisfaction of surgeons, patients, and staff. The approach involves sorting the requests for a 

particular day on the basis of block restrictions, room utilization, surgeon preferences, and 

intensive care capabilities. Guinet and Chaabane (2003) modeled case scheduling as a general 

assignment problem aimed at reducing patient stay duration and overtime costs. Hans et al. 

(2005) addressed the problem of assigning elective surgeries to operating rooms in such a way 

that not only the utilization of the OR rooms is optimized but also the total overtime is 

minimized. Both Denton et al. (2007) and Cardoen et al. (2009) investigated the optimal 

sequencing of cases within an OR using stochastic linear programming and a branch-and-price 

approach, respectively. In Denton et al. (2010), cases are assigned to operating rooms using a 

stochastic programming model to incorporate uncertain case durations. 

Sier et al. (1997) used simulated annealing to find improved solutions to surgical case 

scheduling. Simulation has been used in many studies to compare alternative scheduling policies 

to maximize the efficiency of use of operating room (OR) time, e.g. El-Darzi et al. (1998),  

Dexter et al. (2000), Dexter and  Traub (2002), and Sciomachen et al. (2005). Most of the 

researches that focus on assigning patients to ORs and sequencing the cases within ORs are 

focused on the single day problem while the following studies develop their model over a longer 

horizon. Jebali et al. (2006) solve a series of integer programs for assigning surgery patients to 



13 

 

operating rooms over a planning horizon while minimizing the costs of patient waiting times and 

over-/under- utilized operating rooms. Hans et al. (2008) use a heuristic model to create robust 

schedules using planned slack, and their work is the exception in that it schedules cases over the 

course of a week rather than a single day.  

 

Strategies to improve the Utilization and Flexibility 

As noted in the literature review, the main concern of all scheduling studies is to find the 

optimal combination of block size, allocation and case schedule which maximizes capacity 

usage. However, all of these decisions require forward-planning as much as a year before cases 

actually fill the blocks. Dealing with demand uncertainty is also an issue that must be addressed 

in surgical scheduling. To be able to adjust to variation in demands such as case duration, arrival 

rate and patient and surgeon preference, the following strategies have been applied to block 

scheduling strategies to improve block utilization and flexibility: 

 Modified block scheduling policy 

 Block release policy 

In many cases, hospitals use a modified block scheduling policy, a mixture of open and block 

scheduling strategies. Similar to the block-scheduling policy, an MSS is constructed; however, 

similar to the open-scheduling strategy, certain slots in the MSS are left open for flexibility. 

Similar to modified block scheduling policy, block release policy consists of open and block 

scheduling in which surgical groups (or subspecialties) may share blocks, depending on the 

demand that arises for their scheduled block time. This sharing is achieved by setting a deadline 

(a particular number of days prior to the day of surgery), at which time the unutilized block time 

of a surgical group becomes available for use by other groups.  

The main difference between a modified scheduling policy and a block release policy is that 

in modified scheduling, blocks are open from the beginning (no deadline) so that cases can be 

assigned based on first-come-first-serve basis, while in a block release policy the block will be 

shared after a deadline. These block times can be used to accommodate overflow and more 

urgent cases (Gupta, 2007). Thus, released blocks and open blocks offer more flexibility to 
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surgeons to assign their cases based on a first-come-first-served rule. The main focus of this 

research is on block release policies which are discussed in more detail. 

 

Modified scheduling policy 

“Which is better for OR scheduling—block, modified block, or first-come-first-served 

(open)? It’s a common question, but there is no simple answer and many issues must be 

weighed.”  

Modified block seems to be the most-used method based on a benchmarking study in 

1996 by the University HealthSystems Consortium (OR Manager, Patterson, 1996). Each 

scheduling strategy has its own pros and cons shown in Table 1.  

 

Table 1: Pros and Cons of different Scheduling strategies 

 Advantage Disadvantage 

Open 

scheduling 

strategy 

 Satisfies the expectations of surgeons and 

patient’s about the day of surgery (Dexter, et 

al., 2003) 

 Very efficient planning method if 

appointments are being made in advance and 

required resources can be calculated precisely 

(Fei et al., 2009; Blake, et al., 2002) 

 Frustrates surgeons, as they may 

not be able to schedule their cases 

back-to-back well in advance 

(Dawn Mclane-kinzie, 2005) 

 

Block 

scheduling 

strategy 

 More reliable OR time for surgeons  Revenue loss or underutilization 

due to surgeries ending sooner 

than expected, or cancellations 

 Assigning and reallocating block 

time can raise difficult political 

issues (OR manager) 

Modified 

scheduling 

strategy 

 Offers maximum flexibility and since it 

combines the two main strategies, this strategy 

is more flexible to deal with different kinds of 

patients: elective and urgent 

 There may be too many blocks 

unoccupied, resulting from 

reserved blocks that were released 

late 

 

Due to the pros and cons outlined earlier, each strategy works best for a specific set of 

conditions. Also, as Hamilton and Breslawski (1994) argued, the factors considered by operating 

room administrators to be critical to operating room scheduling are dependent on the nature of 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Dawn%20Mclane-kinzie&ie=UTF8&search-alias=books&sort=relevancerank
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the scheduling policy. The results of their large-scale survey indicated that in block strategy the 

number of operating rooms, the equipment limitations, the block times assigned and the hospital 

scheduling policy are considered to be important criteria. While, in open scheduling strategy the 

number of operating rooms, the estimated room set up duration, the estimated case duration and 

the equipment restrictions are considered to be essential in optimal scheduling. 

Block scheduling is more predictable for surgeons. Specific surgeons or groups of 

surgeons are assigned one or more blocks of time each week in which to schedule their surgeries 

and no one else is allowed to assign a case in their block. In reality, pure block scheduling is 

rarely used because it is too rigid and it may result in highly underutilized OR blocks. 

Open scheduling strategy is great for specialties that anticipate their schedules well in 

advance (specialties with less urgent cases), in this case; there is no time gap between 

consecutive cases. According to Dexter et al. (2003) this method of planning consists of surgeons 

and patients who together decide at which date the treatment should take place and the other staff 

will be adjusted to achieve maximum efficiency. Due to this certainty, every minute of OR time 

can be optimally used. Unlike the block scheduling strategy (Blake, et al., 2002; Fei et al., 2009), 

every minute of the operating room can be reserved separately, so there is a better chance of high 

utilization. 

A modified scheduling strategy contains the benefit of both block and open scheduling 

strategies. More hospitals employ modified block scheduling, since it easily deals with diverse 

kinds of patients; urgent and elective. In addition, the modified scheduling strategy can gain 

additional benefit by combining it with block release policy to release unreserved block time at 

an agreed-upon point before surgery to be shared with other surgeons, the utilization can be high. 

Although in this strategy, block release policies should be well managed to keep the utilization 

on target. 

As shown in Figure 4, there are multiple ways of creating a modified schedule. Any 

combination of open and block scheduling policy might be optimal for a given set of conditions. 

The optimal combination highly depends on hospital patients’ combination of elective, urgent or 

semi-urgent and blocks release policies. The release policy maintains the highest fairness among 

different types of surgeons. 
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Figure 4 : Modified scheduling strategy 

 

Block release policy 

A choice of release of block time maximizes access to the elective schedule for block 

holders while maintaining sufficient lead time for other surgeons to take advantage of 

underutilized operating capacity. The intent is to increase access to the OR schedule for all users. 

The block release dates provide control capability for scheduling managers and allow decision 

makers to assign upcoming cases to the unfilled blocks based on their urgency. Hence, release 

times must be managed well to maximize OR utilization. 

Two parameters are involved in the block release policy: 

(1) The maximum time that a patient can wait for accessing his surgeon’s primary block 

before being considered for scheduling in an off block, and  

(2) The minimum number of days before the day of surgery that the block can be released. 

Parameter 1 depends on the expectation of the patients about the longest time to wait for 

surgery and the urgency of the case, but parameter 2 depends on the arrival rate of patients and 

how quickly blocks are filled. The maximum time that a patient can wait can be estimated with 

certainty for each type of surgery based on survey or statistical methods. Table 2 shows 

maximum time a patient can wait for accessing his surgeon’s primary block at Stafford. The 

minimum number of days before the day of surgery that the block can be released will be 

analyzed by Scenario Manager.  
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Table 2 : Maximum time that a patient can wait for accessing his surgeon’s primary block 

Specialty Podiatry Plastic Otho GYN GV ENT 

Maximum wait time  43  33 18 29 16 49 

 

Block release policy literature review  

Most hospitals use a predefined block release time that is reevaluated every year and 

usually ranges between 3 to 7 days before the day of surgery. This fact motivates the very natural 

questions of how block release dates can be set optimally and who is the best recipient for the 

released block.  Dexter et al. (2003) addressed the question of which services should release their 

blocks to minimize under/over utilization. According to Dexter et al., there are three possible 

rules for releasing OR time: (a) the most expected underutilized OR on the day of surgery, (b) 

the largest difference between allocated and scheduled OR time at the moment the new case 

arrives, or (c) the second largest difference between allocated and scheduled OR time. Dexter et 

al. conclude that the first option (a) is the best strategy. This finding aligns with Herring and 

Hermann (2011) who argue that a blocking penalty (the dissatisfaction cost that happens if a 

non-primary case is scheduled and another primary case arrives, then the OR manger has 

blocked the primary surgeon’s access to its allocated time) incurred on a given day is a random 

variable that depends on the arrival rate of primary cases. Thus, the release policy is highly 

dependent on the arrival rate of cases.  

Dexter and Macario (2004) have extended this study by assessing the effect of release 

time on efficiency. They claim that the timing of the block release has little impact on OR 

efficiency. However, this paper, which proposes adding a single case to existing schedules at 

different points in time, fails to consider the potential effect of decisions on the evolution of the 

schedule after cases have been added. In addition, they assume it is possible to hold a case on the 

waiting list until a block is released. Other papers that consider scheduling add-on cases have 

limited their analysis to the day before and the day of surgery, thus neglecting the role of the 

block release date (Gerchak et al., 1996; Dexter et al., 1999). 
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As stated by Herring and Herrmann (2011), one of the shortcomings of previous studies 

in the field of release blocks and block scheduling, in general, is that these models schedule 

patients all at once rather than sequentially over time. Although they cover all of the 

shortcomings of previous research in this field, they still assume the use of waiting lists for cases.  

 

Challenges in Elective Case Scheduling  

Although many researchers have conducted studies in the field of optimizing case 

scheduling, most of these studies have assumed that decision makers have access to full 

information about the pool of requests that are accumulated into a waiting list until the final 

decision is made about assigning cases into blocks. This type of research has mostly been 

conducted by using dynamic programming. However, in reality, surgical demands arrive over 

time and decision makers must assign a surgery date based on the current state of a system as 

soon as the patient’s request arrives. Uncertainty in future state plays an important factor in the 

scheduling process. Uncertainty in case durations, patients’ arrival rates, patient and provider 

preferences and probability of cancellations makes it difficult to plan properly. The request for 

elective surgery arrives over the span of multiple days before the day of surgery. These case 

requests arrive with different arrival rates and fill the blocks according to their level of urgency 

and the time that a procedure needs. Some patients request the earliest possible dates, while 

others are most interested in choosing the most convenient time well into the future. Some 

patients are sensitive to the surgery postponement and some are not. These natural differences 

among specialties explain why one specialty’s blocks may be almost full fourteen days before 

the day of surgery (such as GYN in Figure 5), whereas others may have filled only 50% of their 

blocks less than two weeks before the day of surgery (such as ORAL in Figure 5).  

It would be a simpler problem if there were no sharing of capacity allowed among 

specialties and no patients seeking the earliest possible dates.  In reality, hospitals release excess 

surgical time to surgeons who have urgent patients, based on a first-come-first-served basis. In 

this situation, the decision of case scheduling becomes even more complex.  

 



19 

 

 

 

Figure 5: Block allocation and progressive fill up capacity (µ is the arrival rate) 

 

Assume that, in an environment where blocks may be released some days before surgery, 

a new Cardio case (urgent) arrives (Figure 6). For this patient, the scheduling decision must be 

made based on the current state of the system. Assigning the case into the first available primary 

block (OR block associated with the case specialty) in four weeks or into the non-primary block 

in five days, given a block release policy set as five days prior to the day of surgery. 

How to handle such complexities is not a straightforward question since any decision will 

affect the future state of the system. The potential effects of all decisions must be captured in the 

block release policy and the strategies must be assigned according to the primary objectives of 

minimizing patients’ waiting times and maximizing overall profit. These challenges in surgical 

scheduling are a primary motivation for this study.  

Although, in some cases, long waiting times may have little medical impact. In other 

cases, excessive wait times can potentially impact health outcomes and result in lost patients. In 

this study, we present a simulation model for scheduling surgeries within the Stafford Hospital, a 

small size hospital with two types of patients: semi-urgent who may require immediate treatment 

and non-urgent patients where it may be medically acceptable to wait up to several weeks. There 

is no cost associated with a delay in scheduling non-urgent patients (zero waiting cost). In 

contrast, a hospital will be penalized for postponing the scheduling of semi-urgent patients one 

more day. Based on the result of a logistic regression analysis on Stafford data, there is a 

60 days before surgery 3 days before surgery 14 days before surgery 
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statistically significant difference between semi-urgent patients across different specialties in 

terms of a waiting cost coefficient. 

 

 

 

Figure 6: Case scheduling decision challenges 

 

At Stafford, all semi-urgent patients are treated the same based on a FCFS strategy, even 

though their urgency levels will differ. But, what will be the best set of scheduling policies for 

optimal yield across multi-priority patients? If less-urgent patients are booked further into the 

future, this raises the question of how much resource capacity to reserve for later-arriving but 

higher-priority demand? 

Access rules help clinics determine how much capacity to reserve for each type (or 

length) of appointment and for future callers with more urgent needs. These rules also determine 

planned appointment lengths for each diagnosis of the referring physicians. Thus, a request may 

not be scheduled on the first available date 

The decision of when a patient should be scheduled is made based on the cost for surgery 

postponement. A numeric solution is formulated to address this problem and multiple strategies 

are conducted to understand the properties of an optimal schedule policy. We are looking for sets 

of superior strategies to better manage health-care resources in order to reduce wait times to 

acceptable levels without undue additional costs. 

Cardio 
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Related research and contribution of this study 

The research presented in this dissertation contributes to the growing literature on 

applications of operations research methods to problems in healthcare through, 

1. The development and analysis of elective surgery scheduling decisions considering the 

joint impact of case mix planning, block allocation, case allocation and block release 

policies on patient wait time and hospital profitability.  

The limited existing literature on the joint optimization of block allocation decisions and 

release policies suggests it is advantageous to consider all level of decisions in this study. A case 

study of the scheduling system at a hypothetical two OR-room facility is introduced to illustrate 

the interaction among three surgical scheduling decisions and release block policies. The model 

illustrated in this research is closely related to the work of Herring and Hermann (2011) which 

addresses the problem of single-day surgery scheduling incorporating block schedules, block 

release policies and a surgical waiting list. They employed a stochastic dynamic programming 

(SDP) model to identify the optimal scheduling policy by continually minimizing utilization cost 

and customer (patient and surgeon) satisfaction cost. They introduce a threshold policy as the 

amount of space preserved each day for future primary cases (those that have allocated OR block 

time on that day) such that a balance is maintained between the differential cost of secondary 

cases and the blocking cost of higher-priority primary cases. Secondary cases are defined as 

specialties that do not have allocated OR time on that day, but still wish to perform a surgery. 

This threshold policy leads to a conventional block release threshold in which unused OR time is 

gradually released over the course of several days leading up to the day of surgery. What 

differentiates this proposed study from Herring and Hermann is that it does not assume the 

existence of any waiting list for patients (secondary cases). Instead, decisions are to be made at 

the time of the request for surgery. In addition, our study considers all the tactical and 

operational decisions (not only daily decisions), into one model, where the behavior of patients 

affects the profitability of the hospital.  

Several papers study the joint impact of hierarchal block scheduling decisions. The most 

relevant study is that of Testi et al. (2007) which reports on a hierarchical three-phase approach 

to determine operating room schedules. In the first phase, which they refer to as session 
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planning, the number of sessions to be scheduled weekly for each discipline is determined. Since 

they distribute the available operating room time over the set of disciplines, this problem can be 

regarded as a case mix planning problem. Phase 2 formulates a master surgery scheduling 

problem in which they assign an operating room and a day in the planning cycle to the sessions 

of each discipline. Both phases are solved by integer programming and are modeled at the 

discipline level. Phase 3, on the contrary, is formulated in terms of individual patients. A 

discrete-event simulation model is presented to evaluate decisions concerning date, room and 

time assignments (Cardoen et al., 2010). Although their model suggests an integrated way of 

facing surgical activity planning in order to improve overall operating theatre efficiency (in 

terms of overtime, throughput as well as waiting list reduction), their model ignores the 

interaction of these decisions and how the lower level decisions can affect the optimality of the 

previous decisions. Also, they assumed a pure block scheduling strategy which implies no block 

release policy is involved.  

The second paper that is related to our work is Tanfani and Testi (2010), where the 

authors proposed a linear programming model to simultaneously address the decisions involved 

in the three-phases of the OR planning and scheduling problem described above, excluding only 

the most strategic ones dealing with the number and type of the ORs and their operating hours. A 

sequential heuristic algorithm is applied to solve an NP-hard combinatorial optimization problem 

intended to minimize a cost function based upon a priority score, as a function of waiting time 

and the urgency status of each patient. Aringhieri et al. (2015) adopt the idea proposed in Tanfani 

and Testi and extend it to incorporate both patient utility (by reducing waiting time costs) and 

hospital utility (by reducing production costs measured in terms of the number of weekend stay 

beds required by the surgery planning). The main contribution of these papers is to characterize 

the joint optimization of all three stages of scheduling; incorporating both patient and hospital 

societal benefits although their model focuses on waiting list management and does not capture 

the immediate scheduling challenges.  

2. Development of a multi-objective model that characterizes financial, temporal and 

clinical measures to balance between competing classes of demand for surgery. 
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Rather than focus on traditional block scheduling and individual patient scheduling 

objectives (such as leveling hospital occupancy and maximizing OR utilization), our analysis 

will focus on how OR managers can make equitable scheduling decisions in the face of 

competing demands from various surgeons and surgical specialties. In order to consider all 

conflicting objectives, we have developed a multi-objective function that considers hospital 

profit, surgeon availability and multi-priority patients’ sensitivity to waiting time. The details are 

provided in the next chapter.  

3. New way of looking at waiting cost where the cost of excess waiting is defined as a 

function of leaving/health deterioration. 

If access to elective surgical procedures is managed by scheduling patients from a 

surgery waiting list, the main question will be to decide how many of the patients in the waiting 

list can/should be assigned for the next available block time. This optimal strategy can be chosen 

based on the trade-offs between the cost for overtime work and the cost for surgery 

postponement. Stenevi et al. (2000) has focused on the productivity loss costs incurred by 

waiting such as income loss, community service such as home help, medical treatment at home 

and hospital stays. Bishai and Lang (2000) focused on utility loss and the willingness of patients 

to pay (bid) to reduce their waiting time.  

While the literature on waiting list management is rich, the issue of immediate 

scheduling, where no waiting list exists, has received less attention from operations researchers. 

Dexter et al. (1999) showed, based on simulation results, that OR utilization depends greatly on 

the average length of time patients have to wait for surgery. The longer patients can wait, the 

greater is the percentage of OR block time that can be used, since more surgical dates can be 

evaluated for a good match between case duration and the remaining OR time in the block. 

Although, after conducting a survey to determine patients’ perceptions of acceptable waiting 

times for elective surgery, they concluded that the optimal strategy would be to schedule patients 

in “overflow” time outside of block if there is no available time before the acceptable waiting 

time. 

Several previous studies have used statistical tools to evaluate the relationship between 

surgical wait times and adverse events. Sobolev and Kuramoto (2008) introduced several 
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statistical methods using descriptive and comparative statistics and regression models to 

demonstrate the correlation between waiting time and adverse events. Regression models have 

been used to quantify the effects of explanatory variables on wait list outcomes. Using logistic 

regression, Sobolev et al. (2008) showed there was a linear trend, approximately a 5% increase in 

the odds of in-hospital death for every additional month of delay before surgery. Applying 

logistic regression, Zamakhshary et al. (2008) found that a wait time for surgery of more than 14 

days was associated with a doubling of the risk of hernia among infants and young children. Ahn 

et al. (2011) used logistic regression modeling to find the target access time by which the risk of 

additional surgical procedures and other adverse events increases. 

In this study, the waiting cost function in derived using logistic regression based on 

multi-priority patient behavior in response to waiting time. This is consistent with existing 

research on capacity allocation and revenue management. 

4. Introducing a special revenue management policy, “Reserve Policy”, under modified 

block scheduling policy.  

We borrow the idea of reserve scheduling policy from the revenue management 

literature. Littlewood (1972) developed the first static single resource model using protection 

levels to characterize the optimal airline booking policies for single flight leg revenue 

management problems. Since then, many allocation policies were developed by modifying 

existing models to fit the needs of the health care industry. Among them, we have the expected 

marginal seat revenue (EMSR) control for multiple classes (Belobaba 1987; Belobaba 1989), a 

sequential application of the two-fare class rule to the multiple-fare class situations, when 

requests arrive in increasing fare order.  Despite the success of this body of work, most of the 

above-mentioned models make simplifying assumptions. Dynamic programming has been used 

in an effort to relax some of the assumptions incorporated into the policies reflected by 

Littlewood’s rule, EMSR and the optimal policies. 

While this study is motivated by a case study of the scheduling system at the Stafford 

Hospital, our analysis of the resulting model focuses on generating valuable insights for 

practitioners as well. This includes providing an answer to the following questions: 



25 

 

 When do we need to allocate more block time than average demand would suggest? 

 Which mix of open/block scheduling strategy is best for each combination of patients? 

 Who should access released hours?  

 What are the rules of thumb for scheduling multi-priority patients?  
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Chapter 3 : Allocation and Release Policy Decisions:  Model Objective and 

Case Study 

Model Objective: 

Any planned capacity that accommodates stochastic demand most of the time will 

inevitably involve considerable unused capacity. Conversely, a level of capacity chosen to 

minimize unused capacity will inevitably cause an increase in wait time for patients (Pandit et 

al., 2010). Thus the question of how to balance demand and capacity is closely related to the 

question of how to balance utilization and waiting time. To answer this question, a multi-

objective model that characterizes financial, temporal, and clinical measures is employed within 

a simulation/ optimization framework. 

Providing more capacity (OR Block time) generates more cost, but the key question is 

what is the marginal benefit of additional capacity? In constrained optimization, the shadow 

price is the incremental change per unit of the constraint in the objective value of the optimal 

solution of an optimization problem obtained by relaxing the constraint. We can expect a non-

linear function for the marginal benefit of unit block hours and release block policies to add even 

more complexity to the model. A release block policy provides essentially free block time over 

time, so its interaction with the original block size is an interesting issue that warrants 

investigation. 

Another element in our objective function is the cost associated with the waiting time of 

the patients. The waiting time is defined as the time gap between when a patient calls to make an 

appointment for surgery and the time the surgery is actually performed (defined as indirect 

waiting time in literature, Gupta and Denton, 2008). Of course, what counts as waiting time 

depends on the type of surgery required: we will not penalize every individual for waiting since 

some procedures are intentionally scheduled multiple weeks in advance because they do not 

involve emergencies and others, while necessary to preserve a patient's life, do not need to be 

performed immediately (Semi-urgent surgery).  

Patients who expect, but do not receive, immediate service may decide to leave for 

another surgeon or may be forced to leave because their condition has deteriorated. Table 3 

summarizes the cancellation rate of Stafford’s patients through time. Numbers are calculated 

http://en.wikipedia.org/wiki/Constrained_optimization
http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Medical_emergency
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based on the total counts of canceled surgeries among total number of appointments within a 

given time period. We expect that as the waiting time increases, the probability of leaving 

increases, as well. For some specialties such as plastic and Ortho, patients decide to cancel the 

appointment somewhat early (more than 75% cancel their appointment after a week) while in 

other specialties (such as podiatry) patients keep their appointment as long as they can.  

 

Table 3: Cancel rate as a function of waiting time across semi-urgent cases 

% of semi-urgent cases canceled which have waited after x-days 

Weeks x-days Podiatry Plastic Otho GYN GV ENT 

1 5 15% 83% 76% 37% 50% 44% 

2 10 6% 0% 14% 23% 32% 17% 

3 15 15% 17% 10% 17% 9% 17% 

4 20 12% 0% 3% 13% 9% 11% 

5 25 9% 0% 0% 3% 0% 0% 

6 30 6% 0% 3% 7% 0% 11% 

7 35 3% 0% 0% 0% 0% 0% 

8 40 12% 0% 0% 0% 0% 0% 

9 45 21% 0% 0% 0% 0% 6% 

 

Based on the above elements we defined our multi-objective function (1) which 

maximizes the profit through minimizing the block cost incurred by scheduling patients in 

surgical blocks as well as minimizing waiting time costs
2
. For a period N days into the future and 

S surgeons using OR blocks, we can represent an objective function as follows. 

 

Maximize Profit = max                          
 
   

 
   

 
   

 
     (1) 

 

      
 
       Total expected revenue from all cases 

     
 
       Total OR block time cost  

         
 
   

 
             Total waiting cost  

     Total OR block time provided for surgeon i in the period 

     Total cases done with surgeon i in the period 

      Per case revenue associated with surgeon i case 

                                                 
2
 - we assume there is no overtime allowed 
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        Probability of cancellation, given delay time j  

     Cost per unit of block time for surgeon i  

 

Model Variable: Cost of OR block time   

Operating rooms are significant cost drivers in hospitals and their costs can vary 

depending upon the type of medical procedure. “How much does one unit (hour) of OR time cost 

for each specialty/surgeon?” is a common question often asked by operating room (OR) 

management in order to effectively evaluate and manage the scarce resources. Total OR time 

provided to a surgeon will consist of his utilized OR block time and OR hours released from 

underutilized services. So, both allocated OR block hours and release policies will directly affect 

the total block cost. The best decisions about the allocated block size and release policies should 

be made considering the difference among surgical block cost. The total block cost of each 

surgeon can be calculated with the following function (2),      

  

     

 

   

                                                                                        

 

   

                                                                                            

          

Model Variable: Cost of waiting    

Delaying surgery may lead to a deterioration of the patient’s condition, a poor clinical 

outcome, an increased risk of death, or an increase in the probability of emergency admission. 

Recently, policy makers have called for the establishment of target access times for major 

operations that would minimize the risk of adverse events associated with treatment delays 

(Sobolev and Kuramoto, 2008). Thus, the risk of adverse events while waiting should be 

considered explicitly when building a surgery schedule since it will increase the risk of leaving 

the system (cancellation). In this study, we employ a logistic regression model to estimate the 

(indirect) waiting cost as the probability of cancellation due to the time gap between request and 

the appointment. As past research shows, the longer the delay in appointment, the higher the 

chances that he (she) will cancel the appointment (Gallucci et al., 2005). The waiting cost of 

each surgeon can be calculated with the following function (3),  

http://www.answerbag.com/q_view/2254232
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The waiting cost model that we propose in this study has much in common with existing 

research on capacity allocation and yield management. We observe, analyze and anticipate 

patient behavior in response to waiting time in order to maximize yield or profits from a fixed 

perishable resource (OR time). Although the surgery cost would be fixed over the same 

procedure, managing the available OR time will affect the overall profit. The daily challenge 

facing the surgical scheduler is to allocate the available capacity between the priority classes so 

as to minimize the number of patients whose wait time exceeds a pre-specified, priority-specific 

target, with greater weight given to any late bookings of higher-priority demand. This requires 

significant foresight because each day’s decision will clearly impact what appointment slots are 

available for future demand. If lower-priority patients are booked too soon, then there may be 

insufficient capacity for later-arriving higher-priority demand. Conversely, if lower priority 

patients are booked too far into the future, there is the potential for idle capacity (Patrick et al., 

2008). The arrival times of patients are uncertain, so the scheduler must decide whether or not to 

reserve the next available OR for the potential next semi-urgent patient and risk the potential for 

idle capacity. An optimal scheduling strategy will mitigate this risk for semi-urgent patients and 

the hospital at the same time.  

Waiting cost is comprised of the contribution margin of each type of patient multiplied by 

the probability that the patient will leave, given the indirect waiting time. Yield management was 

originally used in the airline industry to manage strategic control of seats in order to sell to the 

right customers at the right times for the right prices. After yield management’s success was 

established in the airline industry in the 1970s, it has grown in many industries and organizations 

that face the challenge of satisfying customers’ uncertain demand with a relatively fixed amount 

of resources.  

Healthcare is an area in which yield (revenue) management has not been intensively used, 

probably because most segments within this industry are working on a non-profit base and it can 

be argued that revenue management could raise some ethical issues. But this may not necessarily 

http://en.wikipedia.org/wiki/Yield
http://en.wikipedia.org/wiki/Profit_(economics)
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be true. Hospital cost represents a large and increasing percentage of the national GDP (Gross 

Domestic Product) and, as any other business that supplies a good or service to its customers, a 

healthcare unit needs to generate ample revenue for sustainability and future growth. There is no 

harm in increased revenue when the long term goal is better customer satisfaction through 

decreasing waiting time while maintaining an acceptable quality of service (Strum et al., 2008).  

In the next session, we provide a case study of a hypothetical hospital to illustrate 

practical aspects of implementation of the multi-objective function in joint optimization of block 

allocation decisions and block release policies. 

 

Case Study of Joint Optimization of block allocation decisions and block release 

policies:  

We split the study into three subset models with different complexity and assumption 

levels, as shown in Table 4. This breakdown will give us more insight about the effect of 

interaction in the final model. 

 

Table 4: Description of models 

 

 

Decision

1 

Decision

2 

Decision

3 

Decision

4 
Assumptions Objective 

Model

1 
Xi* xi*   

-No release allowed 

(scenario 1) 

Best OR allocation with 

lowest waiting penalty 

Model

2 
  Ti* R* 

-Release allowed 

-Obtain the Xi* & 

xi* of Model1 as 

input 

Best block release policy 

with lowest waiting 

penalty 

Model

3 
Xi* xi* Ti* R* 

-Release allowed 

(scenario 2) 

Best OR allocation and 

release policies with 

lowest waiting penalty 

 

Decision variable 1 Xi*: allocated OR block for each surgeon i 

Decision variable 2 xi*: Allocated weekly OR block schedule for each surgeon i 

Decision variable 3 Ti*: Improved release time (Days before surgery to release block i) 

Decision variable 4 R*: Rules to assign cases to released blocks 
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Discussion: For the surgery master schedule, the maximum number of cases on each day or total 

work hours per surgeon per day is limited based on resources as beds, nurses, equipment and 

downstream resources. Thus, to control this constraint and exclude its effect in the model we set 

an upper bound on the number of cases of each type for each day.  

 

In the first model, we assume that no block release policy exists.  In other word, surgeons 

cannot share blocks even if blocks are not fully filled, and each case should be assigned to the 

blocks of its surgeon. In this model, the best solution of OR block size (Xi*) and the best 

allocated times for each surgeon (xi*) will be evaluated based on maximizing profit. The optimal 

output of the first model (the best block size and allocation plan) will be set as an input for the 

second model, where a block release policy is assumed to exist. Thus, in this stage of our 

analysis, we are seeking the best release policy given the OR block sizes from the previous level. 

The third model will yield the results that are of most interest in this study. In it, we expand the 

scope of the second model and incorporate all decision variables and their interaction without 

any assumption about block size or release policy. The difference among the results of these 

three models will provide insight into sensitivity of our objective to policies and decisions. 

 

Simulation software: 

The models described in the previous sections were implemented using the ExtendSim 

simulation environment. ExtendSim is an advanced simulation software that can dynamically 

model continuous, discrete event, discrete rate, agent-based, linear, non-linear, and mixed-mode 

systems. The integrated simulation database creates an interface that facilitates dynamic 

simulation modeling. The models are comprised of blocks that communicate with each other to 

describe the simulated sequence and the general logic of the model. In addition, for specialized 

purposes, an ExtendSim custom block can be created that can be programmed in ExtendSim’s C-

based ModL language. Finally, ExtendSim’s Scenario Manager leverages the database to store 

model factors and responses and run experiments to analyze how a model reacts to different 

factors. 

http://www.extendsim.com/sols_simoverview.html#continuous
http://www.extendsim.com/sols_simoverview.html#discreteEvent
http://www.extendsim.com/sols_simoverview.html#discreteRate
http://www.extendsim.com/sols_simoverview.html#agentBased
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Scenario analysis and design of experiment 

Simulation approaches are well suited for applying a scenario analysis to discover the 

responses of the simulated system based on different factors. The challenge is to integrate 

simulation and optimization in order to bring together the capability of the simulation in the 

scenario analysis (“what-if” analysis) and in describing the dynamics of the system considered 

and the prescriptive strength of the optimization, i.e., the “what’s-best” analysis (Ozcan et al., 

2011) . ExtendSim’s Scenario Manager provides an easy interface to design different model 

configurations and run experiments to understand how a model reacts to different factors. When 

analyzing the model responses, it can be helpful to employ design of experiments (DOE) to 

reduce the number of model runs required to compare multiple scenarios. This is particularly 

useful for initial investigations where the modeler needs to determine which factors have the 

most impact on system performance (Krahl, 2011). The results of DOE can easily be translated 

to other analysis programs, such as statistical software, for further analysis.  

In order to better understand how the best decisions are generated, we have started with 

an analysis of a simple hypothetical hospital with two ORs (OR1 and OR2) and four types of 

surgeons/procedures (A, B, C & D) as an abstract version of our real model (Appendix A). We 

assume that demand for each type of surgery arrives according to a Poisson distribution so the 

inter-arrival times follow an exponential distribution. Also, we estimate revenue for each surgical 

case and unit block costs according to each type of surgery provided (Table 5). For simplicity, 

we assume that the case duration is set at one hour for any type of surgery. The cost of waiting 

reflects the probability of a patient opting out of the procedure and is represented as a   

logarithmic function of waiting time. This logarithmic function is shown in Figure 7.  

The following formula defines how waiting cost of each patient is calculated in the 

objective function (as a logarithmic function of waiting time).   

Probability of a patient opting out of the procedure = 

 
                                             

                                                    

 

Waiting cost of patient i (expected $ loss) = Revenue per case associated with surgeon i case * Probability of a 

patient opting out of the procedure 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ozcan,%20Y.A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ozcan,%20Y.A..QT.&newsearch=partialPref
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Figure 7: Probability of Cancellation given waiting time 

 
         

Table 5: Input data for abstract model 

 Surgeons/ procedures 

 A B C D 

Inter-arrival time distribution Exp ~ (1.3) Exp ~ (12) Exp ~ (6) Exp ~ (2.8) 

Unit revenue ($/case) 5 8 7 6 

Unit block cost ($/hr) 3 3 3 3 

Contribution margin ($/case) 2 5 4 3 

 

Patrick and Puterman (2008) claim that if average demand exceeds available capacity 

(regular and overtime
3
), then no optimal schedule can be achieved. So, we define the base 

capacity such that it meets average demand based on arrival rates and case durations (while wait 

time may continue to increase owing to the variability in demand). The block size is formed such 

that it meets weekly average demand. In this model, a cyclic block schedule is used to allocate 

operating room time to particular surgeons for their elective surgeries (Table 6). It is assumed that 

ORs are open eight hours a day from 8:00am to 4:00pm. 

 

 

                                                 
3
 - We don’t have any overtime in this study 
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Table 6: Cyclic block schedule 

 Weekly block schedule 

 Hour 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 

Monday 
OR1 A A A A A A A A 

OR2 B B B B B    

Tuesday 
OR1 A A A A A A A A 

OR2 D D D D D D D D 

Wednesday 
OR1 A A A A A A A A 

OR2 D D D D D D D D 

Thursday 
OR1 A A A A A A A A 

OR2 D D D D D D D D 

Friday 
OR1 A A A A A A A A 

OR2 C C C C C C C C 

 

Working with these hypothetical parameters, we have created a simulation model with a 

custom “scheduling” module (the simulation interface provided in Appendix B). This scheduling 

module is programmed to run for two scenarios: 1) block release is prohibited (model 1), and 2) 

block release is allowed (model 2). For the first scenario, each case is assigned to the next 

available block in the surgeon’s designated block times regardless of the existence of earlier 

available blocks in other surgeons’ block times. In the second scenario, the scheduling algorithm 

is much more complex. Since blocks are shared after a stipulated release date, a new case may be 

assigned to any of several available surgeon blocks. Thus, multiple variables must be considered 

in order to find the best assignment option. Appendix C shows the entire scheduling algorithm 

which includes scheduling logic and sequential decisions that are programmed in the scheduling 

block. The program incorporates all assumptions and utilizes all the data tables created in the 

database. All data for the simulation, included input, current state of the system, objective 

function and block release policy are stored in the database. This makes it readily useful for 

simulation and further analysis (Appendix D). The abstract model runs for 187 business days (or 

six months with 30 days for each month) with the first 7 days excluded as warm-up for the 

analysis. 

The algorithm is based on multiple assumptions: 

 Case duration is considered as room duration which includes surgery, cleaning and change 

over time. There is no time gap between two consecutive cases. 
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 Operating room cost is assumed to be the same for all procedures and surgeons. 

 All patients are considered as urgent patients. In other words, we assume that all request the 

earliest available block that accommodates their case duration 

 The earliest block that a case can be assigned to will be the next day after the request, due to 

a lead time for preadmission testing and preparation for surgery 

 In reality, surgeons cannot schedule elective surgery every day. To limit the number of 

options and to make the model more realistic, a preference table is provided to represent the 

days that surgeons are available to conduct surgery. 

 

Model 1: Find the best block size and allocation 

In this model, the ExtendSim Scenario Manager can be run to investigate the sensitivity 

of profit to the block size and allocation plan (Appendix E-G). Three block size scenarios of two, 

five and eight hours were created for each day (Table 7). Table 8 shows the possible range of 

block sizes based on the scenarios and the hours needed based on the average demand (arrival 

rate and case duration). It assumes that all blocks start at 8:00 am every day. Based on the 

improved solution, end time may vary as either 10:00 am, 1:00pm or 4:00pm. So, the smallest 

block size is set as two hours.  

 

Table 7: Block size option 

 

 

 

 

Table 8: Block allocation range 

 A B C D 

Allocated OR hours range 28-40 hours 2-8 hours 2-8 hours 12-24 hours 

Average weekly OR hours demand 30 hours 4 hours 7 hours 14 hours 

 

Option Start Time End Time Block size 

1 8:00 10:00 2 hrs 

2 8:00 13:00 5 hrs 

3 8:00 16:00 8 hrs 
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Model 1 Results:  

Figure 8 displays the results of the Scenario Manager, which constitute simply the 

relationship between the six model factors and profit (Table 9). The lines show all the possible 

what-if scenarios if one input were to change and all other inputs were held constant. It is very 

easy to see that the block sizes of Surgeon A and D have the biggest impact on profit (have a 

steeper slope in step 0 of Figure 8).  

 

Table 9: Model 1 factors and response 

Factors Response 

1. Surgeon A Block size on Tuesday 

2. Surgeon A Block size on Thursday 

3. Surgeon B Block size on Monday 

4. Surgeon C Block size on Friday  

5. Surgeon D Block size on Tuesday 

6. Surgeon D Block size on Thursday 

Profit 

 

Starting from the base case (step 0), the next step or the next decision is made based on 

the factor with the most impact on improving the profit. The last figure indicates the best 

allocation strategy for all surgeons. For Surgeon A there is value in terms of increased profit by 

increasing block size from 2 hours to 5 hours, but no more value is created by increasing block 

size from 5 hours to 8 hours. The effect of block size is similar for both Tuesdays and Thursdays 

(five hours on each day). Although, on average, Surgeon A needs 30 hours a week for his cases, 

the Scenario Manager shows 34 hours of block time per week would be a better strategy. The flat 

line for Surgeon B in Step 0 indicates that in comparison with other surgeons’ blocks, the block 

size of Surgeon B will not impact the profit. If Surgeon C decides to extend his or her hours, 8 

hours blocks would be better rather than 5 hours. Surgeon D’s best block size and allocation is 

the same as Surgeon A’s best result in terms of total hours needed and the amount of service 

hours on Tuesdays and Thursdays.  
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Figure 8: Model 1 Results- Scenario manager on output for the prominent block size and allocation

Step 1: Block size of A 

Last Step: Best allocation plan 

Step 0: Base case 
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The best block size and allocation plan based on the Scenario Manager result are 

summarized in Table 10.  The best block size results from the scenario manager for Surgeons A, 

B and D are strictly within the possible block size range while Surgeon C touches his upper 

bound of 8 hours. 

 

Table 10: The best block size and allocation 

 A B C D 

Allocated OR 

hours range 
28-40 hours 2-8 hours 2-8 hours 12-24 hours 

Average 

demand 
30 hours 4 hours 7 hours 14 hours 

Best 

allocation 

plan 

34 hours 5 hours 8 hours 18 hours 

Best weekly 

schedule 

Day Block Size 

Mon 8 hrs 

Tue 5 hrs 

Wed 8 hrs 

Thu 5 hrs 

Fri 8 hrs 
 

Day Block 

Size 

Mon 5 hrs 
 

Day Block 

Size 

Fri 8 hrs 
 

Day Block 

Size 

Tue 5 hrs 

Wed 8 hrs 

Thu 5 hrs 
 

 

Model 2: Find the best release policy 

The next step in this analysis will be to fix the block size and weekly block schedule based on 

the results of Model 1 and run multiple scenarios on the block release time policy. Two 

parameters are involved in the block release policy: 

(1) The maximum time that a patient can wait for accessing his surgeon’s primary block 

before being considered for scheduling in an off block, and  

(2) The minimum number of days before the day of surgery that the block can be released. 

Parameter 1 depends on the expectation of the patients about the longest time to wait for 

surgery and the urgency of the case, but parameter 2 depends on the arrival rate of patients and 

how quickly blocks are filled. The maximum time that a patient can wait can be estimated for 

each type of surgery based on survey or statistical methods. Of course, off block surgeries have 
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some amount of inconvenience for the surgeon and team. So, up to some point and based on 

patient condition, they prefer to keep the case in a primary block until the surgeon decides to 

search through available off blocks for an earlier time. For this model, we assume it is the same 

for all types (four days or 96 hours). The minimum number of days before the day of surgery that 

the block can be released will be analyzed by the Scenario Manager. Since the maximum wait 

time is set to four days, the minimum scenario range will be considered one to four days for each 

type of patient.  

 

Model 2 Results:  

As shown in Table 11, we examine the effect of four factors (block release time for each 

type of surgery) on profit. These factors are defined as the number of days before surgery a block 

can be released such that remaining block hours can be shared among other surgeons who have 

urgent cases to schedule. 

Table 12 is provided to represent the days that surgeons are available to conduct surgery. 

The surgeons’ preference adds more constraints on the sets of options for the receiving surgeons 

who want to schedule surgery on released dates. A zero value in the table indicates a day when 

the surgeon is not available to perform any operation. 

Figure 9 shows the first and the last step of Scenario Manager’s outcomes of this model. 

Although all release policies will affect the profit, a comparison of the release time of surgeon A 

is shown to have the most effect on final profit. The last figure provides the best release block 

policy for this model since no more gain in profit is possible after this point.  

The concavity of these lines (in the last figure) suggests releasing blocks three days 

before the surgery date is the best strategy of release policy for this case study. It means that if 

surgeons release their remaining block hours to others, then the overall hospital profit will be 

maximized over time. These policies are summarized in Table 13.  
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Table 11: Model 2 factors and response 

Factors Response 

1. Release day for surgeon A’s block 

2. Release day for surgeon B’s block 

3. Release day for surgeon C’s block 

4. Release day for surgeon D’s block 

Profit 

 

 

Table 12: Surgeons’ preference table 

 MON TUE WED THU FRI 

A 1 1 1 1 1 

B 1 1 1 1 1 

C 1 0 1 0 1 

D 0 1 1 1 0 

1: does surgery  0: does not surgery 

 

 

 
 

 

 

Figure 9: Model 2 results- Scenario manager on the superior release policy 

Step 0: Base case 

Last step: Best release policy 



 

41 

 

Table 13: The best release policy scenario 

 A B C D 

Release time scenario (# of days before surgery)  1-4 day(s) 1-4 day(s) 1-4 day(s) 1-4 day(s) 

Best release policy 3 days 3 days 3 days 3 days 

 

Model 3: Find the best block size, allocation and release policy 

This model conducts a comprehensive experiment on the interaction of all block 

allocation decisions and release policies on profit. This model is a combination of two previous 

models which contains ten factors consisting of, six factors of block allocation from model 1 and 

four block release policies from model 2 (Table 14). Since it is a large full factor model with 

multiple levels of running, two factors are excluded from the scenario analysis model (Release 

time and block size of block B). For comparability, their value is set as the best output of the two 

previous models (Five hours block on Monday with a three-day release policy).  

 

Table 14: Model 3 factors and response 

Factors Response 

1. Release day for surgeon A’s block 

2. Release day for surgeon B’s block 

3. Release day for surgeon C’s block 

4. Release day for surgeon D’s block 

5. Surgeon A Block size on Tuesday 

6. Surgeon A Block size on Thursday 

7. Surgeon B Block size on Monday 

8. Surgeon C Block size on Friday  

9. Surgeon D Block size on Tuesday 

10. Surgeon D Block size on Thursday 

Profit 

 

Model 3 Results:  

It is expected that the effect of block size on profit is much more than the effect of release 

block policy (larger slope for block size factors in step 0 of Figure 10). Although the impact of 

release policy appears negligible initially, but it becomes a more significant factor with 
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increasing block sizes. In other words, when we are close to the appropriate block size, then 

release block policies become the best strategy to take advantage of “free” available capacity in 

improving the profit.  

The output of the scenario manager is given in Figure 10. It demonstrates the snapshot of 

three steps of what-if scenarios and how release policy becomes effective after the block 

allocation decision process (step 4). The results suggest that utilizing the release policy instead of 

asking for additional block hours (with more associated cost) would be a viable strategy to 

improve profit. Although Surgeon C’s block size is reduced to two hours, the overall profit 

improves in this model. Table 15 summarizes the best decisions developed by Scenario Manager. 

 

Table 15: Model 3 best decision and release policy 

 A B C D 

Best 

allocation 

plan 

34 hours  5 hours 2 hours 18  hours 

Best weekly 

schedule 

Day Block Size 

Mon 8 hrs 

Tue 5 hrs 

Wed 8 hrs 

Thu 5 hrs 

Fri 8 hrs 
 

Day Block Size 

Mon 5 hrs 
 

Day Block 

Size 

Fri 2 hrs 
 

Day Block 

Size 

Tue 5 hrs 

Wed 8 hrs 

Thu 5 hrs 
 

Best release 

policy 
4 days 3 days 2 days 4 days 

 

Result(s) comparison: 

The main goal is to find the best combination of block decisions and release policies that 

maximize the overall profit. The contribution of these three models is shown in Table 15. These 

models try to provide the minimum amount of surgical blocks while maximizing the profit 

(maximize utilization). Models 1 and 2 have the same amount of surgical blocks provided to 

surgeons, but the difference in profit is due to introducing the release policy in the second model. 
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Figure 10: Model 3 results- Scenario manager on the prominent block allocation and release policy

Step 0: Base case 

Step 4: Block release policy effect 

Last step: The best allocation plan and release policy 
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The second model sets the block size at its improved position which was calculated in the 

first model, then determines the best release policies. Model 3 is a generalization of the second 

model whereby the block allocation may not be superior. The difference between model 2 and 3 

reveals the interaction effect of scheduling decisions and release policy.The results suggest that 

ignoring the interaction of decisions will penalize the overall profit. In this abstract model (with 

given inputs and assumptions) the profit increases more than $1726 a year ($863 per 6-month 

period) with less total operating block time provided to surgeons (comprising the difference 

between profit of model 1 and model 3). The median waiting time for the first model is unevenly 

spread across surgeons since there is no possibility for sharing blocks among surgeons and 

Surgeon B and C have only one dedicated day a week to perform surgery. The next two models 

demonstrate how this limitation can be eliminated with block release policies. The median 

waiting time is more even across surgeons in the next two models because we set a maximum 

day that a patient can wait and a release date for sharing unfilled blocks. There is no measurable 

difference between the median waiting times for model 2 and model 3 (Table 16). 

 

Table 16: Comparison of three models 

 Model 1 Model 2 Model 3 

Profit $ 1133 $ 1563 $ 1996 

Total block hours 65 (hrs/week) 65 (hrs/week) 59 (hrs/week) 

Median waiting time 

for patients (hours) 

A 45 

B 92 

C 94 

D 50 
 

A 45 

B 48 

C 49 

D 49 
 

A 47 

B 51 

C 47 

D 48 
 

 

Although in model 3, Surgeon C has lost six hours of his dedicated OR time per week, it 

does not have any effect on the median waiting time of his patients. This loss is compensated by 

earlier block release times for Surgeons A and D and a later release time for Surgeon C (Table 

17).  
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Table 17: Model 2 and 3 best release block policies 

Best release policy A B C D 

Model 2 3 days 3 days 3 days 3 days 

Model 3 4 days 3 days 2 days 4 days 

 

Finally, we explore the details of the differences among these three models. The pie 

charts in Figure 11 demonstrate the block allocation proportions of the four surgeons in Models 1 

and 2 (the same as model 1), and of model 3. Comparing the solutions indicates how the third 

model increases the overall profit with less service hours. It devotes six fewer block hours to 

Surgeon C and keeps the same amounts for the other three. This reduction did not erode the 

profit due to new block release policies.   

The inter-arrival times of Surgeon C’s patients follow an exponential distribution with 

mean 6 hours as compared to the inter-arrival time of Surgeons’ A and D arriving requests which 

are also exponential but with averages of 1.3 and 2.8 hours, respectively. The results establish 

that it is profitable to reduce service hours of C with less frequent patients and modify the block 

release policies (later release time for C and earlier release time for A and D) such that these 

patients can easily fill underutilized hours of surgeons with more frequent patients. This resulted 

in higher utilizations for the third model (see utilizations in Figure 12).  

Next we evaluate the percentage of cases that are done in non-primary blocks (off-block) 

in models 2 and 3. As can be seen in off-block Table 18, the percentage of primary block 

surgeries of Surgeons’ A and D remain unchanged in the two models with around 100% of 

surgeries within their primary blocks. Each number represents the percent of the row surgeries 

performed in the column surgeon’s block. 

The main difference between the results of models 2 and 3 is in Surgeon C’s block, 

where more than two thirds of the surgeries are done outside of his primary block in model 3. 

The reason is that in model 3 the block size of C is reduced from 8 hours to 2 hours per week so 

cases will need to be done in other surgeons’ blocks.  
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Figure 11: Case mix Block allocation proportions of four surgeons A, B, C & D 

 

Table 18: Percentage of off-block surgeries 

 

 A B C D 

A 99.9% 0.0% 0.0% 0.1% 

B 15.8% 69.9% 1.5% 12.8% 

C 10.1% 17.3% 70.1% 2.5% 

D 0.9% 0.0% 0.0% 99.1% 
 

 A B C D 

A 100.0% 0.0% 0.0% 0.0% 

B 14.3% 67.7% 0.0% 18.0% 

C 36.2% 21.7% 29.5% 12.6% 

D 1.5% 0.0% 0.0% 98.5% 

Model 2       Model 3 

 

 In the second model, Surgeon C has eight hours with release time of three days before the 

day of surgery. In this model, seventy percent of cases are done in C’s primary block and around 

twenty percent in block B. In contrast, when block C reduces to 2 hours per week over seventy 

percent of the cases are done outside of the primary block, mostly in blocks A and B. Earlier 

release times increase the opportunity for other surgeons to schedule their cases in alternate non-

primary blocks. On the other hand, the primary surgeon will lose his or her access to the 

dedicated block.  This trade-off is defined in the best block release policies for each surgeon. 

Finally, the utilization rates of the block are analyzed in Figure 12. In general the 

utilization rate is improved from model 1 to model 3. While models 1 and 2 have the same 

amount of surgical block hours; utilization is increased in second model (due to introduction of 

release policies) except for Surgeon’s C block where the utilization declines. The main reason is 

Models 1&2 Model 3 
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that 30% of Surgeon’s C cases are done out of his block mostly in Surgeons’ A and B blocks to 

keep the waiting time of the patients as low as possible.  

In order to avoid patients delays and staff overtime due to OR utilization higher than 85% 

to 90% for surgeon A and C, extra OR available time can be allocated to them to increase 

efficiency of an OR without the cost of patient inconvenience. These results outline the 

advantage of considering the joint impact of allocation decisions and block release policies 

towards higher profit for hospitals and lower waiting times for patients.  

 

 

Figure 12: Utilization rate of Surgeons’ service hours 
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Chapter 4 : Research Design and Methodology 

Methodology: Development and Evaluation of Case Scheduling Policies 

Even though patient scheduling problems have been studied extensively over the last 

decade, the dynamic allocation of medical capacity in advance of the service date, when future 

demand for service is still unknown and in the presence of multiple types of patients has received 

limited attention. In general, three types of scheduling decision problems have been considered: 

(1) who to serve next, (2) when to schedule the arriving patient and (3) how much capacity to 

reserve for a particular class of patients. The first question tries to schedule available patients on 

the day of service (referred as allocation scheduling), while the next two questions focus on 

scheduling patients in advance of service date (referred as advanced scheduling based on 

Margerlin and Martin (1978)). Advance patient scheduling decisions usually rely on the 

expertise of one or two bookings agents and are made without explicitly considering the impact 

of current decisions on the future performance of the system (Sauré, 2012). Our study addresses 

the second question where it is important to fix appointment dates soon after multi-priority 

patients are requesting the surgery. In this dissertation, we acknowledge the importance of 

developing advanced scheduling concepts and techniques instead of relying on conventional 

wisdom. The main approaches that have been adopted for surgery scheduling are mathematical 

programming and simulation modeling. Mathematical programming (especially, integer and 

dynamic) models have been shown to be useful in capacity planning and resource allocation in 

many complex systems; while valid simulation models are useful in estimating the actual 

performance of a planned system in advance. Especially when the system exhibits considerable 

stochastic behavior or when it is relationally complex, simulation proves to be useful as it 

possesses an extensive modeling flexibility and allows for a sufficient degree of detail.  

Simulation approaches can be classified as static or dynamic, as deterministic or 

stochastic, and as involving discrete or continuous time (Law and Kelton, 2000). Static 

simulation models, often called Monte Carlo models, furnish the decision-maker with a range of 

possible outcomes and the probabilities that will occur for any choice of action and at a particular 

point in time.  In contrast, a dynamic model represents a process as it evolves over time. In 

deterministic models, a set of input parameters results in a unique output, whereas stochastic 
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models contain at least one probabilistic random variable. As a result, the output of a stochastic 

simulation model is itself random. In discrete-event models, the state variables change 

instantaneously at separate points in time, these points in time are the ones at which an event 

occurs, where an event is defined as an instantaneous occurrence that may change the state of the 

system, whereas in continuous-time models, the state variables change continuously over time 

(Sobolev et al., 2011).  

A comprehensive review of simulation models of surgical suites published over the past 

five decades was done by Sobolev et al. (2011). They identified a total of 1,332 publications by 

searching eight electronic databases. In this section, we will provide a brief review of the more 

recent and related research. Rising et al. (1973) applied simulation models to evaluate the 

performance of alternative booking policies in an outpatient clinic considering two-priority 

patient types. Everett (2002) employed a simulation model to provide decision support for the 

scheduling of patients waiting for elective surgery in the public hospital system. The model was 

used to match hospital availability and patient need (urgency level) and also to compare the 

effectiveness of alternative policies. In a series of papers by Dexter et al. (2003) and Dexter and 

Macario (2004), a simulation model was applied to study the effect of multiple assigning rules on 

adding a single elective case to an existing surgical schedule on block release dates ranging from one 

to five days before the day of surgery.  

Denton et al. (2007) used simulation as a tool to evaluate the tradeoff between patient 

waiting time, OR team waiting time, OR idling and overtime in a multi-room surgical suite. Testi 

et al (2007) studied the problem of assigning patients to ORs (on a single day) using discrete 

event simulation to judge the quality of different scheduling policies. Vermeulen et al. (2009) 

developed a dynamic method for scheduling CT-scan cases within a radiology department. The 

result of their simulation showed a significant improvement in the number of patients scheduled 

on time. A simulation study was carried out by Steins et al. (2010) to find new ideas and new 

planning and scheduling techniques to improve the utilization of overall operating room capacity 

including pre- and post-operating activities.  Persson and Persson (2010) described a discrete-

event simulation model to study how resource allocation policies in a department of orthopedics 

affect the waiting time and utilization of emergency resources, taking into account both patient 

http://link.springer.com/search?facet-author=%22J.E.+Everett%22
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arrival uncertainty and surgery duration variability. Schutz and Kolisch (2012) adopted a revenue 

management approach to address the problem of determining whether or not to accept MRI-scan 

requests for different patient types. 

The results and policy insights of our research are based on the two approaches of 

simulation and Markov decision process (MDP). An MDP models a system in which decisions 

are made sequentially over time, and future decisions and outcomes depend on current and past 

decisions (Puterman, 1994). MDPs are useful for studying a wide range of optimization 

problems solved via dynamic programming. Applying an MDP provides an optimal policy that 

prescribes how best to manage the system in any contingency. It offers a systematic alternative to 

the “guess and check” approach that underlies using simulation on its own to determine good 

policies (Patrick et. al, 2008). However, to determine optimal policies for realistic-sized systems, 

the MDP model becomes challenging, if not impossible, to apply due to the curse of 

dimensionality. 

 Over the past two decades, researchers in operations research, engineering and computer 

science (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998, Sauré et al., 2012) have 

developed a new branch of operations research called approximate dynamic programming (ADP) 

that seeks to overcome such computational challenges. The ADP approach has been employed 

for the surgery scheduling problem with multi-priority patients addressing the issue of how to 

balance underutilization cost and the cost for postponing surgeries. ADP methods produce good 

but not necessarily optimal solutions to the underlying problem. Policies obtained through ADP 

must be evaluated by testing them in a system simulation model. We use a simulation model to 

compare the optimal scheduling rules derived from the ADP with a range of alternatives, 

including current practice. 

Patrick and Puterman (2008) worked on scheduling multi-priority patients to available 

future slots, while simultaneously accounting for uncertain demand over each day. Their 

objective was to minimize the total penalty cost incurred when patients had to wait longer than a 

target waiting-time. They modeled this as an infinite-horizon Markov decision process (MDP), 

and solved it using approximate dynamic programming (ADP). The work of Sauré et al. (2012) 

represents an extension of the dynamic multi-priority patient scheduling developed with Patrick 

http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Dynamic_programming
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et al. (2008) in which they consider patients who receive radiation treatment across multiple days 

and for irregular lengths of time. Erdelyi and Topaloglu (2009) study a problem that involves 

allocating a fixed amount of daily capacity among entities with different priorities. They consider 

a finite planning horizon and focus on a set of protection level policies. Liu et al. (2010) develop 

dynamic policies for a primary care clinic taking into account patients’ cancellation and no-show 

behavior. 

 

Scenario analysis on different strategies on yield management: 

Although in some cases long wait time may have little medical impact, in others, 

excessive wait times can potentially impact health outcomes and result in losing patients. In the 

Stafford hospital, there are two types of patient studied: semi-urgent who may require immediate 

treatment, and non-urgent patients whereby it may be medically acceptable to wait up to several 

weeks.  

There is no cost associated with delay in scheduling non-urgent patients (zero waiting 

cost). In contrast, the hospital will be penalized for postponing the scheduling of semi-urgent 

patients. Based on cluster analysis, semi-urgent patients are classified into multiple priority 

classes. In this case, the allocation decision and block release policy factors would affect the 

overall profit since patients are assigned to the next available slot considering their home block 

status and their urgency. But what will be the best set of policies for optimal yield across multi-

priority patients? Since less-urgent patients are booked further into the future, this raises the 

question as to how much resource capacity to reserve for later-arriving but higher-priority 

demand? 

The decision of when a patient should be scheduled is made based on the cost for surgery 

postponement. A numeric solution is formulated to address this problem and multiple strategies 

are conducted to understand the properties of an optimal scheduling policy. We are looking for 

sets of superior strategies to better manage health-care resources in order to reduce wait times to 

acceptable levels without undue additional costs. 
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Optimal scheduling policy  

In order to gain insight into the structure of an optimal scheduling policy with lowest 

overall waiting cost for patients with different priorities, a series of tests was conducted for a 

hypothetical hospital with two ORs that are open continuously, seven days per week and twenty-

four hours per day. The tests examined two types of patient requests for surgery in one of two 

surgical operating rooms with Poisson arrival rates of 0 < λa,b < 2 (with constraint of  λa + λa,b < 2 

for system stability). Each patient type has a no-cancellation option, but the two types have 

different waiting penalty functions (starting with an assumption of linear penalty functions), and 

expected revenue. The cost of waiting for Patient A is a linear function               , 

where   is a constant,    is the per unit penalty for waiting, and   is the amount of time between 

request and appointment.  Similarly, the cost of waiting for patient B follows              

 . Without loss of generality we assume that    = 1 and             . 

Assuming that a request for surgery of type A has just arrived, the only information that 

the model requires is the first available space in OR 1 and the first available space in OR 2. 

Then, given all the inputs above, the request can be directed to either the next available slot in 

OR1 or the next available slot in OR2 based on the following policies: 

 1. Always seek the shortest wait time (also known as FCFS policy). This strategy 

allocates the patient to the next available room regardless of their type and their waiting penalty. 

If    is the waiting time for room 1 and    is waiting time for room 2, under the above 

assumptions both requests would follow an exponential distribution. Let      = min (  ;  ) and 

thus the expected waiting cost of the system can be captured as,  

                                                                                    

 

2. Always schedule patients with lower waiting costs to the room with longer wait times 

and those with higher waiting costs to the rooms with shorter wait times. This policy prioritizes 

patients on the basis of their waiting cost. Let      = min (  ;  ) and      = max (  ;  ), then the 

expected waiting cost (assuming       ) will be, 
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3. Schedule lower cost cases to the rooms with longer wait times and higher cost cases to 

rooms with shorter wait times unless the longer-wait-time minus the shorter-wait-time is greater 

than some constant time T (also known as the “Threshold” policy). This policy enhances the 

flexibility of Policy 2 by adding more constraints to the priority selection and by checking for the 

optimal T—i.e. the T which incurs minimal cost. The expected cost of waiting incurred under 

this policy (assuming       ) is calculated as follow: 

Let      = min (  ;  ) and      = max (  ;  ) also                   

               

                                                

                                                 

                               

 

1. Simulation: 

Three discrete-event simulations were generated for 2880 independent time units to estimate 

overall policy performance (profit and waiting cost) across a range of parameters (             

with a range of T time values for the last policy. Simulations were run for 10 iterations and 480 

time units as a warm-up. The same parameters were applied across all three policies to enable 

comparability of results. Table 19 summarizes all the assumptions applied in these simulations.  

 

Table 19: Set of assumption for simulation parameters 

Parameters Value 

Mean arrival rate type A (per hr) Exp ~0 <  <2 

Mean arrival rate type B (per hr) Exp ~0 <  <2 

Waiting penalty Coef. A    =$ 1 

Waiting penalty Coef. B   =  $0.2-5 

T time period gap (under Policy 3) T= .2-5 periods 
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Figure 13 displays the simulation results for overall profit under each policy. The three 

independent factors, plus an additional fourth independent factor for the third policy, are mapped 

against the overall profit.  

Assuming that Patient-type B has higher priority than Patient-type A (
  

  
   ), we 

expect an exponential reduction in profit under Policy 1 if the arrival rate of Patient-type B 

exceeds the arrival rate of Patient-type A while, in contrast, profit tends to improve in the same 

situation under Policy 2. Another finding which differentiates Policies 1 and 2 is the rate of 

reduction in profits as the arrival rate A and the ratio of waiting costs between the patient types is 

increased. Although the cost per time-unit of waiting (i.e. the penalty function coefficient) 

increased linearly in our tests, the overall profit under Policy 2 did not drop at the same pace. 

Policy 2 treats all patients according to their priority while allowing more attention to be given to 

urgent patients.  

 

 

Figure 13: Profit trace of three policies across range of parameters (T=.5, 2, 6 refers to different scenarios 

of policy 3) 
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Under this policy, profit gradually increases because additional arrival rates eventually 

exceed incremental waiting costs, while under Policy 1, the rate of increase in waiting costs is 

greater than the rate of gain (profit) that can be made by scheduling additional patients (higher 

utilization). The last three profit traces display overall profit under three different T time 

threshold values under Policy 3. As T increases from 0.5 to 6 time-units, the profit trace 

gradually shifts from Policy 1 towards Policy 2. The T value adds more flexibility to the model 

with regard to the selection and combination of Policies 1 and 2.   

Up to this point, we have evaluated the effects of individual policies on overall profit; the 

next step is to compare the policies across factors at the same time, which allows us to determine 

the superior policy at each state. In the discussion that follows, we use a surface plot to gain 

more insight into the performance of policies through a different range of parameters and to 

discern whether one of these policies is dominant over others in all situations. The surface plot 

displays three-dimensional views of the above 2-dimensional counter plot. Two separate plots 

were generated to capture all combinations of arrival rate and ratio of waiting penalties for the 

two patient types. Figure 14 provides a graphical representation of three profit surfaces displayed 

for each policy across arrival rates for Patient-types A and B.  

 

 

Figure 14: The profit surface under the three policies across arrival rates A and B as independent 

variables (Policy1=”Green”, Policy 2=”Blue”, Policy 3=”Red”) 
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The three surfaces show considerable differences. Overall profit under Policy 2 suddenly 

drops as the arrival rate of Patient-type A changes (refer to the Blue surface) in comparison with 

the two other policies, which generate slight decreases in profit throughout the range. 

Figure 15 displays profit surfaces over all combinations of arrival rate A and the ratio of waiting 

penalties. Although Policy 1 has a smooth surface over the range, the surface plot of Policy 2 has 

multiple spikes with a significant rise across arrival rate A. 

 

 

Figure 15: The profit surface under the three policies across arrival rate A and ratio of waiting penalty as 

independent variables (Policy1=”Green”, Policy 2=”Blue”, Policy 3=”Red”) 

 

In general, these observations clearly suggest that none of these three policies dominates 

across all sets of parameters. In both graphs, the surfaces switch their position (optimality) over 

the range of parameters. But it is the set of parameters that determines what will be the 

predominant policy. 

To identify the predominant policy under different combinations of parameters, scenario 

analysis was conducted for the selected problem. These results are presented in two separate 

tables. Table 20 lays out the superior scheduling policy for a scenario in which the two patient 



 

57 

 

types arrive at the same rate. Although the arrival rate is identical in the above mentioned 

scenarios, the prominent policy varies over the arrival rate range due to differences in system 

utilization and waiting penalties. In the top two scenarios, where utilization is high, Policy 3 will 

be the dominant policy if the waiting penalty of one type is at least twice that of the other type; 

otherwise there is no dominant policy. 

 

Table 20: Superior policy under equal arrival rates for multi-priority patients 

Arrival 

rate 

λa,b 

Total 

arrival 

λa+ λb 

Utilization Best Policy Comment 

 

0.91 1.82 91% 

 
                

   
  

           

                    

  

High system utilization 

which results in small 

difference between waiting 

times of patient A and B 
0.80 1.60 80% 

 
                 

   
  

          

                    

  

0.45 0.91 46% Policy 3 (T=2) Medium system utilization 

keeps high priority patient 

wait time significantly 

lower than low priority 

0.33 0.67 34% Policy 3 (T=1.5) 

0.10 0.20 10% No difference Low system utilization 

leaves lots of free spaces 

for all patients 

 

As utilization drops slightly to medium range, Policy 3 becomes dominant across all 

values of the waiting ratios. The T time threshold varies as utilization of the system changes. On 

the other hand, if utilization is low, then the system is not sensitive to the choice of scheduling 

policy. Table 21 shows the superior policy across a range of arrival patterns and waiting cost 

ratios. The shaded area refers to scenarios in which the system is not stable (e.g. the total arrival 

rate from both patient types is greater than the available capacity). We can simply divide the 

results into three sections: dominance of Policy 1 (the bottom left cells), no dominant policy (the 

right cells), and a combination (the diagonal cells).  

In particular, if the arrival rate of low-priority patients is higher than that of higher-

priority patients, then Policy 1 becomes dominant for the entire range of waiting cost ratios and 
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arrival rates. Policy 1 does not differentiate between high- and low-priority patients in terms of 

reserving rooms for the potential arrival of high-priority patients.  This policy is simple to apply, 

but, because all types of patients use the same OR resources when there are urgent patients (with 

high waiting costs) arriving as frequently as (or faster than) non-urgent patients, the system 

suffers high waiting costs from urgent patients. However, when utilization is low or low-priority 

patients arrive at a very low rate (λ=0.1) the choice of scheduling policies makes no difference.  

 

Table 21: The superior policy under sets of parameters (Arrival rate, waiting penalty B/A, utilization) 

  Arrival A  ( λa) 

   1.54 1.11 0.80 0.45 0.10 

A
rr

iv
a

l 
B

  
(λ

b
) 

1.54    

 
  
 

  
                  

   
  

    

            
   
  

          

                 
   
  

    

  No 

difference 

1.11   

 
  
 

  
                  

   
  

    

            
   
  

        

                 
   
  

    

  

 
  
 

  
                  

   
  

    

          
   
  

        

                 
   
  

    

  
No 

difference 

0.80  Policy 1  
                 

   
  

          

                    

  

 
  
 

  
                  

   
  

    

            
   
  

          

                 
   
  

    

  
No 

difference 

0.45 Policy 1 Policy 1 

 
 

                  
   
  

    

                 
   
  

    

  Policy 3 (T=2) 
No 

difference 

0.10 Policy 1 Policy 1 Policy 1 No difference 
No 

difference 

 

 

Notes: All policies are based on 
  

  
    and, in shaded areas, the system is unstable 
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Under some scenarios, namely those in which the arrival rate gap between patient types is 

small, utilization is high and the arrival rate for high-priority patient-types B is higher than for 

low priority Patient-types A, the third factor; the waiting cost ratio; will define the prominent 

policy. As shown in Table 21, the optimal policy shifts from the Policy 1 to Policy 3 and finally 

to Policy 2 as penalty ratio rises. As the penalty ratio goes beyond 2 or 3, Policy 2 becomes 

dominant, while Policy 3 stays superior at the transition point from Policy 1 to Policy 2. Policy 3 

has the same features as Policy 2, with this difference: Policy 3 allocates more attention to non-

urgent waiting times as well as urgent cases. It is the T threshold that determines the dominance 

of Policy 1 or Policy 2 in this case: the T time factor protects non-urgent patients from long 

waiting times if it exceeds the T time unit threshold. Simulation results show that, if the arrival 

rate of urgent patients is the same as that of non-urgent patients, it is better to postpone assigning 

non-urgent patients to longer OR waits, but, if urgent patients come less frequently, it is better to 

let non-urgent patients be assigned to shorter OR waits. 

Our results confirm earlier findings that not one of these policies is superior for all sets of 

parameters. In conclusion, the decision of which policy is optimal at each state depends on 

arrival rates A and B (utilization) as well as their waiting penalty. The third policy is a 

comprehensive policy that triggers whatever combination of Policy 1 and 2 across the range of T 

values would be optimal for a given condition. But, at the same time, it is the most complex 

strategy to apply. In general, when we don’t have any information about the arrival rates of 

multi-priority patients or their waiting penalties, it is best first to proceed with Policy 1 since it is 

simple and less sensitive to parameters than other options. Ultimately, however, having more 

information about patient types can facilitate the choice of an optimal policy and improve patient 

waiting times and overall profit. 

In our simulation, we applied a static policy for all states and parameters, but our results 

indicate that a combination of policies may be a better strategy. While the analytic tool of 

simulation is sufficient for analyzing the performance of each of the three different scenarios 

separately, it cannot yield the optimal policy for minimizing overall waiting cost in all states.  To 

determine the optimal policy for scheduling multi-priority patients for future dates upon their 
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arrival, given the waiting penalties and current state of the system, it is necessary to turn to 

mathematical programming.  

 

2. Mathematical programming: 

This section formulates the scheduling problem as a discounted infinite-horizon Markov 

Decision Process (MDP), which can help assign an appointment date to each patient depending 

on the available appointment schedule at the time of the patient’s call. This section is a based on 

the work of Patrick and Puterman (2008) on scheduling cancer patients for radiation therapy 

seeking to reduce the potential impact of delays on patients. This model can be applied broadly 

to healthcare systems that must find optimal ways to utilize limited resources (OR hours) in 

providing service to multi-priority patients. The discussion below stipulates the decision epochs, 

state space, action sets, transition probabilities, and state-action costs for this problem. 

Decision epochs. The term ‘decision epoch’ refers to a specific point of time in a day when 

the scheduler observes the state of the system and takes action. The state is determined by the 

number of available OR hours on each future day over an N-day booking horizon and by the 

number of cases in each priority class to be scheduled. The N-day booking horizon is defined as 

the maximum number of days in advance that a scheduler is allowed to schedule patients.  Thus, 

at the beginning of each decision epoch, there is no appointment booked on the N
th 

day. For 

modeling convenience, we assume all appointment requests arrive at the beginning of the day, so 

the decisions epochs correspond to the beginning of each day.  

The State Space. If patients are classified into i priority classes, then the state takes the 

following form: 

S =               
 
   

 
       

 
        ;             

 
   

 
    

Where     stands for the number of priority i patients filling appointments on day n and    stands 

for the number of priority i patients requesting to be scheduled. On each day, we assume that a 

maximum of    cases can be performed (C is identical to a fixed-length service period) and that 
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   maximum number of priority i patients will arrive (   is set as a large number). Therefore, the 

state space can be represented thus: 

S =                                        

The action set. For a given state, the model determines an optimal schedule by 

evaluating feasible actions at the beginning of each decision epoch. The main task for the 

scheduler is to assign each arrived demand to the available OR hours in the N-day booking 

horizon. However, if this is the only action available, then there is a high risk of waiting time 

going to infinity (an unstable queue) due to the limited resources for realized demand. Therefore, 

we assume that the scheduler is allowed to divert patients to overtime hours to avoid infinite 

waiting times, but, to be realistic, we set an upper limit on the number of patients that can be 

diverted on each day. The action set is defined as (                 , where     is the number of 

priority i patients scheduled for surgery on day n and    is the number of diverted priority i 

patients. The following boundary conditions for each action ensure that the capacity constraint is 

not violated, that all waiting patients are booked, and that actions are forced to be positive and 

integers: 

                          

 

   

 

   

 

   

   

    

 

   

                          

Where     and    represents a set of nonnegative integer values and M denotes the maximum 

number of patients that can be diverted on a day.  

Transition Probabilities. The state undergoes a transition whenever new requests for 

surgery take place. Given that new requests come as            
 
     

 
 , then the state will 

change with the probability                
 
  

   , where     
 
  is the probability that   

 
 priority 
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i patients request surgery on a given day. We assume that the arrival rate of each priority patient 

follows Poisson distribution and is independent of others. State transition is expressed as follows: 

                                       

 

   

               
 
 
   

 

   

  
 
  

The Costs. Two types of costs are associated with the process of scheduling. First, 

delaying a surgery appointment incurs additional waiting costs per unit time for patients and a 

high risk of underutilized OR capacity for the system. Second, assigning patients to the first 

available spot increases the risk of overutilization for high priority patients and the need for 

surge capacity. We can formulate the cost associated with each state-action set as follows: 

                                
 
           

 
            

 
     

Where         denotes the waiting cost penalty of booking a priority i patient on day n and      

is the penalty for diverting a priority i patient and    is the unit cost of underutilized capacity. 

The cost function explicitly balances the cost of postponing a patient surgery against the cost of 

diverting surgery (revenue loss). The overriding goal is to maintain reasonable wait times while 

optimizing utilization.  

Dynamic programming (The Bellman Equation). The Markov decision process model 

can be resolved via dynamic programming. Dynamic programming is a method for solving 

complex optimization problems by breaking multi-period problems down into simpler sub-

problems, as Bellman's Principle of Optimality prescribes. In dynamic programming, the value 

of a decision problem at a certain point in time is expressed in terms of the payoff from some 

initial choices and the value of the remaining decision problem from those initial choices. Based 

on the Bellman Equation principles, an optimal policy has the property that, whatever the initial 

state and value of the decisions are, the remaining decisions must constitute an optimal policy 

with regard to the state resulting from the first decision. The decision value function          

breaks a dynamic optimization problem into simpler sub-problems with discounted costs over the 

infinite horizon for all state-action sets. If   is the daily discounted factor and D is the set of all 
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possible incoming number of priority i patients, then the  discounted Markov decision values 

function is expressed as follows: 

             
                   

         

                     

 

   

              
 
 
   

 

   

  
 
  

         
            

                 

 

This optimality equation describes the lowest possible cost, as a function of state        . 

By calculating the value function, we find the optimal action (or policy) as a function of each 

state. The main strength of this approach is that fairly general stochastic and nonlinear dynamics 

can be considered. However, the size of a state space typically grows exponentially in terms of 

the number of state variables. The above optimality equation suffers from the curse of 

dimensionality, which makes a direct solution impossible. Suppose that the maximum number of 

priority i appointment requests that can be possibly received on a single day is   . Then the 

dimension of the state space would be       
 
   . Note that even with N=14, I=2, Q=6 and C=4 

this number equals           states, and thus determining the optimal policy is not practically 

feasible for any realistically sized problem.  

Approximate dynamic programming.  One approach to dealing with this difficulty is to 

generate an approximation for the value function within a specific class of functions and then 

seek to find the optimal value function within this class. This method of solution proceeds as 

follows: 

1. Transform the discounted Markov decision process into a linear program (refers to the 

relationship between MDP and linear programming.) 

2. Approximate the LP value function (ALP) to reduce the dimensionality.  

3. Solve the ALP to get the optimal value function. 

4. Utilize the result of the optimal value function to determine the optimal state-action 

policies.  
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A fundamental result in MDP theory (Puterman, 1994) implies that solving the optimality 

equation is equivalent to solving the following LP for any strictly positive α which satisfies 

             (assuming that  α has a probability distribution over the initial state of the system), 

   
   

                 

      

 

Subject to  

                              

 

   

              
 
 
   

 

   

  
 
   

              

           

                               

where          is a lower bound for the optimal value of the MDP,          . Although the 

equations above transform the original dynamic programming to a set of simpler sub-problems, 

this model still suffers from dimensionality. A possible solution would be to approximate the 

value function with an interpretable linear value function (a linear combination of basis functions 

or states). Thus, we assume the following function as a starting point for approximate value 

function,  

                   

 

   

 

   

    

where    is constant,     represents the marginal discounted cost of having a patient type i 

occupied OR hour on day n (    also depends on arrival rate   ). 

Substituting the above value function with new linear function results in the following equation: 

   
          

                   

 

   

 

   

   
      

  

Subject to  
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;                                 

To simplify this, we can utilize the assumption of α as a probability distribution and 

transform the above formula into the following equation. Thus,     is random variable with 

respect to the probability distribution α.  

   
       

                  

 

   

 

   

   

Subject to 

              
 
   

 
                         

 
                ;           

                      

Even when a dynamic program is transformed into a linear program, it still suffers from 

high dimensionality, which results in a large number of constraints. Alternatively, we can 

proceed with the dual of the linear programming, which gives us the advantage of a reasonable 

number of constraints but at the expense of creating an intractable number of variables, 

   
   

   

         

                    

                      

Subject to 

        

         

                    

               

            

                    

                                   
 
              ;                
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This problem is still too large to consider all of the variables explicitly. Patrick et al. 

(2008) have proposed using column generation to solve this problem by leveraging the notion 

that most of the variables will be non-basic with a value of zero in the optimal solution and 

generating only a subset of variables which have the potential to improve the objective function. 

Column generation can be initiated by using a small set    of feasible state-action pairs of the 

dual to obtain dual prices as estimates for     and     and finding one or more constraints in the 

primal. It then adds the state-action pairs associated with these violated constraints into the set    

before resolving the dual. This process is repeated until no primal constraint is violated.  

The challenge in this process is to find an initial feasible set   and also a violated primal 

constraint. As Patrick et al. proposes, if we consider a state where no available slot exists on the 

N-booking day, then all incoming arrivals would be diverted as initial feasible state-action pairs. 

Then finding the most violated primal constraint only involves solving the following integer 

programming: 
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Rearranging terms yields the optimal linear value function approximation: 

http://en.wikipedia.org/wiki/Optimization_(mathematics)
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The coefficients of each action in this equation represent the balance between costs and 

benefits of taking each action. For each action     we capture two costs, patients’ waiting cost 

        due to possible appointment delay as well as the cost of losing available capacity for 

tomorrow’s higher priority patients. These cost are then compared with benefits of not having an 

underutilized OR,     and reducing additional waiting time for low priority patients,          

Similarly, for each action   , there is a cost associated with diverting patient      against the 

benefits of not postponing a surgery,         and occupying the space for patient type i. In other 

words, after the best appointment action is determined,       this cost can be compared with the 

cost of diverting each patient and the best overall decision can be determined. (Coefficients of 

    show net loss or gain in each day’s value) 

Assuming we obtain the optimal value function    
 , then the next step would be to 

derive an optimal policy from the above approximate LP solution. We insert the optimal value 

function into the right-hand side of the optimality equation (1) and solve for the optimal action 

(        in state          . This involves solving the following integer programming formulation: 
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Thus, the optimal policy is derived from the coefficients     and   : 

                                     

 

This model only assigns patients of each priority to those days with         or when the 

benefit of booking a priority i patient on day n exceeds the cost of postponing those patients to a 

later time. Similarly, it only uses overtime for priority i patients for whom the cost of excess 

waiting and occupied space surpasses the costs of overtime and lost profit
4
.   

                                                 
4
 - The focus of this dissertation is on optimality, to gain insight from mathematical models and to guide 

us in developing more sophisticated rules and to evaluate rules for OR scheduling. The dimensionality of 

the mathematical model is very large; solving for optimal value function is beyond scope of this 

dissertation.  
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Comparing our original three simple heuristic assignment policies with the MDP optimal 

value function coefficients guides us to the development of more sophisticated rules (Table 22). 

It is clear that prior simple heuristic policies have failed to account for all the cost drivers. An 

optimal policy depends on three factors: waiting penalties, the marginal cost of occupied ORs on 

each day (which depend on the arrival rate of each patient type) and the cost of underutilization. 

The prior policies have only partly accounted for these factors in assignment decisions. 

 

Table 22: Comparison of simple heuristic policies based on cost factors 

Policy 
Waiting 

penalty 

Cost of 

occupied slot 

Cost of 

underutilization 

Arrival 

rate 

Policy 1-FCFS N N Y N 

Policy 2- Priority policy Y N N N 

Policy 3- Threshold priority policy  Y N Y N 

 

Policy 1 focuses purely on maximizing utilization at the expense of high waiting costs for 

high priority patients while the second policy sacrifices utilization in favor of minimum waiting 

penalties for high priority patients even if it results in high waiting cost for low priority patients. 

None of these policies accounts for the cost of occupied slots and arrival rates. Policy 3 seeks a 

balance between the patient waiting penalty and the risk of underutilization by adding a booking 

threshold but still fails to address patients’ arrival rates.  Emphasis on waiting penalties and the 

cost of underutilization tends to result in the assignment of patients to the first available space 

while emphasis on the cost of occupied space leads to the reservation of some space for high 

priority patients and the postponement of surgery for lower priority patients. To include all of 

these factors and thereby calculate the superior policy under a range of states, we can incorporate 

a new policy, Policy 4, into the model. 

To devise Policy 4, we can begin by finding a superior policy for the highest priority 

patients. All three factors support assigning high priority patients to the first available space 
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because there is no benefit in reserving any space for future incoming patients when waiting cost 

increase linearly per unit of time. If we assume that just two priority-levels exist; the only 

necessary calculation is to examine the marginal costs and benefits of assigning each low priority 

patient to the next available space under a range of waiting penalties and arrival rates. Suppose 

Figure 16 represents the current status of a 2-OR hospital with two types of patients. All high 

priority patients are assigned to the first available space in any room. If a low priority patient 

requests an appointment, we must decide between assigning him to a shorter-wait OR (OR 1), or 

postponing his appointment to the next available spot in the room with the longer wait time 

(OR2)  

 

 

 

OR1              

OR2              

 

  : First available space in longer OR 

  : First available space in shorter OR 
 

Figure 16: Current state of 2-OR Hospital 

 

The following equations summarize the cost-benefit of assigning low priority patients to the 

shortest-wait (first available) OR, 

Benefit 

Lower waiting penalty (for low priority patient) 

           

  : Waiting penalty of low priority patient 
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Cost
5
 

Risk of overutilization and postponing high priority patient 

                                                                                 

      
       

           

  

 

   

 

  : Waiting penalty of high priority patient 

 

Based on the equation above, we define Policy 4 as follows: 

4. Marginal comparison: Schedule higher cost cases to shorter wait-time ORs and lower cost 

cases to ORs with longer wait times unless the following equation holds or unless benefits 

outweigh the cost of action (assuming that patient-type B has higher priority): 

             >        
       

           

  
 
      

This policy is comparable to Policy 3 in that it establishes some threshold at which low 

priority patients will be scheduled in the first available space but what differentiates these two 

policies is that, unlike Policy 3, which has a fixed threshold, Policy 4 has a threshold which is  

periodically updated through time. The Threshold T is updated to reflect possible changes in the 

first available space and the arrival rates of high priority patients while Policy 3 treats the arrival 

rate as a constant. 

In order to determine the effect of arrival rates and waiting penalties on this equality (and 

threshold), we analyzed results for the given scenarios in Table 23. We assigned low priority 

patients to the first available space in short wait OR,   , if and only if the first available spot in 

the OR with the longer wait time,    , satisfies the inequality in each cell (scenario). 

                                                 
5
 - Since all surgeries are typically scheduled a  few day(s) in advance, cases are not queued for empty 

OR time and underutilized OR time does not represent lost revenue for the surgical suite so we exclude 

this cost from our cost/benefit analysis 
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Table 23: Variable threshold by arrival rate and waiting penalty 

 Waiting penalty Range 

Arrival range;             ;                              

[  ,0.5]                          

[  ,1]                      

[  ,1.5]                        

 

Assumptions:  

 Waiting penalty coefficient of low priority patient          

 Since this equation is checked for every low priority case, we exclude the impact of the 

low priority patient arrival rate,    
 

If a low priority patient arrives, and if his waiting penalty is half that of a high priority patient 

(        ) and if the first availability of a spot in the shorter-wait OR is within the next three 

time periods (     , he will be assigned to a shorter-wait OR if and only if the first availability 

of a spot in the longer-wait OR is longer than six time periods with         , or is longer than 

nine time periods with        or is longer than twelve time periods with       .  Under this 

policy, we tend to risk more underutilization while reserving more space under conditions where 

high priority patients are arriving more frequently. The same trend holds under different waiting 

penalties but the same arrival rate     . If a low priority patient arrives, and the first 

availability of a spot in the shorter-wait OR is within the next three days, then Policy 4 assigns 

him to a shorter-wait OR if and only if the first availability in the longer-wait OR is longer than 

nine time periods with     , or longer than twelve time period with     , or longer than 

eighteen time periods with     . Under this policy, we tend to risk more underutilization while 

reserving more space for high priority patients as the waiting penalty increases, assuming the 

same arrival rate for high priority patients. 

The benefits of Policy 4 can be evaluated against Policies 1, 2 and 3 by simulating its 

performance across the ranges of parameters. However, without knowing the optimal policy, it is 

difficult to know how much better one might do with some other heuristic policies and when to 

stop. In these settings, it would be useful to find an upper bound on the performance of an 
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optimal policy by assuming perfect information from the output of heuristic polices, and to 

compare the performance of each policy against this upper bound.  

To estimate an upper bound on the profit across all patients, we assume perfect information 

about arrival demand in scheduling period      and construct an appointment schedule which 

minimizes the total waiting penalty (or lower bound on waiting cost) across all patients. The 

proposed approach is inspired by algorithms for machine scheduling which minimize weighted 

tardiness. For our case, we are given the number of requests of each type and the waiting cost at 

any given appointment time and we want to identify the lowest possible waiting cost 

appointment policy. It can be formulated as a linear integer programming, with i the number of 

the request for appointment and j the number of the appointment slot. The input data is defined 

as follows: 

i = number of the request for appointment, i = 1, . . . , n 

j = number of appointment slots, j = 1, . . . , m 

  = request time of patient i 

  = start time of appointment slot j 

  = penalty per time unit delay between request and appointment 

    
                           
                           

  

     
                   
                             

  

     
                                           
                                                                    

  

Letting     be the waiting penalty of patient i assigned to appointment j. Then, the linear 

integer program can be written as follows: 

           

 

   

 

   

 

St. 
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The first equality requires that each patient is assigned exactly once and the second equality 

requires that each appointment time is filled by at most one patient or is un-assigned.   

The most direct solution approach would be to enumerate all permutations (of patient 

appointment assignments) and see which one has the lowest cost. The running time for this 

approach would be factorial in the number of patients      .  Hence, this approach becomes 

intractable even for a limited number of patients. For our case, under perfect information in the 

sense that the appointment availability, time of request, type of request, and other important 

facts, are fully known at the time of constructing a schedule, finding a lower bound on waiting 

cost can be done in polynomial time. At any point of time we need to schedule the higher penalty 

patients in the earliest possible time slots, and then schedule the lower penalty patients in the 

earliest remaining time slots. The proof of optimality is provided in Appendix L using adjacent 

pairwise interchange. An approach for deriving a lower bound on waiting costs is presented in 

Algorithm 1 given below.   

Visual Basic is used to generate the upper bound profit under perfect information across a 

range of parameters (             based on the optimal schedule (the lower bound waiting cost) 

is proved using adjacent pairwise interchange (code is provided in Appendix K). This upper 

bound on profit provides a useful benchmark for evaluating the performance of other heuristics 

and bounds. All four discrete-event simulations were generated for 2880 independent time units 

to estimate overall policy performance (waiting cost) across a range of parameters (             

(with range of T time values for the third policy). The same set of parameters was applied across 

all four policies for comparability of results. 

 



 

75 

 

 
Algorithm 1. A scheme of sequential scheduling decisions algorithm 

 
Input: Let  i be the number of the request (patient Id), where i=1…n,    be request time of     

patient i, assume i is indexed so that          for    ; 

Let    be the number of appointment slots; where j=1…m,    be start time of appointment   

slot j, assume j is indexed so that          for    ; 

Let     =       be the type of patient i, and         be waiting penalty coefficients; 

where        

Output: The upper bound scheduling assignment     
  , where    

  is an indicator variable for 

whether patient i is assigned to appointment j;  

1. Initialize:  

a. Set initial scheduling policy           

b. Get     request time of patients 

2. Iterate while i   , where n is the last request 

3. Iterate while j   , where m is the last appointment time  

a.                     

i. Let                                        and     
 
       

ii. If      , set    
   ;               

End 

       End 

4. Iterate while j   , where m is the last appointment time  

a.                     

i. If           

ii. Let                                        and     
 
       

i. If      , set    
   ;               

End 

       End 

      End 

      Return     
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Table 24 summarizes the results of these simulations against the derived upper bound (on 

profit). Simulations were conducted under two different waiting penalty scenarios to evaluate the 

impact of waiting penalty on policy performance. 

 

Table 24: Comparison of policy performance against upper bound policy under perfect information 

                 

                 
 Arrival rate 

scenario 

Simple heuristic policy Marginal 

comparison 

Policy 

Upper 

bound 

(under 

PI) 
FCFS Priority 

policy 

Threshold 

policy 

  
  
    

  =1.5,   =0.5 78% 9% 79% 88% 100% 

  =1,   =1 63% 70% 69% 74% 100% 

  =0.5,   =1.5 52% 55% 54% 56% 100% 

  
  
    

  =1.5,   =0.5 73% 4% 73% 81% 100% 

  =1,   =1 42% 55% 54% 60% 100% 

  =0.5,   =1.5 44% 46% 44% 46% 100% 

Note:                   are rounded up to one decimal   

 

As shown in Figure 17 all policies except Policy 2 perform well (over 75% of upper 

bound performance) in the case of high priority patients that come less frequent than low priority 

patients. Policy 2 is obviously the worst choice for this scenario as the waiting time of low 

priority patients grows exponentially. In general, policy performance decreases as the arrival rate 

of the high priority patient increases. 

The same analysis was conducted for conditions where the waiting penalty gap between 

high and low priority patient is even higher, 
  

  
    (results are summarized in Figure 18). 

Comparing the results, we have the same performance trend as for the lower waiting penalty 

ratio, 
  

  
      yet with lower performance in all polices for this condition. In summary, as the 

waiting penalty ratio increases, policy performance drops measurably across all scenarios. 

Although the marginal comparison policy outperforms all three simple policies across all 

scenarios, there is no improvement seen under the third scenario where high priority patients 

arrive three times faster than low priority patients. The main reason is overutilization of space by 

low priority patients when ORs need to be reserved for upcoming high priority patients. 
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Figure 17: Policy performance against upper bound, where 
  

  
    

 

 

Figure 18: Policy performance in comparison against upper bound, where 
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Under all of these polices (even Policy 4) we do not postpone any appointment in favor 

of upcoming high priority patients. This means we can only fill the next space without retaining 

any space in between for upcoming high priority patients. The goal, then, is to introduce a fifth 

policy that can account for the arrival rates of both low- and high-priority patients as well as 

waiting penalties. As presented in Table 25, Policy 4 partially incorporates the cost of occupied 

slots as it assigns low priority patients to the next longest available space without reserving an 

interval for upcoming high priority patients. Policy 5 has included the full cost factors in its 

assigning strategy, as follows: 

5. Reserve policy: Schedule higher cost cases to the first available space,    and postpone lower 

cost cases to the next 
  

  
 

  

  
  time period (or further) unless the following equation holds 

(assuming patient-type B has higher priority), 

             >        
       

           

  
 
      

 

Table 25: A Comparison of new reserve policy and heuristic policies in cost factors 

Policy Waiting penalty Cost of occupied slot Arrival rate 

Policy 1-FCFS N N N 

Policy 2- Priority policy Y N N 

Policy 3- Threshold priority policy  Y N N 

Policy 4- Marginal comparison Y Y ( focus on low priority ) Y 

Policy 5- Reserve policy Y Y  Y 

 

This policy reserves a time frame for upcoming high priority patients considering the 

arrival rate of both patient types while also maintaining the equation to improve the overall 

utilization.  We conducted the same comparison for Policy 5 and the other heuristic polices, as 

summarized in Figure 19. We have seen improvement under Policy 5 across all scenarios, with 

the most improvement in scenarios where high priority patients arrive more frequently. Under 

this policy we were able to keep policy performance over 70% across all states (Table 26). 
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Figure 19: Policy performance in comparison with Upper bound policy, where 
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Table 26: A Comparison of the performance of the reserve policy and heuristic policies against upper 

bound under perfect information 

 
                 

                 
 

Arrival rate 

scenario 

Simple heuristic policy Marginal 

comparison 

Policy 

Reserv

e 

Policy 

Upper 

bound 

(under 

PI) 
FCF

S 

Priority 

policy 

Threshold 

policy 

  
  
    

  =1.5,   =0.5 78% 9% 79% 88% 90% 100% 

  =1,   =1 63% 70% 69% 74% 79% 100% 

  =0.5,   =1.5 52% 55% 54% 56% 71% 100% 

  
  
    

  =1.5,   =0.5 73% 4% 73% 81% 86% 100% 

  =1,   =1 42% 55% 54% 60% 69% 100% 

  =0.5,   =1.5 44% 46% 44% 46% 70% 100% 

 

This heuristic policy is comparable to Littlewood’s revenue management rule (1972) as 

both share the same goal to optimally allocate a finite, perishable amount of capacity among two 

classes of patients who arrive randomly over time. They both attain a protection level that can be 

used to postpone an arriving request for a lower priority customer in the hope of being able to 

fulfill the request of a higher priority customer, although the protection level is applied 

differently in these two rules.  In Littlewood’s rule, a supplier is looking to improve revenue by 

setting different prices such that the customers who are willing to pay more are not able to pay 

less, while the intention of our scheduling heuristic model is to improve revenue by minimizing 

the overall waiting penalty of patients so that the patients who have higher priority are able to be 

scheduled first. In addition, Littlewood’s rule has multiple assumptions and practices that 

distinguish it from our model.  The first of Littlewood’s assumptions which we have relaxed is 

that demand comes for a particular resource at a particular time, and that, consequently, it is 

necessary to accept or reject the request at the time of arrival.  In contrast, in our appointment 

model, we assume that demand from low priority patients arriving on a particular day can always 

be satisfied on another day with a penalty for each time unit of delay. The second assumption of 

Littlewood’s model that we have relaxed is that demand comes in increasing fares, from the 

lowest to the highest fare. This may be considered natural in such contexts as the airline and 

hotel industries, since leisure customers usually book early to take advantage of available 

discounts. However, in our case an arbitrary order of arriving demands is allowed. This is what 
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actually happens in practice, as patients with different priority levels arrive based on needs, 

concurrently rather than sequentially.  

In the next chapter, we demonstrate some practical aspects in the application of the 

reserve policy in the case of scheduling under multi-priority patient classes.  
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Chapter 5 : Simulation/optimization for a real world case study 

Simulation model of online scheduling in Stafford Hospital 

In this study, we present a simulation model for decisions related to surgical scheduling 

at Stafford Hospital, a small hospital with a capacity of around 2300 cases per year. 

Approximately 80% of its cases are non-urgent or semi-urgent, and the remaining 20% are 

urgent cases. Because the current study focuses on the scheduling of elective surgery, the urgent 

cases have been excluded from analysis (for this reason, part of Stafford’s OR hours are 

eliminated from overall service hours). At Stafford Hospital, non-urgent and semi-urgent patients 

are treated as elective cases with semi-urgent patients given higher priority than non-urgent 

cases. The daily challenge facing the scheduler is to allocate the available capacity between these 

two priority classes so as to minimize indirect waiting time, with greater weight given to any late 

bookings of semi-urgent patients.  

The goal of the current study is to explore multiple scheduling policies that may 

simultaneously reduce patient waiting time and hospital block costs. These policies involve 

block hours dedicated to each surgeon or group of surgeons, release time, and priority 

scheduling. In order to develop the surgery simulation model used here, twelve months of data 

(January-December 2011) was requested from Stafford Hospital. The data included the dates 

patients called to make appointments, the dates cases were scheduled, information about the 

physicians and the surgical procedures information (e.g. the surgeons’ specialties and 

availability), case status (cancel/reschedule), and case duration. Stafford has four operating 

rooms (OR1-OR4) and six major specialties: orthopedics; plastics; general/vascular; ear, nose 

and throat; obstetrics/gynecology; and podiatry. At most, three ORs are open Monday through 

Thursday, and only two are open on Fridays. Twenty surgeons operate actively in these four ORs 

(we have classified these twenty surgeons to eleven families of surgeons for this study). Stafford 

uses a modified scheduling strategy, where some blocks are assigned to individual surgeons, 

groups, or services and the rest are shared among all surgeons. Stafford dedicates around 58% of 

its service hours (244 hours every two weeks) to individuals or groups, and the remaining 42% 

are kept open to be shared among all. To increase access to the OR schedule for all users, 
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Stafford employs a predefined block release policy that is calculated so that the required 

scheduling lead-time accommodates approximately 75% of a service’s patients (Table 27).  

 

Table 27: Predefined block release policy across specialties 

Specialty Block Released by  

ENT 7 days prior 

Podiatry 3 days prior 

General/Vascular 3 days prior 

OB/GYN 5 days prior 

Orthopedics 5 days prior 

Plastic Surgery 7 days prior 

 

The hospital administrators believe that this policy maximizes access to the elective 

schedule for block holders while maintaining sufficient lead-time for other physicians to take 

advantage of underutilized operating capacity and assign their urgent cases. Under this policy, 

block holders can fill 75% of their time block prior to the release day and can continue assigning 

incoming cases to their block after the release date. So, determining the optimal release day is 

critical in maximizing utilization of ORs and reducing the wait times of urgent patients.  

As noted in Chapter 3, each surgeon’s patients have a different urgency level, which can 

be quantified as the maximum number of days they can wait for their surgeon’s block. Table 28 

is derived from the actual data. This waiting time is consistent with the urgency level perceived 

by patients, that is, the expectation of the patients about the longest time they are willing to wait. 

Blocks may be allocated on a weekly or bi-weekly basis. For low-volume surgeons, weekly 

blocks can be shared among multiple surgeons. Table 29 shows how eight-to-ten hour blocks 

were shared in a cyclic schedule for even and odd weeks in 2011 among the four ORs at 

Stafford. The shaded blocks indicate times when a surgical suite is closed. 

 

Table 28: Maximum day that patients will wait to get assigned to their home block 

Surgeon A B C D E F G H I J K 

Days 12 18 43 18 14 29 49 16 27 18 33 
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Table 29: Weekly Stafford OR schedule 

 Week 1   

Hour  8 9 10 11 12 13 14 15 16 17 

Monday 

OR1 A A A A A A A A   

OR2 B B B B FCFS FCFS FCFS FCFS FCFS FCFS 

OR3 C C C C FCFS FCFS FCFS FCFS FCFS FCFS 

OR4           

Tuesday 

OR1 D D D D D D D D   

OR2           

OR3 E E E E E FCFS FCFS FCFS FCFS FCFS 

OR4 F F F F F F F F FCFS FCFS 

Wednesday 

OR1 K K K K K FCFS FCFS FCFS   

OR2 G G G G G FCFS FCFS FCFS   

OR3           

OR4 F F F F FCFS FCFS FCFS FCFS FCFS FCFS 

Thursday 

OR1           

OR2 FCFS    B B B B FCFS FCFS 

OR3 E E E E NORA NORA NORA NORA   

OR4 H H H H F F F F FCFS FCFS 

Friday 

OR1           

OR2 NORA NORA NORA NORA FCFS FCFS FCFS FCFS   

OR3 E E E E FCFS FCFS FCFS FCFS   

OR4           

 

 Week 2   

Hour  8 9 10 11 12 13 14 15 16 17 

Monday 

OR1 I I I I I I FCFS FCFS   

OR2 B B B B FCFS FCFS FCFS FCFS FCFS FCFS 

OR3 C C C C FCFS FCFS FCFS FCFS FCFS FCFS 

OR4           

Tuesday 

OR1 D D D D D D D D   

OR2           

OR3 E E E E FCFS FCFS FCFS FCFS FCFS FCFS 

OR4 F F F F F F F F FCFS FCFS 

Wednesday 

OR1 C C C C C FCFS FCFS FCFS   

OR2 FCFS FCFS FCFS FCFS J J J J J J 

OR3           

OR4 F F F F FCFS FCFS FCFS FCFS FCFS FCFS 

Thursday 

OR1           

OR2 FCFS    B B B B FCFS FCFS 

OR3 E E E E NORA NORA NORA NORA   

OR4 H H H H F F F F FCFS FCFS 

 



 

85 

 

To understand the impact of this cyclic schedule on the development of specific daily 

schedules, we should first identify the critical components of the scheduling system and the ways 

in which surgical cases flow through this system. Demand for elective surgery is generated when 

it is determined by a physician in a clinic or a surgeon making his rounds. Patients then call 

schedulers to make their appointments. Given the urgency of the patient’s case as determined by 

the surgeon, the current appointment status and the surgeon’s availability (specified in Table 31), 

schedulers assign each incoming request to a specific date in the future. In our model, we assume 

patients do not have a strong preference for the date they are offered by the scheduler, so they 

accept the first offer. The scheduler has three options when assigning a case:  use the surgeon’s 

own block time, use released time from other surgeons’ blocks or use open hours. Although 

Stafford provides all surgeons equal access to open hours and released hours, it doesn’t mean 

these hours are filled equally by all surgeons. Differences in patient urgency, patients’ arrival 

rates, surgeons’ preferences and access to block hours lead to differences in how often surgeons 

actually use the open hours. Table 30 indicates the percentage of surgeries performed during off-

block hours across different specialties.  

 

Table 30: Percentage of off-block hours across surgeons 

Specialty % of operation hours 

in open or released 

hours 

A 37% 

B 20% 

C 21% 

D 13% 

E 10% 

F 10% 

G 61% 

H 15% 

I 0% 

J 17% 

K 11% 
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Table 31 provides information obtained from 2011 yearly data about surgeons’ 

preferences and available days of the week to do surgery. The number “1” marks the days of the 

week when each individual or group of surgeons was available to conduct surgery; the ”0” 

indicates restrictions on schedulers’ options in picking dates for surgery. 

 

Table 31: Surgeons’ availability (preference) status 

Surgeon Mon Tue Wed Thu Fri 

A 1 1 0 0 0 

B 1 0 1 1 0 

C 1 0 1 1 1 

D 0 1 0 0 1 

E 0 1 0 1 1 

F 0 1 1 1 0 

G 1 0 1 0 1 

H 0 0 0 1 0 

I 1 0 0 0 0 

J 0 0 1 0 0 

K 0 0 1 0 0 

 

In the period leading up to the day of surgery, patients’ requests accumulated but the 

arrival pattern varied among surgeons: some had many last minute arrivals while others’ requests 

came well in advance. This behavior is shown in Table 32 across all surgeons. Note that many 

orthopedic patients made appointments less than 3 days before the day of surgery while most 

podiatry patients made appointments more than 10 days ahead. This behavior is due to the 

urgency of the cases. 

Table 32: Scheduling Lead Time 

Day EN & T GENERAL 

/VASCULAR 

OBSTETRICS 

/GYNECOLOGY 

ORTHOPEDICS PLASTICS PODIATRY 

<3 12% 22% 11% 29% 16% 5% 

3-5 2% 10% 8% 11% 8% 2% 

5-7 6% 11% 3% 9% 8% 6% 

7-10 6% 19% 15% 14% 2% 8% 

>10 74% 38% 62% 37% 65% 79% 

 



 

87 

 

In order to analyze the statistical differences among these surgical service groups, historical 

data of surgery procedures was compiled and analyzed. Table 33 summarizes this statistical 

information as follows, starting with the number of non-add-on surgeries (or non-urgent) 

performed in 2011 across surgeons and specialties: 

 The inter-arrival times of patients’ requests followed an exponential distribution (as 

evaluated by JMP software). The coefficient of variation was around 1 for all individuals 

and groups except for one surgeon whose CoV was 3.8. (For simplicity, we assume it to 

be 1.) 

 Surgery duration was dependent on the type of surgery and the surgeon as well as 

patients. However, we assume that all patients’ surgery durations in the same surgical 

service group followed the same distribution. To take into account the cleaning time and 

any possible delay in surgery, surgery time was defined by actual room time for the 

patient (i.e Patient in/out time). The distribution derived from this data analysis is 

consistent with empirical studies conducted by May et al. (2000) and Spangler et al. 

(2004), who found a lognormal distribution for surgery time (evaluated in JMP). 

 The percent of cancellations was evaluated based on the total number of cases that were 

canceled before the day of surgery divided by the total number of cases requested in the 

same period. 

 Actual block hours were defined as the total hours dedicated per 2-week period to each 

surgeon or group of surgeons. These hours could be released to other surgeons in the case 

of underutilization after the release time. We have excluded the percentage of hours when 

surgeons perform urgent cases. 

 The percent of semi-urgent patients was calculated based on the number of patients 

asking for the earliest available spot among the total patients who made appointments for 

each surgeon.  

 Utilization was evaluated for each specialty based on following formula, 

                             

                                             
 



 

88 

 

Table 33: Descriptive statistics of Stafford data 

Specialty 

Surgeon/

Group 

NumOfCases2011 

(Non-Add-Ons) 

Mean inter-

arrival time 

(day)  

Coefficient 

of variation 

(Arrival) 

RoomDuration 

(Lognormal/hrs) 

% of 

cancelation 

ActualBlockHRs/

2Weeks    

(exclude 20% 

urgent cases) 

% of semi-

urgent 

patients Utilization 

E
A

R
, 

N
O

S
E

 

A
N

D
 T

H
R

O
A

T
 

G
 

115 2.50 1.02 (4.87, .75) 16% 4 73% 85% 

G
E

N
E

R
A

L
 /

 

V
A

S
C

U
L

A
R

 

H
 

70 3.20 0.94 (4.1987,.386) 11% 6 91% 48% 

B
 

80 3.17 1.08 (4.25,.38) 17% 12 79% 46% 

E
 

295 1.06 1.30 (4,.43) 10% 20 71% 71% 

O
B

S
T

E
T

R
IC

S
/G

Y
N

E
C

O
L

O
G

Y
 

F
 

250 1.23 1.31 (4.42,.55) 16% 28 69% 43% 

O
R

T
H

O
 I 35 5.32 1.85 (4.6,.216) 12% 5 94% 50% 

A
 

140 2.45 1.63 (4.737,.663) 12% 7 88% 61% 

D
 

190 1.50 3.80 (4.439,.531) 8% 13 72% 57% 

PLASTI

CS 
K 40 4.83 1.10 (5.13,.54) 24% 3 71% 46% 

P
O

D
IA

T

R
Y

 C
 

210 1.26 1.12 (4.115,.46) 20% 12 73% 79% 

J
 

45 4.80 1.10 (4.294,.293) 9% 6 96% 50% 
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Although all the semi-urgent patients expected the earliest available time, the median 

waiting time for semi-urgent patients varied across surgeons due to differences in the urgency of 

the cases (as shown in Table 34). Also, this expectation affected the number of times surgeons 

assigned their patients to released time (to make the waiting shorter for patients) 

 

Table 34: Median Waiting Time (days) 

 % of Semi-urgent Semi-urgent Non-urgent 

A 88% 7 15 

B 79% 8 19 

C 73% 17 38 

D 72% 8 21 

E 71% 6 17 

F 69% 10 27 

G 73% 17 33 

H 91% 7 14 

I 94% 17 23 

J 96% 9 49 

K 71% 11 29 

 

 

Estimation of waiting cost function: Logistic regression 

Logistic regression is used to model the relationship between a categorical outcome and 

one or more explanatory variables. Logistic regression represents both groups of interest as 

binary variables: 

First, for groups that represent characteristics (e.g., gender), the coefficient reflects the 

impact of independent variables(s) on the likelihood of being in a group (e.g. female). 

Second, for groups that represent outcomes or events (e.g., success or failure), the 

coefficient represents the impact of independent variables(s) on the likelihood of the event 

happening (e.g. success).  

As mentioned earlier, the contribution of this study is to observe, analyze and anticipate 

patient behavior in response to waiting time in order to maximize yield or profits from a fixed, 

http://en.wikipedia.org/wiki/Categorical_variable
http://en.wikipedia.org/wiki/Yield
http://en.wikipedia.org/wiki/Profit_(economics)
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perishable resource. Patients show distinctive behavior toward waiting time, especially between 

the groups who need immediate surgery and those who do not. 

We employ a logistic regression model to investigate the question “What is the 

probability of cancellation (leaving) given an expected waiting time for surgery?” and “Does 

specialty have an effect on this relationship?”.  The influence of waiting time and urgency level 

(specialty) on the cancellation rate will be determined through logistic regression.  

Real data is used to divide patients into two groups of semi-urgent and non-urgent based 

on who asks for first available time for surgery and who asks for a convenient date in the near 

future. Each specialty showed a different level of urgency toward surgery as shown in Table 35. 

 

Table 35: Difference among patients behavior of specialties 

 Specialties 

 
Orthopedics  Plastics General 

/vascular 

Ear, nose 

 and throat 

Obstetrics 

/gynecology 

Podiatry 

% of semi-urgent patients 81% 71% 75% 74% 69% 76% 

% of non-urgent patients 19% 29% 25% 26% 31% 24% 

 

After running a logistic regression on a year’s worth of real data (SAS software is used in 

logistic regression analysis, Appendix I), with waiting time and urgency of specialties
6
 as 

independent variables and probability of cancellation as an outcome, we obtained the following 

results: 

The Goodness of Fit test confirms that adding the independent variables waiting time and 

urgency level improves the fit of the model. Also, small p-values imply that the effect of waiting 

time, urgency level and their interaction are statistically significant in predicting the output 

(Figure 20). The significant interaction parameter refers to the coefficient difference between 

two types of patients, semi-urgent and non-urgent. 

                                                 
6
 - patients are divided into two types of urgency, (Urgency=1 as semi-urgent and Urgency=2 as non-urgent patients) 
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Figure 20: Goodness of fit test result 

 

The following logic curves (Figure 21) represent the relationship between the waiting 

time and urgency level (explanatory variables) and the probability of leaving (dependent 

variable).  

Probability of cancellation for non-urgent patients given their waiting time = 

                                               

                                                 
 

 

Probability of cancellation for semi-urgent patients given their waiting time = 

                             

                               
 

 

 

Figure 21: Probability of leaving given waiting time and urgency 
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As we expected, the probability of cancellation increases (logarithmic) as the waiting 

time increases, but this relation is not the same for both urgency levels. Semi-urgent patients’ 

tolerance to wait is much less than non-urgent patient. The cost of waiting (sensitivity to 

probability of cancellation to one more day waiting for surgery) for every extra day is shown in 

Figure 22. As stated in the figure, semi-urgent patients are highly sensitive to an extra day of 

waiting (steeper slope function). 

 

 

Figure 22: Probability of leaving given one more day of delay 

 

Since non-urgent patients choose to postpone their surgery to a convenient day even 

though an earlier spot is available at the time of scheduling, we will not penalize these kinds of 

patients in our objective function and will exclude them from further analysis. We then looked at 

the behavior of patients among different specialties to see if there is any difference in probability 

of leaving given waiting time (Figure 23 and 24).   
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Figure 23: Probability of leaving among specialties 

 

 

 

Figure 24: Logistic regression Goodness of Fit test result 
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The result of the logistic regression (Figure 24) did not show any statistically significant 

difference among cancellation rates of different specialties. Although the median waiting time 

was distinct among different specialties, the probability of cancellation was not different among 

them. The same result holds for probability of cancellation among different group(s) of 

surgeon(s) (multiple groups form a single specialty) (Figure 25 and 26).   

 

 

Figure 25: Probability of leaving among different group(s) of surgeon(s) 

 

As the result suggests (shown in Figure 26), the current collection of surgeons had no 

significant difference in their patients’ behavior. We then conducted cluster analysis to place 

group(s) of surgeon into new groups, or clusters, suggested by the data, so that the difference is 

significant (SAS code is provided in Appendix J). The result of the analysis is shown in Figure 

27 and 28. 
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Figure 26: Logistic regression Goodness of Fit test result 

 

 

 

Figure 27: Pseudo-F, cubic clustering criterion (CCC), and Pseudo T-squared statistics for 

possible cluster solutions 
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Figure 28: Cluster History 

 

The result of hierarchical clustering suggested running the analysis with four or six 

clusters (refer to the CCC (Cubic Clustering Criteria) peaks in Figure 27). Logistic regression 

was run for four and six clusters. The result of six clusters is not significant and the AIC (Akaike 

Information Criterion) is higher in six clusters compared with 4-cluster case, where the preferred 

model is the one with the minimum AIC value. The result of six clusters is summarized in 

Appendix H. In addition, the result of logistic regression with four clusters showed significant 

deference among clusters. The following logic curves (Figure 30) represent the relationship 

between waiting time, four patient clusters (independent variables) and the probability of leaving 

(dependent variable). 
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Figure 29: Goodness of fit test result 

 

 

Figure 30: Probability of leaving among four selected clusters 
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In the following, we have modeled the logistic function for probability of cancellation as 

a function of waiting times for these four classes of patients. This result will be used in the 

Stafford simulations. 

Probability of cancellation for (semi-urgent) type A patients given their waiting time = 

                                               

                                                 
   = 

                             

                               
 

 

Probability of cancellation for (semi-urgent) type B patients given their waiting time = 

                                             

                                               
  = 

                              

                                
 

 

Probability of cancellation for (semi-urgent) type C patients given their waiting time = 

                                             

                                               
 = 

                             

                               
 

Probability of cancellation for (semi-urgent) type D patients given their waiting time = 

                                

                                  
 

 

The model described above was implemented using the ExtendSim simulation 

environment.  Once the simulation was constructed and implemented, it was evaluated to ensure 

that it adequately represented the actual system.  

In our case study in Chapter 3, we concluded that it is advantageous to consider the joint 

impact of block allocation decisions and block release policies on increasing hospital profits and 

reducing patient waiting times. Applying the abstract model, with at most 10 factors in the third 

model, took 24 hours to run the full factorial analysis. The Stafford simulation model consists of 

many more input factors (32 factors, 21 block allocation factors due to multiple shifts, and 11 

block release factors, all in three levels), which makes for a sizable three-factorial model at 3
32

. 

Although using a 3
k
 factorial design allows us to estimate quadratic effects with more design 

points, it would make the analysis prohibitive or impractical in terms of computational time for 

full-factorial analysis as k increases. Therefore, factors are usually studied at only two levels, but 

even at 2 points, full factorial design requires experimentation at all factor combinations. The 
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most common screening method is a fractional factorial design selecting a subset (fraction) of the 

experimental runs. Furthermore, residual analysis and ANOVA can be used to check the 

adequacy of the model and to detect the important effects.  

 

Dimension Reduction 

Design of experiment in simulation/optimization: 

A factorial design is the most common way to study the sensitivity of response to levels 

of each independent variable and combined with all levels of the other independent variables. 

Factorial experimental designs investigate the effects of many different factors by varying them 

simultaneously instead of changing only one factor at a time. Computer simulation models that 

represent a real-world system generally consist of a large number of input factors and, due to 

their size and running time, large-scale simulation models can become prohibitively costly and 

require time-consuming experimental designs to study their behavior.  

Multiple methods are introduced to reduce the dimensionality through determining the 

factors that have significant impact on performance measures (responses) of interest. What 

makes it a truly daunting task is considering the impact of interaction of model factors in 

eliminating non-effective factors since an approach of changing one factor at a time is a 

misleading strategy. The challenge is to determine which factors have the greatest effect on the 

responses, and to do so with the least amount of simulating. This sensitivity analysis proceeded 

in two steps: 

1. A screening experiment to determine the main drivers 

2. A response surface experiment to determine the shape of the effects (linear or curved) 

Factor screening experiments are intended to examine all or some of the involved factors to 

identify those with significant effect on a selected response (output). The identified important 

factors can then be used in subsequent analyses. Many screening designs have been developed to 

identify important factors with an economical number of design points and replications.  
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 Group-screening methods have been widely used for situations with large numbers of 

factors. The fundamental idea is to identify the important/unimportant factors as a group 

(Lewis and Dean, 2001). If a group is considered to be important, then subgroups or 

individual factors within the group should be further screened in a series of steps; 

otherwise the whole group can be eliminated from further analysis. It is necessary that the 

factors which are grouped together have the same sign to avoid cancellation in a group 

(Trocine and Malone, 2001; Dean and Lewis, 2005).  

 Factorial and Fractional Factorial (FF) designs are generally considered as the classic 

factor screening method with different resolutions for different levels of complexity of 

the response. Fractional factorial designs yield polynomial equations approximating the 

true response function, with better approximations from higher resolution level designs. 

These designs can be augmented to incorporate quadratic terms into the metamodel by 

using Central Composite Designs (CCD) (Yaesoubi, 2006). 

 

The fundamental assumption in fractional factorial design is that certain higher-order 

interactions are negligible, so information on the main effects and low-order interactions can be 

obtained by running only a fraction of the complete factorial experiment. The number of required 

runs in a fractional factorial experiment is much smaller, but the ability to estimate interaction 

effects is also reduced. Clearly, fractional factorial designs are more efficient than factorial 

designs, but it is more complicated to appropriately design a fractional factorial.  

Investigating factors at many levels may result in a very expensive design. Using a 3
k
 

factorial design lets us estimate quadratic effects, but it requires more design points, especially 

when k is large, therefore, factors are usually studied at only two levels. A factorial design where 

all factors are at two levels is called a 2
k
 factorial design, which is one of the most widely used 

screening methods in simulation. However, examining each factor at only two levels (the low 

and high values) does not reveal how the simulation output behaves for factor combinations in 

the interior of the experimental region. Moreover, it is possible that the choice of low and high 

level for factors cancels the interaction (Trocine et al., 2000). In practice, a 2
k 

design can be used 

to fit a first-order model, and if the model exhibits lack of fit, axial runs are then added to allow 

the quadratic terms to be incorporated into the model (Montgomery, 2000). Two-level factorial 



 

101 

 

designs assume linearity in the factor effects. Of course, perfect linearity is unnecessary, and the 

2
k
 system will work quite well even when the linearity assumption holds only approximately. 

However, it is noted that if the interaction terms are added to the main effects or first-order 

model, then we have a model capable of representing some curvature in the response function 

(Montgomery, 2000).  

Central Composite Designs (CCD) are the most popular class of designs used for fitting a 

second-order model by using middle levels or center points; however, they also increase the 

number of required runs. What makes 2
k-p

 fractional factorial designs attractive in factor 

screening experiments is the efficient number of runs it requires, which is a direct result of effect, 

i.e. when more effects are confounded, fewer parameters need to be estimated and as a result 

fewer runs will be needed.  

One of the major concerns with fractional factorial designs is that this design may confound a 

significant interaction effect with other effects; and therefore no information can be gained about 

the individual interaction effects within this confounded structure. The issue of confounding 

introduces the concept of resolution of a design. A design’s resolution determines the complexity 

of metamodels that can be fit to the data if the design is used. The following designs are of 

particular interest in fractional factorial experiments, especially in simulation.  

Resolution III designs focus on just finding important main effects; however main effects are 

confounded with two-factor interactions and two-factor interactions may be confounded with 

each other. Plackett-Burman designs are well-known in estimating the main effects of k factors 

in only k+1 runs, when k+1 is divisible by 4.   

Resolution IV designs focus on finding main effects and selected 2-way interaction effects. 

No main effect is confounded with any other main effect or two-factor interaction, but two-factor 

interactions are confounded with each other. 

Finally, Resolution V designs can estimate main effects and all 2-way interaction effects. No 

main effect or two-factor interaction is confounded with any other main effect or two-factor 

interaction, but two-factor interactions are confounded with three-factor interactions. 

In general, the higher the resolution, the less restrictive the assumptions that are required 

regarding which interactions are negligible to obtain a unique interpretation of the results. It is 

more desirable to conduct a Resolution V experiment to be able to estimate separately all the 
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two-way interactions. However, for a large number of factors, it may not be feasible to perform 

the Resolution V design. 

Once a screening experiment has been performed and the important factors determined, the 

next step is often to perform a response surface experiment to produce a prediction model to 

determine curvature, detect interactions among the factors, and optimize the process (Telford, 

2007). Fitting response surface is a simple and widely applicable approach to in the context of 

simulation modeling, whereas commonly used methods based on classical statistics (i.e., 

ANOVA) make unrealistic assumptions such as constant variances and normally distributed 

residuals. Response surface designs are useful for modeling a curved quadratic surface to 

continuous factors. A response surface model can pinpoint a minimum or maximum response, if 

one exists inside the design region. Three distinct values for each factor are necessary to fit a 

quadratic function, so the standard two-level designs cannot fit curved surfaces. As explained 

before, central composite designs resolve this issue with combining a two-level fractional 

factorial and two other kinds of points (Figure 31):  

 Center points, for which all the factor values are at the zero (or midrange) value 

 Axial points, for which all but one factor are set at zero (midrange) and that one factor is 

set as outer (axial) values (JMP, 2012) 

 

 

Figure 31: Central composite design 

 

The response prediction profiler can be used to get a close look at the response surface 

and interactively change variables and look at the effects on the predicted response. The profiler 
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tool explores the prediction equation to answer a number of questions such as, what type of 

curvature does the response surface have, or what are the predicted values at the corners of the 

factor space. 

JMP software, statistical software developed by SAS Institute Inc., was used to generate a 

2
k
 fractional factorial design of resolution IV. To estimate the main and selected 2-way 

interaction effects of 32 continuous factors under resolution IV, 64 runs were created. 

Simulations were run for 4800 time periods under 64 runs. To reduce the variation among the 

observations, we have generated 10 replications for each run (the inter-arrival time of patient 

requests for surgery and procedure duration times are both stochastic, following exponential and 

lognormal distributions, respectively) and threaded the batch mean as one final observation. Prior 

to performing factorial analysis and model fitting, all factors were internally recoded to -1, 0 and 

1 instead of their original units where 0 is in the center of the design, and ±1 are the distance 

from the center with direction (refer to Figure 32). The relationship between the natural 

variables, the block schedule and release day variables, and the coded variables is: 

       
                                                             

                                            
 

        
                                                                     

                                              
 

         
                                                                         

                                                
 

⁞ 

          
                                                                            

                                                  
 

 

And, the same transformation for block release policies is given as, 

 

         

 
                                                                                             

                                                    
 



 

104 

 

⁞ 

          

 
                                                                                             

                                                    
 

 

That is, they are made dimensionless, measuring the effect of changing each design factor 

over a one-unit interval regardless of their original metric of factor settings.  

Doing this allowed us to test the linear and quadratic components in the relationship 

between the factors and the dependent variables. Furthermore, coded factors were all estimated 

with the same precision. The design is orthogonal and the coded variables are also orthogonal. In 

this study, the values for block release and block hours were recorded on very different scales. 

Since the metric for these two types of factor is no longer compatible, the magnitudes of the 

regression coefficients are not compatible either and multicollinearity is unpreventable 

(Alexander M. T., 1999).  

 

        

Figure 32: Experimental range (-1, +1) across block schedule and release hour factors 
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The plot of the response distribution (overall profit) is shown in Figure 33, where all the 

response values are at a reasonable range.  

 

Figure 33: Response distribution of Stafford simulation 

 

Analysis of variance, summary of fit for the 2
k
 fractional factorial design, and summary 

of screening design are shown in Figure 34 and 35. The model accounts for 92% of the variation 

in the data. Reduction in adjusted R2 clearly shows we have to reduce extra independent factors 

from further analysis. In the screening design, main and interaction factors with the greatest 

effect on the response are identified.  

The plot of actual versus predicted responses and the normal probability plot for residuals 

are depicted in Figure 36. Both of these plots indicate that the normal distribution assumption for 

residuals is reasonable, and there is no significant evidence to suggest the violation of this 

assumption. 

 

           

Figure 34: Summary of fit and analysis of variance for    fractional factorial design 
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Figure 35:  Summary of screening design 
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Figure 36: a) actual versus predicted response b) normal probability plot for residuals 

 

Before making judgments about the significance of each factor, center points were added 

(i.e. all the factors set at their central level) and the analysis was re-run to ensure that the 

assumption of linearity stands. The center points clearly provide information about the existence 

of curvature in the system. If curvature is found in the system, then the addition of axial points 

allows for efficient estimation of the pure quadratic terms (Yaesoubi, 2006). Five center points 

were added to the model --the replicated points were used to calculate the pure error--which 

reduced the R
2

Adj from 85% to 75% (as well as, reduction in R
2
) and the model F-Ratio from 

12.37 to 7.4 (Figure 37). 

 

           

Figure 37: Summary of fit and analysis of variance for        fractional factorial design, augmented with 

center points 
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In addition, both residual plots show that the residuals for the center points were greater than the 

residuals for other design points (Figure 38).  

 

 

Figure 38: Residual by predicted plot and the residual distribution for 2
k
 fractional factorial design 

 

To conclude whether a non-linear relationship exists, a lack of fit test was performed on 

the data. Since the observed statistic, F0, value was significantly higher than the critical F-value 

of 5.738, there was sufficient evidence to conclude that, at α-level of 0.05, there is a lack of 

linear fit (Figure 39).   

 

 
Figure 39: Lack of fit test result 2

k
 fractional factorial design 

 

All of this evidence suggests that a first-order polynomial augmented by second-order 

interactions may not be a good approximation of the response function (Yaesoubi, 2006). 
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In statistics, a central composite design is an experimental design that is useful in a response 

surface methodology for building a second order (quadratic) model for the response 

variable without the need to use a complete three-level factorial experiment. Therefore, a second-

order model was devised, using Central Composite Design (CCD) to estimate the quadratic 

effects in the data. There are many designs available for fitting a second-order model. The most 

frequently used one is the CCD, introduced by Box and Wilson. It consists of factorial points 

(from a 2
q
 design and 2

q-k 
fractional factorial design), central points, and axial points. The center 

runs contain information about the curvature of the surface: if the curvature is significant, the 

additional axial points allow the experimenter to obtain an efficient estimation of the quadratic 

terms. When there is curvature in the response surface, the first-order model is insufficient. A 

second-order model is useful in approximating a portion of the true response surface with 

parabolic curvature (Bradley, 2007).  

Three main varieties of CCD are available: face-centered, rotatable and inscribed. A face-

centered design is obtained by setting the experiment range α at constant distance +1 and - 1 so 

that it requires only 3 levels of each factor (α=±1) as shown in Figure 40.  

 

 

Figure 40: Face-centered design 

 

In rotatable design, the extreme points are at some distance α>1 from the center, based on 

the properties desired for the design and the number of factors in the design to achieve 

rotatability. These points establish new extremes for the low and high settings for all factors 

(Figure 41). This design requires 5 levels for each factor. 

 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Response_surface_methodology
http://en.wikipedia.org/wiki/Response_surface_methodology
http://en.wikipedia.org/wiki/Response_variable
http://en.wikipedia.org/wiki/Response_variable
http://en.wikipedia.org/wiki/Factorial_experiment
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Figure 41: Rotatable design 

 

Situations in which the limits specified for factor settings are truly limits call for 

inscribed design.  This design uses the factor settings as the starting points and creates a factorial 

or fractional factorial design within those limits (in other words, an inscribed design is a scaled 

down rotatable design with each factor level of the rotatable design divided by α>1 to generate 

the inscribed design) (Figure 42). This design also requires 5 levels of each factor (Verseput, 

2000). 

 

Figure 42: Inscribed design 

 

For this study we chose a face-centered design, because, first, hospitals are not able to 

operate in OR rooms all the time and, second, it is not practical to set release times lower than 

some threshold. The inscribed design might have been the best choice if we had known the 

extreme limits to establish the low and high points for all factors. But, in this case, that 

information was lacking.  Thus, the face-centered CCD was a simpler design to carry out in this 

situation, which requires operating the process at only three level settings of each variable. 
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However, applying CCD on all 32 factors was not practical (under resolution V) so, the next step 

will be to select the important factors under fractional factorial resolution IV. 

A fractional factorial of resolution IV augmented with axial and central points was 

created for this study. It required 64 runs for a fractional factorial of resolution IV, and 2 × 32 

runs for axial designs, and 5 runs for central points; thus a total of 133 runs were needed. We 

used 5 center points for stability of results.
7
 The analysis of variance and summary of fit for the 

design are shown in Figure 43.  

 

  

 
Figure 43: Summary of fit, analysis of variance, and lack of fit for        fractional factorial design 

augmented with axial and center points 

 

Both the R
2
 and the model p-value has improved from 92% to 97% under generated 

second-order model, which implies that 97% of the variation in the dependent variables can be 

accounted for by the second-order model. Also, the large p-value for lack of fit (0.278) indicates 

the lack of fit is not significant and supports the conclusion that there is little to be gained by 

introducing additional variables. The normal probability plot for residuals is depicted in Figure 

44. The plots show that the normal distribution assumption for residuals seems reasonable, and 

there is no significant evidence to suggest a violation of this assumption. 

 

                                                 
7
 - Augmented Design is used to modify an existing 2

k
 design data table and adds axial points together with center 

points to transform a screening design to a response surface design. 
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Figure 44: a) normal probability plot for residuals b) actual versus predicted response 

 

As a first step, stepwise regression was run to identify the important factors (Figure 45). 

This criterion drops any effect with F-Ratio less than 2 from the model, making it a restricted 

model. 

 

  

 

Figure 45: Summary of fit and analysis of variance for        fractional factorial design on restricted 

model  

 

Both the R
2

Adj and the model F-Ratio increased with a noticeable jump in the model F-

ratio from 12.37 in original first-order model (all factors) to 34.36 in the restricted second-order 

model. Figure 45 displays the sorted estimated effects of the generated restricted second-level 

model. As is the case in the parameter estimates, the final model has significant cross product 

and quadratic factors. 
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Figure 46: Parameter estimates for restricted model 
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In the next step, important factors were selected among the significant ones (based on 

Lenth’s t-ratio, provided in Table 36) generating over $100K change in the profit (the $100K 

threshold was set such that it reduced the factors to less than half). Therefore, if a factor had a 

main effect greater than $50K (or $100K/2) or a quadratic effect greater than $100K, or was 

involved in a second-order interaction effect greater that $50K, it was declared to be important 

(Yaesoubi, 2006). Table 36 lists the selected main important factors. 

 

Table 36: List of important factors for Stafford block size 

Number Factor Estimate Lenth t-Ratio 

1 Type1 -103241 -6.82 

2 Type2M 41038 3.42 

3 Type2Th  (Type2Th* Type2Th) -146724 2.11 

4 Type4  -199803 -16.41 

5 Type5Tue  52098 5.14 

6 Type5Fri (Type5Fri * Type5Fri) 16093 2.71 

7 Type6Tue 67856 3.72 

8 Type6Thu -62861 -3.68 

9 Type9 81287 7.16 

10 Type10 -71771 -4.11 

11 Type0M1 51119 3.55 

 

Considering our results from the earlier case study, we expected the effect of the release 

block policy on profit (prior to the best block size) to be negligible in comparison with the effect 

of block size. We can see the same result in Figure 45, the sorted estimated effect size of the 

release block and block size. Among the top fifteen significant factors, only two factors are 

release block. Given the small effect of the release block in comparison with block size (refer to 

Figure 47) and to ensure that the block release policy effect would be considered in the final 

model, we divided the process of finding important factors into two steps. 
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Figure 47: Prediction Profiler 

 

In the first step, the restricted model was run with the top block size factors, and their 

optimal point was found. As we learned in the case study, the impact of the release policy 

appears negligible initially, but it becomes more significant in the range of superior block size.  

So, in the second step, important factors were selected among those important block size factors 

from the first step and all block release factors within the range of superior main block size 

factors. These steps are explained in detail below. 

Step1. Once a screening experiment has been performed and the important factors 

determined, the next step is often to perform a response surface experiment to produce a 

prediction model to determine curvature, detect interactions among the factors, and optimize the 

process (Telford, 2007). In this study, a second-order model was fitted using face-centered 

central composite design (CCD) for the eleven factors selected as important. To obtain the 

second-level model, a central composite design resolution V with center point and axial point 

was run. This design required 2
11-4

 factorial runs for resolution V design, 22 axial and 5 center 

points run; thus a total of 155 runs were needed (Matlab is used to create the design). For each 

run, 10 observations were obtained. The RSREG procedure is used to fit the response surface.  

The analysis of variance and lack of fit for the model are shown in Figure 47. The factor 

ANOVA table displays tests for all eleven parameters corresponding to each factor. 
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Figure 48: Summary of fit, analysis of variance and ANOVA test for CCD 

 

The normal probability plot for residuals is shown in Figure 49. This plot indicates that 

the normal distribution assumption for residuals appears reasonable; there is no significant 

evidence to suggest the violation of this assumption. Also, the normality test confirms that the 

normal distribution assumption holds. 

 

 

Figure 49: a) normal probability plot for residuals b) Normality test 
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JMP computes the linear, quadratic, and interaction terms in the model. The estimate of 

effects for the response variable profit is shown in Figure 50. Analysis of variance indicates that 

there were significant interactions between the factors. The small p-values for linear and 

quadratic terms also confirm that their contribution is significant to the model, and there is 

curvature in the response surface.
8
 

Next, it was necessary to find the levels of factors that optimized the predicted response, 

profit. When the response surface is not a plane, it becomes more complicated to determine 

optimum values. This point, if it exists, will be the set of factors for which the partial derivatives 

equal to zero.  This point is called the stationary point. The stationary point can be either a 

maximum, a minimum, or a saddle point (Montgomery, 2005). 

We may obtain a general mathematical solution for the location of the stationary point as 

expressing the fitted second-order model in matrix notation, as follows: 

            
 
            

  
         

 
     

   
                                   (4.1) 

Where 

x= 

  
  
 
  

 ,    b= 

  
  
 
  

 , and B= 

              
              
    

              

                                                          (4.2) 

Assuming B is nonsingular, the unique stationary point of the fitted surface occurs at 

    
 

 
                    (4.3) 

Furthermore, by substituting Equation 4.3 into Equation 4.1, we can find the predicted response 

at the stationary point as: 

       
 

 
   

   

 

                                                 
8
 -This model follows CCD assumption where each factor xi is standardized and lies in [-1, +1] range. 
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Figure 50: Parameter estimates for CCD 
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We can find the location of the stationary point in the experiment region using the 

general solution in equation 4.1 (Mee, 2009). Note that for our model (values are from Figure 

50), 

 

b=

 
 
 
 
 
 
 
 
 
 
 
      
     
      
       
      
     
     
      
     
      
      

 
 
 
 
 
 
 
 
 
 

, and B=

 
 
 
 
 
                    
                   
                      

     
                     

 
 
 
 

 

 

and from equation 4.3, the stationary point is determined at the following location. Both coded 

and uncoded values are provided based on canonical analysis output, 

 

 

Figure 51: Canonical Analysis for 11 factors 

 

With predicted responses of 1,455,073, determining some of the larger predicted values (outside 

the range of [-1, +1]) would require extrapolation.  
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Once the stationary point is found, it is usually necessary to characterize the response 

surface in the immediate vicinity of this point; that is, one must determine whether the stationary 

point is a maximum, a minimum, or a saddle point. We also need to study the relative sensitivity 

of response to the variables. Although a counter plot is the easiest way when there are just a few 

variables, performing canonical analysis (an Eigen analysis) of Hessian matrix B is the more 

appropriate and scientific method (Montgomery, 2005). 

In canonical analysis, a model is transformed into a new coordinate system with the 

origin at the stationary point and then the axes of this system are rotated until they are parallel to 

the principal axes of the fitted response surface. 

In this study, canonical analysis was used as described above to characterize the 

stationary point    by calculating eigenvalues of Matrix B as the roots of the following 

determinate equation, 

                    (4.4) 

Accordingly, the roots of the equation become: 

The sorted eigenvalue and associated eigenvector of matrix B are presented in Figure 52. 

 

 

Figure 52: Canonical curvature, Eigenvalues and Eigenvectors 
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Thus, the canonical form of the fitted model is as follows: 

                  
         

         
         

        
             

  

The fitted surface is a saddle surface and unbounded as a consequence of having both positive 

and negative eigenvalues.  

Close examination of the calculated stationary point reveals that not all levels fall within 

the region of experiment. The optimum values of Type4, Type5Tue, Type5Fri, Type6Tue, and 

Type10 extrapolate the limits of the experimental design [-1, +1]. In many first-order cases, as 

well as second-order cases where a saddle point or the stationary point is found to be distant, the 

most useful further action is to decide in which direction to explore further. Also, comparing the 

resulting profit at saddle point (1,455,073) with the profit at the current production level (the 

center point for all main factors) (1,407,204), it is evident that any further improvement in the 

profit will require us to move towards the curve up direction instead of extrapolating around the 

extended experiment region to find the optimum.  

Ridge analysis of the response surface was performed
9
 to locate the optimal response 

value (and its associated variable levels) within the boundaries of the region (Figure 53). The 

ridge starts at the midway point (between the highest and the lowest values of the factors), and 

the point on the ridge at radius 1.0 from the midway point is the collection of factor settings that 

optimizes the predicted response at this radius. Thus, the ridge analysis can be used as a tool to 

help interpret an existing response surface or to indicate the direction in which further 

experimentation should be performed within the boundaries of the region.  

The ridge analysis output indicates that maximum profit results from relatively lower 

block hours for almost all surgeons’ blocks, with the exception of type 2 and type 0. The 

desirability prediction, shown in Figure 54, confirms this conclusion. 

 

 

 

 

                                                 
9 - SAS proc rsreg is used for this analysis 

 



 

122 

 

 

Figure 53: Ridge Analysis 

 

 

Figure 54: The Desirability Profiler 

 

To summarize, at the predicted response, profit reached $2.26M, 60% higher than $1.4M 

estimated profit at the current operational level (experiment region at center point). The modified 

stationary point is thus: 
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This result suggests that the superior policy would be to reduce the block size in eight out 

of eleven factors and keep the block size at the current level for the rest. The willingness to 

reduce overall block size across all specialties and increase utilization may not be realistic or 

practical. As the OR Manager has published, in 2012 and 2013, the median utilization rate for 

operating rooms was around 75%, with top utilizations of 85% to 90% and vastly different rates 

among specialties because some specialties need further support from primary services due to 

complexity of their cases. To summarize, actual utilization rates are affected by the risk of 

overtime combined with complex patient mixes. High utilization rates require extremely good 

supporting systems, particularly with respect to bed availability, pre-admissions testing and 

PACU access. Otherwise, the benefits of high utilization will be outweighed by the costs of 

excessive overtime and staffing. 

So it is necessary to consider realistic utilization rates for specialties, benchmarks that 

take into account the specialties’ patient mix characteristics and the hospital’s willingness to 

accept the risk of overtime (Van Houdenhoven et al., 2007). To check the robustness of our 

model, we ran the simulation for three scenarios of target utilization rate: 60%, 75% and 90%. 

For simplicity, we assume the same utilization rate for all specialties. Table 37 summarizes the 

simulation results for optimized block size factors under each utilization rate.   

 

Table 37: The best block size for a range of utilization rate 

 
Utilization 

Factors 100% 90% 75% 60% 

Type1 -1 reduce -1 reduce -0.6 reduce -0.3 reduce 

Type2M 0.02 no change 0.02 no change -0.1 increase -0.6 increase 

Type2Th -0.05 no change -0.03 no change 0.03 no change 0.15 increase 

Tyep4 -1 reduce -1 reduce -0.8 reduce -0.4 reduce 

Type5Tue 1 reduce 0.5 reduce -1 increase -1 increase 

Type5Fri 1 reduce 0.2 reduce 0.2 reduce -1 increase 

Type6Tue 1 reduce -0.1 increase -0.2 increase -0.9 increase 

Type6Thu -0.4 reduce -0.3 reduce 0.2 increase 0.9 increase 

Type9 1 reduce 1 reduce 0.8 reduce -0.7 increase 

Type10 -1 reduce -0.1 no change 0.02 no change -0.02 no change 

Type0M1 0.02 no change 1 increase 1 increase 1 increase 
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As shown in the table, as utilization rates are reduced, the best value tends to increase the 

block size. Based on this result we have decided to proceed with utilization rate of 75% as most 

of the optimal values are within the experiment region (no extrapolation is required) and also it is 

compatible with the industry benchmark as published in OR manager.   

Step 2. In this step, a factor screening experiment was conducted on these remaining 

eleven important block size factors as well as all the release block factors to identify those which 

do not have a significant effect on profit. A total of 1073 runs were needed (referring to discrete-

valued Walsh functions) in order to estimate all 276 coefficients (n+2)(n+1)/2 in a full quadratic 

model with 22 factors, a design with at least 2
22-12

 factorial, 44 axial and 5 center points runs. 

Before running this analysis, important block size factors were set at their optimal level, as 

estimated in Step 1 (which established a new center level for the experiment region) while less-

important block size factors were maintained at their current operational level. The result of 

stepwise regression is shown in Figure 55 and 56. Any effects with F-Ratio less than 2 are 

eliminated from the model, making it a restricted model. 

 

 

Figure 55: Parameter estimates for 22 factors 
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Figure 56: Summary of fit and analysis of variance for 
222-12

 fractional factorial design 

 

The top five block release factors from our initial experiment (with 32 factors) are shown in 

Table 38. 

 

Table 38: List of important factors for Stafford block release time 

Number Factor Main effect F-ratio 

1 Release1 15290 3.1 
2 Release2 60108 49.0 
3 Release4 28433 10.5 
4 Release5 32520 14.5 
5 Release9 31376 12.9 

 

The result of screening analysis confirmed that four of these five release factors are among the 

final thirteen important factors. 

From analysis, it was possible to proceed to a response surface experiment to determine 

the best value for the 13 selected important factors, which include 9 block size and 4 block 

release time factors. To estimate a full quadratic model with 13 factors, a CCD design was 

created with 2
13-5

 factorial, 26 axial and 5 center point runs, a total of 287 runs. The analysis of 

variance and lack of fit for the model are shown in Figure 57. 

The estimate of effects for the profit is shown in Figure 58. Analysis of variance 

indicated significant interactions among the factors. The small p-values for the linear and 

quadratic terms also confirmed that the factors’ contribution is significant to the model, and there 

is curvature in the response surface.   
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Figure 57: Summary of fit and analysis of variance for 2
k
 fractional factorial design 
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Figure 58: Parameter estimates for 13 factors 
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Figure 58 Continued: Parameter estimates for 13 factors 
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Figure 58 Continued: Parameter estimates for 13 factors 
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Using the general solution in equation 4.3, it was possible to locate the stationary point, 

as shown below: 

 

 

Figure 59: Canonical Analysis for 13 factors 

 

The predicted response at the stationary point was $1,664,242, with some extrapolation 

required to determine some of the larger predicted values, 4 out of 13 predicted values are 

located outside the experiment region(outside the range of [-1, +1]). Canonical analysis was 

conducted on the Hessian matrix B to classify stationary point into maximum, minimum or 

saddle point. Our finding of both positive and negative eigenvalues, as shown below, indicated 

that the stationary point is a saddle point. 

To determine the best path toward improving the profit (response) away from the saddle 

point, a ridge analysis was conducted. The path was started from midpoint location in the 

experiment region. The result is summarized in Figure 60. 
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Figure 60: Canonical curvature, Eigenvalues and Eigenvectors for 13 factors 

 

 

 

Figure 61: Ridge analysis for 13 factors 
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The predicted response reached $2M, 44% higher than the estimated profit of $1.4M at 

the current operational level (the experiment region at the center point). The modified stationary 

point is thus located at: 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
     
 

     
   
   

     
  
 

     
  
 
  
  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

This result suggests that in order to achieve a superior OR allocation plan, four out of the 

nine block factors--Type 1, Type 4, Type 6 and Type 10 --would have to be reduced further.  

However not all of the reductions in block size are due to block release optimization. For Type 1 

and Type 4, introducing the block release factor into the model results in a further reduction of 

block sizes, but, when release effects is excluded from the model, even further reductions are 

required in order to achieve optimization under a lower utilization rate (referring to Table 37, 

superior block schedule decision under 60% utilization rate). 

Thus, we have excluded Types 1 and 4 block size reduction from our analysis of the 

marginal benefits of the joint optimization of allocation and release policy. In addition, the effect 

of introducing block release factors into the model suggests that setting earlier release times for 

Block Types 2 and 5 and postponing release times for Block Type 1 and Type 4 would be a 

viable way to improve profits or to reduce overall waiting cost. More explanation, including the 

reasoning for and potential financial gains associated with these results, is provided in the next 

chapter. 

Step 3. The third and final step will be to optimize the scheduling policy so that overall 

waiting costs are minimized.  
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The application of reserve policy in case scheduling for the multi-priority patient  

As noted in Chapter 2, the third and the last step in the process of optimizing individual 

patient scheduling must center on daily decisions about patient scheduling policies where the 

waiting costs vary—that is, in cases of multiple-priority patients with semi-urgent needs. This 

step in the optimization process applies only to those patients who are scheduled in open hours or 

in released hours since for the patients who are scheduled in home blocks, their surgery times are 

assigned on a first-come-first-served basis. We assume the best release policy remain unchanged 

from the result of the joint-optimization of block hour and release policy.  

Around 25% of Stafford’s surgeries are performed either in open hours or in released 

hours. This means that an improved appointment policy can generate an improved overall yield 

(profit) from these patients by reducing their waiting times. The previous chapter reported on the 

benefit of our reserve policy for the scheduling of two-priority patients. These findings can be 

extended to multi-priority patient scheduling by introducing booking limits (protection levels) 

for each priority level. The protection level is calculated for every combination of classes while 

comparing each class with all other priority classes. The results of the simulation model 

presented here incorporate the idea of accepting/postponing requests for surgeries from several 

competing classes of patients who present fluctuating demands and service hours. Traditionally, 

the primary concern in the healthcare operations literature has been how to reduce operating 

costs and increase OR utilization. Since the survival and prosperity of the surgical suite in the 

long run also depends on the revenue it generates, it is also crucial to investigate how to better 

manage the mix of patients that request elective surgeries, with the goal of increasing the 

expected revenue generated by the surgical department and reducing the risk of delays and 

cancellations of surgical cases (Stanciu et al., 2010). 

The problem of allocating service capacity among several competing customer classes, 

who arrive randomly over a period of time, has been studied in diverse applications including 

airlines, hotels and car rentals. In particular, airline Revenue Management (RM) has been studied 

thoroughly; see McGill and Van Ryzin (1999) and Talluri and Van Ryzin (2004) for detailed 

reviews. Whereas capacity reservation is also an important aspect of health care access 

management, there are important differences that make it difficult to simply “tweak” existing 

models to fit the needs of the health care industry. For example, of the various models suggested 
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for airline RM, comparisons with the Expected Marginal Seat Revenue (EMSR) model (see 

Belobaba, 1989) help to highlight the complexity of healthcare operations (Gupta and Denton, 

2008).  

To outline the main differences between Stafford’s multi-priority policy and the earlier 

two-priority case, we briefly review the following:  

Urgency level. In the 2-priority case, the waiting cost function was linear (e.g.,         

                                                      ), which means one type of patient is 

always dominant (or has higher priority). In contrast, at Stafford, the waiting cost function 

follows a log function, where the priority of patients changes as a function of waiting time.   The 

probability of cancellation and the expected revenue per case defines the overall cost of waiting 

for each patient type. Expected revenue per case is calculated based on the average revenue per 

hour of operation (including pre-op, surgery and post-op). Due to the confidentiality of financial 

data, proportional revenue per hour is used for comparing patient types. Waiting costs are 

quantified as the potential loss of profit due to a patient leaving the system without getting the 

surgery. It can be represented as follows. 

 

      
 
   

 
    ;  

 

     Expected revenue per case, associated with surgeon i  

           Probability of cancellation, given j waiting time unit 

 

Stafford does not have any type of patient who is the highest priority at all times. Waiting 

penalties ($ profit loss) given waiting time are presented in Figure 62. Type B patients have the 

highest priority until time 45, after which Type A becomes the highest priority. This function 

makes the assigning decision more challenging because the decision must depend on the state of 

the system. 

Secondary arrival rate. In order to calculate the protection level for multi-class patients, 

the arrival rate for all types of patients must first be calculated. The arrival rate is not the original 

arrival rate of each patient type but rather the arrival demand for a released block or open hours  
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Figure 62: a) Probability of cancellation given waiting time based on historical data b) Waiting penalty ($ 

profit loss) given waiting time calculated based on probability of cancellation and revenue 
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(we refer to this as “secondary arrival demand”), which may be completely different from the 

initial arrival rate due to differences in original block hours, urgency levels and original arrival 

rates of patients.  

To estimate the secondary arrival rate (and overall demand) for released time and open 

ORs, the Stafford simulation was run under the superior scheduling block time and release policy 

(Step 2 optimization). This result has been used to estimate the optimal secondary demand rate 

for off-block hours (Table 39). 

 

Table 39: Secondary arrival rate driven from simulation under superior block size/release policy 

Specialty Surgeon/Group 
Initial Mean inter-

arrival time (day)  

Secondary Mean inter-

arrival time (day)  

EAR, NOSE AND 

THROAT 
G 2.53 4.46 

GENERAL / 

VASCULAR 

H 3.20 17.67 

B 3.17 13.78 

E 1.06 7.05 

OBSTETRICS/GYNEC

OLOGY 
F 1.23 6.80 

ORTHO 

I 5.32 19.40 

A 2.45 4.22 

D 1.50 5.44 

PLASTICS K 5.93 47.88 

PODIATRY 
C 1.26 5.88 

J 4.80 20.34 

 

Surgeons’ preferences and available days of the week to do surgery. In the 2-priority 

patient case, surgeons were available and willing to perform surgery on any day. In contrast, at 

Stafford, surgeons are only available to conduct surgery on a limited number of days. This 

additional restriction make the scheduling decision even more challenging since the optimal 

scheduling decisions will be a function of waiting time as well as the day of week for the 

available released hours. Due to the Markov property (memoryless), it does not matter if we have 

released hours for higher priority patient before this available time, so each available released 

http://en.wikipedia.org/wiki/Markov_property
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block is evaluated separately but we will give a higher penalty weight to those patients whose 

surgeons have less opportunity to assign their case to open and/or released hours.  

Open blocks versus released block. There is a slight difference between available 

capacity in open and released OR hours. As hospitals already have committed staff for released 

hours, schedulers tend to fill released hours first and then look for possible open ORs. This 

difference results in revenue lost for unfilled released hours, while there is no penalty for unfilled 

open ORs. To incorporate this difference in our study, we have assumed two scenarios for cost 

per hour of open hours of 1.5 and 2.0 times the cost per hour of released block. This cost 

difference makes it possible to compare the trade-off between the cost of leaving released hours 

unfilled and the cost of unnecessary open hours. 

These features and the need to accommodate urgent demand, make it more difficult to 

apply popular heuristic revenue management methods such as the Expected Marginal Seat 

Revenue (EMSR) model, for the surgery scheduling (access) decisions. Currently, at Stafford, 

surgeries are assigned to off-block hours based on first-come-first-serve strategy. The proposed 

reserve policy at Stafford exploits the multi-priority patients in assigning patients as follow, 

 

Algorithm 2. A scheme of Stafford proposed reserve policy algorithm 

 

Given a patient C has exceeded the maximum release time threshold,       and is eligible to 

assign to release/open time. 

1. Obtain  

a. Patient type, I            

b. Arrival rates (secondary arrival rate),      

c. Maximum release time of each patient type,        

d. Surgeons’ preference matrix ,    

2. Find the first available spot,     for patient C in released hours, which  

a. matches with the surgeon’s preference matrix (1.d) and 

b. is within the maximum release time of the patient (1.c, refer to block release policy)   
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3. Look up the surgeons’ preference table for this day (the weekday associated with    ) and 

identify all patient types whom their surgeon(s) can perform surgery on this day (e.g., 

Monday)  

4. Calculate the priority (expected waiting loss) of selected patients,        , based on 

secondary arrival rates,     , and the waiting cost at time unit   , where    is calculated 

based on                        , and sort patients in ascending priority order 

 
 
 

 
 
                                                                                                                          

                             

       
 
  
                       

  

   

                                 

  

         : $ Revenue per case  

    
              : Probability of arrival for competitor cases in the next   time unit 

          
  
     : Probability of leaving for each competitor case, given waiting time t; 

                           

        
 
  
                      

  
           : 

E                                           
 

5. Iterate until simulation time ends, 

a. If the requesting patient type C, has the highest priority rank, assign it to this 

available spot    , 

b. Else if, in spite of allocation of higher priority type(s) to this released block, and 

there is still enough space remaining, assign the case C to     

6. Else, find the next open/release hour,     for all higher priority patients and this patient C, 

which  

a. matches with surgeon’s preference matrix and 

b.     ≤ maximum time of the patient (refer to block release policy)   

7. Calculate cost of postponing each higher priority patients to the next available spot,     as 

follow,                         
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         : Penalty of using open hour versus utilizing current release hour 

        

                           

                              
                                           

                                                                                                            

  

a. If the cost of postponing case C to the next available spot is higher than postponing 

higher priority case(s), or if following equation holds, schedule case C to the first 

available space,    ,  

                         
      

     
                   

  

   

                

b. Else, return to 6. 

 

 

An experiment is conducted for the proposed reserve policy on the Stafford simulation 

from the step 2 final result, Stafford under superior block size and block release policy. The same 

duration of 4800 time units is selected in order to ensure the comparability of results. We have a 

fixed amount of daily release/open capacity. Patients of different priorities who have exceeded 

their maximum wait time arrive randomly over time and it must be decided whether to assign a 

case to the first available release block or postpone it to the later time (either open or own block) 

in order to reserve earlier hours to higher priority patients. There is always a risk of 

underutilization in the event that release hours are not fully used. On the other hand, proceeding 

with filling released hours with lower priority cases will incur additional waiting cost for higher 

priority patients. In order to capture this tradeoff in the simulation, we ran the simulation under 

two scenarios; cost of open hours being 1.5, and 2.0 times cost of released block. The higher the 

cost, the greater the tendency to assign cases to released hours rather than open hours (thereby 

penalize under-utilization more). We will evaluate the overall cost (including underutilization 

and waiting cost) under these scenarios. We are interested in minimizing the total expected cost 

(or maximizing expected profit) over a finite planning horizon considering patient priority. More 

explanation, including the reasoning for and potential financial gains/loss associated with these 

results, is provided in the next chapter. 
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Chapter 6 : Summary and Conclusion 

Figure 62, shows the marginal profit gain at each step of our optimization process. To 

summarize, we took two steps to estimate improved values for block schedule and release policy 

factors. The purpose of Step 1 of the process was to find superior block schedule allocations for 

multi-priority patients in the experiment region. The results of Step 1 were used in Step 2 to 

establish a joint optimization of allocation and block release policy. Overall, we found that 

profits could be increased 44% above the current Stafford operational level, with 21% of the 

improvement coming in Step 1 through the combination of better alignment of the OR time 

allocations with the requirements of each surgical specialty and relaxed utilization rate 

assumptions.  

An additional 10% improvement was gained merely by optimizing the release block 

policy with reference to the patient waiting penalty function or priority-level and the block 

utilization rate. The remaining 9% was due to the effect of further OR block size reductions of 

Types 1 and 4 surgeons, who had been excluded from our analysis of the marginal benefits of the 

joint optimization of allocation. The first step of optimization involved reducing OR block sizes 

when there was minimum impact on patients’ waiting time or increasing OR block sizes when 

the additional gain in terms of waiting-cost reductions outweighed the costs of incremental block 

hours.  

 

  

Figure 63: Marginal profit gain at each step of optimization 
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In contrast, the second step emphasized improving utilization by means of an improved 

release policy, based on the principle that the value of postponing release time must be calculated 

in terms of the valued gained by dedicating space to higher priority patients or releasing blocks 

earlier to provide more access to higher priority patients and thereby reducing overall waiting 

time. 

Table 40 summarizes the step-wise optimization results and shows how these results 

compare with the current operational level at Stafford. As shown below, both OR block costs and 

waiting costs can be reduced through these two steps. In Step 1 alone, waiting costs can be 

reduced by 5% by means of 1) improved access to earlier off-block OR times for high priority 

patients via increasing open OR hours, 2) the addition of OR block times for medium priority 

surgeons with more frequent schedules, and the provision of better opportunities for high priority 

patients to use unfilled blocks.  

 

Table 40: Summary of step-wise optimization results 

 

Stafford                  

(under 64% 

utilization) 

Optimized 

block   (under 

75% utilization) 

% 

change 

Optimized block 

and Release  

(under 75% 

utilization) 

% 

change 

Total # of performed surgeries 792 803 1% 809 1% 
Revenue $9,633,062 $9,734,990 1% $9,849,774 1% 

Total block cost $6,635,124 $6,519,367 -2% $6,345,443 -3% 
Total waiting cost $1,590,791 $1,519,078 -5% $1,478,226 -3% 

Profit $1,407,147 $1,696,545 21% $2,026,105 19% 

      Total occupied block hours 1601 1603 0% 1595 -1% 
Total occupied open block hrs 306 405 32% 414 2% 

Total occupied release block hrs 73 83 14% 103 24% 
Initial block hours available 3155 3047 -3% 2984 -3% 

Utilization 64% 70% 6% 73% 3% 

 

As explained above, in the first step, the total number of occupied open blocks was 

increased by 32%, thereby reducing the waiting time of those patients who couldn’t find 

available OR times in another surgeons’ released block or whose first available space in 

surgeon’s block was extremely delayed. Step 2, in turn, generated a significant change in 

occupied release hours due to a policy for earlier release time and the channeling of high priority 
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patients into unfilled spaces, thereby improving utilization and waiting time. Although all the 

simulations were run for the same duration (of 4800 time units) in order to ensure the 

compatibility of results, the model shows that revenue as well as the number of performed 

surgeries can be increased through step-wise optimization. Revenue is generated based on the 

number of performed surgeries (exclude waiting and canceled cases) by the end of the simulation 

time. As utilization increases and waiting times decrease through the optimization steps, Stafford 

can perform more surgeries over the same period of time. Although the rate of utilization 

improved from 64% to 70% in the first step of the model’s implementation, it did not reach the 

target rate of 75% due to variations in demand such as variation in case durations, arrival rates 

(coefficient of variation), the probability of cancellations (multi-priority patients) and restrictions 

on providing services such as surgeons’ preferences or limitations in the availability of 

equipment. Although we cannot control such variables, we can reduce their effects by offering 

more flexibility to surgeons to assign their cases based on a first-come-first-served rule. An 

optimal release policy, which considers both differences in waiting costs and multi-class patients, 

can effectively control variation and improve utilization across surgeons. As can be seen in 

Figure 63, the utilization rate improved to 73% in the second step of the model’s implementation 

thanks to modifications in release times. Figure 64 displays the resulting utilization rates across 

patient types.  

 

 

Figure 64: Utilization rate across surgeon types and through each optimization step 
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Utilization has improved for almost all groups, partially due to the modification of the 

utilization rate from the current rate of 64% to 75% and partially due to the optimization of the 

release policy considering the waiting-penalty function of multi-class patients. Although the 

same percentage of block size reduction is achieved in both steps (a 3% reduction in initial block 

hours available), the second optimization step makes a greater contribution to utilization 

improvement by providing fair access to all patients via a better release policy.  

Table 41 lays out the result of the improved block schedule allocations across specialties. 

In the model, the overall block size is reduced by 6% with a combination of increases and 

reductions in block size. The highest percentage of block size reductions occur for Types A, D 

and I, all ortho surgeons. These types of surgery have the highest priority with the steepest 

waiting cost function and the highest coefficient of variation in arrival rates. These surgeons also 

have the shortest scheduling lead time, so keeping the block size unchanged and releasing blocks 

earlier would not be a viable way to reduce waiting times or block costs. The results indicate 

that, for these high priority patients, it is more valuable (lower waiting penalties) to have fewer 

allocated blocks aggregated on one day while allocating more surgeries to off-block hours with 

higher flexibility or spreading surgeons’ block hour across multiple days instead of one day 

every other week.  

 

Table 41: Summary of change in block schedule allocations in stage-wise optimization 

Surgeon 

/Group 

Stafford                     

(under 64% 

utilization) 

Optimized block   

(under 75% 

utilization) 

Optimized block 

and Release  (under 

75% utilization) 

Optimal Stafford                     

(under 75% 

utilization) 

% 

change 

Type A 192 -27% -7% 130 -32% 

Type B 239 0% 0% 240 0% 

Type C 288 0% 0% 288 0% 

Type D 312 -22% -14% 202 -35% 

Type E 480 5% 0% 502 5% 

Type F 648 0% -6% 608 -6% 

Type G 96 0% 0% 96 0% 

Type H 144 0% 0% 144 0% 

Type I 120 -40% 0% 72 -40% 

Type J 120 0% -20% 96 -20% 

Type K 96 0% 0% 96 0% 

Open block hrs 416 23% 0% 512 23% 

Total  3151 -3% -3% 2984 -5% 
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It is also clear from the improved block time allocation decision result in Table 41 that an 

increase is needed in block sizes--both in dedicated block times and open block hours-- to 

provide more access to higher priority patients notwithstanding the high cost of block hours. 

Figure 65 shows how block size reallocation and overall block size reduction affected waiting 

times across different types of surgery, as well as how each of the optimization steps contributed 

to the shift in the distribution of OR services, and thus to the rebalancing of resources across 

competing classes of demand. It is obvious that waiting time has not been reduced for all types of 

patients nor is the reduction rate the same among groups. This difference in outcome is due to 

differences in the sensitivity of patients to waiting times. 

 

 

Figure 65 : Average waiting time across patient types and through each optimization step 

 

As illustrated in Figure 66, each surgeon/group shows different sensitivity to waiting 

times. Some start with a very low waiting penalty but see a rapid increase in the waiting penalty 

over time; others show less sensitivity to the waiting time with nearly constant waiting penalties 

over time. Table 42 provides the details on how this behavior causes priority ranking changes over 

time among these groups. For example, Type A, with steepest slope, stands at the fourth rank at 

the start but, after a short waiting time, reaches the first rank while Type G’s ranking just 

fluctuates around ranks nine to eleven over time. This behavior adds more complexity to the 

optimal block allocation and release policy decision at Stafford. 
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Figure 66: Waiting cost functions across surgeon/group; indicates $ profit loss per waiting time unit 

 

   

Table 42: Time-based priority of surgeon/group 

Priority-Ranking (t) Time 

Specialty 
Surgeon 
/Group 0 10 20 30 40 50 60 70 80 90 100 

A-Ortho Type A 4 4 3 2 2 1 1 1 1 1 1 

B-GEN/ VASC Type B 1 1 1 1 1 2 2 2 2 3 4 

C-PODIATRY Type C 7 7 7 7 8 9 9 9 9 9 9 

D-Ortho Type D 11 11 11 9 9 7 6 6 4 4 3 

E- GEN/ VASC Type E 2 2 2 3 3 4 4 5 6 6 6 

F- GYN Type F 5 5 5 5 5 6 7 7 7 7 7 

G-ENT Type G 9 9 10 11 11 11 11 11 10 10 10 

H- GEN/ VASC Type H 3 3 4 4 4 3 3 3 5 5 5 

I-Ortho Type I 10 10 9 8 7 5 5 4 3 2 2 

J- PODIATRY Type J 6 6 6 6 6 8 8 8 8 8 8 

K-Plastic Type K 8 8 8 10 10 10 10 10 11 11 11 
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As explained before, Stafford has a modified block approach in which 75% of OR hours 

are dedicated to surgeons/group and 25% are kept open to share with other groups. Stafford 

employs a predefined block release policy that is calculated so that the required scheduling lead-

time accommodates 75% of a service’s patients. This time must be managed carefully to be fair 

to both block owners and other groups. Our objective was to derive an improved release policy 

based on historical data so that waiting times and overall block costs could be minimized across 

multi-priority patients. Figure 67 displays the percentage of cases that are handled in non-

primary blocks (off-block %) across groups through each optimization step. The percentage of 

off-block surgeries for Surgeons A, D and I has increased more than 15% due to high waiting 

times and the surgeons’ inflexible schedules. On the other hand, the percentage of surgeries that 

are performed off-block have been reduced for Surgeons G and K, who have the lowest priority 

patients but have also seen higher waiting costs. Our decision of block size reduction in the first 

step along with postponing release time for high priority surgeons resulted in less possible off-

block opportunity for these two surgeons to assign their surgeries to off-block hours. This 

decision resulted in forcing low priority patients into a home block for Surgeon G and K, 

essentially freeing space and giving higher priority patients a better chance at being scheduled 

for off-block surgeries.  

 

 

Figure 67: Percent of off-block surgeries across patient types and through each optimization step 
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Figure 68 presents summary statistics regarding the percentage of off-block surgeries at 

Stafford under an improved block and release policy. Each number represents the percent of the 

surgeries of each type performed in blocks allocated to each type, under existing conditions and 

under improved conditions. Comparing these two tables indicates that the improved release 

policy results in lower waiting times and higher utilization, as summarized below: 

 

 Postponing the release time of Type A and Type D surgeons has resulted in more reliable 

block times for these high priority patients. As a result, there is less sharing with other 

surgeons. For example, referring to the current schedule at Stafford (Figure 68a), Type G 

has performed 2% of his surgeries in Surgeon A’s block, with the highest waiting penalty 

and shortest scheduling lead time, while under the superior policy (Figure 68b) no 

surgery has been performed in Surgeon A’s  block hours.  

 The utilization rate has improved by 10% for Surgeon B (refer to Figure 63) due to an 

increase in the percentage of off-block cases performed in Surgeon’s B block hours. The 

improved release policy results in earlier release time with more available time for use by 

other groups. This decision resulted in a slight increase in off-block percentage for 

surgeon B for those cases that come in at the last minute but the utilization improvement 

appears to have offset the increase in open block hours.  

 Although we have increased Surgeon’s E block size in the first step, the utilization rate 

stayed the same due to a higher percentage of off-block cases performed in Surgeon’s E 

block hours as a result of earlier release time with more available time for use by other 

groups. 

 

Table 43 provides the complete results of the optimization including a short description 

of the surgeon/group properties and the proposed action for each group in terms of block 

hour reductions (or increases) and release time adjustments along with the rationale for the 

changes. The results confirm the earlier statement that “the main goal of optimization is to 

improve profit with block cost reduction where there is a minimum effect on waiting cost and 

reducing waiting cost considering waiting penalty function for multi-class patients.”    
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Figure 68: a) Percentage of off-block surgeries in Stafford b) Percentage of off-block surgeries under 

superior block schedule and release policy 

 

The third and final step focused on evaluating the case scheduling or reserve policies for 

multi-priority patients. Currently, at Stafford, released or open hours are occupied according to 

first-come first-serve policy. We generated two scenarios of reserve policy under different 

penalizing functions for using open hours versus release block hours and we estimated total 

expected cost by simulating Algorithm 2 (introduced in Chapter 5) for the population of patients 

who are eligible to be assigned to either released or open hours. 
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Table 43: Detailed description of surgeon/group along with the result of optimization 

Surgeon 

/Group 

Description Result 

Type A 

The highest priority patient 

type with short scheduling 

lead time (urgent), utilization 

of 66%, and the steepest 

waiting cost function. 

In spite of high priority level, a reduction in block hours is 

proposed along with postponement of release time to create 

access to more reliable space and re-direct patients to use 

even more off-block hours (current off-block is high).  

Performing surgery only one day every other week results 

in higher waiting costs for these high priority patients. By 

assigning more than half of these patients to off-block 

hours, the average waiting time is reduced by 26% 
 

Type B 

A high priority patient type 

with a low utilization rate of 

51%. (Surgeon B performs 

three days a week every 

week), and very high and flat 

waiting cost function.   

In spite of low utilization, no reduction in block size is 

proposed due to high waiting penalty and short scheduling 

lead time for these patients. However, a shift of release time 

to earlier times is proposed so that underutilized hours can 

be shared with other surgeons, improving overall 

utilization. 
 

Type C 

A low priority patient type 

with long scheduling lead 

time, a high cancellation rate, 

high utilization, and a flat 

waiting cost function. 

 

Because it has no significant effect on profit , Type C was 

not selected as an important factor in factor screening so it 

remains at its current operational level 

Type D 

 

A medium-to-high priority 

patient type with low 

utilization and a 

steep waiting cost function 

A reduction of block size is proposed but with a 

postponement of the release time and a redirection of more 

patients to off-block spaces. Allowing surgeons to assign 

patients on a more flexible schedule helps to reduce waiting 

times for these high-priority patients by 11% 
 

Type E 

 

 

A medium-to-high priority 

patient type at the target 

utilization, with medium 

waiting costs that show a flat 

slope function 

A slight (5%) increase in block hours is proposed, while 

releasing the unfilled spaces earlier to share with others. 

Given the short lead time and the surgeon’s need for a 

specialized room, an increase in block hours is an 

appropriate decision for these medium-to-high priority 

patients. Increasing the block hours along with earlier 

release time will reduce the waiting time while letting 

higher priority patient utilize unfilled spaces on any of three 

days each week.   
 

 

 



 

150 

 

Table 43 Continued: Detailed description of surgeon/group along with the result of optimization 

Surgeon 

/Group 

Description Result 

Type F 

A low-to-medium priority 

patient type with low 

utilization, and a  

flat waiting function 

This type of surgery requires a specialized room so, even 

with the low utilization, only a 6% reduction in block size 

is proposed. There is no need to retain the entire block for 

this low-priority patient type with its high coefficient of 

variation in arrival rates. Changes to an earlier release time 

for more surgeons will redirect cases out of this block hours 

to released hours of other blocks.  

Type G 

The lowest priority patient 

type, with very high waiting 

time, a high utilization rate, 

high off-block use, and a low, 

flat waiting cost function 

Type G did not emerge as an important type during factor 

screening, so it remains at its current operational level.    

Type H 

A medium-to-high priority 

patient type with low 

utilization (Surgeon H 

performs one day per week 

with high % of semi-urgent 

patients) and a 

medium waiting cost function 

with mild slope 

Type H did not emerge as an important type during factor 

screening, so it remains at its current operational level.    

Type I 

A medium priority patient 

type with low utilization, a 

very low waiting penalty at 

low waiting times, but a 

steeply rising slope over time 

Because this surgeon has a low number of patients and only 

performs surgery one day every other week, a reduction in 

the block size is proposed while re-directing patients to off-

block hours, thereby facilitating more flexible scheduling. 
 

Type J 

A low priority patient type,  

with low utilization (one day 

of surgery every other week), 

a very high percentage of 

semi-urgent  patients, and a 

medium-to-flat waiting cost 

function   

To facilitate release-time optimization, a reduction in block 

size is proposed for this low-priority patient by re-directing 

a higher portion of cases to off-block hours while re-

directing other surgeons’ cases who use this surgeon’s 

hours out of this block. This decision has minimum effect 

on waiting cost of patient type J. 
 

Type K 

A low priority patient type 

with low utilization, a low 

volume of surgery, low initial 

block hours, a  high 

cancellation rate, and low 

penalty with a flat waiting 

cost function 

Although this type of surgery occurs only one day every 

other week, it was not identified as an important factor.  

The block release is already set at the earliest possible time, 

taking advantage of the high cancellation rate and allowing 

high priority patients to occupy unfilled space.  
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In Figure 69, we plot the marginal profit gain/loss utilizing a reserve policy under two 

scenarios of open block cost, 1.5 times and 2.0 times the cost of occupying release hours. 

Although one expects the performance to improve under the reserve policy when we have multi-

priority patients, comparing the performances of two scenarios indicates that applying the 

reserve policy does not necessarily result in superior performance under all conditions. Rather, it 

depends on the optimal balance between underutilization cost and waiting cost. A penalty of 

using open hours versus released hours performs quite well in balancing these two cost types.  

 

 

Figure 69: Marginal $ profit gain/loss at case scheduling optimization 

 

In the case of a higher penalty in occupying open hours (2.0x) than release hours, we 

gained some improvement in profit due to a reduction in overall waiting time with a minimal 

reduction in utilization rate. Under this scenario, we tend to fill release block first rather than 

assigning them to open blocks in exchange for the risk of higher waiting cost for future higher 

priority patients. However, the system performs substantially worse under 1.5 times penalty (and 

even worse than the first-come-first serve policy), showing the importance of the under-

utilization rate while protecting capacity for the future high priority cases.  
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A comparison of utilization rates among surgeons (in Figure 70) indicates that, under the 

first scenario, more cases are assigned to open hours thus the utilization rate is reduced in order 

to keep more space for possible high priority patients. While under the second scenario, we are 

inclined to assign cases to the last spot in the release time block range. In this case, utilization 

will improve with minimal impact on the waiting time of high priority patients. We noticed that 

under the higher penalty for open block, fewer cases are assigned to open blocks, which indicates 

there is higher chance to force high priority cases to wait for longer times in the system. 

 

 

Figure 70: Utilization rate across patient types under improved case scheduling 

 

However, assigning a smaller number of jobs does not immediately translate to a higher 

waiting cost for higher priority patients. It is due to having open hours in the near future if the 

released block has already been filled. Figure 71 shows how the improved case scheduling policy 

affected waiting times across different types of surgery, as well as how open block penalty cost 

contributed to waiting cost, and thus to the rebalancing of resources across competing classes of 

demand.  
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Figure 71: Average waiting time across patient types under improved case scheduling 

 

Figure 72 displays the percentage of cases that are handled in primary or non-primary 

blocks (off-block %) across groups under FCFS and reserve scheduling policy. The reserve 

policy tends to postpone low priority cases with high arrival rate in favor of high priority cases 

(referring to patient type G and D in Figure 72 (b)). We see the same behavior under both 

scenarios of reserve policy with the difference that a greater percentage of cases are still assigned 

to release block as we penalize open blocks more.   

 

Concluding Remarks: 

In this dissertation, we focused on developing realistic models for elective surgery 

scheduling for multi-priority patients in order to solve the joint optimization of allocation and 

release policy decisions and providing practical insights for practitioners. The goal was not to 

instruct hospitals as to how they should schedule their cases and block times, but rather to 

provide options for practitioners to explore. Parameters, conditions, and goals may vary from 

hospital to hospital, so having some rules of thumb helps to tailor these differences. The majority 

of earlier studies looked at either a single allocation scheduling stage (case mix planning, 

surgical master schedule or elective case scheduling) or a reduction in surgery waiting lists (in 

contrast with online scheduling). 
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Figure 72: Percentage of off-block surgeries under (a) superior block schedule and release policy (b) 

reserved policy and open block penalty 1.5X (c) reserved policy and open block penalty 2.0X 
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However, this study (Chapter 2) addressed the importance of joint optimization 

specifically under online scheduling. Recognizing this fact, we characterized a mathematical 

programming model and conducted simulation modeling (Chapter 3) to examine a class of 

policies that are characterized by reserve levels. We drew valuable scheduling insights from our 

extensive computational study and from suggested solutions from the case studies. Numerical 

results from Stafford hospital (Chapter 4) showed that consideration of patient priority resulted 

in better performance as compared to a schedule that ignores the patient priority (using first-

come-first-serve policy), despite the fact that the reserve policy only applies to 25% of Stafford’s 

patient.  

Hospitals should be in a continuous search for more efficient and timely utilization of 

their resources (time, ORs, personnel) in order to better respond to patients’ requests for service. 

What we offer in this study would help hospitals make better decisions at the strategic and 

operational level. In addition to answering the questions on how many ORs to allocate per 

surgeons/specialty, this study offers insights about how much time to optimally reserve for 

higher priority patients, and what would be an improved release time. The problem of allocating 

multi-priority patients is complex and requires incorporating some revenue management 

techniques that, despite their proven results in airline and hotel management, are still not very 

widespread in healthcare. We presented the specifics of these techniques when applied to 

healthcare and we believe that continued research in this direction will provide hospital 

managers, practitioners and schedulers with adequate decision making tools.  

 

Insights for the Practitioner 

In this section, we convey the key insights of this study in a way that is clear, relevant 

and actionable, so that practitioners can use our findings to make the best possible business 

decisions in their own contexts. More importantly, this section will allow practitioners to develop 

a real-world understanding of the complexities of this field. The section addresses compromises 

practitioners must make when deciding how to allocate and release blocks, as well as how they 

can take into account different levels of tolerance for waiting across different classes of patients.  
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Many hospitals have policies about allocating block hours among specialties based on the 

demand for surgeries regardless of differences across specialties or levels of urgency for 

different classes of patients. Although calculations of average demand and utilization are a good 

starting point for estimating the number of hours a surgical group needs to schedule, these 

calculations cannot provide answers to questions such as ‘When do we need to allocate more 

block time than average demand would suggest?’ or ‘Which mix of open/block scheduling 

strategy is best for each combination of patients?’ The concepts of waiting penalties, arrival 

rates, and scheduling lead time can serve as useful indicators for allocating resources among 

surgeons. For example, 

 When a surgical group has high priority patients with short lead times who require 

specialized rooms, then an increase in block hours along with earlier release time 

is recommended, so that underutilized hours can be shared with other surgeons, 

improving overall utilization.  

 When a surgical group has patients with very steep waiting penalties, short lead 

times and a high coefficient of variation in demand, then a reduction in block 

hours and higher use of open/released hours along with postponement of release 

time is recommended, so as to create more reliable access to space. 

 

Although our results confirm that no single case scheduling policy is superior for all sets 

of parameters, our findings do suggest some useful rules of thumb for scheduling multi-priority 

patients:  

 In general, when there is little or no information about the arrival rates of multi-

priority patients or their waiting penalties, it is best to proceed with a first-come, 

first-serve (FCFS) policy, since this policy is simple and less sensitive to 

parameters than other policies, and also guarantees the highest rate of utilization. 

However, having more information about patient types can facilitate the choice of 

an optimal policy and improve patient waiting times and overall profit. 

 If lower priority patients are arriving at a faster rate than higher priority patients, 

then a FCFS will be the simplest, but not the best, policy for the entire range of 

waiting cost-ratios. At the same time, a prioritization policy, i.e. a policy of 
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postponing all lower priority patients until a future time will likely be the worst 

choice because it results in unnecessary reserve space for higher priority and an 

exponential increase in lower priority waiting time. 

 If higher-priority patients are arriving at a faster rate than lower-priority patients, 

then it is best to book less-urgent patients further into the future and to reserve 

more space in the immediate future for high priority patients. This raises the 

question of how much capacity should be reserved for later-arriving but higher-

priority demand, which we refer to as the threshold-based reserve policy. 

The answer to this question will depend on your patients’ arrival rates and ratios 

of waiting penalties: as either or both of these numbers increases, the threshold 

will also increase. This simple policy can help you estimate the necessary 

protection limit for every class of patient. 

 If the arrival rate of urgent patients is about the same as that of non-urgent 

patients, the optimal policy varies due to differences in system utilization and 

waiting penalties:  

o If the utilization rate and ratios of waiting penalties are both high, it makes 

sense to apply the threshold reserve policy, postpone lower penalty 

patients to the future. Otherwise, if ratios of waiting penalties are close to 

one, there is no significant difference in the choice of policy. 

o If the utilization rate is medium (50%), it makes sense to apply the 

threshold reserve policy across all waiting penalty ratios, and 

o If utilization is low, the choice of scheduling policies makes little or no 

difference. 

 

Another set of questions that operating room managers frequently ask concerns released 

blocks: what is the optimal time to release allocated blocks and who should access released 

hours? A common approach is to allocate released blocks a fixed number of days before surgery, 

without regard for differences across specialties and different levels of patient-urgency. Because 
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of variability in demand across specialties, however, this approach often results in uneven 

utilization and waiting costs. 

As a best practice, when waiting penalties are steep, lead time is short, and the coefficient 

of variation is high, it makes sense to postpone the release of blocks. This practice can insure that 

there is space available for late-coming, high priority patients. In contrast, if waiting penalties are 

flat, the coefficient of variation is low (close to 1) and lead time is long, then it makes sense to 

release blocks earlier. This practice can improve utilization with minimal impact on waiting 

costs.   

The optimal way to determine the recipients for released blocks is to base the decision on 

the ratio of waiting penalties to underutilization costs, rather than on fixed cost numbers. This 

approach provides superior access rules for release hours, because it facilitates flexibility, and it 

provides fair opportunities for all types of patients to access the released blocks, so long as the 

cost of waiting penalties is greater than the cost of underutilization.  

This access rule also applies to recipients for open or shared blocks with one caveat: 

filling an open hour costs more than utilizing current released blocks since current released 

blocks are already fully staffed. To account for this difference and to encourage the use of 

release hours, a penalty needs to be applied for using open hours; this penalty provides flexibility 

for practitioners in determining whether to open extra ORs or to utilize current release hours. 

Hospitals with surgical groups that are not accustomed to releasing unfilled blocks may want to 

start off with a very small penalty value so as to encourage only a small amount of sharing of 

released blocks. As surgical groups get more used to the idea, the hospital can encourage more 

release time with higher penalties for open hours, and potentially require fewer ORs. 
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Appendix A: The differences between abstract model and real model 

Parameter Abstract Real 

Hospital size 2 ORs / 4 specialties 4 ORs / 6 specialties 

Case duration 1 hour (deterministic) Lognormal distribution (stochastic) 

Unit block cost 3$/hour (same for all surgeon) Different for each surgeon 

OR scheduling policy Block schedule policy Modified schedule policy 

Patient urgency All consider urgent Combination of urgent and non-urgent 

Cancellation There is no cancellation There is cancellation  

 

 

Appendix B-1: Surgery scheduling simulation model Main interface 
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Appendix B-2: Surgery scheduling simulation model code/dialog interface 
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Appendix C-1: Simulation algorithm of the scheduling process (Block policy) 
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Appendix C-2: Simulation algorithm of the scheduling process (Modify Policy) 

 

 



 

174 

 

Appendix D: Simulation Database 
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Appendix E: ExtendSim’s Scenario manager factors (Model Inputs) tab snapshot 
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Appendix F: ExtendSim’s Scenario manager response (Model Results) tab snapshot 
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Appendix G: ExtendSim’s Scenario manager scenario (upon DOE method) tab snapshot 
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Appendix H: Logistic regression for 6 cluster (Stafford) 
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Appendix I: Logistic regression SAS code 
/* Read Data */      
Proc Import out= Data Datafile= "H:\my documents\logistic\semiurgent11j.xlsx" 

DBMS = xlsx REPLACE; 

Run; 

 

/* define input and output data sets */                                                                                                      

proc logistic data=data; 

class Group/param =ref; 

model status(event='1')= waitingTime |Group; 

output out = result 

p=pred; 

run; 

 

/* define symbol characteristics */                                                                                                      

symbol1  value=dot   color=Blue height=0.7;                                                                          

symbol2  value=star color=red height=0.7;                                                                          

symbol3  value=circle color=green height=0.7; 

                                                                      

/* define legend characteristics */                                                                                                      

legend1 label=none frame;                                                                                                                

                                                                                                                                         

/* define axis characteristics */                                                                                                        

axis1 label=("waitingTime") minor=none offset=(1,1);                                                                                      

axis2 label=(angle=90 "ProbabilityofLeaving")                                                                                                      

      order=(0 to 1 by 0.1) minor=(n=1);  

 

/* Plot result using gplot function */                                                                                                        

proc gplot data= result; 

   plot pred*waitingtime=Group  / overlay legend=legend1 

 haxis=axis1 vaxis=axis2 ; 

run; 

 

Appendix J: Cluster Analysis SAS code 
Proc Import out= Data Datafile= "H:\my documents\logistic\semiurgent11.xlsx" 

DBMS = xlsx REPLACE; 

Run; 

 

ods graphics on; 

proc cluster data=Data method=ward ccc pseudo trim=10 k=50 print=25; 

var waitingTime status; 

copy Group; 

run; 

ods graphics off; 

 

ods graphics on; 

proc cluster data=Data method=average ccc pseudo trim=10 k=50 print=25; 

var waitingTime status; 

copy Group; 

run; 

ods graphics off; 
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Appendix K: Visual Basic code, used to generate the best sequential decisions 
/*write output file, including "Appointment Time, Patient Id, Patient Type, Arrival Time, OR Type”*/ 

Imports System.IO 

Imports System.Text 

 

Public Class Processor 

    Public Sub Process(inputFile As String, outputFile As String, Type1Cost As Integer, Type2Cost As Integer, 

NumberofAppointment As Integer) 

        Dim inputResult As InputPatients = ReadInputPatient(inputFile) 

        Dim output As Result = AssignPatientToRoom(inputResult, Type1Cost, Type2Cost, NumberofAppointment) 

 

        Dim ora As New StringBuilder 

        ora.AppendLine("Appointment Time, Patinet Id, Patient Type,Arrival Time,OR Type") 

        For Each key In output.ORA.PatientList.Keys 

            ora.AppendLine(key.ToString & "," & output.ORA.PatientList(key).Id & "," & 

output.ORA.PatientList(key).PatientType & "," & output.ORA.PatientList(key).ArrivalTime & ",1") 

        Next 

 

        Dim orb As New StringBuilder 

 

        For Each key In output.ORB.PatientList.Keys 

            orb.AppendLine(key.ToString & "," & output.ORB.PatientList(key).Id & "," & 

output.ORB.PatientList(key).PatientType & "," & output.ORB.PatientList(key).ArrivalTime & ",2") 

        Next 

 

        File.WriteAllText(outputFile, ora.ToString & orb.ToString) 

    End Sub 

 

    Private Function ReadInputPatient(path As String) As InputPatients 

        Dim inputLines() As String = File.ReadAllLines(path) 

        Dim output As New InputPatients With {.Patients = New List(Of Patient)} 

 

        For i As Integer = 0 To inputLines.Count - 1 

            Dim line() As String = inputLines(i).Split(",") 

            output.Patients.Add(New Patient With {.Id = i, .ArrivalTime = line(0), .PatientType = line(1)}) 

        Next 

 

        Return output 

    End Function 

 

/* Initialize: Read input file (input file including Arrival time and Patient Type)*/ 

 

 

    Private Function AssignPatientToRoom(ByVal input As InputPatients, Type1Cost As Integer, Type2Cost As Integer, 

NumberofAppointment As Integer) As Result 

        Dim output As New Result With {.ORA = New ORRoom With {.PatientList = New Dictionary(Of Integer, Patient)}, 

.ORB = New ORRoom With {.PatientList = New Dictionary(Of Integer, Patient)}} 

 

        For i As Integer = 0 To NumberofAppointment 

            FindPatientForAppointment(i, input, output, 2) 

        Next 

 

        For i As Integer = 0 To NumberofAppointment 
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            FindPatientForAppointment(i, input, output, 1) 

        Next 

 

        Return output 

    End Function 

 

    Private Sub FindPatientForAppointment(timeId As Integer, inputPatient As InputPatients, output As Result, fillType As 

Integer) 

        Console.WriteLine(timeId) 

 

        'first find patient type, fill type which has not been assigned yet 

        Dim typeBefore As List(Of Patient) = inputPatient.Patients.Where(Function(x) x.ArrivalTime <= timeId AndAlso 

x.PatientType = fillType AndAlso 

                                                                   output.ORB.PatientList.Where(Function(y) y.Value.Id = x.Id).Count = 0 

AndAlso 

                                                                   output.ORA.PatientList.Where(Function(y) y.Value.Id = x.Id).Count = 0 

                                                                   ).OrderBy(Function(x) x.ArrivalTime).ToList 

 

        If typeBefore.Count = 0 Then 

            Return 

        End If 

 

 

        For Each p As Patient In typeBefore 

 

            'fill the first available slot for type 

            Dim hasTime As Boolean = False 

            Dim currentTime As Integer = timeId 

 

            While Not hasTime 

                If Not output.ORA.PatientList.ContainsKey(currentTime) Then 

                    output.ORA.PatientList.Add(currentTime, p) 

                    hasTime = True 

                End If 

 

                If Not hasTime AndAlso Not output.ORB.PatientList.ContainsKey(currentTime) Then 

                    output.ORB.PatientList.Add(currentTime, p) 

                    hasTime = True 

                End If 

 

                currentTime += 1 

            End While 

        Next 

 

    End Sub 

 

   

End Class 
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Appendix L: Optimality proof of 2-room scheduling policy 

The objective is to find the minimum waiting cost across all patients. The weight    of case j 

represents a waiting penalty per unit time. Theorem 1 formalizes the optimality of sequencing 

the cases where the high priority patients are assigned first and then the low priority patients are 

assigned in non-decreasing order of arrival time in remaining spots. In other words, the goal is to 

sequence the cases such that all high priority patients that arrived before lower priority patients 

are assigned before any lower priority patients (referred to BA sequencing).  The proof of 

optimality is based on a useful technique called the method of adjacent pairwise interchange,  

Theorem 1: The total waiting time is minimized by BA sequencing  

Proof: By contradiction, suppose a schedule S that is not BA sequence is optimal. In this 

schedule, there must be at least two adjacent cases-say case l followed by case k, such that  

      

Under the original schedule S, job l starts its processing at time t and is followed by job k. All 

other jobs remain in their original positions. Refer to the new schedule S’. The total waiting cost 

of cases processed before case l and k is not affected by the interchange. Neither is the total 

waiting cost of cases processed after case l and k. Thus, the difference in the waiting cost under 

schedules S and S’ is due only to cases l and k (see following figure) 

 

Schedule S 

⁞
 l k 

⁞
 

    t     t+1+1 

Schedule S’ 

⁞
 k l 

⁞
 

     t     t+1+1 

  

 

Under S, the total waiting cost is,                   

Whereas under S’ and assuming can be started at time t, the cost is,                  

It is easily verified that if        , the sum of the two waiting cost functions under S’ is strictly 

less than under S. This contradicts the optimality of S and completes the proof of the theorem.  
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Appendix M: ExtendSim Code for optimal scheduling 
// Declare constants and static variables  

Real  grTotalLagDays; 

Integer giTotalPatients; 

Real   EarliestDate[5][13]; // room / PT Type 

Real   EarliestRecord[5][13]; // room / PT Type 

Integer  possiblePType[12];//this is holding the competetor to the spot, this means if we have a spot for ptype 1 

what other types can be there 

Integer  giMaxORRooms; 

Integer giMaxPatientTypes; 

Integer  giSurgeryDBIdx; 

Integer  giPatientLogORTIdx; 

Integer giORLogIDPLORFIdx; 

Integer  giWeekPLORFIdx; 

Integer  giBlockPLORFIdx; 

Integer  giBlockTypePLORFIdx; 

Integer giORPLORFIdx; 

Integer  giPatientTypePLORFIdx; 

Integer  giInitialHoursPLORFIdx; 

Integer  giTimeLeftPLORFIdx; 

Integer  giTimeOfSchedulingPLORFIdx; 

Integer  giPatientIDPLORFIdx; 

Integer  giTimeOfSurgeryPLORFIdx; 

Integer giDaysOutToSchedulePLORFIdx; 

Integer giPlanningTimePLORFIdx; 

Integer  giORTablesTIdx; 

Integer giWeeklyScheduleORTFIdx; 

Integer giORLogORTFIdx; 

Integer giReleaseTimeTIdx; 

Integer giPatientTypeRTFIdx; 

Integer giMaxTimeRTFIdx; 

Integer giMinTimeRTFIdx; 

Integer  giSecondaryArrivalRateTIdx; 

Integer giSurgeonPreferenceTIdx; 

Integer giMondaySPFIdx; 

Integer giTuesdaySPFIdx; 

Integer  giWednesdaySPFIdx; 

Integer  giThursdaySPFIdx; 

Integer  giFridaySPFIdx; 

Integer  giRevenueTIdx; 

Integer giTotalPatientRevenueFIdx; 

Integer giCostsTIdx; 

Integer  giRevenueTFIdx; 

Integer  giPatientRevenueFIdx; 

Integer giBlockCostFIdx; 

Integer giTotalRoomHoursFIdx; 

Integer giTotalRoomCostFIdx; 

Integer  giScheduleType; 

Integer giSurgeryTimeTIdx; 

Integer giPlanningtimeFIdx; 

Integer giSecArrivalRateFIdx; 

Constant  cBlockSPORXFIdx is 1; 

Constant cWeekSPORXFIdx is 2; 
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Constant  cDayOfWeekSPORXFIdx is 3; 

Constant  cStartingTimeSPORXFIdx is 4; 

Constant  cEndingTimeSPORXFIdx is 5; 

Constant  cPatientTypeSPORXFIdx is 6; 

Constant  cBlockORLXFIdx is 1; 

Constant  cWeekORLXFIdx is 2; 

Constant cDayORLXFIdx is 3; 

Constant cDayOfWeekORLXFIdx is 4; 

Constant  cPatientTypeORLXFIdx is 5; 

Constant  cStartingHourORLXFIdx is 6; 

Constant  cTotalHoursORLXFIdx is 7; 

Constant  cHoursLeftORLXFIdx is 8; 

Constant  cPatientsORLXFIdx is 9; 

Constant cBlockWSORFIdx is 1; 

Constant cDayOfWeekWSORFIdx is 2; 

Constant cStartingTimeWSORFIdx is 3; 

Constant cEndingTimeWSORFIdx is 4; 

Constant cPatientTypeWSORFIdx is 5; 

Constant cPatientType0 is 0; 

 

 

//  This procedure will capture all of the database variables needed during the simulation run.  This will get 

called at the beginning of the run. 

 

Procedure GetDBVariables() 

{ 

 giSurgeryDBIdx = DBDatabaseGetIndex( "Surgery" ); 

 giPatientLogORTIdx = DBTableGetIndex( giSurgeryDBIdx, "PatientLogOR" ); 

giORLogIDPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "ORLogID" ); 

giWeekPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "Week" ); 

giBlockPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "Block" ); 

giBlockTypePLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "BlockType" ); 

giORPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "OR" ); 

giPatientTypePLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "PatientType" ); 

giInitialHoursPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "InitialHours" ); 

giTimeLeftPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "TimeLeft" ); 

giTimeOfSchedulingPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, 

"TimeOfScheduling" ); 

giTimeOfSurgeryPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, 

"TimeOfSurgery" ); 

giPatientIDPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "PatientID" ); 

giDaysOutToSchedulePLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, 

"DaysOutToSchedule" ); 

giPlanningTimePLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "PlanningTime" 

); 

 giORTablesTIdx = DBTableGetIndex( giSurgeryDBIdx, "ORTables" ); 

giWeeklyScheduleORTFIdx = DBFieldGetIndex( giSurgeryDBIdx, giORTablesTIdx, "WeeklySchedule" ); 

giORLogORTFIdx = DBFieldGetIndex( giSurgeryDBIdx, giORTablesTIdx, "ORLog" ); 

 giReleaseTimeTIdx = DBTableGetIndex( giSurgeryDBIdx, "ReleaseTime" ); 

giPatientTypeRTFIdx = DBFieldGetIndex( giSurgeryDBIdx, giReleaseTimeTIdx, "PatientType" ); 

giMaxTimeRTFIdx = DBFieldGetIndex( giSurgeryDBIdx, giReleaseTimeTIdx, "MaxTime" ); 

giMinTimeRTFIdx = DBFieldGetIndex( giSurgeryDBIdx, giReleaseTimeTIdx, "Mintime" ); 

giSurgeonPreferenceTIdx = DBTableGetIndex( giSurgeryDBIdx, "SurgeonPreference" ); 
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giMondaySPFIdx = DBFieldGetIndex( giSurgeryDBIdx, giSurgeonPreferenceTIdx, "Monday" ); 

giTuesdaySPFIdx = DBFieldGetIndex( giSurgeryDBIdx, giSurgeonPreferenceTIdx, "Tuesday" ); 

giWednesdaySPFIdx = DBFieldGetIndex( giSurgeryDBIdx, giSurgeonPreferenceTIdx, "Wednesday" ); 

giThursdaySPFIdx = DBFieldGetIndex( giSurgeryDBIdx, giSurgeonPreferenceTIdx, "Thursday" ); 

giFridaySPFIdx = DBFieldGetIndex( giSurgeryDBIdx, giSurgeonPreferenceTIdx, "Friday" ); 

 giRevenueTIdx = DBTableGetIndex( giSurgeryDBIdx, "Revenue" ); 

giPatientRevenueFIdx = DBFieldGetIndex( giSurgeryDBIdx, giRevenueTIdx, "PatientRevenue" ); 

giTotalPatientRevenueFIdx = DBFieldGetIndex( giSurgeryDBIdx, giRevenueTIdx, "TotalPatientRevenue" 

); 

 giCostsTIdx = DBTableGetIndex( giSurgeryDBIdx, "Costs" ); 

giBlockCostFIdx = DBFieldGetIndex( giSurgeryDBIdx, giCostsTIdx, "BlockCost"); 

giTotalRoomHoursFIdx = DBFieldGetIndex( giSurgeryDBIdx, giCostsTIdx, "TotalRoomHours"); 

giTotalRoomCostFIdx = DBFieldGetIndex( giSurgeryDBIdx, giCostsTIdx, "TotalRoomCost"); 

 giMaxORRooms = DBRecordsGetNum(giSurgeryDBIdx, giORTablesTIdx); 

 giMaxPatientTypes = -1 + DBRecordsGetNum(giSurgeryDBIdx, giCostsTIdx);  

 giSurgeryTimeTIdx = DBTableGetIndex( giSurgeryDBIdx, "SurgeryTime"); 

giPlanningtimeFIdx = DBFieldGetIndex( giSurgeryDBIdx, 

giSurgeryTimeTIdx, "PlanningTime"); 

  giSecondaryArrivalRateTIdx = DBTableGetIndex( giSurgeryDBIdx,     "secondaryArrival"); 

  giSecArrivalRateFIdx = DBFieldGetIndex( giSurgeryDBIdx,    giSurgeryTimeTIdx, "secondaryArrival"); 

  giSecondaryArrivalRateTIdx = DBTableGetIndex( giSurgeryDBIdx, "secondaryArrival"); 

  giSecArrivalRateFIdx = DBFieldGetIndex( giSurgeryDBIdx,  giSurgeryTimeTIdx, "secondaryArrival"); 

 

} 

 

// This function is testing to see if the specified patient type has been already scheduled in another OR at the 

same time. 

 

Integer TestIfPatientTypeIsScheduledAtTheSameTimeSomeWhereElse(integer thisOR, integer thisPType, real 

thisSimulationTime, real thisPlanningTime) 

{ 

 integer liORToTest; 

 integer i; 

 integer liNumOfRecords; 

 integer tempPatientType; 

 integer liORLogTable; 

 integer liDrNotUsedElseWhere; 

  

 real tempHoursLeft; 

 real tempSimulationTime; 

 real tempTotalHours; 

 real tempBeginTimeORBlock; 

 real tempEndTimeORBlock; 

 real tempTestBeginTime; 

 real tempTestEndTime; 

  

 for(liORToTest = 1; liORToTest <= giMaxORRooms; liORToTest++) 

 { 

  if(liORToTest == thisOR) 

   Continue; 

    

  liORLogTable = DBDataGetAsNumber(giSurgeryDBIdx, giORTablesTIdx, giORLogORTFIdx, 

liORToTest); 
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  liNumOfRecords = DBRecordsGetNum(giSurgeryDBIdx, liORLogTable); 

  

  for(i = 1; i <= liNumOfRecords; i++)  

  { 

tempPatientType = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cPatientTypeORLXFIdx, i); 

tempHoursLeft = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cHoursLeftORLXFIdx, i); 

tempSimulationTime = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cStartingHourORLXFIdx, i); 

tempTotalHours = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cTotalHoursORLXFIdx, i); 

   

tempBeginTimeORBlock = tempSimulationTime + tempTotalHours - tempHoursLeft; 

tempEndTimeORBlock = tempSimulationTime + tempTotalHours; 

 

 if( tempPatientType != thisPType) 

    Continue; 

 

// If the block of time is in the future then the Begin time of the OR Block will be larger then the ending time of the 

patient scheduled time. 

 if (tempBeginTimeORBlock > thisSimulationTime + thisPlanningTime) 

    Continue; 

   

// If the block of time is in the past then the Ending time of the OR Block will be smaller then the starting time of the 

patient scheduled time. At this point I can pass back the false because the rest of the records will be in the future 

 if(tempEndTimeORBlock < thisSimulationTime) 

    Return False; 

     

// Finally, it is the same patient, it is not TOO early and not TOO late. 

   return True; 

  } 

 }  

 

// If it hasn't hit the return TRUE option then it is in the same block of time. 

 return False; 

} 

// this function will search the OR Log table for the next spot in the specified OR for a specified Patient Type. If it 

doesn't find a spot it will return -1.  If it does then it will return the time that it could be scheduled.  If the actual 

patient type is not the block type you are looking for then another test will be done to make sure the doctor isn't 

already simultaniously being used. 

 

// The thisPType variable is the patient being scheduled 

// The thisPossiblePType variable is the spot we want to test to see if the current patient can be scheduled in. 

 

Real TestForNextAvailabileSpotForType(integer thisOR, integer thisPossiblePType, real thisPlanningTime, integer 

thisPType) 

{ 

 integer i; 

 integer liNumOfRecords; 

 integer tempPatientType; 

 integer liORLogTable; 

 integer liPatientTypeIsAlreadyScheduledElseWhere; 

 integer tempDay; 

 integer tempTest; 

 integer parentArray[3]; 

 integer tempDayOfWeek; 
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 real tempHoursLeft; 

 real tempSimulationTime; 

 real tempTotalHours; 

 real tempNextActualAvailableTime; 

 real tempValue; 

  

  

liORLogTable = DBDataGetAsNumber(giSurgeryDBIdx, giORTablesTIdx, giORLogORTFIdx, thisOR); 

 liNumOfRecords = DBRecordsGetNum(giSurgeryDBIdx, liORLogTable); 

  

 for(i = 1; i <= liNumOfRecords; i++)  

 { 

  tempPatientType = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, 

cPatientTypeORLXFIdx, i); 

  tempHoursLeft = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cHoursLeftORLXFIdx, 

i); 

  tempSimulationTime = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, 

cStartingHourORLXFIdx, i); 

  tempTotalHours = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, 

cTotalHoursORLXFIdx, i); 

  tempDay = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cDayORLXFIdx, i); 

  DBDataGetParent(giSurgeryDBIdx, liORLogTable, cDayOfWeekORLXFIdx, i, parentArray); 

  tempDayOfWeek = parentArray[2]; 

   

     

  tempTest = true; 

   

  if( tempPatientType != thisPossiblePType ) 

   tempTest = False; 

   

  if(tempHoursLeft < thisPlanningTime ) 

   tempTest = False; 

 

  tempNextActualAvailableTime = tempSimulationTime + tempTotalHours - tempHoursLeft; 

  if(tempNextActualAvailableTime < CurrentTime ) 

   tempTest = False; 

    

  tempValue = Floor(CurrentTime/24) + 1 + wDaysOutToSchedule; 

  if( tempDay <  tempValue) 

   tempTest = False; 

   

  tempValue = DBDataGetAsNumber(giSurgeryDBIdx, giSurgeonPreferenceTIdx, 

tempDayOfWeek+1, thisPType);   

  if(thisPType != thisPossiblePType and tempValue == False) 

   tempTest = False; 

   

  if(tempTest) 

  { 

   liPatientTypeIsAlreadyScheduledElseWhere = False; 

    

// Check if patient type is schedule elsewhere at the same time if I am trying to schedule in an alternate block. 

 

   if(thisPossiblePType != thisPType and wCheckOtherPatientSlots == True) 
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    liPatientTypeIsAlreadyScheduledElseWhere =  

    

 TestIfPatientTypeIsScheduledAtTheSameTimeSomeWhereElse(thisOR, thisPType, tempSimulationTime, 

thisPlanningTime); 

    

   if(liPatientTypeIsAlreadyScheduledElseWhere == False)  

   { 

    EarliestDate[thisOR][thisPossiblePType] = tempNextActualAvailableTime; 

    EarliestRecord[thisOR][thisPossiblePType] = i; 

    return 1; 

   }     

  } 

 }  

 return -1; 

} 

 

 

// Once the OR room and Block is chosen, this function will place the appropriate data in the OR Log table. After it 

places the data in the table it will return the record number it placed the data in. 

 

integer ScheduleToUseOR(integer thisPatientID, integer thisPType, integer thisOR, integer thisRoomPType, real 

thisPlanningTime) 

{ 

 integer i; 

 integer liNumOfRecords; 

 integer tempPatientType; 

 integer tempPatients; 

 integer tempPatientLogID; 

 integer liORLogTable; 

 integer tempBlockType; 

 integer tempSurgeonPreference; 

 real tempSimulationTime; 

 real tempHoursLeft; 

 real tempWeek; 

 real tempBlock; 

 real tempStartingHour; 

 real tempTotalHours; 

 

 liORLogTable = DBDataGetAsNumber(giSurgeryDBIdx, giORTablesTIdx, giORLogORTFIdx, thisOR); 

 

 liNumOfRecords = DBRecordsGetNum(giSurgeryDBIdx, liORLogTable); 

  

 for(i = 1; i <= liNumOfRecords; i++)  

 { 

  tempPatientType = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, 

cPatientTypeORLXFIdx, i); 

  tempHoursLeft = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cHoursLeftORLXFIdx, 

i); 

  tempStartingHour = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, 

cStartingHourORLXFIdx, i); 

   

  if(tempPatientType == thisRoomPType) 

  { 
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   if(tempHoursLeft >= thisPlanningTime) 

   { 

    if( tempStartingHour >= (Floor(CurrentTime/24)+1)*24) 

    { 

     tempWeek = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, 

cWeekORLXFIdx, i); 

     tempBlock = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, 

cBlockORLXFIdx, i); 

     tempBlockType = DBDataGetAsNumber(giSurgeryDBIdx, 

liORLogTable, cPatientTypeORLXFIdx, i); 

     tempStartingHour = DBDataGetAsNumber(giSurgeryDBIdx, 

liORLogTable, cStartingHourORLXFIdx, i); 

     tempTotalHours = DBDataGetAsNumber(giSurgeryDBIdx, 

liORLogTable, cTotalHoursORLXFIdx, i); 

     tempPatients = DBDataGetAsNumber(giSurgeryDBIdx, 

liORLogTable, cPatientsORLXFIdx, i); 

   

     DBDataSetAsNumber(giSurgeryDBIdx, liORLogTable, 

cHoursLeftORLXFIdx, i, tempHoursLeft - thisPlanningTime); 

     DBDataSetAsNumber(giSurgeryDBIdx, liORLogTable, 

cPatientsORLXFIdx, i, tempPatients+1); 

 

     tempPatientLogID = DBRecordsGetNum(giSurgeryDBIdx, 

giPatientLogORTIdx) + 1; 

     DBRecordsInsert(giSurgeryDBIdx, giPatientLogORTIdx, 

tempPatientLogID, 1); 

 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giORLogIDPLORFIdx, tempPatientLogID, i); 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giWeekPLORFIdx, tempPatientLogID, tempWeek); 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giBlockPLORFIdx, tempPatientLogID, tempBlock); 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giBlockTypePLORFIdx, tempPatientLogID, tempBlockType); 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giORPLORFIdx, tempPatientLogID, thisOR); 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giTimeOfSurgeryPLORFIdx, tempPatientLogID, tempStartingHour + (tempTotalHours - tempHoursLeft)); 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giPatientTypePLORFIdx, tempPatientLogID, thisPType); 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giInitialHoursPLORFIdx, tempPatientLogID, tempTotalHours); 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giTimeLeftPLORFIdx, tempPatientLogID, tempHoursLeft - thisPlanningTime); 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giTimeOfSchedulingPLORFIdx, tempPatientLogID, CurrentTime); 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giPatientIDPLORFIdx, tempPatientLogID, thisPatientID); 

     DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giPlanningTimePLORFIdx, tempPatientLogID, thisPlanningTime); 

  

     return tempPatientLogID;  
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    } 

   } 

  } 

 }  

 return -1; 

} 

 

 

//Find competetors for a recorded (appointment) under multi-priority patient types  

 

Integer FindCompetetorForDay(integer thisPatientType,integer thisOR,integer thisRecordId) 

{ 

 integer i; 

 integer liNumOfRecords; 

 integer tempPatientType; 

 integer liORLogTable; 

 integer liPatientTypeIsAlreadyScheduledElseWhere; 

 integer tempDay; 

 integer tempTest; 

 integer parentArray[3]; 

 integer tempDayOfWeek; 

 integer tempPTType; 

 real tempHoursLeft; 

 real tempSimulationTime; 

 real tempTotalHours; 

 real tempNextActualAvailableTime; 

 real tempValue; 

 real  lrPlanningTime; 

 real  thisPlanningTime; 

  

 for(i = 1; i <= giMaxPatientTypes; i++){ 

 possiblePType[i]=0; 

 } 

  

 liORLogTable = DBDataGetAsNumber(giSurgeryDBIdx, giORTablesTIdx, giORLogORTFIdx, thisOR); 

 liNumOfRecords = DBRecordsGetNum(giSurgeryDBIdx, liORLogTable); 

  

 

  tempPatientType = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, 

cPatientTypeORLXFIdx, thisRecordId); 

  tempHoursLeft = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cHoursLeftORLXFIdx, 

thisRecordId); 

  tempSimulationTime = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, 

cStartingHourORLXFIdx, thisRecordId); 

  tempTotalHours = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, 

cTotalHoursORLXFIdx, thisRecordId); 

  tempDay = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cDayORLXFIdx, 

thisRecordId); 

  DBDataGetParent(giSurgeryDBIdx, liORLogTable, cDayOfWeekORLXFIdx, thisRecordId, 

parentArray); 

  tempDayOfWeek = parentArray[2]; 
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  for(tempPTType = 1; tempPTType <= giMaxPatientTypes; tempPTType++) 

  { 

    

  tempTest=True; 

  if(thisPatientType!=tempPTType){ 

   lrPlanningTime = DBDataGetAsNumber(giSurgeryDBIdx, giSurgeryTimeTIdx, 

giPlanningtimeFIdx, tempPTType); 

  

   lrPlanningTime = Ceil(lrPlanningTime); 

   

   if(tempHoursLeft < lrPlanningTime ) 

     tempTest = False; 

   

   tempValue = DBDataGetAsNumber(giSurgeryDBIdx, giSurgeonPreferenceTIdx, 

tempDayOfWeek+1, tempPTType);   

   if(tempValue==False) 

    tempTest=False; 

    

   if(tempTest) 

    { 

     possiblePType[tempPTType]=1;    

    } 

 

  } 

  } 

  return -1; 

} 

 

 

 

// This function will set the earliest date for the specified patient.  This would be for a fixed patient type. 

 

Integer SetEarliestDateForSpecificBlock(integer thisPatientType, real thisPlanningTime, integer thisPatientID) 

{ 

 integer liMinOR; 

 integer liMinRecord; 

 integer liRoomPtType; 

 integer i; 

 integer liLogID; 

 integer thisRecord; 

 integer tempRecord; 

 integer tempOR; 

 real    tempDate; 

 real    lrMinDate; 

  

 liMinOR = -1; 

 liMinRecord = -1; 

 lrMinDate = 99999; 

 for(i = 1; i <= giMaxORRooms; i ++) 

 { 

  tempDate = EarliestDate[i][thisPatientType]; 

  tempRecord = EarliestRecord[i][thisPatientType]; 
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  tempOR = i; 

  if(tempDate < lrMinDate) 

  { 

   lrMinDate = tempDate; 

   liMinRecord = tempRecord; 

   liMinOR = tempOR; 

   liRoomPtType = thisPatientType; 

  } 

 

  tempDate = EarliestDate[i][cPatientType0]; 

  tempRecord = EarliestRecord[i][cPatientType0]; 

  tempOR = i; 

  if(tempDate < lrMinDate and lrMinDate -tempDate > 120) 

  { 

   lrMinDate = tempDate; 

   liMinRecord = tempRecord; 

   liMinOR = tempOR; 

   liRoomPtType = 0; 

  } 

 }  

 

 if(liMinOR >= 0) 

 { 

  thisRecord = EarliestRecord[liMinOR][thisPatientType]; 

  liLogID = ScheduleToUseORGivenRecordNumber(thisPatientID, thisPatientType, liMinOR, 

liRoomPtType, thisPlanningTime, thisRecord ); 

 } 

 else 

  liLogID = -1;  

    

 return liLogID;  

} 

 

// This function will search for the earliest date but only looking at the blocks for the specified patient type 

and place the data in that date.  This function will return the record number in the log table it placed the data in. 

 

Integer TestForEarliestDateAndIncludeAllTypesUnderConditions2(integer thisPatientType, real thisPlanningTime, 

integer thisPatientID) 

 

{ 

 integer i, j; 

 integer liLogID; 

 integer liORID; 

 integer tempType; 

 integer liMinRecord; 

 integer liMinOR; 

 integer tempRecord; 

 integer tempOR; 

 integer liRoomPtType; 

 real tempDate; 

 real lrMinDate; 

 real tempTestingPatientTypeMinTime; 

 real tempOriginalPatientTypeMaxTime; 
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 real lrTimeWaiting; 

 integer tempPTType; 

 real PTypeCost[13][2]; 

  

 for(i = 0; i <= giMaxPatientTypes+1; i++){ 

  PTypeCost[i][0]=-1; 

  PTypeCost[i][1]=-1; 

 } 

  

 liMinOR = -1; 

 liMinRecord = -1; 

 lrMinDate = 99999; 

 for(i = 1; i <= giMaxORRooms; i ++) 

 { 

  tempDate = EarliestDate[i][thisPatientType]; 

  tempRecord = EarliestRecord[i][thisPatientType]; 

  tempOR = i; 

  if(tempDate < lrMinDate) 

  { 

   lrMinDate = tempDate; 

   liMinRecord = tempRecord; 

   liMinOR = tempOR; 

   liRoomPtType = thisPatientType; 

  } 

 

  tempDate = EarliestDate[i][cPatientType0]; 

  tempRecord = EarliestRecord[i][cPatientType0]; 

  tempOR = i; 

  if(tempDate < lrMinDate and lrMinDate -tempDate > 120) 

  { 

   lrMinDate = tempDate; 

   liMinRecord = tempRecord; 

   liMinOR = tempOR; 

   liRoomPtType = 0; 

  } 

 } 

  

 tempOriginalPatientTypeMaxTime = DBDataGetAsNumber(giSurgeryDBIdx, giReleaseTimeTIdx, 

giMaxTimeRTFIdx, thisPatientType); 

 

 // within X days of call 

 if(lrMinDate - CurrentTime < tempOriginalPatientTypeMaxTime and liMinRecord > 0 and liMinRecord < 

99999) 

 { 

  liLogID = ScheduleToUseORGivenRecordNumber(thisPatientID, thisPatientType, liMinOR, 

liRoomPtType, thisPlanningTime, liMinRecord ); 

  return liLogID; 

 } 

  

// These are outside X days of call 

// These are patients who are eligible to assign to open/release hours 

 

 tempType = 0; 
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 liMinOR = -1; 

 liMinRecord = -1; 

 lrMinDate = 99999; 

 for(i = 1; i <= giMaxPatientTypes; i++) // Patient Types 

 { 

  if (i != thisPatientType ) 

  { 

   for(j = 1; j <= giMaxORRooms; j++) // OR Rooms 

   { 

    tempDate = EarliestDate[j][i] - CurrentTime; 

    tempRecord = EarliestRecord[j][i]; 

    tempOR = j; 

    tempTestingPatientTypeMinTime = DBDataGetAsNumber(giSurgeryDBIdx, 

giReleaseTimeTIdx, giMinTimeRTFIdx, i); 

    if(tempDate < lrMinDate and tempDate < tempTestingPatientTypeMinTime) 

    { 

     tempType = i; 

     lrMinDate = tempDate; 

     liMinRecord = tempRecord; 

     liMinOR = tempOR; 

    } 

   }    

  } 

 }  

  

// If I found an available block and it is withing the Alternate block X day call window,  

// first, check if matches with surgeons preference 

// second, find all patienttype whom surgeons can operate on this weekday 

// calculate waiting cost of selected patient types and sort them  

  

 real lrTimeOfScheduling; 

 real lrTimeOfSurgery; 

 real lrWaitingCost; 

 integer flag1; 

 integer temp[2];            

      integer numLength; 

      real lrPatientRevenue; 

      if( liMinOR > 0) 

 { 

  FindCompetetorForDay(thisPatientType,liMinOR,liMinRecord); 

   

     

        //liPatientType = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, giPatientTypePLORFIdx, i); 

  lrTimeOfScheduling = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giTimeOfSchedulingPLORFIdx, liMinRecord); 

  lrTimeOfSurgery = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giTimeOfSurgeryPLORFIdx, liMinRecord); 

  //liDaysOutToSchedule = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giDaysOutToSchedulePLORFIdx, i); 

  //liCanceled = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giCanceledPLORFIdx, i); 

   

  lrTimeWaiting = (lrTimeOfSurgery - lrTimeOfScheduling)/1.5; 
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  for(tempPTType = 1; tempPTType <= giMaxPatientTypes; tempPTType++) 

  { 

   

  if(possiblePType[tempPTType]==1){ 

 

 

// Calculate waiting cost for multi-priority patient   

    

if(tempPTType == 1) 

 {lrWaitingCost = exp(-2.665+(0.061*lrTimeWaiting))/(exp(-2.665+(0.061*lrTimeWaiting))+1); 

    

   } 

if(tempPTType == 2 or tempPTType == 5 or tempPTType == 11) 

 {lrWaitingCost = exp(-1.751+(0.0179*lrTimeWaiting))/(exp(-1.751+(0.0179*lrTimeWaiting))+1); 

   } 

if(tempPTType == 3 or tempPTType == 6 or tempPTType == 7 or tempPTType == 8 or tempPTType == 10) 

 {lrWaitingCost = exp(-2.45+(0.0248*lrTimeWaiting))/(exp(-2.45+(0.0248*lrTimeWaiting))+1); 

    

   } 

if(tempPTType == 4 or tempPTType == 9 ) 

 {lrWaitingCost = exp(-3.958+(0.0672*lrTimeWaiting))/(exp(-3.958+(0.0672*lrTimeWaiting))+1); 

    

   } 

 

    

   lrPatientRevenue = DBDataGetAsNumber(giSurgeryDBIdx, giRevenueTIdx, 

giPatientRevenueFIdx, tempPTType); 

   PTypeCost[tempPTType][1] =  (lrWaitingCost*lrPatientRevenue) ; 

   PTypeCost[tempPTType][0]=tempPTType; 

  } 

   

   } 

  } 

 

   

 flag1=1; 

      numLength = 12; 

      for(i = 1; (i <= numLength && flag1==1); i++) 

     { 

          flag1 = 0; 

          for (j=1; j < (numLength -1); j++) 

         { 

               if (PTypeCost[j+1][1] > PTypeCost[j][1]) // ascending order simply changes to < 

              {  

                    temp[0] = PTypeCost[j][0];  

                    temp[1] = PTypeCost[j][1];            // swap elements 

                    PTypeCost[j][0] = PTypeCost[j+1][0]; 

                      PTypeCost[j][1] = PTypeCost[j+1][1]; 

                    PTypeCost[j+1][0] = temp[0]; 

                    PTypeCost[j+1][1] = temp[1]; 

                    flag1 = 1;             // indicates that a swap occurred. 
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               } 

          } 

     } 

   

      if(thisPatientType==PTypeCost[1][0]) 

 { 

 liLogID = ScheduleToUseORGivenRecordNumber(thisPatientID, thisPatientType, liMinOR, tempType, 

thisPlanningTime, liMinRecord );  

 return liLogID; 

 } 

      

     real lrPlanningTime; 

     real totalTime; 

     totalTime=0; 

      

     integer index; 

     index=0; 

      

     for(i=1;i<12;i++){ 

     if(PTypeCost[i][0]==thisPatientType){ 

        index=i; 

        break; 

     } 

     } 

      

     for(i=1;i<=index;i++){ 

       lrPlanningTime = DBDataGetAsNumber(giSurgeryDBIdx, giSurgeryTimeTIdx, 

giPlanningtimeFIdx, PTypeCost[i][0]); 

         totalTime=totalTime+lrPlanningTime; 

        //if(PTypeCost[i][1]==thisPatientType){ 

          //   break; 

       //} 

 } 

  

integer liORLogTable; 

real tempHoursLeft;  

 liORLogTable = DBDataGetAsNumber(giSurgeryDBIdx, giORTablesTIdx, giORLogORTFIdx, liMinOR); 

 //tempPatientType = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cPatientTypeORLXFIdx, 

liMinRecord); 

 tempHoursLeft = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cHoursLeftORLXFIdx, 

liMinRecord); 

  

  

 if(tempHoursLeft>totalTime){ 

  liLogID = ScheduleToUseORGivenRecordNumber(thisPatientID, thisPatientType, liMinOR, 

tempType, thisPlanningTime, liMinRecord );  

  return liLogID; 

 } 

  

  

  

    real mycost; 
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    for(i=1;i<=numLength;i++){ 

      if(PTypeCost[i][0]==thisPatientType){ 

      mycost=PTypeCost[i][1]; 

      break; 

      } 

    } 

  

 real totalDelay; 

  

 for(i=1;i<=numLength;i++){ 

      if(PTypeCost[i][0]==thisPatientType){ 

      mycost=PTypeCost[i][1]; 

      break; 

      } 

    } 

  

  

// If No other room fit (available), First search in OPEN room and then schedule the patient in thier proper patient 

block 

 liMinOR = -1; 

 liMinRecord = -1; 

 lrMinDate = 99999; 

 for(i = 1; i <= giMaxORRooms; i ++) 

 { 

  tempDate = EarliestDate[i][thisPatientType]; 

  tempRecord = EarliestRecord[i][thisPatientType]; 

  tempOR = i; 

  if(tempDate < lrMinDate) 

  { 

   lrMinDate = tempDate; 

   liMinRecord = tempRecord; 

   liMinOR = tempOR; 

   liRoomPtType = thisPatientType; 

  } 

 

  tempDate = EarliestDate[i][cPatientType0]; 

  tempRecord = EarliestRecord[i][cPatientType0]; 

  tempOR = i; 

  if(tempDate < lrMinDate and lrMinDate -tempDate > 120) 

  { 

   lrMinDate = tempDate; 

   liMinRecord = tempRecord; 

   liMinOR = tempOR; 

   liRoomPtType = 0; 

  } 

 }   

   

 if( liMinRecord > 0 and liMinRecord < 99999 ) 

  liLogID = ScheduleToUseORGivenRecordNumber(thisPatientID, thisPatientType, liMinOR, 

liRoomPtType, thisPlanningTime, liMinRecord); 

 else 

  liLogID = -1;  

 return liLogID; 
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} 

 

real FindArrivalRate(integer paitientType) 

{ 

 //integer i; 

   real rate; 

 //integer liMaxrows; 

 

  

 //liMaxrows = DBRecordsGetNum(giSurgeryDBIdx, giSecondaryArrivalRateTIdx); 

   rate = DBDataGetAsNumber(giSurgeryDBIdx, giSecondaryArrivalRateTIdx, 

giSecArrivalRateFIdx, paitientType); 

  

 return rate; 

} 

 

procedure InitializeEarliestDateArray() 

{ 

 integer i, j, k; 

 

 for(i = 0; i <= giMaxORRooms; i++) // OR Rooms 

 {   

  for(j = 0; j <= giMaxPatientTypes; j++) // Patient Types 

  { 

    EarliestDate[i][j] = 99999; 

    EarliestRecord[i][j] = 99999; 

  } 

 } 

} 

 

 

// This message handler will first capture the data for all patient types and all ORs.  Then it will call different 

functions to test different logic for choosing the right block. 

on PTypeIn 

{ 

 real tempScheduleTime; 

 real tempSurgeryTime;  

 real lrPlanningTime; 

  

 integer tempDaySurgery; 

 integer tempDayScheduled; 

 integer tempORRoom; 

 integer tempPTType; 

  

 InitializeEarliestDateArray(); 

  

 lrPlanningTime = DBDataGetAsNumber(giSurgeryDBIdx, giSurgeryTimeTIdx, giPlanningtimeFIdx, 

PTypeIn); 

  

 lrPlanningTime = Ceil(lrPlanningTime); 

  

 for(tempORRoom = 1; tempORRoom <= giMaxORRooms; tempORRoom++) 

 { 
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  if( wCheckOtherPatientSlots == True  ) 

   TestForNextAvailabileSpotForType(tempORRoom, cPatientType0, lrPlanningTime, 

PTypeIn); 

 

  for(tempPTType = 1; tempPTType <= giMaxPatientTypes; tempPTType++) 

  { 

   if( wCheckOtherPatientSlots == True or PTypeIn == tempPTType ) 

    TestForNextAvailabileSpotForType(tempORRoom, tempPTType, 

lrPlanningTime, PTypeIn); 

  } 

 }  

   

 if(wEarlyDateDedicatedSpotRBtn == True) 

  LogIDOut = SetEarliestDateForSpecificBlock(PTypeIn, lrPlanningTime, PatientIDIn); 

 else 

  LogIDOut = TestForEarliestDateAndIncludeAllTypesUnderConditions2(PTypeIn, 

lrPlanningTime, PatientIDIn); 

  

 giTotalPatients ++; 

  

 if(LogIDOut > 0) 

 { 

  wPatientsScheduled++; 

 

  tempSurgeryTime = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giTimeOfSurgeryPLORFIdx, LogIDOut); 

  tempScheduleTime = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx, 

giTimeOfSchedulingPLORFIdx, LogIDOut); 

   

  tempDaySurgery = Floor(tempSurgeryTime/24); 

  tempDayScheduled = Floor(tempScheduleTime/24); 

  LagDaysOut = tempDaySurgery - tempDayScheduled - 1; 

  grTotalLagDays += LagDaysOut; 

  wAvgLagDays = grTotalLagDays / wPatientsScheduled; 

  SendMsgToInputs(LagDaysOut); 

 }  

  

 wPatientsNotScheduled = giTotalPatients - wPatientsScheduled; 

} 

// Initialize any simulation variables. 

on initsim 

{ 

 integer liNumOfRecords; 

 integer liNumOfWeeks; 

 integer i; 

 wPatientsScheduled = 0; 

 wAvgLagDays = 0; 

 wPatientsNotScheduled = 0; 

 grTotalLagDays = 0; 

 giTotalPatients = 0; 

 GetDBVariables(); 

 InitializeEarliestDateArray(); 

} 
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