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Abstract

The research presented in this dissertation contributes to the growing literature on
applications of operations research methodology to healthcare problems through the
development and analysis of mathematical models and simulation techniques to find practical
solutions to fundamental problems facing nearly all hospitals.

In practice, surgical block schedule allocation is usually determined regardless of the
stochastic nature of case demand and duration. Once allocated, associated block time release
policies, if utilized, are often simple rules that may be far from optimal. Although previous
research has examined these decisions individually, our model considers them jointly. A multi-
objective model that characterizes financial, temporal, and clinical measures is utilized within a
simulation optimization framework. The model is also used to test “conventional wisdom”

solutions and to identify improved practical approaches.

Our result from scheduling multi-priority patients at the Stafford hospital highlights the
importance of considering the joint optimization of block schedule and block release policy on
quality of care and revenue, taking into account current resources and performance. The
proposed model suggests a new approach for hospitals and OR managers to investigate the
dynamic interaction of these decisions and to evaluate the impact of changes in the surgical
schedule on operating room usage and patient waiting time, where patients have different
sensitivities to waiting time.

This study also investigated the performance of multiple scheduling policies under multi-
priority patients. Experiments were conducted to assess their impacts on the waiting time of
patients and hospital profit. Our results confirmed that our proposed threshold-based reserve
policy has superior performance over common scheduling policies by preserving a specific

amount of OR time for late-arriving, high priority demand.
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Chapter 1 : Introduction

Overview of the Problem and Motivation

The competition among healthcare systems has escalated in recent years. Non-optimal
decisions can lead to inefficiency, reduced profits and a loss of market share. According to BBC
news on June 3rd 2014, the number of patients who died while waiting for heart surgery at two
south Wales hospitals has risen in the past year. Between April 2013 and March 2014, 29
patients died waiting for surgery at Cardiff's University Hospital of Wales and Morriston
Hospital in Swansea. According to the Los Angeles Times on April 2014, the chairman of the
Senate Veterans Affairs Committee pledged to convene a hearing on allegations that excessive
wait times at a Phoenix Veterans Administration facility led to the deaths of 40 veterans. These
real cases are just examples of the challenge all health care systems face daily. Each patient type
has different sensitivity to the waiting time and an optimal scheduling policy needs to find the
right balance of individual waiting cost while maximizing the efficiency. The methods that
hospitals use to schedule their patients greatly determine the ultimate throughput. With improved
scheduling, hospitals can better utilize fixed assets and better control the costs for variable
resources. Surgery departments represent the largest cost centers and the greatest sources of
revenue for most hospitals. Operating Room (OR) planning and scheduling is a key tool which
can be used to improve the productivity level of ORs and their downstream resources. Basically,

there are three OR scheduling strategies commonly employed:

(1) Block scheduling strategy; (2) Open scheduling strategy; and (3) Modified scheduling
strategy. Most hospitals schedule their OR suites using case or block surgery schedules in which
OR time is assigned to surgical specialists/surgeons. In open scheduling, OR time is shared
among all specialists or surgeons based on first-come-first-serve order and finally, the Modified
scheduling is a combination of these two strategies. Some percentages of the blocks are devoted
to each specialty, but there are still some open blocks that are shared among all.

Block schedules are concerned primarily with elective surgery. Elective surgery
scheduling decisions consist of three stages; (1) determining the amount of OR time to allocate
to each surgical specialty, individual surgeons or groups (or case mix planning), (2) creating a
cyclic timetable, implementing the desired assignment of OR blocks to specialties (or surgery
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master schedule), and (3) scheduling individual patients into available time (or case scheduling).
The first stage decision reflects the long-term strategic goals of hospital, such as achieving
desired levels of patient throughput by service line or maximizing revenue (Strum et al., 1999;
Dexter et al., 1999; Blake and Carter, 2002; Gupta, 2007; Santibafiez et al., 2007; Testi et al.,
2007, Aringhieri et al., 2015). The second stage is constructed on a medium-term horizon to
build a specific cyclic schedule for specialties and is updated whenever the total amount of OR
time changes or when the make-up of some specialties changes (Blake et al., 2002; McManus et
al., 2003; Santibanez et al., 2005; Belién and Demeulemeester, 2007; Testi et al., 2007; Chow et
al., 2008; Van Ostrum et al., 2008; Price et al., 2011), and the third stage represents the short-
term operational decision of assigning a specific surgery and OR appointment slot to each patient
over the planning horizon, which can range from one week to one month (Dexter et al., 2000;
Guinet and Chaabane, 2003; Denton et al., 2007; Patrick and Puterman, 2008; Erdelyi and
Topaloglu, 2009; Sauré et al., 2012).

As evidenced by the references listed above, the vast majority of papers found in the
literature only consider one decision level at a time although all of these decisions are
interrelated and are sensitive to uncertainty with respect to case durations, arrival rates, patient
and provider preferences, punctuality, cancellations, no-shows, etc. Hence, a fundamental
objective of OR scheduling is to transition from the generality of the block schedule (stage 1) to
the specificity of a detailed schedule for each day (stage 3) (Herring and Herrmann, 2011).
Approaches dealing with more than one planning level simultaneously are indeed rare. Among
these, Jebali et al. usees a two-phase approach to deal with both the case scheduling and
allocation scheduling problems and proposes an integer programming model aimed at
minimizing OR over-time and under-time costs as well as hospitalization costs related to the
number of days patients are kept in the hospital waiting for an operation or procedure (Jebali
et.al., 2006). Testi et al. presents a hierarchical three-phase approach to determine operating
theater schedules. First, integer programming models are developed in order to divide the
available OR time among the different surgical specialties. Then, they formulate a master
surgery scheduling problem in order to assign a specific operating room and day of the planning
horizon to the OR time blocks of each specialty. Finally, a discrete-event simulation model is

used to evaluate the decisions concerning patients scheduled dates, OR and time assignments
2



(Testi et al., 2007). Tanfani and Testi propose a linear programming model to simultaneously
address the decisions involved in the three-phases of the OR planning and scheduling problem
described above, excluding only the most strategic ones dealing with the number and type of the
ORs and their operating hours. The objective of the model consists of minimizing a cost
function that combines the patients’ waiting time since referral and urgency status. The solution
approach is based on a sequential heuristic (Tanfani, and Testi, 2010). Aringhieri et al. adopt the
idea proposed in Tanfani and Testi (2010) and extend it to incorporate both patient utility (by
reducing waiting time costs) and hospital utility (by reducing production costs measured in terms

of the number of weekend stay beds required by the surgery planning) (Aringhieri et al., 2015).

These three scheduling levels mostly consider the forward planning aspects of the
scheduling process and sometimes fail to capture the available capacity when allocated OR block
times are not fully utilized. Having a portion of OR block time released in advance of the day of
surgery allows schedulers to add cases to blocks that otherwise would be underutilized. In this
case, a finite resource (OR time) must be allocated to competing surgical demands. These
demands for surgery arrive over time and the decision makers must decide at the time of arrival.
So, the main questions would be, “when to release the unfilled blocks, how much time from
these blocks would be offered to which specialties, and who within a specialty is the best
recipient for them”. Some hospitals have policies on “suggested block release times” based on
experience but they may not be the optimal rules to follow. These questions represent
fundamental problems facing nearly all hospitals to balance the costs of deferring waiting cases

and blocking higher priority patients.

Our model considers the joint impact of block schedules (all three stages) and block
release policies on quality of care and hospital revenue, taking into account current resources and
performance. The proposed model suggests a new approach for hospitals and OR managers to
investigate the dynamic interaction of these decisions and to evaluate the impact of changes in
the surgical schedule on operating room usage and patient waiting time. Both mathematical
programming and simulation have been used to answer all of the above scheduling questions and
are used to recommend the improved strategic, operational and tactical decisions. Not having a

strategic methodology leaves decision makers to make critical changes based on prior
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experiences, retrospective data, or even politics, without the benefit of a logical and systematic

framework.

Outline of this Dissertation

The general content of this dissertation is presented in six chapters. Chapter 1 includes a
brief introduction, an overview of the problem and the motivation for this research. Chapter 2
provides a literature review and background on the problem of scheduling surgical patients into
operating rooms at all stages, from case mix planning to elective case scheduling and continues
with the different strategies that have been introduced to block scheduling strategy to improve
block utilization and flexibility. At the end, we highlight the main contribution of this study both

in research and practice.

In Chapter 3, we address the model objective and its relation to yield management. We
also devote this chapter to a case study of a hypothetical two OR-facility that demonstrates the
practical aspects of implementation of the objective in joint optimization of block allocation
decisions and block release policies.

In Chapter 4, we develop and evaluate case scheduling policies from simple heuristic
policies to more complex policies driven from a Markov Decision Process (MDP) model. We
then present our results and insights from the case study for stochastic multi-priority scheduling.
Our mathematical and computational results show how multi-priority scheduling can be
optimized using reserved-based policies.

Chapter 5 is devoted to the application of simulation/optimization at Stafford Hospital, a
small-sized hospital with modified block scheduling and multi-priority patients. It continues with
the application of the Design of Experiments method in reducing the dimensionality of the
simulation model. We provide a summary of the results and contributions of this dissertation,
discuss conclusions and highlight insights for the practitioner in Chapter 6.



Chapter 2 : Literature Review and Contribution of this Dissertation

While the problem of scheduling elective surgical procedures has received extensive
treatment in the operations-research literature, most of the previous works have centered on the
level of individual decisions (case mix planning, surgery master schedule or case scheduling).
However, no decision is made in isolation: every decision is constrained by the effects of
previous decisions and creates its own downstream effects on future decisions (Santibafiez et al.
2007). Decisions about how to schedule elective surgeries are further complicated by the fact
that elective surgeries are made on a different planning horizon than urgent non-elective
surgeries. A survey of the literature on OR scheduling shows that there are very few studies that

address this complexity in the decision-making process for assigning (OR) capacity.

This dissertation’s research is aimed at filling this gap by improving surgical suite
efficiency through a multi-level decision model. Improvement of the surgical suite’s efficiency
not only may lead to increased productivity, in terms of the number of surgeries undertaken, but
also may contribute to a reduction in surgery waiting lists. Costs involved in keeping a patient on
the waiting list for surgery are high, both at the prevention and the maintenance level, even more
so considering the user’s quality of life. Another major contribution of this study is that it
integrates the costs of patients’ waiting time into its model. Although most of the previous
research in this area has centered on optimizing the use of OR capacity, few prior studies have
explicitly addressed the costs generated when patients are forced to wait for needed or desired
surgeries. Our model is able to optimize the yield of OR capacity by finding the best block
release and allocation strategy to allocate limited OR capacity to the right patients at the right

time with the lowest cost for patient, surgeon and hospital.

We begin with a conceptual model (Figure 1) of the scheduling process to draw insight
into the type of decisions that must be made in scheduling surgeries and to portray their
interaction. Finally, this research makes a valuable contribution to the literature on OR

scheduling by developing and testing the model using real world data.

As noted above, within the scheduling process, all upstream decisions affect downstream
decisions (Santibafiez et al. 2007). The complex interrelationship among decisions must be



understood and carefully managed in order to achieve optimal use of the limited resource of OR
capacity. One way that hospitals have begun to attempt to manage this interrelationship is to use
block release policies. Effective block release policies can help hospital administrators manage
the effects of such sources of variation in the scheduling process as variability in demand (not
only arrival rates, but also patient preferences) as well as in case durations, cancellations, and no
shows. If resource managers make effective use of scheduling strategies, they can minimize both

unused capacity and wait times.

Improvements in release policies, in coordination with sequential decisions, can enhance
efficiency and increase profits. Our research contributes to this effort by offering insight into
how hospitals can achieve not only optimal profit but also higher levels of patient satisfaction.
Decreasing the waiting time for surgery may not require that hospitals increase their overall
capacity, but rather that they simply make better use of existing OR blocks. Implementing

optimal release rules can essentially generate more usable capacity at no additional cost.

Inter-arrival rate

Stochastic [
Case Duration

Contribution Marain

1

\
-

r 1
! 1
o 4 Case Mix Planning
It
'S | l
i s | Surgical
:% E scheduling | Surgical master schedule Block Release policy
> ! Process
12 1
12, l
13>
10
v ",' Elective case scheduling
\ !/ K
U
\ 7
[
Profitability Waiting time

Figure 1: The Conceptual Model



First stage: Determining the amount of OR time allocated to each surgical specialty
(Case Mix Planning)

Initially, the available total OR time is often determined by a hospital’s budget (revised
annually). This finite capacity (OR time) must then be allocated to competing surgical demands.
Each specialty gets a piece of the pie (Figure 2) based on different criteria, such as total cases per
allocated block (i.e. historical utilization and target throughput), hospital costs and financial
gains per allocated block, and demand for services (i.e. waiting time), etc. The choice of
schedules and resource availability (OR time) directly affects the number of patients treated,
cancellations, waiting times and ultimately the overall profit of a hospital. Hospitals can be
assumed to seek an optimal patient mix and volume that can yield the maximum overall financial
contribution under the given resource capacity. However, there is not an easy answer to the
question of how to achieve this optimization since all of the factors listed above play
fundamental, interacting roles. On the other hand, a systematic approach to OR time allocation

can improve the transparency and fairness in surgeons’ time allocation.

\7

Figure 2: Capacity divided according to specialty/Surgeon

Case Mix Planning Literature Review
There is a growing pressure on health care providers to improve the financial contribution
of their resources through efficient capacity allocation and management. Naturally, it is expected
that the available resource capacity may match the stochastic patient demand as perfectly as
7



possible and the utilizations of hospital resources (i.e., hospital beds, operating rooms (ORS),
nursing staff, etc.) may be coordinated as well as possible. Nevertheless, due to the scarcity of
resources and the variability (e.g., the random patient arrivals, the variable length of stays
(LOSs), etc.) within the patient flow, the capacity management problem seems to be quite
complicated. A number of studies have addressed this complex problem using operational
research methods, such as mathematical programming, discrete-event simulation, and so on (Ma

and Demeulemeester, 2012).

Strum et al. (1999) and Dexter et al. (1999) have employed statistical analyses of hospital
historical data to predict the number of hours that should be allocated to surgical specialties.
Hughes et al. (1985) and Robbins et al. (1989) applied linear programming to optimally and
efficiently use the hospital's mix of services to maximize net contribution. Blake and Carter
(2002) have proposed a methodology that uses two linear goal programming models to
determine the trade-offs between service cost, mix volume and clinical necessity. Samanlioglu et
al. (2010) have used a similar integer programming approach to determine block schedules that
meet surgeons’ demand levels. Vissers (2005) proposed two mathematical models, one supports
long-term decisions about the resources required to match the future patient mix demand (choose
the patient mix that can bring maximum profits), and another supports decision making at the
medium-term level for balancing the resource requirements of various types. Dexter et al. (2005)
have incorporated two levels of capacity decisions: tactical and operational. Tactical decisions
for the selective expansion of operating room resources incorporate financial criteria and
operational decisions for any adjustment and are influenced by the uncertainty in subspecialties'
future workloads. Numerous reasons have been presented to explain why tactical planning for
the expansion of OR capacity should not be based on current or past utilization but instead on
total contributions, while meeting certain constraints (Gupta, 2007; Wachtel and Dexter, 2008).

A final group of papers has focused on finding block schedules that minimize the amount
of time patients have to wait for surgery (Zhang et al., 2009; Tanfani and Testi, 2010). It has
been shown mathematically that, when variation exists, buffer capacity is necessary to be certain
of meeting demand. Thus, the optimal capacity is the result of a trade-off between excess
capacity and patients’ waiting time (Pandit et al., 2010). Santibafez et al. (2007) have developed
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a mixed integer programming model to explore the tradeoffs between OR availability, bed
capacity, surgeons' booking privileges, and waiting time. The main focus of Testi et al. (2007)
has been on improving the overall operating efficiency of OR time in terms of overtime and
throughput as well as waiting list reduction. Vansteenkiste et al. (2012) introduced the concept of
the individual patient deviation from the optimal due time (DT) (an acceptable time after the
need for surgery is established) as a potential driver for OR (re-) allocation among surgical
disciplines. They believe use of a DT-based model provides a transparent, acceptable system for
regular reallocation of OR times between and within specialties.

Second stage: Creating a block schedule with desired allocations (surgery master
schedule)

Once OR time has been allocated to each surgical group, the second stage of planning
involves the development of a master surgery schedule (MSS). The time given to the
surgeon/surgical group is named as allocated block time and it should be converted into a desired
weekly scheduled time table (Figure 3). The master surgery schedule is a cyclic timetable that
defines the number and type of operating rooms available, the hours that rooms will be open, and
the surgical groups or surgeons who are to be given priority for the operating room time (Blake
et al., 2002). Developing or adjusting a MSS is a complex problem that involves creating and
allocating blocks of OR time to each specialty in such a way that it best satisfies some given
objectives (such as, balancing patient queue lengths among different specialties, maximizing OR
utilization and reducing overtime, maximizing profit, etc (Herring, 2011)) under various sets of
realistic constraints (such as, recovery and downstream bed availability, limitations on patient
waiting times, follow-ups, surgeons’ preferences and different levels of stochasticity (with
respect to case)) which have remained fairly consistent in all of the previous research. Also, the
master surgery schedule is often preferred to be as simple and repetitive as possible, which
entails as few changes as possible from week to week (Blake et al. 2002).


http://www.sciencedirect.com/science/article/pii/S0377221705006946#bib4
http://www.sciencedirect.com/science/article/pii/S0377221705006946#bib4
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Figure 3: Desired weekly schedule timetable

Surgery Master Schedule Literature Review

Block scheduling models have traditionally focused on implementing desired allocation
levels without fully considering the downstream effect. They are often solved by mixed integer
linear programming or goal programming. Blake et al. (2002) propose an integer programming
model that minimizes the weighted average undersupply of operating room hours that are
allocated to each surgical group (a number of operating room hours as close as possible to its
target hours). Current models focus more on leveling hospital bed occupancy and minimizing
overcapacity in a stochastic approach. In 2003, Ogulata and Erol presented a set of hierarchical
multiple criteria mathematical programming models to generate weekly operating room
schedules. The objectives considered in this study are maximum utilization of operating room

capacity, balanced distribution of operations among surgeon groups and minimization of patient
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waiting times. McManus et al. (2003) argued that much of the variability in hospital bed
occupancy levels is caused by imbalances in the surgical schedule. Researchers have addressed
these issues by incorporating patients’ lengths of stay into mathematical programming models
and heuristic procedures (Belién and Demeulemeester, 2007; Testi et al., 2007; Chow et al.,
2008; Van Ostrum et al., 2008; Price et al., 2011).

The research that is most relevant to our work is presented by Santibafiez et al. (2007)
who used a system-wide optimization model for block scheduling that enables managers to
explore trade-offs between operating room availability, booking privileges by surgeons, bed
capacity, and waiting lists for patients. Mannino et al. (2012) introduced a new mixed integer
linear model to find a suitable allocation of operating resources to surgical groups in a trade-off
of two major variants of balancing patient queue lengths among different specialties, while
minimizing overtime. These studies tried to ensure that the patient gets his/her surgery in a

reasonable time while surgeons’ preference and hospital profit are satisfied.

Third stage: Scheduling individual patients into available time (elective case
scheduling)

The third phase on individual patient scheduling is centered on daily decisions about the
patient selection, room assignment, and the sequence of cases in each allocated block®. In
general, patient scheduling studies can be summarized in three decision groups: choosing the
right surgical cases to schedule, assigning cases to the right OR on the right day, and optimally
sequencing cases within each OR. Usually, either the first two or last two of these decision
groups are modeled, although some research focuses more narrowly on just one of these
decisions (Herring, 2011). The first group, choosing the right surgical cases from a waiting list,
is only applied in situations where patients are kept on a waiting list until an appropriate day is
found for them. The next two decision groups are common in all online and waiting list
scheduling. First, each surgical case is scheduled for a specific operating room and day

(sometimes referred to as advance scheduling). Then, as it gets close to the day of surgery, either

L This study excludes the sequencing of cases (or allocation scheduling) on the day of surgery since we are
only interested in indirect waiting time and not in waiting time on the day of surgery
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each surgery is scheduled for specific periods in the day or the surgeries scheduled for the same

day are simply ordered (allocation scheduling) (Marques et al. 2012).

Elective Case Scheduling Literature Review

This stage of surgery scheduling has more robust literature than earlier stages, because
the earlier stages are only applied in the block scheduling strategy. Regardless of whether or not
they use block scheduling, they must solve the problem of scheduling individual patients into
specific OR times. The main goal in this body of research typically is either to minimize patient
delays (waiting time) or maximize OR utilization (Guinet and Chaabane, 2003; Denton et al.,
2007). This type of decision is very sensitive to efficiency and variability in the operating room.
Ozkarahan (2000) proposed a goal-programming model that can produce schedules that best
serve the needs of the hospital, i.e., by minimizing idle time and overtime, and increasing
satisfaction of surgeons, patients, and staff. The approach involves sorting the requests for a
particular day on the basis of block restrictions, room utilization, surgeon preferences, and
intensive care capabilities. Guinet and Chaabane (2003) modeled case scheduling as a general
assignment problem aimed at reducing patient stay duration and overtime costs. Hans et al.
(2005) addressed the problem of assigning elective surgeries to operating rooms in such a way
that not only the utilization of the OR rooms is optimized but also the total overtime is
minimized. Both Denton et al. (2007) and Cardoen et al. (2009) investigated the optimal
sequencing of cases within an OR using stochastic linear programming and a branch-and-price
approach, respectively. In Denton et al. (2010), cases are assigned to operating rooms using a

stochastic programming model to incorporate uncertain case durations.

Sier et al. (1997) used simulated annealing to find improved solutions to surgical case
scheduling. Simulation has been used in many studies to compare alternative scheduling policies
to maximize the efficiency of use of operating room (OR) time, e.g. El-Darzi et al. (1998),
Dexter et al. (2000), Dexter and Traub (2002), and Sciomachen et al. (2005). Most of the
researches that focus on assigning patients to ORs and sequencing the cases within ORs are
focused on the single day problem while the following studies develop their model over a longer

horizon. Jebali et al. (2006) solve a series of integer programs for assigning surgery patients to
12



operating rooms over a planning horizon while minimizing the costs of patient waiting times and
over-/under- utilized operating rooms. Hans et al. (2008) use a heuristic model to create robust
schedules using planned slack, and their work is the exception in that it schedules cases over the
course of a week rather than a single day.

Strategies to improve the Utilization and Flexibility

As noted in the literature review, the main concern of all scheduling studies is to find the
optimal combination of block size, allocation and case schedule which maximizes capacity
usage. However, all of these decisions require forward-planning as much as a year before cases
actually fill the blocks. Dealing with demand uncertainty is also an issue that must be addressed
in surgical scheduling. To be able to adjust to variation in demands such as case duration, arrival
rate and patient and surgeon preference, the following strategies have been applied to block

scheduling strategies to improve block utilization and flexibility:

e Modified block scheduling policy

e Block release policy

In many cases, hospitals use a modified block scheduling policy, a mixture of open and block
scheduling strategies. Similar to the block-scheduling policy, an MSS is constructed; however,
similar to the open-scheduling strategy, certain slots in the MSS are left open for flexibility.
Similar to modified block scheduling policy, block release policy consists of open and block
scheduling in which surgical groups (or subspecialties) may share blocks, depending on the
demand that arises for their scheduled block time. This sharing is achieved by setting a deadline
(a particular number of days prior to the day of surgery), at which time the unutilized block time
of a surgical group becomes available for use by other groups.

The main difference between a modified scheduling policy and a block release policy is that
in modified scheduling, blocks are open from the beginning (no deadline) so that cases can be
assigned based on first-come-first-serve basis, while in a block release policy the block will be
shared after a deadline. These block times can be used to accommodate overflow and more

urgent cases (Gupta, 2007). Thus, released blocks and open blocks offer more flexibility to
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surgeons to assign their cases based on a first-come-first-served rule. The main focus of this

research is on block release policies which are discussed in more detail.

Modified scheduling policy
“Which is better for OR scheduling—block, modified block, or first-come-first-served
(open)? It’s a common question, but there is no simple answer and many issues must be

weighed.”

Modified block seems to be the most-used method based on a benchmarking study in
1996 by the University HealthSystems Consortium (OR Manager, Patterson, 1996). Each

scheduling strategy has its own pros and cons shown in Table 1.

Table 1: Pros and Cons of different Scheduling strategies

Advantage Disadvantage
Open e Satisfies the expectations of surgeons and o Frustrates surgeons, as they may
scheduling patient’s about the day of surgery (Dexter, et not be able to schedule their cases
strategy al., 2003) back-to-back well in advance
o Very efficient planning method if (Dawn Mclane-kinzie, 2005)

appointments are being made in advance and
required resources can be calculated precisely
(Fei et al., 2009; Blake, et al., 2002)

Block o More reliable OR time for surgeons e Revenue loss or underutilization
scheduling due to surgeries ending sooner
strategy than expected, or cancellations

¢ Assigning and reallocating block
time can raise difficult political
issues (OR manager)

Modified | e Offers maximum flexibility and since it e There may be too many blocks
scheduling combines the two main strategies, this strategy unoccupied, resulting from
strategy is more flexible to deal with different kinds of reserved blocks that were released
patients: elective and urgent late

Due to the pros and cons outlined earlier, each strategy works best for a specific set of
conditions. Also, as Hamilton and Breslawski (1994) argued, the factors considered by operating
room administrators to be critical to operating room scheduling are dependent on the nature of
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the scheduling policy. The results of their large-scale survey indicated that in block strategy the
number of operating rooms, the equipment limitations, the block times assigned and the hospital
scheduling policy are considered to be important criteria. While, in open scheduling strategy the
number of operating rooms, the estimated room set up duration, the estimated case duration and

the equipment restrictions are considered to be essential in optimal scheduling.

Block scheduling is more predictable for surgeons. Specific surgeons or groups of
surgeons are assigned one or more blocks of time each week in which to schedule their surgeries
and no one else is allowed to assign a case in their block. In reality, pure block scheduling is

rarely used because it is too rigid and it may result in highly underutilized OR blocks.

Open scheduling strategy is great for specialties that anticipate their schedules well in
advance (specialties with less urgent cases), in this case; there is no time gap between
consecutive cases. According to Dexter et al. (2003) this method of planning consists of surgeons
and patients who together decide at which date the treatment should take place and the other staff
will be adjusted to achieve maximum efficiency. Due to this certainty, every minute of OR time
can be optimally used. Unlike the block scheduling strategy (Blake, et al., 2002; Fei et al., 2009),
every minute of the operating room can be reserved separately, so there is a better chance of high

utilization.

A modified scheduling strategy contains the benefit of both block and open scheduling
strategies. More hospitals employ modified block scheduling, since it easily deals with diverse
kinds of patients; urgent and elective. In addition, the modified scheduling strategy can gain
additional benefit by combining it with block release policy to release unreserved block time at
an agreed-upon point before surgery to be shared with other surgeons, the utilization can be high.
Although in this strategy, block release policies should be well managed to keep the utilization
on target.

As shown in Figure 4, there are multiple ways of creating a modified schedule. Any
combination of open and block scheduling policy might be optimal for a given set of conditions.
The optimal combination highly depends on hospital patients’ combination of elective, urgent or
semi-urgent and blocks release policies. The release policy maintains the highest fairness among

different types of surgeons.
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Figure 4 : Modified scheduling strategy

Block release policy

A choice of release of block time maximizes access to the elective schedule for block
holders while maintaining sufficient lead time for other surgeons to take advantage of
underutilized operating capacity. The intent is to increase access to the OR schedule for all users.
The block release dates provide control capability for scheduling managers and allow decision
makers to assign upcoming cases to the unfilled blocks based on their urgency. Hence, release

times must be managed well to maximize OR utilization.
Two parameters are involved in the block release policy:

(1) The maximum time that a patient can wait for accessing his surgeon’s primary block

before being considered for scheduling in an off block, and
(2) The minimum number of days before the day of surgery that the block can be released.

Parameter 1 depends on the expectation of the patients about the longest time to wait for
surgery and the urgency of the case, but parameter 2 depends on the arrival rate of patients and
how quickly blocks are filled. The maximum time that a patient can wait can be estimated with
certainty for each type of surgery based on survey or statistical methods. Table 2 shows
maximum time a patient can wait for accessing his surgeon’s primary block at Stafford. The
minimum number of days before the day of surgery that the block can be released will be

analyzed by Scenario Manager.
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: Maximum time that a patient can wait for accessing his surgeon’s primary block
Table2: M time that tient tf I geon’ blocl

Specialty Podiatry | Plastic | Otho GYN GV ENT

Maximum wait time 43 33 18 29 16 49

Block release policy literature review

Most hospitals use a predefined block release time that is reevaluated every year and
usually ranges between 3 to 7 days before the day of surgery. This fact motivates the very natural
questions of how block release dates can be set optimally and who is the best recipient for the
released block. Dexter et al. (2003) addressed the question of which services should release their
blocks to minimize under/over utilization. According to Dexter et al., there are three possible
rules for releasing OR time: (a) the most expected underutilized OR on the day of surgery, (b)
the largest difference between allocated and scheduled OR time at the moment the new case
arrives, or (c) the second largest difference between allocated and scheduled OR time. Dexter et
al. conclude that the first option (a) is the best strategy. This finding aligns with Herring and
Hermann (2011) who argue that a blocking penalty (the dissatisfaction cost that happens if a
non-primary case is scheduled and another primary case arrives, then the OR manger has
blocked the primary surgeon’s access to its allocated time) incurred on a given day is a random
variable that depends on the arrival rate of primary cases. Thus, the release policy is highly
dependent on the arrival rate of cases.

Dexter and Macario (2004) have extended this study by assessing the effect of release
time on efficiency. They claim that the timing of the block release has little impact on OR
efficiency. However, this paper, which proposes adding a single case to existing schedules at
different points in time, fails to consider the potential effect of decisions on the evolution of the
schedule after cases have been added. In addition, they assume it is possible to hold a case on the
waiting list until a block is released. Other papers that consider scheduling add-on cases have
limited their analysis to the day before and the day of surgery, thus neglecting the role of the
block release date (Gerchak et al., 1996; Dexter et al., 1999).
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As stated by Herring and Herrmann (2011), one of the shortcomings of previous studies
in the field of release blocks and block scheduling, in general, is that these models schedule
patients all at once rather than sequentially over time. Although they cover all of the
shortcomings of previous research in this field, they still assume the use of waiting lists for cases.

Challenges in Elective Case Scheduling

Although many researchers have conducted studies in the field of optimizing case
scheduling, most of these studies have assumed that decision makers have access to full
information about the pool of requests that are accumulated into a waiting list until the final
decision is made about assigning cases into blocks. This type of research has mostly been
conducted by using dynamic programming. However, in reality, surgical demands arrive over
time and decision makers must assign a surgery date based on the current state of a system as
soon as the patient’s request arrives. Uncertainty in future state plays an important factor in the
scheduling process. Uncertainty in case durations, patients’ arrival rates, patient and provider
preferences and probability of cancellations makes it difficult to plan properly. The request for
elective surgery arrives over the span of multiple days before the day of surgery. These case
requests arrive with different arrival rates and fill the blocks according to their level of urgency
and the time that a procedure needs. Some patients request the earliest possible dates, while
others are most interested in choosing the most convenient time well into the future. Some
patients are sensitive to the surgery postponement and some are not. These natural differences
among specialties explain why one specialty’s blocks may be almost full fourteen days before
the day of surgery (such as GYN in Figure 5), whereas others may have filled only 50% of their
blocks less than two weeks before the day of surgery (such as ORAL in Figure 5).

It would be a simpler problem if there were no sharing of capacity allowed among
specialties and no patients seeking the earliest possible dates. In reality, hospitals release excess
surgical time to surgeons who have urgent patients, based on a first-come-first-served basis. In

this situation, the decision of case scheduling becomes even more complex.
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Figure 5: Block allocation and progressive fill up capacity (u is the arrival rate)

Assume that, in an environment where blocks may be released some days before surgery,
a new Cardio case (urgent) arrives (Figure 6). For this patient, the scheduling decision must be
made based on the current state of the system. Assigning the case into the first available primary
block (OR block associated with the case specialty) in four weeks or into the non-primary block

in five days, given a block release policy set as five days prior to the day of surgery.

How to handle such complexities is not a straightforward question since any decision will
affect the future state of the system. The potential effects of all decisions must be captured in the
block release policy and the strategies must be assigned according to the primary objectives of
minimizing patients’ waiting times and maximizing overall profit. These challenges in surgical

scheduling are a primary motivation for this study.

Although, in some cases, long waiting times may have little medical impact. In other
cases, excessive wait times can potentially impact health outcomes and result in lost patients. In
this study, we present a simulation model for scheduling surgeries within the Stafford Hospital, a
small size hospital with two types of patients: semi-urgent who may require immediate treatment
and non-urgent patients where it may be medically acceptable to wait up to several weeks. There
IS no cost associated with a delay in scheduling non-urgent patients (zero waiting cost). In
contrast, a hospital will be penalized for postponing the scheduling of semi-urgent patients one
more day. Based on the result of a logistic regression analysis on Stafford data, there is a
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statistically significant difference between semi-urgent patients across different specialties in

terms of a waiting cost coefficient.
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Figure 6: Case scheduling decision challenges

At Stafford, all semi-urgent patients are treated the same based on a FCFS strategy, even
though their urgency levels will differ. But, what will be the best set of scheduling policies for
optimal yield across multi-priority patients? If less-urgent patients are booked further into the
future, this raises the question of how much resource capacity to reserve for later-arriving but
higher-priority demand?

Access rules help clinics determine how much capacity to reserve for each type (or
length) of appointment and for future callers with more urgent needs. These rules also determine
planned appointment lengths for each diagnosis of the referring physicians. Thus, a request may

not be scheduled on the first available date

The decision of when a patient should be scheduled is made based on the cost for surgery
postponement. A numeric solution is formulated to address this problem and multiple strategies
are conducted to understand the properties of an optimal schedule policy. We are looking for sets
of superior strategies to better manage health-care resources in order to reduce wait times to

acceptable levels without undue additional costs.

20



Related research and contribution of this study

The research presented in this dissertation contributes to the growing literature on

applications of operations research methods to problems in healthcare through,

1. The development and analysis of elective surgery scheduling decisions considering the
joint impact of case mix planning, block allocation, case allocation and block release

policies on patient wait time and hospital profitability.

The limited existing literature on the joint optimization of block allocation decisions and
release policies suggests it is advantageous to consider all level of decisions in this study. A case
study of the scheduling system at a hypothetical two OR-room facility is introduced to illustrate
the interaction among three surgical scheduling decisions and release block policies. The model
illustrated in this research is closely related to the work of Herring and Hermann (2011) which
addresses the problem of single-day surgery scheduling incorporating block schedules, block
release policies and a surgical waiting list. They employed a stochastic dynamic programming
(SDP) model to identify the optimal scheduling policy by continually minimizing utilization cost
and customer (patient and surgeon) satisfaction cost. They introduce a threshold policy as the
amount of space preserved each day for future primary cases (those that have allocated OR block
time on that day) such that a balance is maintained between the differential cost of secondary
cases and the blocking cost of higher-priority primary cases. Secondary cases are defined as
specialties that do not have allocated OR time on that day, but still wish to perform a surgery.
This threshold policy leads to a conventional block release threshold in which unused OR time is
gradually released over the course of several days leading up to the day of surgery. What
differentiates this proposed study from Herring and Hermann is that it does not assume the
existence of any waiting list for patients (secondary cases). Instead, decisions are to be made at
the time of the request for surgery. In addition, our study considers all the tactical and
operational decisions (not only daily decisions), into one model, where the behavior of patients

affects the profitability of the hospital.

Several papers study the joint impact of hierarchal block scheduling decisions. The most
relevant study is that of Testi et al. (2007) which reports on a hierarchical three-phase approach

to determine operating room schedules. In the first phase, which they refer to as session
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planning, the number of sessions to be scheduled weekly for each discipline is determined. Since
they distribute the available operating room time over the set of disciplines, this problem can be
regarded as a case mix planning problem. Phase 2 formulates a master surgery scheduling
problem in which they assign an operating room and a day in the planning cycle to the sessions
of each discipline. Both phases are solved by integer programming and are modeled at the
discipline level. Phase 3, on the contrary, is formulated in terms of individual patients. A
discrete-event simulation model is presented to evaluate decisions concerning date, room and
time assignments (Cardoen et al., 2010). Although their model suggests an integrated way of
facing surgical activity planning in order to improve overall operating theatre efficiency (in
terms of overtime, throughput as well as waiting list reduction), their model ignores the
interaction of these decisions and how the lower level decisions can affect the optimality of the
previous decisions. Also, they assumed a pure block scheduling strategy which implies no block

release policy is involved.

The second paper that is related to our work is Tanfani and Testi (2010), where the
authors proposed a linear programming model to simultaneously address the decisions involved
in the three-phases of the OR planning and scheduling problem described above, excluding only
the most strategic ones dealing with the number and type of the ORs and their operating hours. A
sequential heuristic algorithm is applied to solve an NP-hard combinatorial optimization problem
intended to minimize a cost function based upon a priority score, as a function of waiting time
and the urgency status of each patient. Aringhieri et al. (2015) adopt the idea proposed in Tanfani
and Testi and extend it to incorporate both patient utility (by reducing waiting time costs) and
hospital utility (by reducing production costs measured in terms of the number of weekend stay
beds required by the surgery planning). The main contribution of these papers is to characterize
the joint optimization of all three stages of scheduling; incorporating both patient and hospital
societal benefits although their model focuses on waiting list management and does not capture

the immediate scheduling challenges.

2. Development of a multi-objective model that characterizes financial, temporal and

clinical measures to balance between competing classes of demand for surgery.
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Rather than focus on traditional block scheduling and individual patient scheduling
objectives (such as leveling hospital occupancy and maximizing OR utilization), our analysis
will focus on how OR managers can make equitable scheduling decisions in the face of
competing demands from various surgeons and surgical specialties. In order to consider all
conflicting objectives, we have developed a multi-objective function that considers hospital
profit, surgeon availability and multi-priority patients’ sensitivity to waiting time. The details are

provided in the next chapter.

3. New way of looking at waiting cost where the cost of excess waiting is defined as a

function of leaving/health deterioration.

If access to elective surgical procedures is managed by scheduling patients from a
surgery waiting list, the main question will be to decide how many of the patients in the waiting
list can/should be assigned for the next available block time. This optimal strategy can be chosen
based on the trade-offs between the cost for overtime work and the cost for surgery
postponement. Stenevi et al. (2000) has focused on the productivity loss costs incurred by
waiting such as income loss, community service such as home help, medical treatment at home
and hospital stays. Bishai and Lang (2000) focused on utility loss and the willingness of patients

to pay (bid) to reduce their waiting time.

While the literature on waiting list management is rich, the issue of immediate
scheduling, where no waiting list exists, has received less attention from operations researchers.
Dexter et al. (1999) showed, based on simulation results, that OR utilization depends greatly on
the average length of time patients have to wait for surgery. The longer patients can wait, the
greater is the percentage of OR block time that can be used, since more surgical dates can be
evaluated for a good match between case duration and the remaining OR time in the block.
Although, after conducting a survey to determine patients’ perceptions of acceptable waiting
times for elective surgery, they concluded that the optimal strategy would be to schedule patients
in “overflow” time outside of block if there is no available time before the acceptable waiting

time.

Several previous studies have used statistical tools to evaluate the relationship between

surgical wait times and adverse events. Sobolev and Kuramoto (2008) introduced several
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statistical methods using descriptive and comparative statistics and regression models to
demonstrate the correlation between waiting time and adverse events. Regression models have
been used to quantify the effects of explanatory variables on wait list outcomes. Using logistic
regression, Sobolev et al. (2008) showed there was a linear trend, approximately a 5% increase in
the odds of in-hospital death for every additional month of delay before surgery. Applying
logistic regression, Zamakhshary et al. (2008) found that a wait time for surgery of more than 14
days was associated with a doubling of the risk of hernia among infants and young children. Ahn
et al. (2011) used logistic regression modeling to find the target access time by which the risk of

additional surgical procedures and other adverse events increases.

In this study, the waiting cost function in derived using logistic regression based on
multi-priority patient behavior in response to waiting time. This is consistent with existing

research on capacity allocation and revenue management.

4. Introducing a special revenue management policy, “Reserve Policy”, under modified

block scheduling policy.

We borrow the idea of reserve scheduling policy from the revenue management
literature. Littlewood (1972) developed the first static single resource model using protection
levels to characterize the optimal airline booking policies for single flight leg revenue
management problems. Since then, many allocation policies were developed by modifying
existing models to fit the needs of the health care industry. Among them, we have the expected
marginal seat revenue (EMSR) control for multiple classes (Belobaba 1987; Belobaba 1989), a
sequential application of the two-fare class rule to the multiple-fare class situations, when
requests arrive in increasing fare order. Despite the success of this body of work, most of the
above-mentioned models make simplifying assumptions. Dynamic programming has been used
in an effort to relax some of the assumptions incorporated into the policies reflected by

Littlewood’s rule, EMSR and the optimal policies.

While this study is motivated by a case study of the scheduling system at the Stafford
Hospital, our analysis of the resulting model focuses on generating valuable insights for

practitioners as well. This includes providing an answer to the following questions:
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When do we need to allocate more block time than average demand would suggest?
Which mix of open/block scheduling strategy is best for each combination of patients?
Who should access released hours?

What are the rules of thumb for scheduling multi-priority patients?
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Chapter 3 : Allocation and Release Policy Decisions: Model Objective and
Case Study
Model Objective:

Any planned capacity that accommodates stochastic demand most of the time will
inevitably involve considerable unused capacity. Conversely, a level of capacity chosen to
minimize unused capacity will inevitably cause an increase in wait time for patients (Pandit et
al., 2010). Thus the question of how to balance demand and capacity is closely related to the
question of how to balance utilization and waiting time. To answer this question, a multi-
objective model that characterizes financial, temporal, and clinical measures is employed within

a simulation/ optimization framework.

Providing more capacity (OR Block time) generates more cost, but the key question is
what is the marginal benefit of additional capacity? In constrained optimization, the shadow
price is the incremental change per unit of the constraint in the objective value of the optimal
solution of an optimization problem obtained by relaxing the constraint. We can expect a non-
linear function for the marginal benefit of unit block hours and release block policies to add even
more complexity to the model. A release block policy provides essentially free block time over
time, so its interaction with the original block size is an interesting issue that warrants

investigation.

Another element in our objective function is the cost associated with the waiting time of
the patients. The waiting time is defined as the time gap between when a patient calls to make an
appointment for surgery and the time the surgery is actually performed (defined as indirect
waiting time in literature, Gupta and Denton, 2008). Of course, what counts as waiting time
depends on the type of surgery required: we will not penalize every individual for waiting since
some procedures are intentionally scheduled multiple weeks in advance because they do not
involve emergencies and others, while necessary to preserve a patient's life, do not need to be

performed immediately (Semi-urgent surgery).

Patients who expect, but do not receive, immediate service may decide to leave for
another surgeon or may be forced to leave because their condition has deteriorated. Table 3

summarizes the cancellation rate of Stafford’s patients through time. Numbers are calculated
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based on the total counts of canceled surgeries among total number of appointments within a
given time period. We expect that as the waiting time increases, the probability of leaving
increases, as well. For some specialties such as plastic and Ortho, patients decide to cancel the
appointment somewhat early (more than 75% cancel their appointment after a week) while in

other specialties (such as podiatry) patients keep their appointment as long as they can.

Table 3: Cancel rate as a function of waiting time across semi-urgent cases

% of semi-urgent cases canceled which have waited after x-days
Weeks x-days Podiatry Plastic Otho GYN GV ENT
1 5 15% 83% 76% 37% 50% 44%
2 10 6% 0% 14% 23% 32% 17%
3 15 15% 17% 10% 17% 9% 17%
4 20 12% 0% 3% 13% 9% 11%
5 25 9% 0% 0% 3% 0% 0%
6 30 6% 0% 3% 7% 0% 11%
7 35 3% 0% 0% 0% 0% 0%
8 40 12% 0% 0% 0% 0% 0%
9 45 21% 0% 0% 0% 0% 6%

Based on the above elements we defined our multi-objective function (1) which
maximizes the profit through minimizing the block cost incurred by scheduling patients in
surgical blocks as well as minimizing waiting time costs?. For a period N days into the future and

S surgeons using OR blocks, we can represent an objective function as follows.

H. o S S S N
Maximize Profit=max Y/, 1; X; — Xioq ¢;T; — Xi=1 Xj=o TiTt(t) (1)
R PP ¢ Total expected revenue from all cases
o6 Total OR block time cost
Yo Yo mim(t); Total waiting cost
T; Total OR block time provided for surgeon i in the period
X; Total cases done with surgeon i in the period
T; Per case revenue associated with surgeon i case

2 _ we assume there is no overtime allowed
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m(t); Probability of cancellation, given delay time |
C Cost per unit of block time for surgeon i

Model Variable: Cost of OR block time

Operating rooms are significant cost drivers in hospitals and their costs can vary
depending upon the type of medical procedure. “How much does one unit (hour) of OR time cost
for each specialty/surgeon?” is a common question often asked by operating room (OR)
management in order to effectively evaluate and manage the scarce resources. Total OR time
provided to a surgeon will consist of his utilized OR block time and OR hours released from
underutilized services. So, both allocated OR block hours and release policies will directly affect
the total block cost. The best decisions about the allocated block size and release policies should
be made considering the difference among surgical block cost. The total block cost of each

surgeon can be calculated with the following function (2),

s s

Z c,T; = Z c; * [(allocated OR hours for surgeon i) — (allocated OR hours released to other services)
i=1 i=1

+ (OR hours released from underutilized services used by suregon i)] (2)

Model Variable: Cost of waiting

Delaying surgery may lead to a deterioration of the patient’s condition, a poor clinical
outcome, an increased risk of death, or an increase in the probability of emergency admission.
Recently, policy makers have called for the establishment of target access times for major
operations that would minimize the risk of adverse events associated with treatment delays
(Sobolev and Kuramoto, 2008). Thus, the risk of adverse events while waiting should be
considered explicitly when building a surgery schedule since it will increase the risk of leaving
the system (cancellation). In this study, we employ a logistic regression model to estimate the
(indirect) waiting cost as the probability of cancellation due to the time gap between request and
the appointment. As past research shows, the longer the delay in appointment, the higher the
chances that he (she) will cancel the appointment (Gallucci et al., 2005). The waiting cost of

each surgeon can be calculated with the following function (3),
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rw(t); = Waiting cost of patient i given delay time j (expected revenue loss) 3)

Revenue per case associated with surgeon i case x Probability of patient i opting out of the procedure

The waiting cost model that we propose in this study has much in common with existing
research on capacity allocation and yield management. We observe, analyze and anticipate
patient behavior in response to waiting time in order to maximize yield or profits from a fixed
perishable resource (OR time). Although the surgery cost would be fixed over the same
procedure, managing the available OR time will affect the overall profit. The daily challenge
facing the surgical scheduler is to allocate the available capacity between the priority classes so
as to minimize the number of patients whose wait time exceeds a pre-specified, priority-specific
target, with greater weight given to any late bookings of higher-priority demand. This requires
significant foresight because each day’s decision will clearly impact what appointment slots are
available for future demand. If lower-priority patients are booked too soon, then there may be
insufficient capacity for later-arriving higher-priority demand. Conversely, if lower priority
patients are booked too far into the future, there is the potential for idle capacity (Patrick et al.,
2008). The arrival times of patients are uncertain, so the scheduler must decide whether or not to
reserve the next available OR for the potential next semi-urgent patient and risk the potential for
idle capacity. An optimal scheduling strategy will mitigate this risk for semi-urgent patients and

the hospital at the same time.

Waiting cost is comprised of the contribution margin of each type of patient multiplied by
the probability that the patient will leave, given the indirect waiting time. Yield management was
originally used in the airline industry to manage strategic control of seats in order to sell to the
right customers at the right times for the right prices. After yield management’s success was
established in the airline industry in the 1970s, it has grown in many industries and organizations
that face the challenge of satisfying customers’ uncertain demand with a relatively fixed amount

of resources.

Healthcare is an area in which yield (revenue) management has not been intensively used,
probably because most segments within this industry are working on a non-profit base and it can

be argued that revenue management could raise some ethical issues. But this may not necessarily
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be true. Hospital cost represents a large and increasing percentage of the national GDP (Gross
Domestic Product) and, as any other business that supplies a good or service to its customers, a
healthcare unit needs to generate ample revenue for sustainability and future growth. There is no
harm in increased revenue when the long term goal is better customer satisfaction through

decreasing waiting time while maintaining an acceptable quality of service (Strum et al., 2008).

In the next session, we provide a case study of a hypothetical hospital to illustrate
practical aspects of implementation of the multi-objective function in joint optimization of block
allocation decisions and block release policies.

Case Study of Joint Optimization of block allocation decisions and block release
policies:

We split the study into three subset models with different complexity and assumption
levels, as shown in Table 4. This breakdown will give us more insight about the effect of

interaction in the final model.

Table 4: Description of models

Model -No release allowed ~ Best OR allocation with
(scenario 1) lowest waiting penalty
-Release allowed St e o .
) ) est block release policy
Model R* -Obtain the Xi* & with lowest waiting
xi* of Modell as penalty
input
Model i -Release allowed Best OR allocation and
3 R* . release policies with
(scenario 2) lowest waiting penalty
Decision variable 1 Xi*: allocated OR block for each surgeon i
Decision variable 2 xi*: Allocated weekly OR block schedule for each surgeon i
Decision variable 3 Ti*: Improved release time (Days before surgery to release block i)
Decision variable 4 R*: Rules to assign cases to released blocks

30



Discussion: For the surgery master schedule, the maximum number of cases on each day or total
work hours per surgeon per day is limited based on resources as beds, nurses, equipment and
downstream resources. Thus, to control this constraint and exclude its effect in the model we set
an upper bound on the number of cases of each type for each day.

In the first model, we assume that no block release policy exists. In other word, surgeons
cannot share blocks even if blocks are not fully filled, and each case should be assigned to the
blocks of its surgeon. In this model, the best solution of OR block size (Xi*) and the best
allocated times for each surgeon (xi*) will be evaluated based on maximizing profit. The optimal
output of the first model (the best block size and allocation plan) will be set as an input for the
second model, where a block release policy is assumed to exist. Thus, in this stage of our
analysis, we are seeking the best release policy given the OR block sizes from the previous level.
The third model will yield the results that are of most interest in this study. In it, we expand the
scope of the second model and incorporate all decision variables and their interaction without
any assumption about block size or release policy. The difference among the results of these

three models will provide insight into sensitivity of our objective to policies and decisions.

Simulation software:

The models described in the previous sections were implemented using the ExtendSim
simulation environment. ExtendSim is an advanced simulation software that can dynamically
model continuous, discrete event, discrete rate, agent-based, linear, non-linear, and mixed-mode
systems. The integrated simulation database creates an interface that facilitates dynamic
simulation modeling. The models are comprised of blocks that communicate with each other to
describe the simulated sequence and the general logic of the model. In addition, for specialized
purposes, an ExtendSim custom block can be created that can be programmed in ExtendSim’s C-
based ModL language. Finally, ExtendSim’s Scenario Manager leverages the database to store
model factors and responses and run experiments to analyze how a model reacts to different

factors.
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Scenario analysis and design of experiment

Simulation approaches are well suited for applying a scenario analysis to discover the
responses of the simulated system based on different factors. The challenge is to integrate
simulation and optimization in order to bring together the capability of the simulation in the
scenario analysis (“what-if” analysis) and in describing the dynamics of the system considered
and the prescriptive strength of the optimization, i.c., the “what’s-best” analysis (Ozcan et al.,
2011) . ExtendSim’s Scenario Manager provides an easy interface to design different model
configurations and run experiments to understand how a model reacts to different factors. When
analyzing the model responses, it can be helpful to employ design of experiments (DOE) to
reduce the number of model runs required to compare multiple scenarios. This is particularly
useful for initial investigations where the modeler needs to determine which factors have the
most impact on system performance (Krahl, 2011). The results of DOE can easily be translated

to other analysis programs, such as statistical software, for further analysis.

In order to better understand how the best decisions are generated, we have started with
an analysis of a simple hypothetical hospital with two ORs (OR1 and OR2) and four types of
surgeons/procedures (A, B, C & D) as an abstract version of our real model (Appendix A). We
assume that demand for each type of surgery arrives according to a Poisson distribution so the
inter-arrival times follow an exponential distribution. Also, we estimate revenue for each surgical
case and unit block costs according to each type of surgery provided (Table 5). For simplicity,
we assume that the case duration is set at one hour for any type of surgery. The cost of waiting
reflects the probability of a patient opting out of the procedure and is represented as a

logarithmic function of waiting time. This logarithmic function is shown in Figure 7.

The following formula defines how waiting cost of each patient is calculated in the

objective function (as a logarithmic function of waiting time).

Probability of a patient opting out of the procedure =

[exp(—2.49 + (0.03 * waiting time of patient i))
/(exp(—2.49 + (0.03 * waiting time of patienti)) + 1)]

Waiting cost of patient i (expected $ loss) = Revenue per case associated with surgeon i case * Probability of a
patient opting out of the procedure
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Figure 7: Probability of Cancellation given waiting time

Table 5: Input data for abstract model

Surgeons/ procedures

A B C D

Inter-arrival time distribution Exp~(13) Exp~(12) Exp~(6) Exp~(2.8)
Unit revenue ($/case) 5 8 7 6
Unit block cost ($/hr) 3 3 3 3
Contribution margin ($/case) 2 5 4 3

Patrick and Puterman (2008) claim that if average demand exceeds available capacity
(regular and overtime®), then no optimal schedule can be achieved. So, we define the base
capacity such that it meets average demand based on arrival rates and case durations (while wait
time may continue to increase owing to the variability in demand). The block size is formed such
that it meets weekly average demand. In this model, a cyclic block schedule is used to allocate
operating room time to particular surgeons for their elective surgeries (Table 6). It is assumed that

ORs are open eight hours a day from 8:00am to 4:00pm.

¥ - We don’t have any overtime in this study

33



Table 6: Cyclic block schedule

Weekly block schedule

Hour | 8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00
ORL | A | A A A A A A A

Moncy [0y 5 BB e e
ORL | A | A A A A A A A
Tuesday OR2 | D | D D D D D D D
ORL | A | A A A A A A A
Wednesday —opo~ 15 | b D D D D D D
ORL | A | A A A A A A A
Thursday OR2 | D | D D D D D D D
. ORL | A | A A A A A A A
Friday OR2 | ¢ | C C C C c C C

Working with these hypothetical parameters, we have created a simulation model with a
custom “scheduling” module (the simulation interface provided in Appendix B). This scheduling
module is programmed to run for two scenarios: 1) block release is prohibited (model 1), and 2)
block release is allowed (model 2). For the first scenario, each case is assigned to the next
available block in the surgeon’s designated block times regardless of the existence of earlier
available blocks in other surgeons’ block times. In the second scenario, the scheduling algorithm
is much more complex. Since blocks are shared after a stipulated release date, a new case may be
assigned to any of several available surgeon blocks. Thus, multiple variables must be considered
in order to find the best assignment option. Appendix C shows the entire scheduling algorithm
which includes scheduling logic and sequential decisions that are programmed in the scheduling
block. The program incorporates all assumptions and utilizes all the data tables created in the
database. All data for the simulation, included input, current state of the system, objective
function and block release policy are stored in the database. This makes it readily useful for
simulation and further analysis (Appendix D). The abstract model runs for 187 business days (or
six months with 30 days for each month) with the first 7 days excluded as warm-up for the

analysis.
The algorithm is based on multiple assumptions:

o Case duration is considered as room duration which includes surgery, cleaning and change

over time. There is no time gap between two consecutive cases.
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« Operating room cost is assumed to be the same for all procedures and surgeons.

« All patients are considered as urgent patients. In other words, we assume that all request the
earliest available block that accommodates their case duration

« The earliest block that a case can be assigned to will be the next day after the request, due to
a lead time for preadmission testing and preparation for surgery

« In reality, surgeons cannot schedule elective surgery every day. To limit the number of
options and to make the model more realistic, a preference table is provided to represent the
days that surgeons are available to conduct surgery.

Model 1: Find the best block size and allocation

In this model, the ExtendSim Scenario Manager can be run to investigate the sensitivity
of profit to the block size and allocation plan (Appendix E-G). Three block size scenarios of two,
five and eight hours were created for each day (Table 7). Table 8 shows the possible range of
block sizes based on the scenarios and the hours needed based on the average demand (arrival
rate and case duration). It assumes that all blocks start at 8:00 am every day. Based on the
improved solution, end time may vary as either 10:00 am, 1:00pm or 4:00pm. So, the smallest

block size is set as two hours.

Table 7: Block size option

Option Start Time | End Time | Block size

1 8:00 10:00 2 hrs
2 8:00 13:00 5 hrs
3 8:00 16:00 8 hrs

Table 8: Block allocation range

A B C D
Allocated OR hours range 28-40 hours  2-8 hours =~ 2-8 hours = 12-24 hours
Average weekly OR hours demand 30 hours 4 hours 7 hours 14 hours
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Model 1 Results:

Figure 8 displays the results of the Scenario Manager, which constitute simply the
relationship between the six model factors and profit (Table 9). The lines show all the possible
what-if scenarios if one input were to change and all other inputs were held constant. It is very
easy to see that the block sizes of Surgeon A and D have the biggest impact on profit (have a

steeper slope in step 0 of Figure 8).

Table 9: Model 1 factors and response

Factors Response

Surgeon A Block size on Tuesday
Surgeon A Block size on Thursday
Surgeon B Block size on Monday
Surgeon C Block size on Friday
Surgeon D Block size on Tuesday
Surgeon D Block size on Thursday

Profit

Sk whE

Starting from the base case (step 0), the next step or the next decision is made based on
the factor with the most impact on improving the profit. The last figure indicates the best
allocation strategy for all surgeons. For Surgeon A there is value in terms of increased profit by
increasing block size from 2 hours to 5 hours, but no more value is created by increasing block
size from 5 hours to 8 hours. The effect of block size is similar for both Tuesdays and Thursdays
(five hours on each day). Although, on average, Surgeon A needs 30 hours a week for his cases,
the Scenario Manager shows 34 hours of block time per week would be a better strategy. The flat
line for Surgeon B in Step 0 indicates that in comparison with other surgeons’ blocks, the block
size of Surgeon B will not impact the profit. If Surgeon C decides to extend his or her hours, 8
hours blocks would be better rather than 5 hours. Surgeon D’s best block size and allocation is
the same as Surgeon A’s best result in terms of total hours needed and the amount of service

hours on Tuesdays and Thursdays.
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Figure 8: Model 1 Results- Scenario manager on output for the prominent block size and allocation
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The best block size and allocation plan based on the Scenario Manager result are
summarized in Table 10. The best block size results from the scenario manager for Surgeons A,
B and D are strictly within the possible block size range while Surgeon C touches his upper

bound of 8 hours.

Table 10: The best block size and allocation

A B C D
Allocated OR 28-40 hours 2-8 hours 2-8 hours 12-24 hours
hours range
Average 30 hours 4 hours 7 hours 14 hours
demand
Best
allocation 34 hours 5 hours 8 hours 18 hours
plan
Best weekly Day | Block Size Day Block Day | Block Day | Block
schedule Mon 8 hrs Size _ Size Size
Tue 5 hrs Mon 5hrs Fri 8 hrs Tue 5hrs
Wed = 8hrs Wed | 8 hrs
Thu 5 hrs Thu  5hrs
Fri 8 hrs

Model 2: Find the best release policy

The next step in this analysis will be to fix the block size and weekly block schedule based on
the results of Model 1 and run multiple scenarios on the block release time policy. Two

parameters are involved in the block release policy:

(1) The maximum time that a patient can wait for accessing his surgeon’s primary block

before being considered for scheduling in an off block, and
(2) The minimum number of days before the day of surgery that the block can be released.

Parameter 1 depends on the expectation of the patients about the longest time to wait for
surgery and the urgency of the case, but parameter 2 depends on the arrival rate of patients and
how quickly blocks are filled. The maximum time that a patient can wait can be estimated for

each type of surgery based on survey or statistical methods. Of course, off block surgeries have
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some amount of inconvenience for the surgeon and team. So, up to some point and based on
patient condition, they prefer to keep the case in a primary block until the surgeon decides to
search through available off blocks for an earlier time. For this model, we assume it is the same
for all types (four days or 96 hours). The minimum number of days before the day of surgery that
the block can be released will be analyzed by the Scenario Manager. Since the maximum wait
time is set to four days, the minimum scenario range will be considered one to four days for each

type of patient.

Model 2 Results:

As shown in Table 11, we examine the effect of four factors (block release time for each
type of surgery) on profit. These factors are defined as the number of days before surgery a block
can be released such that remaining block hours can be shared among other surgeons who have
urgent cases to schedule.

Table 12 is provided to represent the days that surgeons are available to conduct surgery.
The surgeons’ preference adds more constraints on the sets of options for the receiving surgeons
who want to schedule surgery on released dates. A zero value in the table indicates a day when
the surgeon is not available to perform any operation.

Figure 9 shows the first and the last step of Scenario Manager’s outcomes of this model.
Although all release policies will affect the profit, a comparison of the release time of surgeon A
is shown to have the most effect on final profit. The last figure provides the best release block
policy for this model since no more gain in profit is possible after this point.

The concavity of these lines (in the last figure) suggests releasing blocks three days
before the surgery date is the best strategy of release policy for this case study. It means that if
surgeons release their remaining block hours to others, then the overall hospital profit will be

maximized over time. These policies are summarized in Table 13.
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Table 11: Model 2 factors and response

Factors Response

Release day for surgeon A’s block
Release day for surgeon B’s block
Release day for surgeon C’s block
Release day for surgeon D’s block

Profit

Sl

Table 12: Surgeons’ preference table

MON | TUE | WED | THU FRI
A 1 1 1 1 1
B 1 1 1 1 1
C 1 0 1 0 1
D 0 1 1 1 0
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Figure 9: Model 2 results- Scenario manager on the superior release policy
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Table 13: The best release policy scenario

A B C D

Release time scenario (# of days before surgery) = 1-4 day(s) 1-4day(s) 1-4day(s) 1-4 day(s)
Best release policy 3 days 3 days 3 days 3 days

Model 3: Find the best block size, allocation and release policy

This model conducts a comprehensive experiment on the interaction of all block
allocation decisions and release policies on profit. This model is a combination of two previous
models which contains ten factors consisting of, six factors of block allocation from model 1 and
four block release policies from model 2 (Table 14). Since it is a large full factor model with
multiple levels of running, two factors are excluded from the scenario analysis model (Release
time and block size of block B). For comparability, their value is set as the best output of the two

previous models (Five hours block on Monday with a three-day release policy).

Table 14: Model 3 factors and response

Factors Response

Release day for surgeon A’s block
Release day for surgeon B’s block
Release day for surgeon C’s block
Release day for surgeon D’s block
Surgeon A Block size on Tuesday
Surgeon A Block size on Thursday
Surgeon B Block size on Monday
Surgeon C Block size on Friday
Surgeon D Block size on Tuesday
0 Surgeon D Block size on Thursday

Profit

H“’@N?’S"‘PP’N!“

Model 3 Results:
It is expected that the effect of block size on profit is much more than the effect of release
block policy (larger slope for block size factors in step 0 of Figure 10). Although the impact of

release policy appears negligible initially, but it becomes a more significant factor with
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increasing block sizes. In other words, when we are close to the appropriate block size, then
release block policies become the best strategy to take advantage of “free” available capacity in

improving the profit.

The output of the scenario manager is given in Figure 10. It demonstrates the snapshot of
three steps of what-if scenarios and how release policy becomes effective after the block
allocation decision process (step 4). The results suggest that utilizing the release policy instead of
asking for additional block hours (with more associated cost) would be a viable strategy to
improve profit. Although Surgeon C’s block size is reduced to two hours, the overall profit

improves in this model. Table 15 summarizes the best decisions developed by Scenario Manager.

Table 15: Model 3 best decision and release policy

A B C D
Best 34 hours 5 hours 2 hours 18 hours
allocation
plan
Best weekly Day | Block Size Day | Block Size Day BSI_ock Day Bél_ock
schedule Mon 8 hrs Mon 5 hrs : ize ize
Tue 5 hrs Fri 2 hrs Tue  5hrs
Wed 8 hrs Wed | 8hrs
Thu 5 hrs Thu = 5hrs
Fri 8 hrs
Best release
4 days 3 days 2 days 4 days

policy

Result(s) comparison:

The main goal is to find the best combination of block decisions and release policies that
maximize the overall profit. The contribution of these three models is shown in Table 15. These
models try to provide the minimum amount of surgical blocks while maximizing the profit
(maximize utilization). Models 1 and 2 have the same amount of surgical blocks provided to

surgeons, but the difference in profit is due to introducing the release policy in the second model.
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Figure 10: Model 3 results- Scenario manager on the prominent block allocation and release policy
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The second model sets the block size at its improved position which was calculated in the
first model, then determines the best release policies. Model 3 is a generalization of the second
model whereby the block allocation may not be superior. The difference between model 2 and 3
reveals the interaction effect of scheduling decisions and release policy.The results suggest that
ignoring the interaction of decisions will penalize the overall profit. In this abstract model (with
given inputs and assumptions) the profit increases more than $1726 a year ($863 per 6-month
period) with less total operating block time provided to surgeons (comprising the difference
between profit of model 1 and model 3). The median waiting time for the first model is unevenly
spread across surgeons since there is no possibility for sharing blocks among surgeons and
Surgeon B and C have only one dedicated day a week to perform surgery. The next two models
demonstrate how this limitation can be eliminated with block release policies. The median
waiting time is more even across surgeons in the next two models because we set a maximum
day that a patient can wait and a release date for sharing unfilled blocks. There is ho measurable

difference between the median waiting times for model 2 and model 3 (Table 16).

Table 16: Comparison of three models

Model 1 Model 2 Model 3
Profit $ 1133 $ 1563 $ 1996
Total block hours 65 (hrs/week) 65 (hrs/week) 59 (hrs/week)
Median waiting time ANMEED A 45 A | 47
for patients (hours) B 92 B 48 B o1

C 94 C 49 C | 47

D 50 D 49 D 48

Although in model 3, Surgeon C has lost six hours of his dedicated OR time per week, it
does not have any effect on the median waiting time of his patients. This loss is compensated by
earlier block release times for Surgeons A and D and a later release time for Surgeon C (Table
17).
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Table 17: Model 2 and 3 best release block policies

Best release policy A B C D
Model 2 3days 3days 3days 3days
Model 3 4days | 3days | 2days | 4 days

Finally, we explore the details of the differences among these three models. The pie
charts in Figure 11 demonstrate the block allocation proportions of the four surgeons in Models 1
and 2 (the same as model 1), and of model 3. Comparing the solutions indicates how the third
model increases the overall profit with less service hours. It devotes six fewer block hours to
Surgeon C and keeps the same amounts for the other three. This reduction did not erode the

profit due to new block release policies.

The inter-arrival times of Surgeon C’s patients follow an exponential distribution with
mean 6 hours as compared to the inter-arrival time of Surgeons’ A and D arriving requests which
are also exponential but with averages of 1.3 and 2.8 hours, respectively. The results establish
that it is profitable to reduce service hours of C with less frequent patients and modify the block
release policies (later release time for C and earlier release time for A and D) such that these
patients can easily fill underutilized hours of surgeons with more frequent patients. This resulted

in higher utilizations for the third model (see utilizations in Figure 12).

Next we evaluate the percentage of cases that are done in non-primary blocks (off-block)
in models 2 and 3. As can be seen in off-block Table 18, the percentage of primary block
surgeries of Surgeons’ A and D remain unchanged in the two models with around 100% of
surgeries within their primary blocks. Each number represents the percent of the row surgeries

performed in the column surgeon’s block.

The main difference between the results of models 2 and 3 is in Surgeon C’s block,
where more than two thirds of the surgeries are done outside of his primary block in model 3.
The reason is that in model 3 the block size of C is reduced from 8 hours to 2 hours per week so

cases will need to be done in other surgeons’ blocks.
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Models 1&2 Model 3

C
3%

Figure 11: Case mix Block allocation proportions of four surgeons A, B, C & D

Table 18: Percentage of off-block surgeries

A B C D A B C D
AN f990% | 00%  00%  01% AN [10000% 00%  00%  0.0%
B 158% MEOEON 15% 128% [B 143% PERTAN 00%  18.0%
101% 17.3% [ 70:d% | 2.5% 36.2% 21.7% [295% @ 12.6%
09%  00%  00% [99:1% | 15%  00%  0.0% | 985%

Model 2 Model 3

In the second model, Surgeon C has eight hours with release time of three days before the
day of surgery. In this model, seventy percent of cases are done in C’s primary block and around
twenty percent in block B. In contrast, when block C reduces to 2 hours per week over seventy
percent of the cases are done outside of the primary block, mostly in blocks A and B. Earlier
release times increase the opportunity for other surgeons to schedule their cases in alternate non-
primary blocks. On the other hand, the primary surgeon will lose his or her access to the

dedicated block. This trade-off is defined in the best block release policies for each surgeon.

Finally, the utilization rates of the block are analyzed in Figure 12. In general the
utilization rate is improved from model 1 to model 3. While models 1 and 2 have the same
amount of surgical block hours; utilization is increased in second model (due to introduction of

release policies) except for Surgeon’s C block where the utilization declines. The main reason is
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that 30% of Surgeon’s C cases are done out of his block mostly in Surgeons’ A and B blocks to

keep the waiting time of the patients as low as possible.

In order to avoid patients delays and staff overtime due to OR utilization higher than 85%
to 90% for surgeon A and C, extra OR available time can be allocated to them to increase
efficiency of an OR without the cost of patient inconvenience. These results outline the
advantage of considering the joint impact of allocation decisions and block release policies

towards higher profit for hospitals and lower waiting times for patients.

Utilization rate comparison

100%
90%
80%
70%
60% = Model 1

50% m Model 2
40%
30% = Model 3
20%
10%

0%

A B Cc D

Figure 12: Utilization rate of Surgeons’ service hours
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Chapter 4 : Research Design and Methodology

Methodology: Development and Evaluation of Case Scheduling Policies

Even though patient scheduling problems have been studied extensively over the last
decade, the dynamic allocation of medical capacity in advance of the service date, when future
demand for service is still unknown and in the presence of multiple types of patients has received
limited attention. In general, three types of scheduling decision problems have been considered:
(1) who to serve next, (2) when to schedule the arriving patient and (3) how much capacity to
reserve for a particular class of patients. The first question tries to schedule available patients on
the day of service (referred as allocation scheduling), while the next two questions focus on
scheduling patients in advance of service date (referred as advanced scheduling based on
Margerlin and Martin (1978)). Advance patient scheduling decisions usually rely on the
expertise of one or two bookings agents and are made without explicitly considering the impact
of current decisions on the future performance of the system (Sauré, 2012). Our study addresses
the second question where it is important to fix appointment dates soon after multi-priority
patients are requesting the surgery. In this dissertation, we acknowledge the importance of
developing advanced scheduling concepts and techniques instead of relying on conventional
wisdom. The main approaches that have been adopted for surgery scheduling are mathematical
programming and simulation modeling. Mathematical programming (especially, integer and
dynamic) models have been shown to be useful in capacity planning and resource allocation in
many complex systems; while valid simulation models are useful in estimating the actual
performance of a planned system in advance. Especially when the system exhibits considerable
stochastic behavior or when it is relationally complex, simulation proves to be useful as it

possesses an extensive modeling flexibility and allows for a sufficient degree of detail.

Simulation approaches can be classified as static or dynamic, as deterministic or
stochastic, and as involving discrete or continuous time (Law and Kelton, 2000). Static
simulation models, often called Monte Carlo models, furnish the decision-maker with a range of
possible outcomes and the probabilities that will occur for any choice of action and at a particular
point in time. In contrast, a dynamic model represents a process as it evolves over time. In
deterministic models, a set of input parameters results in a unique output, whereas stochastic
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models contain at least one probabilistic random variable. As a result, the output of a stochastic
simulation model is itself random. In discrete-event models, the state variables change
instantaneously at separate points in time, these points in time are the ones at which an event
occurs, where an event is defined as an instantaneous occurrence that may change the state of the
system, whereas in continuous-time models, the state variables change continuously over time
(Sobolev et al., 2011).

A comprehensive review of simulation models of surgical suites published over the past
five decades was done by Sobolev et al. (2011). They identified a total of 1,332 publications by
searching eight electronic databases. In this section, we will provide a brief review of the more
recent and related research. Rising et al. (1973) applied simulation models to evaluate the
performance of alternative booking policies in an outpatient clinic considering two-priority
patient types. Everett (2002) employed a simulation model to provide decision support for the
scheduling of patients waiting for elective surgery in the public hospital system. The model was
used to match hospital availability and patient need (urgency level) and also to compare the
effectiveness of alternative policies. In a series of papers by Dexter et al. (2003) and Dexter and
Macario (2004), a simulation model was applied to study the effect of multiple assigning rules on
adding a single elective case to an existing surgical schedule on block release dates ranging from one

to five days before the day of surgery.

Denton et al. (2007) used simulation as a tool to evaluate the tradeoff between patient
waiting time, OR team waiting time, OR idling and overtime in a multi-room surgical suite. Testi
et al (2007) studied the problem of assigning patients to ORs (on a single day) using discrete
event simulation to judge the quality of different scheduling policies. Vermeulen et al. (2009)
developed a dynamic method for scheduling CT-scan cases within a radiology department. The
result of their simulation showed a significant improvement in the number of patients scheduled
on time. A simulation study was carried out by Steins et al. (2010) to find new ideas and new
planning and scheduling techniques to improve the utilization of overall operating room capacity
including pre- and post-operating activities. Persson and Persson (2010) described a discrete-
event simulation model to study how resource allocation policies in a department of orthopedics

affect the waiting time and utilization of emergency resources, taking into account both patient

49


http://link.springer.com/search?facet-author=%22J.E.+Everett%22

arrival uncertainty and surgery duration variability. Schutz and Kolisch (2012) adopted a revenue
management approach to address the problem of determining whether or not to accept MRI-scan

requests for different patient types.

The results and policy insights of our research are based on the two approaches of
simulation and Markov decision process (MDP). An MDP models a system in which decisions
are made sequentially over time, and future decisions and outcomes depend on current and past
decisions (Puterman, 1994). MDPs are useful for studying a wide range of optimization
problems solved via dynamic programming. Applying an MDP provides an optimal policy that
prescribes how best to manage the system in any contingency. It offers a systematic alternative to
the “guess and check” approach that underlies using simulation on its own to determine good
policies (Patrick et. al, 2008). However, to determine optimal policies for realistic-sized systems,
the MDP model becomes challenging, if not impossible, to apply due to the curse of

dimensionality.

Over the past two decades, researchers in operations research, engineering and computer
science (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998, Sauré et al., 2012) have
developed a new branch of operations research called approximate dynamic programming (ADP)
that seeks to overcome such computational challenges. The ADP approach has been employed
for the surgery scheduling problem with multi-priority patients addressing the issue of how to
balance underutilization cost and the cost for postponing surgeries. ADP methods produce good
but not necessarily optimal solutions to the underlying problem. Policies obtained through ADP
must be evaluated by testing them in a system simulation model. We use a simulation model to
compare the optimal scheduling rules derived from the ADP with a range of alternatives,

including current practice.

Patrick and Puterman (2008) worked on scheduling multi-priority patients to available
future slots, while simultaneously accounting for uncertain demand over each day. Their
objective was to minimize the total penalty cost incurred when patients had to wait longer than a
target waiting-time. They modeled this as an infinite-horizon Markov decision process (MDP),
and solved it using approximate dynamic programming (ADP). The work of Sauré et al. (2012)

represents an extension of the dynamic multi-priority patient scheduling developed with Patrick
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et al. (2008) in which they consider patients who receive radiation treatment across multiple days
and for irregular lengths of time. Erdelyi and Topaloglu (2009) study a problem that involves
allocating a fixed amount of daily capacity among entities with different priorities. They consider
a finite planning horizon and focus on a set of protection level policies. Liu et al. (2010) develop
dynamic policies for a primary care clinic taking into account patients’ cancellation and no-show

behavior.

Scenario analysis on different strategies on yield management:

Although in some cases long wait time may have little medical impact, in others,
excessive wait times can potentially impact health outcomes and result in losing patients. In the
Stafford hospital, there are two types of patient studied: semi-urgent who may require immediate
treatment, and non-urgent patients whereby it may be medically acceptable to wait up to several

weeks.

There is no cost associated with delay in scheduling non-urgent patients (zero waiting
cost). In contrast, the hospital will be penalized for postponing the scheduling of semi-urgent
patients. Based on cluster analysis, semi-urgent patients are classified into multiple priority
classes. In this case, the allocation decision and block release policy factors would affect the
overall profit since patients are assigned to the next available slot considering their home block
status and their urgency. But what will be the best set of policies for optimal yield across multi-
priority patients? Since less-urgent patients are booked further into the future, this raises the
question as to how much resource capacity to reserve for later-arriving but higher-priority
demand?

The decision of when a patient should be scheduled is made based on the cost for surgery
postponement. A numeric solution is formulated to address this problem and multiple strategies
are conducted to understand the properties of an optimal scheduling policy. We are looking for
sets of superior strategies to better manage health-care resources in order to reduce wait times to

acceptable levels without undue additional costs.
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Optimal scheduling policy

In order to gain insight into the structure of an optimal scheduling policy with lowest
overall waiting cost for patients with different priorities, a series of tests was conducted for a
hypothetical hospital with two ORs that are open continuously, seven days per week and twenty-
four hours per day. The tests examined two types of patient requests for surgery in one of two
surgical operating rooms with Poisson arrival rates of 0 < A,p < 2 (with constraint of Ag+Aap <2
for system stability). Each patient type has a no-cancellation option, but the two types have
different waiting penalty functions (starting with an assumption of linear penalty functions), and
expected revenue. The cost of waiting for Patient A is a linear function f(t,p,) = ¢ + p, * t,
where c is a constant, p, is the per unit penalty for waiting, and t is the amount of time between
request and appointment. Similarly, the cost of waiting for patient B follows f (t,p,) = ¢ + p;, *

t. Without loss of generality we assume that p, =1 and 0.2 < p, <5.

Assuming that a request for surgery of type A has just arrived, the only information that
the model requires is the first available space in OR 1 and the first available space in OR 2.
Then, given all the inputs above, the request can be directed to either the next available slot in

OR1 or the next available slot in OR2 based on the following policies:

1. Always seek the shortest wait time (also known as FCFS policy). This strategy
allocates the patient to the next available room regardless of their type and their waiting penalty.
If t;is the waiting time for room 1 and t, is waiting time for room 2, under the above
assumptions both requests would follow an exponential distribution. Let t,,;,, = min (t;;t,) and

thus the expected waiting cost of the system can be captured as,

E[Waiting COSt] = Etiin [f(tmin;pa)ltypeA]P(typeA) + Etmin[f(tmin;pb)ltypeB]P(typeB)

2. Always schedule patients with lower waiting costs to the room with longer wait times
and those with higher waiting costs to the rooms with shorter wait times. This policy prioritizes
patients on the basis of their waiting cost. Let t,,;;,, = min (t;;t,) and t,,,, = Max (t;;t,), then the
expected waiting cost (assuming p, < pj) Will be,

Elwaiting Cost] = Etimax[f (tmax; Pa) |typeA]P(typeA) + Etmm[f (tmin; Po)|typeB]P(typeB)
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3. Schedule lower cost cases to the rooms with longer wait times and higher cost cases to
rooms with shorter wait times unless the longer-wait-time minus the shorter-wait-time is greater
than some constant time T (also known as the “Threshold” policy). This policy enhances the
flexibility of Policy 2 by adding more constraints to the priority selection and by checking for the
optimal T—i.e. the T which incurs minimal cost. The expected cost of waiting incurred under
this policy (assuming p, < py) is calculated as follow:

Let tpip = Min (t1;t;) and tpqx = Max (t1;t;) alSO tyirr = tmax — tmin
E[waiting Cost]

= E[f (tmaxi Pa) |tyreA & tairr | P(typeA & tgipp < T)

+ E[f (tmin; Pa)|typeA & tairr 1 P(typeA & taisr > T)

+ E[f (¢min; p)typeB] P(typeB)

1. Simulation:

Three discrete-event simulations were generated for 2880 independent time units to estimate
overall policy performance (profit and waiting cost) across a range of parameters (pg, Py, Aapb )
with a range of T time values for the last policy. Simulations were run for 10 iterations and 480
time units as a warm-up. The same parameters were applied across all three policies to enable
comparability of results. Table 19 summarizes all the assumptions applied in these simulations.

Table 19: Set of assumption for simulation parameters

Exp ~0 <4,<2
Exp ~0 <4,<2
pPa=$1
pp= $0.2-5
T=.2-5 periods
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Figure 13 displays the simulation results for overall profit under each policy. The three
independent factors, plus an additional fourth independent factor for the third policy, are mapped

against the overall profit.

Assuming that Patient-type B has higher priority than Patient-type A (Pb/Pa ~ 4), we

expect an exponential reduction in profit under Policy 1 if the arrival rate of Patient-type B
exceeds the arrival rate of Patient-type A while, in contrast, profit tends to improve in the same
situation under Policy 2. Another finding which differentiates Policies 1 and 2 is the rate of
reduction in profits as the arrival rate A and the ratio of waiting costs between the patient types is
increased. Although the cost per time-unit of waiting (i.e. the penalty function coefficient)
increased linearly in our tests, the overall profit under Policy 2 did not drop at the same pace.
Policy 2 treats all patients according to their priority while allowing more attention to be given to

urgent patients.
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Figure 13: Profit trace of three policies across range of parameters (T=.5, 2, 6 refers to different scenarios
of policy 3)
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Under this policy, profit gradually increases because additional arrival rates eventually
exceed incremental waiting costs, while under Policy 1, the rate of increase in waiting costs is
greater than the rate of gain (profit) that can be made by scheduling additional patients (higher
utilization). The last three profit traces display overall profit under three different T time
threshold values under Policy 3. As T increases from 0.5 to 6 time-units, the profit trace
gradually shifts from Policy 1 towards Policy 2. The T value adds more flexibility to the model

with regard to the selection and combination of Policies 1 and 2.

Up to this point, we have evaluated the effects of individual policies on overall profit; the
next step is to compare the policies across factors at the same time, which allows us to determine
the superior policy at each state. In the discussion that follows, we use a surface plot to gain
more insight into the performance of policies through a different range of parameters and to
discern whether one of these policies is dominant over others in all situations. The surface plot
displays three-dimensional views of the above 2-dimensional counter plot. Two separate plots
were generated to capture all combinations of arrival rate and ratio of waiting penalties for the
two patient types. Figure 14 provides a graphical representation of three profit surfaces displayed

for each policy across arrival rates for Patient-types A and B.

~ Dependent Variables

Arrival2

Point Response Column Style

J [T:Er Y| [Surface Y| -
J [Policyl v| [Surface v| -
'®) J [Policyl v| [Surface v| J
J none v|

Figure 14: The profit surface under the three policies across arrival rates A and B as independent
variables (Policyl1="Green”, Policy 2="Blue”, Policy 3="Red”)
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The three surfaces show considerable differences. Overall profit under Policy 2 suddenly
drops as the arrival rate of Patient-type A changes (refer to the Blue surface) in comparison with
the two other policies, which generate slight decreases in profit throughout the range.

Figure 15 displays profit surfaces over all combinations of arrival rate A and the ratio of waiting
penalties. Although Policy 1 has a smooth surface over the range, the surface plot of Policy 2 has

multiple spikes with a significant rise across arrival rate A.

~/Dependent Variables
Point Response Column Style

J [T:Er v| [Surface v| -
J [Policyz v| [Surface v| -
la) J [Policyl v| [Surface v| J
| |none v|

Figure 15: The profit surface under the three policies across arrival rate A and ratio of waiting penalty as
independent variables (Policy1="Green”, Policy 2="Blue”, Policy 3="Red”)

In general, these observations clearly suggest that none of these three policies dominates
across all sets of parameters. In both graphs, the surfaces switch their position (optimality) over
the range of parameters. But it is the set of parameters that determines what will be the

predominant policy.

To identify the predominant policy under different combinations of parameters, scenario
analysis was conducted for the selected problem. These results are presented in two separate

tables. Table 20 lays out the superior scheduling policy for a scenario in which the two patient
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types arrive at the same rate. Although the arrival rate is identical in the above mentioned
scenarios, the prominent policy varies over the arrival rate range due to differences in system
utilization and waiting penalties. In the top two scenarios, where utilization is high, Policy 3 will
be the dominant policy if the waiting penalty of one type is at least twice that of the other type;

otherwise there is no dominant policy.

Table 20: Superior policy under equal arrival rates for multi-priority patients

Arrival Total Utilization Best Policy Comment
rate arrival
Aap has Moy
0.91 1.82 91% , P, High system utilization
Policy 3 ; P, >3(T =2.5) | \which results in small
No diff ;Otherwise difference between waiting
0.80 160 80% _ P, times of patient A and B
Policy 3 ; 7 >2(T=2)
a
No dif f ; Otherwise
0.45 0.91 46% Policy 3 (T=2) Medium system utilization
keeps high priority patient
0.33 0.67 34% Policy 3 (T=1.5) wait time significantly
lower than low priority
0.10 0.20 10% No difference Low system utilization

leaves lots of free spaces
for all patients

As utilization drops slightly to medium range, Policy 3 becomes dominant across all
values of the waiting ratios. The T time threshold varies as utilization of the system changes. On
the other hand, if utilization is low, then the system is not sensitive to the choice of scheduling
policy. Table 21 shows the superior policy across a range of arrival patterns and waiting cost
ratios. The shaded area refers to scenarios in which the system is not stable (e.g. the total arrival
rate from both patient types is greater than the available capacity). We can simply divide the
results into three sections: dominance of Policy 1 (the bottom left cells), no dominant policy (the

right cells), and a combination (the diagonal cells).

In particular, if the arrival rate of low-priority patients is higher than that of higher-

priority patients, then Policy 1 becomes dominant for the entire range of waiting cost ratios and
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arrival rates. Policy 1 does not differentiate between high- and low-priority patients in terms of
reserving rooms for the potential arrival of high-priority patients. This policy is simple to apply,
but, because all types of patients use the same OR resources when there are urgent patients (with
high waiting costs) arriving as frequently as (or faster than) non-urgent patients, the system
suffers high waiting costs from urgent patients. However, when utilization is low or low-priority

patients arrive at a very low rate (A=0.1) the choice of scheduling policies makes no difference.

Table 21: The superior policy under sets of parameters (Arrival rate, waiting penalty B/A, utilization)

Arrival A (A,)

1.54 1.11 0.45 0.10
b P
/ V/ Policy 1 ; P—b <3
a
, Pb
g ! P difference
I P,
/ k Policy 2 ; 7 >3
a
G/
/ / Policy 1 ; —b <2 Policy 1 ; —h <3
a a
111 Policy 3 ; ~2 =2 =2) | {Policy 3 ——3(T—2) _No
' " P, difference
= / Policy 2 ; ﬂ > 2 Policy 2 ; —b >3
N — %
‘_§ / Policy 1 ; £ <2
E ' Pb a
< | 080 policy1 | 17043 3 3 22T = dpolieys; =2 =15 e
No dif f ;Otherwise l p
b
Policy2 ; — >2
% :
. Py
Policy 1 ; 7 <2 N
0.45 | Policy 1 | Policy 1 P Policy 3 (T=2) differznce
tPolicyZ ; L] > 2
Py
0.10 | Policy 1 | Policy 1 Policy 1 No difference diff(le\llfznce

Notes: All policies are based on Pb/P > 1 and, in shaded areas, the system is unstable
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Under some scenarios, namely those in which the arrival rate gap between patient types is
small, utilization is high and the arrival rate for high-priority patient-types B is higher than for
low priority Patient-types A, the third factor; the waiting cost ratio; will define the prominent
policy. As shown in Table 21, the optimal policy shifts from the Policy 1 to Policy 3 and finally
to Policy 2 as penalty ratio rises. As the penalty ratio goes beyond 2 or 3, Policy 2 becomes
dominant, while Policy 3 stays superior at the transition point from Policy 1 to Policy 2. Policy 3
has the same features as Policy 2, with this difference: Policy 3 allocates more attention to non-
urgent waiting times as well as urgent cases. It is the T threshold that determines the dominance
of Policy 1 or Policy 2 in this case: the T time factor protects non-urgent patients from long
waiting times if it exceeds the T time unit threshold. Simulation results show that, if the arrival
rate of urgent patients is the same as that of non-urgent patients, it is better to postpone assigning
non-urgent patients to longer OR waits, but, if urgent patients come less frequently, it is better to

let non-urgent patients be assigned to shorter OR waits.

Our results confirm earlier findings that not one of these policies is superior for all sets of
parameters. In conclusion, the decision of which policy is optimal at each state depends on
arrival rates A and B (utilization) as well as their waiting penalty. The third policy is a
comprehensive policy that triggers whatever combination of Policy 1 and 2 across the range of T
values would be optimal for a given condition. But, at the same time, it is the most complex
strategy to apply. In general, when we don’t have any information about the arrival rates of
multi-priority patients or their waiting penalties, it is best first to proceed with Policy 1 since it is
simple and less sensitive to parameters than other options. Ultimately, however, having more
information about patient types can facilitate the choice of an optimal policy and improve patient

waiting times and overall profit.

In our simulation, we applied a static policy for all states and parameters, but our results
indicate that a combination of policies may be a better strategy. While the analytic tool of
simulation is sufficient for analyzing the performance of each of the three different scenarios
separately, it cannot yield the optimal policy for minimizing overall waiting cost in all states. To
determine the optimal policy for scheduling multi-priority patients for future dates upon their
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arrival, given the waiting penalties and current state of the system, it is necessary to turn to

mathematical programming.

2. Mathematical programming:

This section formulates the scheduling problem as a discounted infinite-horizon Markov
Decision Process (MDP), which can help assign an appointment date to each patient depending
on the available appointment schedule at the time of the patient’s call. This section is a based on
the work of Patrick and Puterman (2008) on scheduling cancer patients for radiation therapy
seeking to reduce the potential impact of delays on patients. This model can be applied broadly
to healthcare systems that must find optimal ways to utilize limited resources (OR hours) in
providing service to multi-priority patients. The discussion below stipulates the decision epochs,

state space, action sets, transition probabilities, and state-action costs for this problem.

Decision epochs. The term ‘decision epoch’ refers to a specific point of time in a day when
the scheduler observes the state of the system and takes action. The state is determined by the
number of available OR hours on each future day over an N-day booking horizon and by the
number of cases in each priority class to be scheduled. The N-day booking horizon is defined as
the maximum number of days in advance that a scheduler is allowed to schedule patients. Thus,
at the beginning of each decision epoch, there is no appointment booked on the N™ day. For
modeling convenience, we assume all appointment requests arrive at the beginning of the day, so

the decisions epochs correspond to the beginning of each day.

The State Space. If patients are classified into i priority classes, then the state takes the

following form:
S=(X,y) = (2§=1 Zyl=1xin22€=1yi) » Xn = §=1Z£Vl=1 Xin

Where x;,, stands for the number of priority i patients filling appointments on day n and y; stands
for the number of priority i patients requesting to be scheduled. On each day, we assume that a

maximum of C,, cases can be performed (C is identical to a fixed-length service period) and that
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Q; maximum number of priority i patients will arrive (Q; is set as a large number). Therefore, the

state space can be represented thus:
S={@ M, <Cpl<n<N;0<y; <Q,1<i<I}

The action set. For a given state, the model determines an optimal schedule by
evaluating feasible actions at the beginning of each decision epoch. The main task for the
scheduler is to assign each arrived demand to the available OR hours in the N-day booking
horizon. However, if this is the only action available, then there is a high risk of waiting time
going to infinity (an unstable queue) due to the limited resources for realized demand. Therefore,
we assume that the scheduler is allowed to divert patients to overtime hours to avoid infinite
waiting times, but, to be realistic, we set an upper limit on the number of patients that can be
diverted on each day. The action set is defined as (a, Z) = { a;,, z;} , where a;,, is the number of
priority i patients scheduled for surgery on day n and z; is the number of diverted priority i
patients. The following boundary conditions for each action ensure that the capacity constraint is
not violated, that all waiting patients are booked, and that actions are forced to be positive and

integers:

I
Xn +Zain <C, Vne({l,.. N}
i=1

1
ZZi <M
i=1

N
Zainzyi—zi VlE{l,,I}

n=1
Where a;, and z; represents a set of nonnegative integer values and M denotes the maximum
number of patients that can be diverted on a day.

Transition Probabilities. The state undergoes a transition whenever new requests for

surgery take place. Given that new requests come a57= 'y Y, then the state will

change with the probability p(y") = [Ti—, p(y',), where p(y’,) is the probability that ", priority
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I patients request surgery on a given day. We assume that the arrival rate of each priority patient

follows Poisson distribution and is independent of others. State transition is expressed as follows:

I I
. Ll /
(Xi1, Xizs oo Xin; Y1, V2o 0 V1) = (X2 + Z Aiz,y s Xy T+ Z an, 0;y' 0y’
i=1 i=1

The Costs. Two types of costs are associated with the process of scheduling. First,
delaying a surgery appointment incurs additional waiting costs per unit time for patients and a
high risk of underutilized OR capacity for the system. Second, assigning patients to the first
available spot increases the risk of overutilization for high priority patients and the need for

surge capacity. We can formulate the cost associated with each state-action set as follows:
c(d,2) = i fu,p) @i + Dy Az + XY f(Cr — % — Xiog ain)

Where f(n, p;) denotes the waiting cost penalty of booking a priority i patient on day n and d (i)
is the penalty for diverting a priority i patient and f,, is the unit cost of underutilized capacity.
The cost function explicitly balances the cost of postponing a patient surgery against the cost of
diverting surgery (revenue loss). The overriding goal is to maintain reasonable wait times while

optimizing utilization.

Dynamic programming (The Bellman Equation). The Markov decision process model
can be resolved via dynamic programming. Dynamic programming is a method for solving
complex optimization problems by breaking multi-period problems down into simpler sub-
problems, as Bellman's Principle of Optimality prescribes. In dynamic programming, the value
of a decision problem at a certain point in time is expressed in terms of the payoff from some
initial choices and the value of the remaining decision problem from those initial choices. Based
on the Bellman Equation principles, an optimal policy has the property that, whatever the initial
state and value of the decisions are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision. The decision value function v(%,y)
breaks a dynamic optimization problem into simpler sub-problems with discounted costs over the

infinite horizon for all state-action sets. If y is the daily discounted factor and D is the set of all
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possible incoming number of priority i patients, then the discounted Markov decision values

function is expressed as follows:

v(E3) = min {c(@7)
(a,Z)EA}z’y
I I
+ Y Z p(?)v(XZ + z Aizy ey XN + z a;n, 0) yll' "'!yll)} (1)
)TED i=1 i=1

This optimality equation describes the lowest possible cost, as a function of state (¥, y).
By calculating the value function, we find the optimal action (or policy) as a function of each
state. The main strength of this approach is that fairly general stochastic and nonlinear dynamics
can be considered. However, the size of a state space typically grows exponentially in terms of
the number of state variables. The above optimality equation suffers from the curse of
dimensionality, which makes a direct solution impossible. Suppose that the maximum number of
priority i appointment requests that can be possibly received on a single day is Q;. Then the
dimension of the state space would be CN[TI_; Q;. Note that even with N=14, I=2, Q=6 and C=4
this number equals 9.66 x 107 states, and thus determining the optimal policy is not practically

feasible for any realistically sized problem.

Approximate dynamic programming. One approach to dealing with this difficulty is to
generate an approximation for the value function within a specific class of functions and then
seek to find the optimal value function within this class. This method of solution proceeds as

follows:

1. Transform the discounted Markov decision process into a linear program (refers to the
relationship between MDP and linear programming.)

2. Approximate the LP value function (ALP) to reduce the dimensionality.
Solve the ALP to get the optimal value function.

4. Utilize the result of the optimal value function to determine the optimal state-action

policies.
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A fundamental result in MDP theory (Puterman, 1994) implies that solving the optimality
equation is equivalent to solving the following LP for any strictly positive a which satisfies

Yxy® = 1 (assuming that o has a probability distribution over the initial state of the system),
max )" ai, v, 5)
v
Xy

Subject to

I I
cd@z)+y Z [p(?)v <x2 + Z Qi sy Xy + Z ain, 0y, ...,y’1)>] > v(X,y)
= i=1 i=1

dep
v(d,Z) € Agyand X,y €S
where v(X,y) is a lower bound for the optimal value of the MDP, v*(¥,y). Although the
equations above transform the original dynamic programming to a set of simpler sub-problems,
this model still suffers from dimensionality. A possible solution would be to approximate the
value function with an interpretable linear value function (a linear combination of basis functions

or states). Thus, we assume the following function as a starting point for approximate value

function,
v(x y) - VO + ZZVm Xin
n=1i=

where V, is constant, V;,, represents the marginal discounted cost of having a patient type i

occupied OR hour on day n (V;,, also depends on arrival rate 4;).

Substituting the above value function with new linear function results in the following equation:
max z a(X, _')_/))(Vo + Z Z Vin Xin)
Vi %y n=1i=

Subject to
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Vo + Zﬁ=1 Z§=1 Vin Xin — VZ&ED[P(Y')(VO + 2%’:1 Z{=1 Vin (Xins1 + Z§=1 Aint1)] < c(d, z)
; v(a,z) € Azy and X,y €S

To simplify this, we can utilize the assumption of a as a probability distribution and
transform the above formula into the following equation. Thus, X;, is random variable with

respect to the probability distribution a.

max {(Vo + i i Eq[xin]Vin )]

n=1i=1

Subject to

A=,V + Zg=1 Z{:l Vin (xin — YXin+1 — VZ§=1 ai,n+1) <c(d,2) ; v(a,z) e

Azyand X,y €S

Even when a dynamic program is transformed into a linear program, it still suffers from
high dimensionality, which results in a large number of constraints. Alternatively, we can
proceed with the dual of the linear programming, which gives us the advantage of a reasonable
number of constraints but at the expense of creating an intractable number of variables,

min Z X(27,3,7)c(@ 7)
X - —

X,y €S

(Ei,i)e A?y

Subject to

-y Y X&yiH=1
X,y €S
(d,f)EAyly

Z X,y €S X(Q_C)'}_}: (_1),2) (xin —YXin+1 — VZ§=1ai,n+1) = Ea[Xn] ; Vn = 1' ...,N Vi=
(a,E)EAzy

1,..,1
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This problem is still too large to consider all of the variables explicitly. Patrick et al.
(2008) have proposed using column generation to solve this problem by leveraging the notion
that most of the variables will be non-basic with a value of zero in the optimal solution and
generating only a subset of variables which have the potential to improve the objective function.
Column generation can be initiated by using a small set S’ of feasible state-action pairs of the
dual to obtain dual prices as estimates for V, and V;, and finding one or more constraints in the
primal. It then adds the state-action pairs associated with these violated constraints into the set S’

before resolving the dual. This process is repeated until no primal constraint is violated.

The challenge in this process is to find an initial feasible set S'and also a violated primal
constraint. As Patrick et al. proposes, if we consider a state where no available slot exists on the
N-booking day, then all incoming arrivals would be diverted as initial feasible state-action pairs.
Then finding the most violated primal constraint only involves solving the following integer

programming:

2®) = min Zf(n p) ain + Zd(l)zl+ G

min |
I N
=Y am)- ZZV Ctin = V¥ins1 = yZamﬂ) (1= 1))
=t n=1i=
St.
xn+Zam_ vne{l,..,N}

I
e
i=1

N

Zain+zl-=yi VlE{l,,I}

n=1

Rearranging terms yields the optimal linear value function approximation:
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I
Z(ﬁ) = mi)gs[;(f(nr pi) + VVi,n—l - fn)ai,n + ;(d(i))zi + (VVin—l - Vin_fn)xi,n - (1

—¥)Vol

1
X, +Zain <C, vnefl,..N}

=1
I
Z Zi <M
i=1

N
Zain+zi=yi VlE{l,,I}

n=1

The coefficients of each action in this equation represent the balance between costs and
benefits of taking each action. For each action a;, we capture two costs, patients’ waiting cost
f(n,p;) due to possible appointment delay as well as the cost of losing available capacity for
tomorrow’s higher priority patients. These cost are then compared with benefits of not having an
underutilized OR, f,, and reducing additional waiting time for low priority patients, f(n,p;).
Similarly, for each action z;, there is a cost associated with diverting patient d(i) against the
benefits of not postponing a surgery, f(n, p;) and occupying the space for patient type i. In other
words, after the best appointment action is determined, a; ,,, this cost can be compared with the
cost of diverting each patient and the best overall decision can be determined. (Coefficients of

Xy, show net loss or gain in each day’s value)

Assuming we obtain the optimal value functionV;,", then the next step would be to
derive an optimal policy from the above approximate LP solution. We insert the optimal value
function into the right-hand side of the optimality equation (1) and solve for the optimal action

(a,2) in state (%, y). This involves solving the following integer programming formulation:
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I
N I
min {Z FOp)ain+ ) dDzi+ ) fill=xa= Y @) +y ) [p(7) Yy
(a.2)eAz5 (4 : n=1 i=1 o
LN i=1
I

deD
N
+ Z Vin (xin —YXin+1 — VZ ai,n+1)}
i=1

I
n=11i=1

xy)

I
= min [ (Fup) + Wins — fdain + ) (dD)z = A= 1)Vo
i,N i=1

+ (y_lfn + VVn—l - Vn)xn]

(@.2)eAx

= _min ﬁ[z(f(n, D) + ¥Vno1 — f)@in + Z((d(i))zi] + constant

1
= _min [z Apain + z Z;z;]| + constant
¥ i,N i=1

(@.2)eAz

Thus, the optimal policy is derived from the coefficients 4;, and Z;:

A = f(,p) + ¥V — f Z;=d()

This model only assigns patients of each priority to those days with A4;,, < 0 or when the
benefit of booking a priority i patient on day n exceeds the cost of postponing those patients to a
later time. Similarly, it only uses overtime for priority i patients for whom the cost of excess

waiting and occupied space surpasses the costs of overtime and lost profit*.

% - The focus of this dissertation is on optimality, to gain insight from mathematical models and to guide
us in developing more sophisticated rules and to evaluate rules for OR scheduling. The dimensionality of
the mathematical model is very large; solving for optimal value function is beyond scope of this

dissertation.
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Comparing our original three simple heuristic assignment policies with the MDP optimal
value function coefficients guides us to the development of more sophisticated rules (Table 22).
It is clear that prior simple heuristic policies have failed to account for all the cost drivers. An
optimal policy depends on three factors: waiting penalties, the marginal cost of occupied ORs on
each day (which depend on the arrival rate of each patient type) and the cost of underutilization.

The prior policies have only partly accounted for these factors in assignment decisions.

Table 22: Comparison of simple heuristic policies based on cost factors

Policy Waiting Cost of Cost of Arrival
penalty occupied slot  underutilization rate
Policy 1-FCFS N N Y N
Policy 2- Priority policy Y N N N
Policy 3- Threshold priority policy Y N Y N

Policy 1 focuses purely on maximizing utilization at the expense of high waiting costs for
high priority patients while the second policy sacrifices utilization in favor of minimum waiting
penalties for high priority patients even if it results in high waiting cost for low priority patients.
None of these policies accounts for the cost of occupied slots and arrival rates. Policy 3 seeks a
balance between the patient waiting penalty and the risk of underutilization by adding a booking
threshold but still fails to address patients’ arrival rates. Emphasis on waiting penalties and the
cost of underutilization tends to result in the assignment of patients to the first available space
while emphasis on the cost of occupied space leads to the reservation of some space for high
priority patients and the postponement of surgery for lower priority patients. To include all of
these factors and thereby calculate the superior policy under a range of states, we can incorporate

a new policy, Policy 4, into the model.

To devise Policy 4, we can begin by finding a superior policy for the highest priority
patients. All three factors support assigning high priority patients to the first available space
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because there is no benefit in reserving any space for future incoming patients when waiting cost
increase linearly per unit of time. If we assume that just two priority-levels exist; the only
necessary calculation is to examine the marginal costs and benefits of assigning each low priority
patient to the next available space under a range of waiting penalties and arrival rates. Suppose
Figure 16 represents the current status of a 2-OR hospital with two types of patients. All high
priority patients are assigned to the first available space in any room. If a low priority patient
requests an appointment, we must decide between assigning him to a shorter-wait OR (OR 1), or
postponing his appointment to the next available spot in the room with the longer wait time
(OR2)

ORLY A 0 o \
2R A AT

n,: First available space in longer OR
ng: First available space in shorter OR

Figure 16: Current state of 2-OR Hospital

The following equations summarize the cost-benefit of assigning low priority patients to the

shortest-wait (first available) OR,

Benefit

Lower waiting penalty (for low priority patient)

Py x (n, —ng)

P 4: Waiting penalty of low priority patient
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Risk of overutilization and postponing high priority patient

Pp + Expected number of spaces filled with high penalty patient in next ng period

py. S Gt o
B

n!
n=0

Pg: Waiting penalty of high priority patient

Based on the equation above, we define Policy 4 as follows:

4. Marginal comparison: Schedule higher cost cases to shorter wait-time ORs and lower cost
cases to ORs with longer wait times unless the following equation holds or unless benefits

outweigh the cost of action (assuming that patient-type B has higher priority):

(AB *ns)n*e_(AB*nS)

[Pa * (n, —ng)] > (Pp * Xymon * y

This policy is comparable to Policy 3 in that it establishes some threshold at which low
priority patients will be scheduled in the first available space but what differentiates these two
policies is that, unlike Policy 3, which has a fixed threshold, Policy 4 has a threshold which is
periodically updated through time. The Threshold T is updated to reflect possible changes in the
first available space and the arrival rates of high priority patients while Policy 3 treats the arrival
rate as a constant.

In order to determine the effect of arrival rates and waiting penalties on this equality (and
threshold), we analyzed results for the given scenarios in Table 23. We assigned low priority
patients to the first available space in short wait OR, ng, if and only if the first available spot in

the OR with the longer wait time, n; , satisfies the inequality in each cell (scenario).

> Since all surgeries are typically scheduled a few day(s) in advance, cases are not queued for empty
OR time and underutilized OR time does not represent lost revenue for the surgical suite so we exclude
this cost from our cost/benefit analysis
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Table 23: Variable threshold by arrival rate and waiting penalty

Waiting penalty Range

Arrival range;  [A4,4g]; A4+ <2 Pg = 2P, Py =3Py Pg = 5P,
[14,0.5] n; > 2ng n; > 2.5ng n; > 3.5ng
[44.1] n; > 3ng n; > 4ng n; > ébng
[24,1.5] n; > 4ng n; > 5.5ng n; > 7ng

Assumptions:

e Waiting penalty coefficient of low priority patient P, = $1
e Since this equation is checked for every low priority case, we exclude the impact of the
low priority patient arrival rate, A4

If a low priority patient arrives, and if his waiting penalty is half that of a high priority patient
( Pg = 2P, ) and if the first availability of a spot in the shorter-wait OR is within the next three
time periods (ng = 3), he will be assigned to a shorter-wait OR if and only if the first availability
of a spot in the longer-wait OR is longer than six time periods with Az = 0.5, or is longer than
nine time periods with Az = 1, or is longer than twelve time periods with Az = 1.5. Under this
policy, we tend to risk more underutilization while reserving more space under conditions where
high priority patients are arriving more frequently. The same trend holds under different waiting
penalties but the same arrival rate, Az = 1. If a low priority patient arrives, and the first
availability of a spot in the shorter-wait OR is within the next three days, then Policy 4 assigns
him to a shorter-wait OR if and only if the first availability in the longer-wait OR is longer than
nine time periods with Pz = 2, or longer than twelve time period with Pz = 3, or longer than
eighteen time periods with Py = 5. Under this policy, we tend to risk more underutilization while
reserving more space for high priority patients as the waiting penalty increases, assuming the

same arrival rate for high priority patients.

The benefits of Policy 4 can be evaluated against Policies 1, 2 and 3 by simulating its
performance across the ranges of parameters. However, without knowing the optimal policy, it is
difficult to know how much better one might do with some other heuristic policies and when to

stop. In these settings, it would be useful to find an upper bound on the performance of an
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optimal policy by assuming perfect information from the output of heuristic polices, and to

compare the performance of each policy against this upper bound.

To estimate an upper bound on the profit across all patients, we assume perfect information
about arrival demand in scheduling period j < m and construct an appointment schedule which
minimizes the total waiting penalty (or lower bound on waiting cost) across all patients. The
proposed approach is inspired by algorithms for machine scheduling which minimize weighted
tardiness. For our case, we are given the number of requests of each type and the waiting cost at
any given appointment time and we want to identify the lowest possible waiting cost
appointment policy. It can be formulated as a linear integer programming, with i the number of
the request for appointment and j the number of the appointment slot. The input data is defined

as follows:
I = number of the request for appointment, i=1,...,n
j = number of appointment slots, j=1,..., m

R;= request time of patient i
A;= start time of appointment slot j

P;= penalty per time unit delay between request and appointment

p — {PA ; patient type A penalty
L™ |Pg; patient type B penalty

Y 0, Ri >Aj

o = {1 ;  Patient i is assign to appointment j
U|o; Otherwise

Letting p;; be the waiting penalty of patient i assigned to appointment j. Then, the linear

integer program can be written as follows:

n m

i=1 j=1

St.
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The first equality requires that each patient is assigned exactly once and the second equality

requires that each appointment time is filled by at most one patient or is un-assigned.

The most direct solution approach would be to enumerate all permutations (of patient
appointment assignments) and see which one has the lowest cost. The running time for this
approach would be factorial in the number of patients, O(n!). Hence, this approach becomes
intractable even for a limited number of patients. For our case, under perfect information in the
sense that the appointment availability, time of request, type of request, and other important
facts, are fully known at the time of constructing a schedule, finding a lower bound on waiting
cost can be done in polynomial time. At any point of time we need to schedule the higher penalty
patients in the earliest possible time slots, and then schedule the lower penalty patients in the
earliest remaining time slots. The proof of optimality is provided in Appendix L using adjacent
pairwise interchange. An approach for deriving a lower bound on waiting costs is presented in

Algorithm 1 given below.

Visual Basic is used to generate the upper bound profit under perfect information across a
range of parameters (p,, pp, Aap ) based on the optimal schedule (the lower bound waiting cost)
is proved using adjacent pairwise interchange (code is provided in Appendix K). This upper
bound on profit provides a useful benchmark for evaluating the performance of other heuristics
and bounds. All four discrete-event simulations were generated for 2880 independent time units
to estimate overall policy performance (waiting cost) across a range of parameters (pq, Pp, Aap )
(with range of T time values for the third policy). The same set of parameters was applied across

all four policies for comparability of results.
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Algorithm 1. A scheme of sequential scheduling decisions algorithm

Input: Let i be the number of the request (patient Id), where i=1...n, R; be request time of
patient i, assume i is indexed so that R; < R;,, for Vv i;

Let j be the number of appointment slots; where j=1...m, A; be start time of appointment
slot j, assume j is indexed so that A; < A;,, forV j;

Let v; = [A,B] be the type of patient i, and [p,, pg] be waiting penalty coefficients;
where p, < pg

Output: The upper bound scheduling assignment [x;;], where x;; is an indicator variable for

whether patient i is assigned to appointment j;

1. Initialize:
a. Setinitial scheduling policy [x;;] = 0
b. Get R;, request time of patients
2. lterate while i < n, where n is the last request
3. lIterate while j < m, where m is the last appointment time
a. For(j=1j< mjj++)
i. Let C = length[v;],where v; =[B]and R; <jand Y7L, x;; =0
ii. If ¢ >0,setx;; =1;{i:min(R;)}
End
End

4. lterate while ] < m, where m is the last appointment time
a For(G=1j< m;j++)
i, If[x;]=0
ii. Let D = length[v;],where v; =[A]and R; <jand ¥7.;x;; =0
i. If D >0,setx;; =1; {i:min(R;)}
End
End

End
Return [x;;]
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Table 24 summarizes the results of these simulations against the derived upper bound (on
profit). Simulations were conducted under two different waiting penalty scenarios to evaluate the

impact of waiting penalty on policy performance.

Table 24: Comparison of policy performance against upper bound policy under perfect information

Waiting penalty B | Arrival rate Simple heuristic policy Marginal Upper
Waiting penalty A scenario comparison bound
FCFS | Priority | Threshold Policy (under

policy policy PI)
A=15,15=05 | 78% 9% 79% 88% 100%
P 5/p, =3 =1 A=l | 63% | 70% 69% 74% 100%
24=0.5,15=15 | 52% 55% 54% 56% 100%
A=15,15=05 | 73% 4% 73% 81% 100%
PB/PA =5 A4=1, Ap=1 42% 55% 54% 60% 100%
24=0.5,15=15 | 44% 46% 44% 46% 100%

Note: 14 + 15 < 2, A4and Ay are rounded up to one decimal

As shown in Figure 17 all policies except Policy 2 perform well (over 75% of upper
bound performance) in the case of high priority patients that come less frequent than low priority
patients. Policy 2 is obviously the worst choice for this scenario as the waiting time of low
priority patients grows exponentially. In general, policy performance decreases as the arrival rate

of the high priority patient increases.

The same analysis was conducted for conditions where the waiting penalty gap between
high and low priority patient is even higher, PB/PA =5 (results are summarized in Figure 18).
Comparing the results, we have the same performance trend as for the lower waiting penalty
ratio, PB/PA = 3, yet with lower performance in all polices for this condition. In summary, as the

waiting penalty ratio increases, policy performance drops measurably across all scenarios.
Although the marginal comparison policy outperforms all three simple policies across all
scenarios, there is no improvement seen under the third scenario where high priority patients
arrive three times faster than low priority patients. The main reason is overutilization of space by

low priority patients when ORs need to be reserved for upcoming high priority patients.
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Figure 17: Policy performance against upper bound, where PB/PA =3
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Pe/Pa=5

100%

90%

20% —

G0%

50% N

40% )K

30% /

20% /

10% //

0%

Aa=1.5 AE=0.5 As=1 AE=1 A4=0.5 AE=1.5

—Policy 1 e—Palicy 2 s—Polioy 3 s— oy g

Figure 18: Policy performance in comparison against upper bound, where PB/PA =5
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Under all of these polices (even Policy 4) we do not postpone any appointment in favor
of upcoming high priority patients. This means we can only fill the next space without retaining
any space in between for upcoming high priority patients. The goal, then, is to introduce a fifth
policy that can account for the arrival rates of both low- and high-priority patients as well as
waiting penalties. As presented in Table 25, Policy 4 partially incorporates the cost of occupied
slots as it assigns low priority patients to the next longest available space without reserving an
interval for upcoming high priority patients. Policy 5 has included the full cost factors in its

assigning strategy, as follows:

5. Reserve policy: Schedule higher cost cases to the first available space, ng and postpone lower

cost cases to the next j—Bxi—B time period (or further) unless the following equation holds
A A

(assuming patient-type B has higher priority),

(Agrng)"re=(15°ns)

[Py * (n, —ng)] > (Pg * Xp=on * o

Table 25: A Comparison of new reserve policy and heuristic policies in cost factors

Policy Waiting penalty Cost of occupied slot Arrival rate
Policy 1-FCFS N N N
Policy 2- Priority policy N
Policy 3- Threshold priority policy N

Policy 4- Marginal comparison Y ( focus on low priority )

Y

<| <| <| <
<| <| z| z

Policy 5- Reserve policy

This policy reserves a time frame for upcoming high priority patients considering the
arrival rate of both patient types while also maintaining the equation to improve the overall
utilization. We conducted the same comparison for Policy 5 and the other heuristic polices, as
summarized in Figure 19. We have seen improvement under Policy 5 across all scenarios, with
the most improvement in scenarios where high priority patients arrive more frequently. Under

this policy we were able to keep policy performance over 70% across all states (Table 26).
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Figure 19: Policy performance in comparison with Upper bound policy, where PB/PA =35
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Table 26: A Comparison of the performance of the reserve policy and heuristic policies against upper
bound under perfect information

Waiting penalty 1 Arrival rate Simple heuristic policy Margir_1a| Reserv | Upper
Waiting penalty 2 scenario comparison e bound
FCF | Priority | Threshold Policy Policy | (under

S | policy | policy PI)
1,4=1.5,15=0.5 | 78% 9% 79% 88% 90% 100%
P B/ P, = 3 A4=1, Ap=1 63% | 70% 69% 74% 79% 100%
1,4=0.5,15=15 | 52% | 55% 54% 56% 71% 100%
A4=1.5, 15=0.5 | 73% 4% 73% 81% 86% 100%
i B/ P, = 5 Aa=1, A5=1 42% | 55% 54% 60% 69% 100%
A,=0.5,15=15 | 44% | 46% 44% 46% 70% 100%

This heuristic policy is comparable to Littlewood’s revenue management rule (1972) as
both share the same goal to optimally allocate a finite, perishable amount of capacity among two
classes of patients who arrive randomly over time. They both attain a protection level that can be
used to postpone an arriving request for a lower priority customer in the hope of being able to
fulfill the request of a higher priority customer, although the protection level is applied
differently in these two rules. In Littlewood’s rule, a supplier is looking to improve revenue by
setting different prices such that the customers who are willing to pay more are not able to pay
less, while the intention of our scheduling heuristic model is to improve revenue by minimizing
the overall waiting penalty of patients so that the patients who have higher priority are able to be
scheduled first. In addition, Littlewood’s rule has multiple assumptions and practices that
distinguish it from our model. The first of Littlewood’s assumptions which we have relaxed is
that demand comes for a particular resource at a particular time, and that, consequently, it is
necessary to accept or reject the request at the time of arrival. In contrast, in our appointment
model, we assume that demand from low priority patients arriving on a particular day can always
be satisfied on another day with a penalty for each time unit of delay. The second assumption of
Littlewood’s model that we have relaxed is that demand comes in increasing fares, from the
lowest to the highest fare. This may be considered natural in such contexts as the airline and
hotel industries, since leisure customers usually book early to take advantage of available

discounts. However, in our case an arbitrary order of arriving demands is allowed. This is what
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actually happens in practice, as patients with different priority levels arrive based on needs,

concurrently rather than sequentially.

In the next chapter, we demonstrate some practical aspects in the application of the
reserve policy in the case of scheduling under multi-priority patient classes.
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Chapter 5 : Simulation/optimization for a real world case study

Simulation model of online scheduling in Stafford Hospital

In this study, we present a simulation model for decisions related to surgical scheduling
at Stafford Hospital, a small hospital with a capacity of around 2300 cases per year.
Approximately 80% of its cases are non-urgent or semi-urgent, and the remaining 20% are
urgent cases. Because the current study focuses on the scheduling of elective surgery, the urgent
cases have been excluded from analysis (for this reason, part of Stafford’s OR hours are
eliminated from overall service hours). At Stafford Hospital, non-urgent and semi-urgent patients
are treated as elective cases with semi-urgent patients given higher priority than non-urgent
cases. The daily challenge facing the scheduler is to allocate the available capacity between these
two priority classes so as to minimize indirect waiting time, with greater weight given to any late

bookings of semi-urgent patients.

The goal of the current study is to explore multiple scheduling policies that may
simultaneously reduce patient waiting time and hospital block costs. These policies involve
block hours dedicated to each surgeon or group of surgeons, release time, and priority
scheduling. In order to develop the surgery simulation model used here, twelve months of data
(January-December 2011) was requested from Stafford Hospital. The data included the dates
patients called to make appointments, the dates cases were scheduled, information about the
physicians and the surgical procedures information (e.g. the surgeons’ specialties and
availability), case status (cancel/reschedule), and case duration. Stafford has four operating
rooms (OR1-OR4) and six major specialties: orthopedics; plastics; general/vascular; ear, nose
and throat; obstetrics/gynecology; and podiatry. At most, three ORs are open Monday through
Thursday, and only two are open on Fridays. Twenty surgeons operate actively in these four ORs
(we have classified these twenty surgeons to eleven families of surgeons for this study). Stafford
uses a modified scheduling strategy, where some blocks are assigned to individual surgeons,
groups, or services and the rest are shared among all surgeons. Stafford dedicates around 58% of
its service hours (244 hours every two weeks) to individuals or groups, and the remaining 42%

are kept open to be shared among all. To increase access to the OR schedule for all users,
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Stafford employs a predefined block release policy that is calculated so that the required

scheduling lead-time accommodates approximately 75% of a service’s patients (Table 27).

Table 27: Predefined block release policy across specialties

ENT 7 days prior
Podiatry 3 days prior
General/Vascular 3 days prior
OB/GYN 5 days prior
Orthopedics 5 days prior
Plastic Surgery 7 days prior

The hospital administrators believe that this policy maximizes access to the elective
schedule for block holders while maintaining sufficient lead-time for other physicians to take
advantage of underutilized operating capacity and assign their urgent cases. Under this policy,
block holders can fill 75% of their time block prior to the release day and can continue assigning
incoming cases to their block after the release date. So, determining the optimal release day is

critical in maximizing utilization of ORs and reducing the wait times of urgent patients.

As noted in Chapter 3, each surgeon’s patients have a different urgency level, which can
be quantified as the maximum number of days they can wait for their surgeon’s block. Table 28
is derived from the actual data. This waiting time is consistent with the urgency level perceived
by patients, that is, the expectation of the patients about the longest time they are willing to wait.
Blocks may be allocated on a weekly or bi-weekly basis. For low-volume surgeons, weekly
blocks can be shared among multiple surgeons. Table 29 shows how eight-to-ten hour blocks
were shared in a cyclic schedule for even and odd weeks in 2011 among the four ORs at

Stafford. The shaded blocks indicate times when a surgical suite is closed.

Table 28: Maximum day that patients will wait to get assigned to their home block

ABCDEFGHIJK

12 18 | 43 1 18 | 14 1 29 | 49 16 | 27 | 18 | 33
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Table 29: Weekly Stafford OR schedule

Week 1

Hour 8 9 10 11 12 13 14 15 16 17
OR1 A A A A A A A A

Monday OR2 B B B B FCFS | FCFS | FCFS | FCFS | FCFS | FCFS
OR3 C C C C FCFS | FCFS | FCFS | FCFS | FCFS | FCFS
OR4
OR1 D D D D D D D D

Tuesday OR2
OR3 E E E E E FCFS | FCFS | FCFS | FCFS | FCFS
OR4 F F F F F F F F FCFS | FCFS
OR1 K K K K K FCFS | FCFS | FCFS
OR2 G G G G G FCFS | FCFS | FCFS

Wednesday OR3
OR4 F F F F FCFS FCFS FCFS FCFS | FCFS | FCFS
OR1

Thursday OR2 | FCFS B B B B FCFS | FCFS
OR3 E E E E NORA | NORA | NORA | NORA
OR4 H H H H F F F F FCFS | FCFS
OR1

Friday OR2 | NORA | NORA | NORA | NORA | FCFS FCFS FCFS FCFS
OR3 E E E E FCFS | FCFS | FCFS | FCFS
OR4

Week 2

Hour 8 9 10 11 12 13 14 15 16 17
OR1 | I I I | | FCFS FCFS

Monday OR2 B B B B FCFS | FCFS | FCFS FCFS | FCFS | FCFS
OR3 C C C C FCFS | FCFS | FCFS FCFS | FCFS | FCFS
OR4
OR1 D D D D D D D D

Tuesday OR2
OR3 E E E E FCFS | FCFS | FCFS FCFS | FCFS | FCFS
OR4 F F F F F F F F FCFS | FCFS
OR1 C C C C C FCFS | FCFS FCFS
OR2 | FCFS | FCFS | FCFS | FCFS J J J J J J

Wednesday OR3
OR4 F F F F FCFS | FCFS | FCFS FCFS | FCFS | FCFS
OR1

Thursday OR2 | FCFS B B B B FCFS | FCFS
OR3 E E E E NORA | NORA | NORA | NORA
OR4 H H H H F F F F FCFS | FCFS

84




To understand the impact of this cyclic schedule on the development of specific daily
schedules, we should first identify the critical components of the scheduling system and the ways
in which surgical cases flow through this system. Demand for elective surgery is generated when
it is determined by a physician in a clinic or a surgeon making his rounds. Patients then call
schedulers to make their appointments. Given the urgency of the patient’s case as determined by
the surgeon, the current appointment status and the surgeon’s availability (specified in Table 31),
schedulers assign each incoming request to a specific date in the future. In our model, we assume
patients do not have a strong preference for the date they are offered by the scheduler, so they
accept the first offer. The scheduler has three options when assigning a case: use the surgeon’s
own block time, use released time from other surgeons’ blocks or use open hours. Although
Stafford provides all surgeons equal access to open hours and released hours, it doesn’t mean
these hours are filled equally by all surgeons. Differences in patient urgency, patients’ arrival
rates, surgeons’ preferences and access to block hours lead to differences in how often surgeons
actually use the open hours. Table 30 indicates the percentage of surgeries performed during off-

block hours across different specialties.

Table 30: Percentage of off-block hours across surgeons

XNol—=Iommoo m>
H
S
>
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Table 31 provides information obtained from 2011 yearly data about surgeons’
preferences and available days of the week to do surgery. The number “1” marks the days of the
week when each individual or group of surgeons was available to conduct surgery; the 0~

indicates restrictions on schedulers’ options in picking dates for surgery.

Table 31: Surgeons’ availability (preference) status

No|l=ITommoo|lwm|>
ololr|lor oo okr ki
ololoookr kr kr ool
Pk olokr krlookri~r o
OO0 O R FPORFrRF O
OO0 0O O R F P OO

In the period leading up to the day of surgery, patients’ requests accumulated but the
arrival pattern varied among surgeons: some had many last minute arrivals while others’ requests
came well in advance. This behavior is shown in Table 32 across all surgeons. Note that many
orthopedic patients made appointments less than 3 days before the day of surgery while most
podiatry patients made appointments more than 10 days ahead. This behavior is due to the

urgency of the cases.

Table 32: Scheduling Lead Time

<3 12% 22% 11% 29% 16% 5%
3-5 2% 10% 8% 11% 8% 2%
5-7 6% 11% 3% 9% 8% 6%
7-10 6% 19% 15% 14% 2% 8%
>10 74% 38% 62% 37% 65% 79%
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In order to analyze the statistical differences among these surgical service groups, historical

data of surgery procedures was compiled and analyzed. Table 33 summarizes this statistical

information as follows, starting with the number of non-add-on surgeries (or non-urgent)

performed in 2011 across surgeons and specialties:

The inter-arrival times of patients’ requests followed an exponential distribution (as
evaluated by JMP software). The coefficient of variation was around 1 for all individuals
and groups except for one surgeon whose CoV was 3.8. (For simplicity, we assume it to
be 1.)

Surgery duration was dependent on the type of surgery and the surgeon as well as
patients. However, we assume that all patients’ surgery durations in the same surgical
service group followed the same distribution. To take into account the cleaning time and
any possible delay in surgery, surgery time was defined by actual room time for the
patient (i.e Patient in/out time). The distribution derived from this data analysis is
consistent with empirical studies conducted by May et al. (2000) and Spangler et al.
(2004), who found a lognormal distribution for surgery time (evaluated in JMP).

The percent of cancellations was evaluated based on the total number of cases that were
canceled before the day of surgery divided by the total number of cases requested in the
same period.

Actual block hours were defined as the total hours dedicated per 2-week period to each
surgeon or group of surgeons. These hours could be released to other surgeons in the case
of underutilization after the release time. We have excluded the percentage of hours when
surgeons perform urgent cases.

The percent of semi-urgent patients was calculated based on the number of patients
asking for the earliest available spot among the total patients who made appointments for
each surgeon.

Utilization was evaluated for each specialty based on following formula,

Total surgical hours consumed

Total amount of allocated time — Released time
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Table 33: Descriptive statistics of Stafford data

ActualBlockHRs/

Mean inter- | Coefficient 2Weeks % of semi-
Surgeon/ | NumOfCases2011 | arrival time | of variation | RoomDuration % of (exclude 20% urgent
Specialty | Group (Non-Add-Ons) (day) (Arrival) | (Lognormal/hrs) | cancelation urgent cases) patients Utilization
u's
S &
= E O 115 2.50 1.02 (4.87,.75) 16% 4 73% 85%
%o
w =
<
3 g:: I 70 3.20 0.94 (4.1987,.386) 11% 6 91% 48%
<
% 8 ) 80 3.17 1.08 (4.25,.38) 17% 12 79% 46%
Z 0
L
©] <>E w 295 1.06 1.30 (4,.43) 10% 20 71% 71%
(O]
20
el
@ -
E @) R 250 1.23 1.31 (4.42,.55) 16% 28 69% 43%
it
s}
O >-
®) = 35 5.32 1.85 (4.6,.216) 12% 5 94% 50%
I
'E < 140 2.45 1.63 (4.737,.663) 12% 7 88% 61%
o )] 190 1.50 3.80 (4.439,.531) 8% 13 72% 57%
CP:EASTI K 40 4.83 1.10 (5.13,.54) 24% 3 71% 46%
'<_T: . (6] 210 1.26 1.12 (4.115,.46) 20% 12 73% 79%
0
8 = 45 4.80 1.10 (4.294,.293) 9% 6 96% 50%
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Although all the semi-urgent patients expected the earliest available time, the median
waiting time for semi-urgent patients varied across surgeons due to differences in the urgency of
the cases (as shown in Table 34). Also, this expectation affected the number of times surgeons

assigned their patients to released time (to make the waiting shorter for patients)

Table 34: Median Waiting Time (days)

% of Semi-urgent Semi-urgent Non-urgent

A 88% 7 15
B 79% 8 19
C 73% 17 38
D 2% 8 21
E 71% 6 17
F 69% 10 27
G 73% 17 33
H 91% 7 14

I 94% 17 23
J 96% 9 49
K 71% 11 29

Estimation of waiting cost function: Logistic regression
Logistic regression is used to model the relationship between a categorical outcome and
one or more explanatory variables. Logistic regression represents both groups of interest as

binary variables:

First, for groups that represent characteristics (e.g., gender), the coefficient reflects the

impact of independent variables(s) on the likelihood of being in a group (e.g. female).

Second, for groups that represent outcomes or events (e.g., success or failure), the
coefficient represents the impact of independent variables(s) on the likelihood of the event

happening (e.g. success).

As mentioned earlier, the contribution of this study is to observe, analyze and anticipate

patient behavior in response to waiting time in order to maximize yield or profits from a fixed,
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perishable resource. Patients show distinctive behavior toward waiting time, especially between

the groups who need immediate surgery and those who do not.

We employ a logistic regression model to investigate the question “What is the
probability of cancellation (leaving) given an expected waiting time for surgery?” and “Does
specialty have an effect on this relationship?”. The influence of waiting time and urgency level

(specialty) on the cancellation rate will be determined through logistic regression.

Real data is used to divide patients into two groups of semi-urgent and non-urgent based
on who asks for first available time for surgery and who asks for a convenient date in the near

future. Each specialty showed a different level of urgency toward surgery as shown in Table 35.

Table 35: Difference among patients behavior of specialties

Orthopedics  Plastics General  Ear,nose  Obstetrics Podiatry
/vascular  and throat /gynecology

P o s e s e e

19% 29% 25% 26% 31% 24%

After running a logistic regression on a year’s worth of real data (SAS software is used in
logistic regression analysis, Appendix 1), with waiting time and urgency of specialties® as
independent variables and probability of cancellation as an outcome, we obtained the following

results:

The Goodness of Fit test confirms that adding the independent variables waiting time and
urgency level improves the fit of the model. Also, small p-values imply that the effect of waiting
time, urgency level and their interaction are statistically significant in predicting the output
(Figure 20). The significant interaction parameter refers to the coefficient difference between

two types of patients, semi-urgent and non-urgent.

® _ patients are divided into two types of urgency, (Urgency=1 as semi-urgent and Urgency=2 as non-urgent patients)
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Model Fit Statistics Analysis of Maximum Likelihood Estimates

Intercept Standard Wald
Intercept and | Parameter DF | Estimate Error | Chi-Square | Pr = ChiSq
Criterion Only | Covariates | |h¢ercept 1 25377 01358 349.0112 <0001
AIC 1422.336  1358.924 | waijtingTime 1 0.0259  0.00484 28.5374 <.0001
sC 1427.795  1380.761 | sN N 0.7317 0.2550 8.2355 0.0041
2logl | 1420336  1350.924  waitingTime*SN M| 1 -0.0120  0.00632 36311 0.0567

Figure 20: Goodness of fit test result

The following logic curves (Figure 21) represent the relationship between the waiting
time and urgency level (explanatory variables) and the probability of leaving (dependent

variable).

Probability of cancellation for non-urgent patients given their waiting time =
e(~(2.5377-0.7317)+(0.0259-0.0120)+waitingtime)

e(—(2.5377-0.7317)+(0.0259-0.0120)*waitingtime) 4 1

Probability of cancellation for semi-urgent patients given their waiting time =
e(—2.5377+0.0259*waitingtime)

e(—2.5377+0.0259*waitingtime) +1
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Figure 21: Probability of leaving given waiting time and urgency
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As we expected, the probability of cancellation increases (logarithmic) as the waiting
time increases, but this relation is not the same for both urgency levels. Semi-urgent patients’
tolerance to wait is much less than non-urgent patient. The cost of waiting (sensitivity to
probability of cancellation to one more day waiting for surgery) for every extra day is shown in
Figure 22. As stated in the figure, semi-urgent patients are highly sensitive to an extra day of

waiting (steeper slope function).

Probability ofleaving given one more day wait
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Figure 22: Probability of leaving given one more day of delay

Since non-urgent patients choose to postpone their surgery to a convenient day even
though an earlier spot is available at the time of scheduling, we will not penalize these kinds of
patients in our objective function and will exclude them from further analysis. We then looked at
the behavior of patients among different specialties to see if there is any difference in probability

of leaving given waiting time (Figure 23 and 24).
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Figure 23: Probability of leaving among specialties
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF | Estimate Error | Chi-5quare
Intercept 1 27078 03572 £7.4552
waitingTime 1 0.0308 | 0.00280 11.7847
Specialty ENT 1 05214 0.5882 0.7588
Specialty GY 1 02614 04673 0.2120
Specialty GYN 1 03783 0.5010 05732
Specialty ORTHO 1 01518 042387 0.0885
Specialty PLASTICS | 1 0.8773 0.7680 1.8277
Type 3 Analysis of Effects waitingTim*Specialty  ENT 1 onoe| 0012 05002
Wald
Effect OF Chi-Squ:rE Pr> Chisq waitingTim*Specialty | GV 1 00142 0.0232 0.2613
Specialty g 3.4850 06257 wa'rlinq'l'lm*Specially ORTHO 1 0.00723 0.0201 0.1283
waitingTim*Specialty | 5 18534 02824 || waitingTim*Specialty | PLASTICS | 1 -0.0228 0.0261 0.7805

Figure 24: Logistic regression Goodness of Fit test result

Pr > ChiSq
<0001
0.0008
03342
05758
0.4480
0.7561
0.2020
04755
05473
05180
07182
03832
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The result of the logistic regression (Figure 24) did not show any statistically significant
difference among cancellation rates of different specialties. Although the median waiting time
was distinct among different specialties, the probability of cancellation was not different among
them. The same result holds for probability of cancellation among different group(s) of

surgeon(s) (multiple groups form a single specialty) (Figure 25 and 26).
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Figure 25: Probability of leaving among different group(s) of surgeon(s)

As the result suggests (shown in Figure 26), the current collection of surgeons had no
significant difference in their patients’ behavior. We then conducted cluster analysis to place
group(s) of surgeon into new groups, or clusters, suggested by the data, so that the difference is
significant (SAS code is provided in Appendix J). The result of the analysis is shown in Figure
27 and 28.
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF | Estimate Error | Chi-Square | Pr = ChiSg

Intercept 1 1708 087TS 55222 0.0107

waitingTime 1| 000780 0.0245 0.1008 0.7508

Group A| 1 -nsasz| 08178 13077 02528

Group B| 1 -nozoz| osT 0.0008 0.8511

Group c| 1| Dedz2| o7EmE 1.4335 02312

Group p| 1| =227 ooen 5.1247 0.0235

Group E| 1 -D&738 | 08074 1.1704 02703

Group F| 1 -osesn| o7sa D138 04333

Group G| 1 04858 | o023an 0.3010 05233

Group H| 1 -D2es4 | 09954 00388 0.7844

Group 1| 1) names | 1oem 00836 07588

Group J| 1 Azioe | 12857 0150 03388

waitingTime*Group | A | 1 | [0.0532  0.0371 20838 0.1508

waitingTime*Group | B | 1 | 0.0101 | 00414 D.05e8 0.5088

waitingTime*Group | © 1 | 0.0221 | 00283 07041 04014

Type 3 Analysis of Effects waitingTime*Group | D | 1 | 0.0504 0.0428 1.0456 01821

— waitingTime*Group | E | 1| -D.0131 | 00455 D083z 0.7730

Effect DF | Chi-Square | Pr> ChiSq | “eitingTime'Group | F | 1 00122 00281 01816 06616
waitingTame ; 01008 0.750g | | “eHmeTme'Group |G|t 00118 | 00275 0.1857 0.6668
waitingTime*Group | H | 1 | -D.0532 | 0.0800 04427 0.505%

Group o 10.3350 0418 | ingTimesGroup | || 1| 00472 | 00513 08407 0.3586
waitingTime*Group | 10 7.8525 08402 | | waitingTime*Group | J | 1| 0.0230 | 0.0570 0.3250 05825

Figure 26: Logistic regression Goodness of Fit test result
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Figure 27: Pseudo-F, cubic clustering criterion (CCC), and Pseudo T-squared statistics for
possible cluster solutions
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Cluster History

Number Approximate Cubic

of Semipartial Expected | Clustering | Pseudo F FPseudo
Clusters | Clusters Joined | Freq R-Square | R-Sguare R-Square Criterion Statistic | t-Squared | Tie
25 | CL38 | CLs36 a8 0.0002 R Bar 2.5 183 169
24 | CL38 | CL72 45 00002 287 Bar 10.6 17E2 25.4
23 | CL73 | CL31 28 0.0002 R=l"rj Bar 10.4 183 131
22 | CL38 | CLED =i} 00002 287 Bar T3 18E3 275
21 | CL28 | CLa2 110 0.0003 k=l .Bar 5.7 15E3 127
20 | CLH CL4g a3 00003 ==l Bar T.T 15E3 742
19 | CLED | CL42 113 0.0:003 =] Bad .5 15E3 505
18 | CL27 | CL105 125 00003 ==l _Bad 10 14E3 214
17 | CL32 | CL3T =l 0.0:004 285 Bad .5 13E3 230
16 | CL42 | CL322 58 0.0:004 285 .Bas 2.3 133 128
15 | CL25 | CL35 114 0.0008 R=}0) .Bas =R 12E3 250
14 | CL34 | CL2D 20 0.00oe 283 a4 2.8 11E3 206
13 | CL48 | CL20 47 0.0014 281 Baz 2.3 124 126
12 | CL2B | CL=23 166 0.0015 280 .Baz 2.9 Q37e 513
11 | CL28 | CL18 28 00012 825 B =%:] rgcin] 140
10 | CLZ2 | CL21 200 0.0020 R=-la] .BEE 5.7 2340 500
8 | CL1&  CL12 238 0.0027 824 BET 8.6 TEE4 740
8 | CL24 | CL14 126 0.00324 .20 B84 25 73568 TE5
T | CL17 | CL1D 280 004070 a7z BTE 3.8 Ga22 545
6 | CL15 | CL® 352 0.0103 k=] BTz 23 5445 238
5 | CLM1 CcL13 124 0.0181 247 858 5.8 4874 aa8
4 | CLE CL12 518 0.0324 214 BET 1.2 3748 463
3 | CL8 CLT 408 00512 282 858 T.7 3310 1338
2 | CL3 CLS 542 02418 G20 .T50 -5.8 1730 1478
1| CLz2 CL4 1060 0.6205 .0o0o .0oo 14 . 1720

Figure 28: Cluster History

The result of hierarchical clustering suggested running the analysis with four or six
clusters (refer to the CCC (Cubic Clustering Criteria) peaks in Figure 27). Logistic regression
was run for four and six clusters. The result of six clusters is not significant and the AIC (Akaike
Information Criterion) is higher in six clusters compared with 4-cluster case, where the preferred
model is the one with the minimum AIC value. The result of six clusters is summarized in
Appendix H. In addition, the result of logistic regression with four clusters showed significant
deference among clusters. The following logic curves (Figure 30) represent the relationship
between waiting time, four patient clusters (independent variables) and the probability of leaving
(dependent variable).
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Model Fit Statistics

Type ¥ Analysis of Effects

Intercept Only | Intercept and Covariates Wald
Effect DF | Chi-Square | Pr= ChiSg
718838 BB4.302 whaiting Time 1 3.7304 0.0534
T7231.682 T33.153 Group 3 BATTZ 0.1033
T16.836 675 302 waitingTime*Group 3 3.0525 0.3836
Analysis of Maximum Likelihood Estimates
Standard Wald
Parameter DF | Estimate Error | Chi-5quare | Pr = Chi5qg
Intercept 1 -3.8582 0.7123 30.3844 <0001
waitingTime 1 0.0872 0.0245 3.7304 0.0534
Group A 1 1.2825 0.84487 2.230 0.1280
Group B 1 2.2060 0.8051 59440 0.0148
Group C 1 1.5081 0.7415 4.1330 0.0420
waitingTime*Group | A 1 | -0.00815 0.0445 0.01e1 0.2e02
waitingTime*Group | B 1 -0.0423 0.0482 1.0459 0.2085
waitingTime*Group | C 1 -0.0424 0.0353 1.4480 0.z2282
Figure 29: Goodness of fit test result
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Figure 30: Probability of leaving among four selected clusters
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In the following, we have modeled the logistic function for probability of cancellation as
a function of waiting times for these four classes of patients. This result will be used in the
Stafford simulations.

Probability of cancellation for (semi-urgent) type A patients given their waiting time =
e(—(3.958-1.2925)+(0.0672-0.00615)+waitingtime) e(—2.665+(0.061+waitingtime))

o(—(3.958-1.2925)+(0.0672-0.00615)+waitingtime) 11  e(—2.665+(0.061+waitingtime)) 1.1

Probability of cancellation for (semi-urgent) type B patients given their waiting time =
e(—(3.958-2.207)+(0.0672—0.0493)+waitingtime) e(—1.751+(0.0179+waitingtime))

e(—(3.958-2.207)+(0.0672-0.0493)=waitingtime) y{  g(-1.751+(0.0179=waitingtime)) 41

Probability of cancellation for (semi-urgent) type C patients given their waiting time =
e(—(3.958-1.508)+(0.0672-0.0424)*waitingtime) e(—2.4-5+(().024-8*waitingtime))

e(—(3.958-1.508)+(0.0672-0.0424)waitingtime) 4 1 - e(—2.45+(0.0248+waitingtime)) 1 1

Probability of cancellation for (semi-urgent) type D patients given their waiting time =
e(—(3.958)+(0.0672)*waitingtime)

e(—(3.958)+(0.0672)*waitingtime) 4 |

The model described above was implemented using the ExtendSim simulation
environment. Once the simulation was constructed and implemented, it was evaluated to ensure
that it adequately represented the actual system.

In our case study in Chapter 3, we concluded that it is advantageous to consider the joint
impact of block allocation decisions and block release policies on increasing hospital profits and
reducing patient waiting times. Applying the abstract model, with at most 10 factors in the third
model, took 24 hours to run the full factorial analysis. The Stafford simulation model consists of
many more input factors (32 factors, 21 block allocation factors due to multiple shifts, and 11
block release factors, all in three levels), which makes for a sizable three-factorial model at 3%.
Although using a 3% factorial design allows us to estimate quadratic effects with more design
points, it would make the analysis prohibitive or impractical in terms of computational time for
full-factorial analysis as k increases. Therefore, factors are usually studied at only two levels, but

even at 2 points, full factorial design requires experimentation at all factor combinations. The
98



most common screening method is a fractional factorial design selecting a subset (fraction) of the
experimental runs. Furthermore, residual analysis and ANOVA can be used to check the

adequacy of the model and to detect the important effects.

Dimension Reduction

Design of experiment in simulation/optimization:

A factorial design is the most common way to study the sensitivity of response to levels
of each independent variable and combined with all levels of the other independent variables.
Factorial experimental designs investigate the effects of many different factors by varying them
simultaneously instead of changing only one factor at a time. Computer simulation models that
represent a real-world system generally consist of a large number of input factors and, due to
their size and running time, large-scale simulation models can become prohibitively costly and
require time-consuming experimental designs to study their behavior.

Multiple methods are introduced to reduce the dimensionality through determining the
factors that have significant impact on performance measures (responses) of interest. What
makes it a truly daunting task is considering the impact of interaction of model factors in
eliminating non-effective factors since an approach of changing one factor at a time is a
misleading strategy. The challenge is to determine which factors have the greatest effect on the
responses, and to do so with the least amount of simulating. This sensitivity analysis proceeded

in two steps:
1. A screening experiment to determine the main drivers
2. A response surface experiment to determine the shape of the effects (linear or curved)

Factor screening experiments are intended to examine all or some of the involved factors to
identify those with significant effect on a selected response (output). The identified important
factors can then be used in subsequent analyses. Many screening designs have been developed to

identify important factors with an economical number of design points and replications.
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e Group-screening methods have been widely used for situations with large numbers of
factors. The fundamental idea is to identify the important/unimportant factors as a group
(Lewis and Dean, 2001). If a group is considered to be important, then subgroups or
individual factors within the group should be further screened in a series of steps;
otherwise the whole group can be eliminated from further analysis. It is necessary that the
factors which are grouped together have the same sign to avoid cancellation in a group
(Trocine and Malone, 2001; Dean and Lewis, 2005).

e Factorial and Fractional Factorial (FF) designs are generally considered as the classic
factor screening method with different resolutions for different levels of complexity of
the response. Fractional factorial designs yield polynomial equations approximating the
true response function, with better approximations from higher resolution level designs.
These designs can be augmented to incorporate quadratic terms into the metamodel by
using Central Composite Designs (CCD) (Yaesoubi, 2006).

The fundamental assumption in fractional factorial design is that certain higher-order
interactions are negligible, so information on the main effects and low-order interactions can be
obtained by running only a fraction of the complete factorial experiment. The number of required
runs in a fractional factorial experiment is much smaller, but the ability to estimate interaction
effects is also reduced. Clearly, fractional factorial designs are more efficient than factorial
designs, but it is more complicated to appropriately design a fractional factorial.

Investigating factors at many levels may result in a very expensive design. Using a 3
factorial design lets us estimate quadratic effects, but it requires more design points, especially
when k is large, therefore, factors are usually studied at only two levels. A factorial design where
all factors are at two levels is called a 2* factorial design, which is one of the most widely used
screening methods in simulation. However, examining each factor at only two levels (the low
and high values) does not reveal how the simulation output behaves for factor combinations in
the interior of the experimental region. Moreover, it is possible that the choice of low and high
level for factors cancels the interaction (Trocine et al., 2000). In practice, a 2 design can be used
to fit a first-order model, and if the model exhibits lack of fit, axial runs are then added to allow

the quadratic terms to be incorporated into the model (Montgomery, 2000). Two-level factorial
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designs assume linearity in the factor effects. Of course, perfect linearity is unnecessary, and the
2% system will work quite well even when the linearity assumption holds only approximately.
However, it is noted that if the interaction terms are added to the main effects or first-order
model, then we have a model capable of representing some curvature in the response function
(Montgomery, 2000).

Central Composite Designs (CCD) are the most popular class of designs used for fitting a
second-order model by using middle levels or center points; however, they also increase the
number of required runs. What makes 2P fractional factorial designs attractive in factor
screening experiments is the efficient number of runs it requires, which is a direct result of effect,
i.e. when more effects are confounded, fewer parameters need to be estimated and as a result
fewer runs will be needed.

One of the major concerns with fractional factorial designs is that this design may confound a
significant interaction effect with other effects; and therefore no information can be gained about
the individual interaction effects within this confounded structure. The issue of confounding
introduces the concept of resolution of a design. A design’s resolution determines the complexity
of metamodels that can be fit to the data if the design is used. The following designs are of
particular interest in fractional factorial experiments, especially in simulation.

Resolution 11 designs focus on just finding important main effects; however main effects are
confounded with two-factor interactions and two-factor interactions may be confounded with
each other. Plackett-Burman designs are well-known in estimating the main effects of k factors
in only k+1 runs, when k+1 is divisible by 4.

Resolution 1V designs focus on finding main effects and selected 2-way interaction effects.
No main effect is confounded with any other main effect or two-factor interaction, but two-factor
interactions are confounded with each other.

Finally, Resolution V designs can estimate main effects and all 2-way interaction effects. No
main effect or two-factor interaction is confounded with any other main effect or two-factor
interaction, but two-factor interactions are confounded with three-factor interactions.

In general, the higher the resolution, the less restrictive the assumptions that are required
regarding which interactions are negligible to obtain a unique interpretation of the results. It is
more desirable to conduct a Resolution V experiment to be able to estimate separately all the
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two-way interactions. However, for a large number of factors, it may not be feasible to perform
the Resolution V design.

Once a screening experiment has been performed and the important factors determined, the
next step is often to perform a response surface experiment to produce a prediction model to
determine curvature, detect interactions among the factors, and optimize the process (Telford,
2007). Fitting response surface is a simple and widely applicable approach to in the context of
simulation modeling, whereas commonly used methods based on classical statistics (i.e.,
ANOVA) make unrealistic assumptions such as constant variances and normally distributed
residuals. Response surface designs are useful for modeling a curved quadratic surface to
continuous factors. A response surface model can pinpoint a minimum or maximum response, if
one exists inside the design region. Three distinct values for each factor are necessary to fit a
quadratic function, so the standard two-level designs cannot fit curved surfaces. As explained
before, central composite designs resolve this issue with combining a two-level fractional
factorial and two other kinds of points (Figure 31):

e Center points, for which all the factor values are at the zero (or midrange) value

e Axial points, for which all but one factor are set at zero (midrange) and that one factor is

set as outer (axial) values (JMP, 2012)

Central Composite Design

fractional factorial points

axial points

Figure 31: Central composite design

The response prediction profiler can be used to get a close look at the response surface

and interactively change variables and look at the effects on the predicted response. The profiler
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tool explores the prediction equation to answer a number of questions such as, what type of
curvature does the response surface have, or what are the predicted values at the corners of the

factor space.

JMP software, statistical software developed by SAS Institute Inc., was used to generate a
2% fractional factorial design of resolution IV. To estimate the main and selected 2-way
interaction effects of 32 continuous factors under resolution IV, 64 runs were created.
Simulations were run for 4800 time periods under 64 runs. To reduce the variation among the
observations, we have generated 10 replications for each run (the inter-arrival time of patient
requests for surgery and procedure duration times are both stochastic, following exponential and
lognormal distributions, respectively) and threaded the batch mean as one final observation. Prior
to performing factorial analysis and model fitting, all factors were internally recoded to -1, 0 and
1 instead of their original units where 0 is in the center of the design, and +1 are the distance
from the center with direction (refer to Figure 32). The relationship between the natural

variables, the block schedule and release day variables, and the coded variables is:

Block schedule A — (Block schedule Ay, + Block schedule Ap;gp)/2

T 1=
ype (Block schedule Ap;qp — Block schedule Ay,y,) /2
T oM = Block schedule BMonday — (Block schedule BM,,,, + Block schedule BMy;4,)/2
ype h (Block schedule BMy; gy, — Block schedule BM,,,,)/2
T 2Th = Block schedule BThursday — (Block schedule BThy,,, + Block schedule BThy;g)/2
ype cti = (Block schedule BThyy, — Block schedule BThy,)/2
. Block schedule OpenFriday — (Block schedule OFri,,, + Block schedule OFrip;gzp)/2
Type OFri =

(Block schedule OFriy; g, — Block schedule OFriy,,)/2

And, the same transformation for block release policies is given as,

Release 1

_ Maximum time Type A can wait for Block A — (Maximum time Type A ,, + Maximum time Type A p;gn)/2

(Maximum time Type A p;gn — Maximum time Type A ,,,)/2
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Release 11

_ Maximum time Type K can wait for Block K — (Maximum time Type K ,,,, + Maximum time Type K pign)/2

(Maximum time Type K p;qp, — Maximum time Type K ,,,,)/2

That is, they are made dimensionless, measuring the effect of changing each design factor
over a one-unit interval regardless of their original metric of factor settings.

Doing this allowed us to test the linear and quadratic components in the relationship
between the factors and the dependent variables. Furthermore, coded factors were all estimated
with the same precision. The design is orthogonal and the coded variables are also orthogonal. In
this study, the values for block release and block hours were recorded on very different scales.
Since the metric for these two types of factor is no longer compatible, the magnitudes of the
regression coefficients are not compatible either and multicollinearity is unpreventable
(Alexander M. T., 1999).

Block Schedule Factors {hr) Low High

Block schedule A 13 19

Block schedule BM B 10

Block schedule Bthu 13 19

Block schedule CM (5] 10

Block schedule CWed B 10

Block schedule D 12 18

Block schedule ETue (5] 10

Block schedule EFri B 10

Block schedule FTue 2 12

Block schedule FThu 13 13 Block Release Factors (hr) Lows High
Block schedule G & 10 Maximum Time Type A 32 541
Block schedule H & 10 Maximum Time Type B 16 as
Block schedule | 5 10 Maximum Time Type C 32 64
Block schedule J 15 13 Maximum Time Type D 32 64
Block schedule K 3 3 Maximum Time Type E 16 4s
Block schedule OpeniMwhkl 14 18 Maximum Time Type F 37 541
Block schedule OpeniMwk2 14 18 Maximum Time Type G 48 20
Block schedule OpenTue 15 19 Maximum Time Type H 16 A8
Block schedule Openwed 14 13 Maximum Time Type | 32 54
Block schedule OpenThu 3 12 Maximum Time Type J 16 A8
Block schedule OpenFri 14 18 Maximum Time Type K a8 20

Figure 32: Experimental range (-1, +1) across block schedule and release hour factors
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The plot of the response distribution (overall profit) is shown in Figure 33, where all the

response values are at a reasonable range.

=

T
500000 1000000 1500000 2000000
Profit §

Figure 33: Response distribution of Stafford simulation

Analysis of variance, summary of fit for the 2 fractional factorial design, and summary
of screening design are shown in Figure 34 and 35. The model accounts for 92% of the variation
in the data. Reduction in adjusted R? clearly shows we have to reduce extra independent factors
from further analysis. In the screening design, main and interaction factors with the greatest
effect on the response are identified.

The plot of actual versus predicted responses and the normal probability plot for residuals
are depicted in Figure 36. Both of these plots indicate that the normal distribution assumption for

residuals is reasonable, and there is no significant evidence to suggest the violation of this

assumption.
Summary of Fit Analysis of Variance
RSquare 0.927379 Sum of
RSquare Adj 0.852415 Source DF Sguares Mean Sguare  F Ratio
Root Mean Square Error 115895.4 Model 32 53173e+12 1.662e+11 123710
Mean of Response 1079744 Error 31 41638e+M 1.3432e+10 Prob>F
Observations (or Sum Wagts 64 C. Total 63 57336e+12 =000

Figure 34: Summary of fit and analysis of variance for 2X fractional factorial design
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Type1*Release2
Type9*Release2
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Type4*TypeOM1
Typed4*Release4
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-206554
-88370
88516
67988
51686
-46986
-50076
46429
46664
41704
38685
34445
27045
20466
24385
19729
-19599
18020
-16483
14197
15409
10032
10470
9685
6902
-5758
-5537
-4498
-3607
-2218
1229
-26
-1115
-9205
-1642
-17968
-20080
4727
29149
-2175
15883
-4599
-2156
3456
22191
5332
20210
-13420
-26393
-839
-5198
-25691
-8196
-9125
30784
10153
-9569
5550
-4148
-8290
-2970
2195
24650

p— -

—

Lenth
t-Ratio
-13.64
-5.84
5.85
4.49
3.41
-3.10
-3.31
3.07
3.08
2.75
2.56
2.28
1.79
1.35
1.61
1.30
-1.29
1.19
-1.09
0.94
1.02
0.66
0.69
0.64
0.46
-0.38
-0.37
-0.30
-0.24
-0.15
0.08
-0.00
-0.07
-0.61
-0.11
-1.19
-1.33
0.31
1.93
-0.14
1.05
-0.30
-0.14
0.23
1.47
0.35
1.34
-0.89
-1.74
-0.06
-0.34
-1.70
-0.54
-0.60
2.03
0.67
-0.63
0.37
-0.27
-0.55
-0.20
0.14
1.63

Individual
p-Value
<.0001 *
<.0001 *
<.0001 *
0.0004 *
0.0034 *
0.0056 *
0.0042 *
0.0057 *
0.0056 *
0.0114 *
0.0170 *
0.0286 *
0.0810
0.1802
0.1136
0.1950
0.1974
0.2326
0.2727
0.3456
0.3068
0.5199
0.4873
0.5356
0.6532
0.7066
0.7180
0.7703
0.8135
0.8870
0.9366
0.9980
0.9418
0.5555
0.9174
0.2337
0.1878
0.7580
0.0600
0.8895
0.2938
0.7651
0.8904
0.8210
0.1464
0.7295
0.1853
0.3737
0.0883
0.9564
0.7354
0.0968
0.5948
0.5589
0.0470 *
0.5026
0.5411
0.7174
0.7900
0.5910
0.8482
0.8886
0.1101

Figure 35: Summary of screening design
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Actual by Predicted Plot 100000 A 164128 -067 00 067 1.28.64
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500000 1000000 1500000 2000000 0.05 0.150.300.500.700.85 0.95
(M) Total Profit Predicte .
P<.0001 RSq=0.93 RMSE=11589 Normal Quantile

Goodness-of-Fit Test
Shapiro-Wilk W
W  Prob<w
0.982050  0.4765

Note: Ho = The data is from the Normal distribution. Small p-values
reject Ho.

Figure 36: a) actual versus predicted response b) normal probability plot for residuals

Before making judgments about the significance of each factor, center points were added
(i.e. all the factors set at their central level) and the analysis was re-run to ensure that the
assumption of linearity stands. The center points clearly provide information about the existence
of curvature in the system. If curvature is found in the system, then the addition of axial points
allows for efficient estimation of the pure quadratic terms (Yaesoubi, 2006). Five center points
were added to the model --the replicated points were used to calculate the pure error--which
reduced the RZAd,- from 85% to 75% (as well as, reduction in R?) and the model F-Ratio from
12.37 to 7.4 (Figure 37).

Summary of Fit Analysis of Variance

RSquare 0.868223 Sum of

RSquare Adj 0.751088 Source DF Squares Mean Square  F Ratio
Root Mean Square Error 149725.8 Model 32 5.3173e+12 1.662e+11  T.4122
Mean of Response 1099024 Error 36 8.0704e+M 2242e+10 Prob=F
Observations (or Sum Wgts 69 C. Total B3 6.1243e+12 <0001

Figure 37: Summary of fit and analysis of variance for 23226 fractional factorial design, augmented with
center points
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In addition, both residual plots show that the residuals for the center points were greater than the

residuals for other design points (Figure 38).

Residual by Predicted Plot
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(M) Total Profit Predicte Normal Quantile

Figure 38: Residual by predicted plot and the residual distribution for 2 fractional factorial design

To conclude whether a non-linear relationship exists, a lack of fit test was performed on
the data. Since the observed statistic, Fo, value was significantly higher than the critical F-value
of 5.738, there was sufficient evidence to conclude that, at a-level of 0.05, there is a lack of
linear fit (Figure 39).

Lack Of Fit
Sum of

Source DF Squares Mean Square F Ratio
Lack Of Fit 32 4 2565e+11 133e+10 121783
Fure Error 4 4368910794 1.0922e+9 Prob=F
Total Error 36 4.3002e+11 00127
Max R&q
0.9993

Figure 39: Lack of fit test result 2 fractional factorial design

All of this evidence suggests that a first-order polynomial augmented by second-order

interactions may not be a good approximation of the response function (Yaesoubi, 2006).
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In statistics, a central composite design is an experimental design that is useful ina response
surface methodology for building a second order (quadratic) model for the response
variable without the need to use a complete three-level factorial experiment. Therefore, a second-
order model was devised, using Central Composite Design (CCD) to estimate the quadratic
effects in the data. There are many designs available for fitting a second-order model. The most
frequently used one is the CCD, introduced by Box and Wilson. It consists of factorial points
(from a 2% design and 2% fractional factorial design), central points, and axial points. The center
runs contain information about the curvature of the surface: if the curvature is significant, the
additional axial points allow the experimenter to obtain an efficient estimation of the quadratic
terms. When there is curvature in the response surface, the first-order model is insufficient. A
second-order model is useful in approximating a portion of the true response surface with
parabolic curvature (Bradley, 2007).

Three main varieties of CCD are available: face-centered, rotatable and inscribed. A face-
centered design is obtained by setting the experiment range a at constant distance +1 and - 1 so

that it requires only 3 levels of each factor (a=+1) as shown in Figure 40.

+1 4

Figure 40: Face-centered design

In rotatable design, the extreme points are at some distance a>1 from the center, based on
the properties desired for the design and the number of factors in the design to achieve
rotatability. These points establish new extremes for the low and high settings for all factors

(Figure 41). This design requires 5 levels for each factor.
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Figure 41: Rotatable design

Situations in which the limits specified for factor settings are truly limits call for
inscribed design. This design uses the factor settings as the starting points and creates a factorial
or fractional factorial design within those limits (in other words, an inscribed design is a scaled
down rotatable design with each factor level of the rotatable design divided by a>1 to generate
the inscribed design) (Figure 42). This design also requires 5 levels of each factor (Verseput,
2000).

+1—
#0 7=t

07 =fmnnm

1

IS

Figure 42: Inscribed design

+1

For this study we chose a face-centered design, because, first, hospitals are not able to
operate in OR rooms all the time and, second, it is not practical to set release times lower than
some threshold. The inscribed design might have been the best choice if we had known the
extreme limits to establish the low and high points for all factors. But, in this case, that
information was lacking. Thus, the face-centered CCD was a simpler design to carry out in this

situation, which requires operating the process at only three level settings of each variable.
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However, applying CCD on all 32 factors was not practical (under resolution V) so, the next step

will be to select the important factors under fractional factorial resolution 1V.

A fractional factorial of resolution IV augmented with axial and central points was
created for this study. It required 64 runs for a fractional factorial of resolution IV, and 2 x 32
runs for axial designs, and 5 runs for central points; thus a total of 133 runs were needed. We
used 5 center points for stability of results.” The analysis of variance and summary of fit for the

design are shown in Figure 43.

Summary of Fit Analysis of Variance
RSquare 0.972843 Sum of
RSquare Adj 0.900423 Source DF Squares Mean Square  F Ratio
Root Mean Square Error 77170.06 Model 96 7.6799a+12 ge+10 134333
Mean of Response 1182721 Error 36 2.1439e+11 59552e+3 Prob=F
Observations (or Sum Wgts 133 C. Total 132 7.8942e+12 = 0001*
Lack Of Fit

Sum of F Ratio
Source DF Squares Mean Square 1.9234
Lack Of Fit 32  2.013e+11 6.2908e+9 Prob > F
Pure Error 4 1.3083e+10 3.2707e+9 0.2783
Total Error 36 2.1439e+11 Max RSq

0.9983

Figure 43: Summary of fit, analysis of variance, and lack of fit for 232726 fractional factorial design
augmented with axial and center points

Both the R? and the model p-value has improved from 92% to 97% under generated
second-order model, which implies that 97% of the variation in the dependent variables can be
accounted for by the second-order model. Also, the large p-value for lack of fit (0.278) indicates
the lack of fit is not significant and supports the conclusion that there is little to be gained by
introducing additional variables. The normal probability plot for residuals is depicted in Figure
44. The plots show that the normal distribution assumption for residuals seems reasonable, and

there is no significant evidence to suggest a violation of this assumption.

" - Augmented Design is used to modify an existing 2 design data table and adds axial points together with center
points to transform a screening design to a response surface design.
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Figure 44: a) normal probability plot for residuals b) actual versus predicted response

As a first step, stepwise regression was run to identify the important factors (Figure 45).

This criterion drops any effect with F-Ratio less than 2 from the model, making it a restricted

model.

Summary of Fit Analysis of Variance
RSquare 0.959661 Sum of
RSquare Adj 0.931734 Source DF Sqguares Mean Square  F Ratio
Root Mean Square Error 63895.33 Model 54 T.5758e+12 1.403e+11 343634
Mean of Response 1182721 Error 79 31844e+11 4.0826e+9 Prob>F
Observations (or Sum Wgts 133 C. Total 132 7.8942e+12 =.0001*
Lack Of Fit

Sum of F Ratio
Source DF Squares Mean Square 0.7912
Lack Of Fit 62 2.4012e+11 3.873e+9 Prob>F
Pure Error 16 7.832e+10 4.895e+9 0.7510
Total Error 78 3.1844e+11 Max RSq

0.9901

Figure 45: Summary of fit and analysis of variance for 232726 fractional factorial design on restricted
model

Both the RZAd,- and the model F-Ratio increased with a noticeable jump in the model F-
ratio from 12.37 in original first-order model (all factors) to 34.36 in the restricted second-order
model. Figure 45 displays the sorted estimated effects of the generated restricted second-level
model. As is the case in the parameter estimates, the final model has significant cross product

and quadratic factors.
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Sorted Parameter Estimates

Term

Type4d

Type1

Type9

Type6Tue

Type10

Release2

Type6Thu
Type5Tue

TypeOM1

Type2M
Type6Thu*Release2
Type8
Type8*Typel1
TypeOM2*TypeOM2
Release5
Type1*Type11
Type5Fri*Type5Fri
Release9
Type2Th*Type2Th
Release4
Release1*Release1
Type3Wed
Release10*Release10
Release5*Release8
Type8*Type8
Release8
Typed*Typed
Type5Tue*Type5Tue
TypeOM1*TypeOM1
Release11
Release8*Release8
Type6Tue*Type6Tue
Release5*Release9
Type2M*Type7
TypeOM1*Release?
Type5Fri
Type9*Release11
Type9*Type9
Type11*Type11
Type7
Release9*Release9
Release1

TypeOM2
Release7*Release?
Type1*Type9
Release6
Type8*Release4
Release7
Release10
Type3Wed*Release8
Type6Tue*TypeOM1
Type2Th

Typel1
Type5Tue*Type10

Figure 46: Parameter estimates for restricted model

Estimate
-199802.9
-103241.3

81287.14

67856.105
-71770.6
60108.097
-62860.88
52098.28
51119.471
41038.273
-53731.94
38693.081
-40630.66
-168895.3
32520.496
-35524.06
161288.15
31375.876
-146724 .4
28432.609
137933.79
27847.148
131935.16
-36949.15
-124417.2
-23823.02
-121495.7
-119427.3
-115228
-21811
102144.81
-100306.1
28356.326
20317.801
-26283.58
19551.817
-22011.58
87188.361
-86807.8
18302.108
81322.101
15290.226
15527.36
75488.998
-19274.91
16065.623
16507.942
-11373.52
8425.5571
9280.8516
8931.8643
-4931.946
2573.6151
-1667.829

Std Error t Ratio
9413.691 -21.22
9024.115 -11.44
8709.752 9.33
8359.686 8.12
9042.356 -7.94
8587.315 7.00
9330.548 -6.74
9363.917 5.56
9561.858 5.35
8522.904 4.82
11901.75 -4.51
8857.052 4.37
10372.92 -3.92
43655.96 -3.87
8554.677 3.80
9538.969 -3.72
43655.96 3.69
8746.277 3.59
43655.96 -3.36
8783.075 3.24
43655.96 3.16

9036.39 3.08
43655.96 3.02
12943.97 -2.85
43655.96 -2.85
8559.052 -2.78
43655.96 -2.78
43655.96 -2.74
43655.96 -2.64
8613.175 -2.53
43655.96 2.34
43655.96 -2.30

12524.6 2.26
9227.118 2.20
12236.96 -2.15
9128.982 2.14
10626.73 -2.07
43655.96 2.00
43655.96 -1.99

9687.633 1.89
43655.96 1.86
8689.573 1.76
8900.971 1.74
43655.96 1.73

11188.22 -1.72
9571.152 1.68
10305.21 1.60
8734.298 -1.30
8366.236 1.01
10657.07 0.87
10934.71 0.82
8752.223 -0.56
9307.569 0.28
10346.41 -0.16

Prob>|t|
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.0002
0.0002
0.0003
0.0004
0.0004
0.0006
0.0012
0.0018
0.0022
0.0028
0.0034
0.0055
0.0056
0.0067
0.0068
0.0077
0.0100
0.0133
0.0219
0.0243
0.0263
0.0306
0.0348
0.0353
0.0416
0.0493
0.0503
0.0626
0.0663
0.0824
0.0850
0.0877
0.0889
0.0972
0.1132
0.1967
0.3170
0.3865
0.4165
0.5747
0.7829
0.8724
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In the next step, important factors were selected among the significant ones (based on
Lenth’s t-ratio, provided in Table 36) generating over $100K change in the profit (the $100K
threshold was set such that it reduced the factors to less than half). Therefore, if a factor had a
main effect greater than $50K (or $100K/2) or a quadratic effect greater than $100K, or was
involved in a second-order interaction effect greater that $50K, it was declared to be important

(Yaesoubi, 2006). Table 36 lists the selected main important factors.

Table 36: List of important factors for Stafford block size

Number Factor Estimate Lenth t-Ratio
1 Typel -103241 -6.82
2 Type2M 41038 3.42

3 Type2Th (Type2Th* Type2Th) -146724 2.11
4 Typed -199803 -16.41
5 Type5Tue 52098 5.14

6 Type5Fri (TypeSFri * Type5Fri) 16093 2.71

7 Type6Tue 67856 3.72

8 Type6Thu -62861 -3.68
9 Type9 81287 7.16
10 Typel0 -71771 -4.11
11 TypeOM1 51119 3.55

Considering our results from the earlier case study, we expected the effect of the release
block policy on profit (prior to the best block size) to be negligible in comparison with the effect
of block size. We can see the same result in Figure 45, the sorted estimated effect size of the
release block and block size. Among the top fifteen significant factors, only two factors are
release block. Given the small effect of the release block in comparison with block size (refer to
Figure 47) and to ensure that the block release policy effect would be considered in the final

model, we divided the process of finding important factors into two steps.
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~ Prediction Profiler
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Figure 47: Prediction Profiler

In the first step, the restricted model was run with the top block size factors, and their
optimal point was found. As we learned in the case study, the impact of the release policy
appears negligible initially, but it becomes more significant in the range of superior block size.
So, in the second step, important factors were selected among those important block size factors
from the first step and all block release factors within the range of superior main block size
factors. These steps are explained in detail below.

Stepl. Once a screening experiment has been performed and the important factors
determined, the next step is often to perform a response surface experiment to produce a
prediction model to determine curvature, detect interactions among the factors, and optimize the
process (Telford, 2007). In this study, a second-order model was fitted using face-centered
central composite design (CCD) for the eleven factors selected as important. To obtain the
second-level model, a central composite design resolution V with center point and axial point
was run. This design required 2 factorial runs for resolution V design, 22 axial and 5 center
points run; thus a total of 155 runs were needed (Matlab is used to create the design). For each
run, 10 observations were obtained. The RSREG procedure is used to fit the response surface.
The analysis of variance and lack of fit for the model are shown in Figure 47. The factor

ANOVA table displays tests for all eleven parameters corresponding to each factor.

115




Response Surface for Variable Profit

Response Mean

Root MSE
R-Square

Coefficient of Variation

Residual
Lack of Fit

Pure Error

Total Error

Factor
typel
typezl
typw2TH
typed
type5Tue
typeSFri
typebTue
typebThu
typed

typell
typelOM1

DF | Sum of Squares  Mean Square | F Value | Pr=F

73 8514129113

i

DF | Sum of Squares | Mean Square F Value

Regression
1317452 Linear 11
90640 Quadratic 11
0.9502 Crossproduct | 55
6.8799 Total Model | 77

621531425265
11065308747
632596734012

1.3357675E12
225057326129
682849341732
3.T016301E12
2.3678592E12
979134602966
918742504995
617392198095
1.3754242E12
405717521993
156845803272

2766327189
8215542000

111313962408
1BT7E4TTTTT
56904111811

308469174828

197321599820
81594550247
76561875416
51445349841

114618686416
33809793499
13070483606

3.08 0.1396

Pr=F
13.55 | <.0001
228 0.0153
6.93 <.0001
37.55  <.0001
2402

9.93

<0001
=.0001
9.32 | =.0001
6.26 | < 0001
13.95 <0001
412 =.0001

1.59 | 01119

1.0848024E13
329027268634
897759198493

1.207481E13

DF | Type | Sum of Squares R-Square

0.8537
0.0259
0.0706
0.9502

F Value
120.04
3.64
1.99
19.09

Figure 48: Summary of fit, analysis of variance and ANOVA test for CCD

Pr=F
=.0001
0.0004
0.0027
=.0001

The normal probability plot for residuals is shown in Figure 49. This plot indicates that

the normal distribution assumption for residuals appears reasonable; there is no significant

evidence to suggest the violation of this assumption. Also, the normality test confirms that the

normal distribution assumption holds.

I =|Residual (M) Total Profit

|=|Fitted Normal

150000:
‘IUUUUU:

SUUUU:
U—-
—SDDDD—_

-100000—

233 -164 28 067 00 067 12364 233

0.988584

0.05 020045070 0.90

Mormal Quantile Plot

Mote: Ho = The data is from the Normal distribution. Small
p-values reject Ho.

Type Parameter
Location  p 3.988e-10
Dispersion o 61520.948

4 Parameter Estimates

-Zlog(Likelihood) = 3857 28218156978
4 Goodness-of-Fit Test

Shapiro-Wilk W Test
W Prob<wW
0.2393

Estimate Lower 95% Upper 35%
-9761.838 9761.8377
5535034 69252234

Figure 49: a) normal probability plot for residuals b) Normality test
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JMP computes the linear, quadratic, and interaction terms in the model. The estimate of
effects for the response variable profit is shown in Figure 50. Analysis of variance indicates that
there were significant interactions between the factors. The small p-values for linear and
quadratic terms also confirm that their contribution is significant to the model, and there is
curvature in the response surface.®

Next, it was necessary to find the levels of factors that optimized the predicted response,
profit. When the response surface is not a plane, it becomes more complicated to determine
optimum values. This point, if it exists, will be the set of factors for which the partial derivatives
equal to zero. This point is called the stationary point. The stationary point can be either a

maximum, a minimum, or a saddle point (Montgomery, 2005).

We may obtain a general mathematical solution for the location of the stationary point as

expressing the fitted second-order model in matrix notation, as follows:

X)) = bo + Xioy by x; + Ty byx? + X i1 by xix; = by + X'b + X'BX (4.1)
Where
X1 by b4 bi2/2 -+ byy/2
x=|"2|, b=|%2| anaB=|"2/2 Pz - Da/2 4.2)
Xk by, bik/2 bar/2 -+ b

Assuming B is nonsingular, the unique stationary point of the fitted surface occurs at
X=—2B7'b (4.3)

Furthermore, by substituting Equation 4.3 into Equation 4.1, we can find the predicted response

at the stationary point as:

1 !
J5 = bo +7 X'

& _This model follows CCD assumption where each factor x; is standardized and lies in [-1, +1] range.
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Parameter Estimates

Term

Intercept

Type

Typezi

TypeZTh

Type5Fri

Typed

TypesTue
TypetTue
Type&Thu

Typed

Typel10

TypeOn
Type1*TypezM
Type1*Type2Th
Type1*TypesFri
Type1™Typed
Type1*TypeSTue
Type1*TypedTue
Type1*TypeiThu
Type1*Typed
Type1*Type10d
Type1*Type0M
Type2M*TypeZ2Th
Type2M*TypeSFri
Type2 M Typed
TypezM*TypeSTue
TypeZM*TypeiTue
Type2M*TypetThu
Type2M " Typed
Type2M*Type10
TypeZM*TypeOh1
Typel2Th*Type5Fri
Type2Th*Typed
Type2 Th*TypesTue
Type2Th*Type6Tue
TypeZTh*Type&Thu
Type2Th*Typed
Type2Th*Type10
Type2Th*Type0n-
Types5Fri*Typed
TypesFri*Types5Tue
TypesSFri*Type&Tus
TypesSFri~Type&Thu
TypesSFri*Typeg
Types5Fri*Type 10
TypesFri*Type 0l
Typed TypesTue
Typed4*TypetTue
Typed*TypedThu
Typed*Typed
Typed*Type10
Typed4 Typeli
TypesTue TypetTue
TypesTue*TypedThu
TypebTue*Typed
TypesTue™Type10
TypesSTue Typedn-l
TypetTue*TypedThu
TypebTue*Typed
TypebTue*Type10
TypeETue™Typeldn-1
TypeEThu*Typed
TypeGThu*Type10
TypebThu*Typedi1
Typeg™Type10
Typed*Typedi
Type10*Typelh
Type1*Type-
Type2M*Typae2M
Type2Th*Type2Th
TypesSFri*Type5Fri
Typed*Typed
TypesTue*TypesTue
TypeETue™Type6Tue
TypetThu*Type&Thu
Typed*Typed
Type10*Type10
TypeOM1*Type 0l

Estimate
1407204 3
-96589
28527.015
-57265.48
81346.7332
-1637565
12543867
TATT1.817
-63809.67
97897 646
-44280.87
-9370.889
-2436.189
-6318.537
92011441
9543 4026
13420101
6977.376
-3339.926
-8718.327
-9428. 367
2117.5764
TE40.0822
-11534 .17
4548.8753
-8156.716
22722308
13130.621
-9579.55
15606.897
78301489
12042.392
-7934 968
34722 866
26287614
-9497.878
-933.3502
-753.8013
-10346.03
10291.063
-317.5198
-3205.955
6351.0737
-T556.371
16126.037
-5902.926
93405783
-33182.47
4684 4611
2539.9305
7691.1239
-8756.621
-15463.47
-7859.099
-6131.1
-12854.05
-21749.05
-3472.521
-14599.33
16793.609
51244331
-13013.65
3794 .8413
408.10863
-7811.163
17087.327
1554 3707
138536.06
-651827
-1291996
57853.418
-54281.23
-10255.02
-8634.006
-74097.83
-19495.65
7289.339
-58105.09

Std Error
18835.89
T249.621
Ta49.621
T249.621
Ta49.621
7949621
T949.621
T249.621
Ta49.621
7949.621
T249.621
Ta49.621
8011.487
8011.487
8011.487

8011.487
2011.487
5011.487
5011.487
5011.457
8011.487
5011.487
5011.487
6113822
61138.23
61138.23
6113823
6113822
6113823
61138.23
61138.23
6113823
6113822
61138.23

t Ratio
7471

Prob=|t|
=.0001*
=.00071"
0.0006*
=.0001*

0.3251
=.0001
07437
02295
0.9076
09253
02004
0.z028
0.9685
0.6901
0.4204
0.3485
0.0476
0.4G635
02473
=.0001*
0.5604
07521
0.3401
02778
0.0572
03297
0.4464
01127
0.0082*
0.6659
0.07232
0.0394*
05242
01054
06271
0.9585
03326
0.0361*
0.8467
0.0263
02897
0.0378
0.3470
03774
0.8672
0.8881
0.zz292
07506
0.9054
03449

Figure 50: Parameter estimates for CCD
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We can find the location of the stationary point in the experiment region using the

general solution in equation 4.1 (Mee, 2009). Note that for our model (values are from Figure
50),

O
i

r —96589 7

28527
—57265
—163756
125438
81346
71771
—63809
97897
—44280

L —9370 -

138536 —710 -3511 .- 1801
| =710 —65182 4406 . 5282

,and B=| —3511 4406  —129199 .. —4509

]
I
I
[18.01 5282 —4509 - —58105J

and from equation 4.3, the stationary point is determined at the following location. Both coded

and uncoded values are provided based on canonical analysis output,

The RSREG Procedure
Canonical Analysis of Response Surface Based on Coded Data

Critical Value

Factor Coded Uncoded
typel 0.276146 = 16.828439
type2il 0.609142 9.218283
typw2TH 0.209454 = 16.628362
typed 1.611558  19.834674
type5Tue 3571128 | 15142257
type5Fri -1.332470 5.335060

typebTue 2136948  14.273895
typebThu -0.566366 = 13.867267

typed 0374524 8.749048
type10 4294374 25.588749
typelM1 -0.570555 14.858890

Figure 51: Canonical Analysis for 11 factors

With predicted responses of 1,455,073, determining some of the larger predicted values (outside

the range of [-1, +1]) would require extrapolation.
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Once the stationary point is found, it is usually necessary to characterize the response

surface in the immediate vicinity of this point; that is, one must determine whether the stationary

point is a maximum, a minimum, or a saddle point. We also need to study the relative sensitivity

of response to the variables. Although a counter plot is the easiest way when there are just a few

variables, performing canonical analysis (an Eigen analysis) of Hessian matrix B is the more

appropriate and scientific method (Montgomery, 2005).

In canonical analysis, a model is transformed into a new coordinate system with the

origin at the stationary point and then the axes of this system are rotated until they are parallel to

the principal axes of the fitted response surface.

In this study, canonical analysis was used as described above to characterize the

stationary point X, by calculating eigenvalues of Matrix B as the roots of the following

determinate equation,

[B—2A1]=0

Accordingly, the roots of the equation become:

The sorted eigenvalue and associated eigenvector of matrix B are presented in Figure 52.

Eigenvalues
139758
64589

54304

15092
5173.873704
-13315
-24257
-59353
-66966
-T7720
-132972

typel
0.994547

-0.075598
0.003039
0.035458

-0.031942
0.046207

-0.013666

-0.009959
0.014770
0.002691
0.015083

type2M
-0.008655

-0.013804
-0.030222
0.127806
0.015896
-0.007299
-0.108113
0.540799
0.693750
-0.436630
-0.078070

typw2TH
-0.008050
0.013165
0.030243
-0.052732
0.124714
0.0090M
0.060884
0.015647
0.053772
-0.099186
0.981708

Eigenvectors

typed | typedTue

0.0567052
0.665873

-0.690910

0.132610

-0.064512
-0.204603

0.103050
0.007102

-0.032632
-0.007430

0.024552

0.046951
0.049943
-0.074957
-0.360715
0.805279
0.1144986
0.354804
0.217005
-0.038538
0.068705
-0.137113

typedFri | typebTue

0.057079
0.709448
0.678871

-0.144449

-0.073386

0.026216
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Stationary point is a saddle point.
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-0.040198
-0.150552
0.215845
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Figure 52: Canonical curvature, Eigenvalues and Eigenvectors
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Thus, the canonical form of the fitted model is as follows:
y = 1455073 + 139758w? + 64589w3 + 54304w3 + 15092w? — 6173w? + --- — 132972w5,

The fitted surface is a saddle surface and unbounded as a consequence of having both positive
and negative eigenvalues.

Close examination of the calculated stationary point reveals that not all levels fall within
the region of experiment. The optimum values of Type4, Type5Tue, Type5Fri, Type6Tue, and
TypelO extrapolate the limits of the experimental design [-1, +1]. In many first-order cases, as
well as second-order cases where a saddle point or the stationary point is found to be distant, the
most useful further action is to decide in which direction to explore further. Also, comparing the
resulting profit at saddle point (1,455,073) with the profit at the current production level (the
center point for all main factors) (1,407,204), it is evident that any further improvement in the
profit will require us to move towards the curve up direction instead of extrapolating around the
extended experiment region to find the optimum.

Ridge analysis of the response surface was performed® to locate the optimal response
value (and its associated variable levels) within the boundaries of the region (Figure 53). The
ridge starts at the midway point (between the highest and the lowest values of the factors), and
the point on the ridge at radius 1.0 from the midway point is the collection of factor settings that
optimizes the predicted response at this radius. Thus, the ridge analysis can be used as a tool to
help interpret an existing response surface or to indicate the direction in which further
experimentation should be performed within the boundaries of the region.

The ridge analysis output indicates that maximum profit results from relatively lower
block hours for almost all surgeons’ blocks, with the exception of type 2 and type 0. The

desirability prediction, shown in Figure 54, confirms this conclusion.

® - SAS proc rsreg is used for this analysis
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'Response Surface’

The RSREG Procedure

Estimated Ridge of Maximum Response for Variable Profit

Uncoded Factor Values

Coded Estimated Standard

Radius Response Error typel | typeZM typw2TH typed typeSTue | typeSFri | typebTue  typetThu typed typeld typeldM1
0.0 1407204 18836 16.000000 8.000000  16.000000  15.000000 6&.000000  8.000000 10.000000 15.000000 8.000000 A17.000000 16.000000
0.1 1436259 18836 15.891099 8.017511 15.948712  14.825180 6.083891 8.056517  10.048938 14.958094 B.065782  16.969598 15.994006
0.2 1465786 18854 15763378 8.030969 15911360  14.642804 B8.161078 8.112656 10.095946 14.920716 8.127007  16.940196 15988949
0.3 1495990 18940 15.614367 8.041055 15.884798  14.456170 8.230617  8.167209 10.140460 14.887763 8.183091  16.912485 15.984750
0.4 1527072 19201 15441979 8.048442 15866487 14.269000 8291874 8218941 10.181983 14.859063 B8.233745 16.887079 15981336
0.5 1659239 19800  15.244787  8.053760 | 15.854404  14.085247 8.344540 8.266680 10.220076 14.834401 8.278919 16.845010 15978627
0.6 1592695 20971 | 15.022702  8.057563  15.846041 13.908724 8.388653 5.309452 10.254395 14.813506 8.318776 16828814 15.976535
0.7 1627645 23004 14.777135 8.060316 15842832 13.742642 6.424609 5346613  10.284750 14.796051 8.353660 16.805763 15.974965
0.8 1664284 26202 14.510893  8.062385 15841097 13.589192 B.475114 | 8.403571 10.311140 14.761650 8.384055 16.612246 15.973822
0.9 1702792 30822 14.227666 8.064038 15840995 13.449374 8491598 8423996 10352945 14769884 8433690 16.338074 15973013
1.0 1743326 37032  13.931363 8.065458 15841992 13.323118 6.597198  B8.557283 | 10.406710 14760331 B8.568091 15.948712 15972457

Figure 53: Ridge Analysis
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Figure 54: The Desirability Profiler

To summarize, at the predicted response, profit reached $2.26M, 60% higher than $1.4M
estimated profit at the current operational level (experiment region at center point). The modified

stationary point is thus:

- —1
0.02
—0.05
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This result suggests that the superior policy would be to reduce the block size in eight out
of eleven factors and keep the block size at the current level for the rest. The willingness to
reduce overall block size across all specialties and increase utilization may not be realistic or
practical. As the OR Manager has published, in 2012 and 2013, the median utilization rate for
operating rooms was around 75%, with top utilizations of 85% to 90% and vastly different rates
among specialties because some specialties need further support from primary services due to
complexity of their cases. To summarize, actual utilization rates are affected by the risk of
overtime combined with complex patient mixes. High utilization rates require extremely good
supporting systems, particularly with respect to bed availability, pre-admissions testing and
PACU access. Otherwise, the benefits of high utilization will be outweighed by the costs of
excessive overtime and staffing.

So it is necessary to consider realistic utilization rates for specialties, benchmarks that
take into account the specialties’ patient mix characteristics and the hospital’s willingness to
accept the risk of overtime (VVan Houdenhoven et al., 2007). To check the robustness of our
model, we ran the simulation for three scenarios of target utilization rate: 60%, 75% and 90%.
For simplicity, we assume the same utilization rate for all specialties. Table 37 summarizes the

simulation results for optimized block size factors under each utilization rate.

Table 37: The best block size for a range of utilization rate

Utilization
Factors 100% 90% 75% 60%
Typel -1 | reduce -1 | reduce -0.6 | reduce -0.3 | reduce
Type2M 0.02 | no change 0.02 | no change -0.1 | increase -0.6 | increase
Type2Th | -0.05 | no change -0.03 | no change 0.03 | no change 0.15 | increase
Tyep4 -1 | reduce -1 | reduce -0.8 | reduce -0.4 | reduce
Type5Tue 1 | reduce 0.5 | reduce -1 | increase -1 | increase
TypeSFri 1 | reduce 0.2 | reduce 0.2 | reduce -1 | increase
Type6Tue 1 | reduce -0.1 | increase -0.2 | increase -0.9 | increase
Type6Thu | -0.4 | reduce -0.3 | reduce 0.2 | increase 0.9 | increase
Type9 1 | reduce 1 | reduce 0.8 | reduce -0.7 | increase
TypelO -1 | reduce -0.1 | no change 0.02 | no change -0.02 | no change
TypeOM1 | 0.02 | no change 1 | increase 1 | increase 1 | increase
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As shown in the table, as utilization rates are reduced, the best value tends to increase the
block size. Based on this result we have decided to proceed with utilization rate of 75% as most
of the optimal values are within the experiment region (no extrapolation is required) and also it is

compatible with the industry benchmark as published in OR manager.

Step 2. In this step, a factor screening experiment was conducted on these remaining
eleven important block size factors as well as all the release block factors to identify those which
do not have a significant effect on profit. A total of 1073 runs were needed (referring to discrete-
valued Walsh functions) in order to estimate all 276 coefficients (n+2)(n+1)/2 in a full quadratic
model with 22 factors, a design with at least 2> factorial, 44 axial and 5 center points runs.
Before running this analysis, important block size factors were set at their optimal level, as
estimated in Step 1 (which established a new center level for the experiment region) while less-
important block size factors were maintained at their current operational level. The result of
stepwise regression is shown in Figure 55 and 56. Any effects with F-Ratio less than 2 are

eliminated from the model, making it a restricted model.

Parameter Estimates

Term Estimate Std Error tRatio Prob=|t|
Intercept 14844085 09664.865 153.60 =.0001*
Type1 -90773.79 Tr42889 -11.72 =00071
Type2M 40392919 7742.889 0.52 06034
Typed -95921.49 7r42.889 1239 =00071*
Type5Tue 90963.001 7742889 1175 <.0001"
TypeSFri 64777567 T742.889 8.37 =.00071"
TypeGTue 47473278 TT42.889 6.13 =.00071
TypeBThu -39125.01 7r42889 -5.05 =00071*
Types 309858432 Tr42.889 4.00 0.00071*
Typeld -3792056 7r42.889 -4.90 =00071
Release -6420.54 7742889 -0.83 04085
Release2 44340065 7742.889 573 =.00071*
Released 15402587 7742.889 1.99 0.0501
Releases 65023132 7742.889 8.40 =.00071"
Type1*TypesTue -12596.74 7862941 -1.60 0.1131
Type2M*Release2 -12275.23 7862941 -1.56 01225
Typed*TypeSTue 6173.9745 7862.941 079 04347
Typed*TypesFri -12497 .12 7862941 -1.59 0.1160
Typed*Typed 19032 261 7862.941 242 00178
Typed*Releases 13958.957 TB862.941 178 0.0797
TypeSFri*Type6GTue -17576.97 TeE2.941 -2.24 0.02827
TypeSFri*Releases -28169.73 7862941 -3.58 0.0006*
TypeBTue*Type6Thu -16671 7862941 -212 00371

Type@Tue Typeld 16911137 TBE2.941 215 0.0346"
TypedThu*Released  21874.317 TE62.94 278 0.0068*

Type10*Release2 -5753.264 7862941 -0.73 04665
Type1*Type -94589.07 38863.81 -2.37 0.0207°
Type2M*TypeZM -2480105 39863831 -6.:22 =00071
Typed*Typed 130969.25 39863.81 3289 0.0015*
Type9*Types 1174625 39863.81 -2.95 0.00427

Release1*Release1  101104.04 30863.51 2.54 0.0132*

Figure 55: Parameter estimates for 22 factors
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Summary of Fit Analysis of Variance

RSquare 0.935172 s oF SS""‘ of Moan S  Rati

. ource quares ean square atio
RSquare Adj 0910554 el 30 4.5093e+12  1.503e+11 37.9871
Root Mean Square Error  62903.53 ¢ 79 3.1250e+11  3.9569e+9 Prob > F
Mean of Response 1347705 C.Tota 109 4.8219e+12 <.0001 *

Observations (or Sum Wgts 110

Figure 56: Summary of fit and analysis of variance for %' fractional factorial design

The top five block release factors from our initial experiment (with 32 factors) are shown in
Table 38.

Table 38: List of important factors for Stafford block release time

Number Factor Main effect F-ratio
1 Releasel 15290 3.1

2 Release2 60108 49.0

3 Release4 28433 10.5

4 Release5 32520 14.5

S Release9 31376 12.9

The result of screening analysis confirmed that four of these five release factors are among the

final thirteen important factors.

From analysis, it was possible to proceed to a response surface experiment to determine
the best value for the 13 selected important factors, which include 9 block size and 4 block
release time factors. To estimate a full quadratic model with 13 factors, a CCD design was
created with 2%® factorial, 26 axial and 5 center point runs, a total of 287 runs. The analysis of

variance and lack of fit for the model are shown in Figure 57.

The estimate of effects for the profit is shown in Figure 58. Analysis of variance
indicated significant interactions among the factors. The small p-values for the linear and
quadratic terms also confirmed that the factors’ contribution is significant to the model, and there

IS curvature in the response surface.
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Response Surface for Variable Profit

Response Mean 1342901
Root MSE 72632
R-Square 0.9311
Coefficient of Variation 54086
Residual
Lack of Fit
Pure Error

Total Error | 182

Factor

type1
type2l

typed
typesTue

typeSFri
typebtTue
typebtThu

typed
typell

Release1
Release?
Released

Release5

178

Regression

Linear 13
Quadratic 13
Crossproduct . 78
Total Model

DF | Sum of Squares
944768183110

16360366830
960128549940

104

1.0632548E13

1.3258119E12

1.0250125E12

1.2983373E13

Mean Square
5307686422
3640091707
F275431593

DF | Sum of Squares | Mean Square

14
14
14
14
14
14
14
14
14
14
14
14
14

J.4979672E12
558529034267

1131737E12
1.6480861E12
1.0316662E12
998185739137
596801085848
122184391735
999084787563
13253110371
BB6858138718
118599367901
1.2700553E12

249854801073
39894931019
80838360507

17720437326
73690439359
71298981367
42628648989

8727456552
71363199112
9466507408
49061295623
8471383421
90718236611

F Value
1.38

F Value
47 .46
7.58
1536
22 36
14.00
13.54
8.10
1.66
13.56
1.80
932
1.61
17.23

0.7625
0.0951
0.0735
0.9311

Pr=F
0.4231

Pr=F
<0001
<0001
<0001
<0001
<0001
<0001
<0001
0.0680
<0001
0.0416
<0001
0.0801
<0001

DF | Type | Sum of Squares R-Square | F Value

16504
19.33
249
23.66

Figure 57: Summary of fit and analysis of variance for 2* fractional factorial design

Pr=F
<.0001
<.0001
<.0001
<.0001
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Figure 58: Parameter estimates for 13 factors
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Parameter Estimates

Term

Intercept
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Type2M

Typed

TypesTue

Type5Fri

TypebTue
Type&Thu
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Release

Releasel

Released

Releases
Type1*TypeZM
Tvpe1*Typed
Type1*Type5Tue
Tvpe1*TypesFri
Type1*TypebTue
Tvpe1*TypesThu
Type1*Typed
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Typel1*Release
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Tvpe1*Releases
Type2M*Typed
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Tvpe2M*Typed
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Type2M*Releases
Tvped*TypesTue
Typed*TypesFri
Tvped*TypeiTue
Typed*TypetThu
Tvped*Typed
Typed*Type10
Tvped*Release
Typed4*Release2
Tvped*Released
Typed4*Released
TvpesTue*TypesFri
TypesTue*TypebTue
TvpesTue*Type&Thu
Type5Tue*Typed
TvpedTue*Type10
TypesTue*Release
TvpesTue*Releasez
Type5Tue*Released
Tvpe5Tue*Releases
TypesFri*TypetTue
TvpesFri*TvpeGThu
TypesFri*Typed
TvpesFri*Type10
Type5Fri*Release
Tvpe5Fri*Release?
Type5Fri*Released
TvpesFri*Releases

Figure 58 Continued: Parameter estimates for 13 factors
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110.99
-25.23
5.61
-13.01
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12.80
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-1.21
923
-0.54
14.48
-3.52
-0.92
-0.13
0.20
0.03
0.13
1.61
2.02
-0.39
0.61
-1.21
-1.75
-4.45
0.87
1.49
-0.68
1.47
-0.97
2.48
1.34
-4.96
-1.67
0.49
0.39
-0.48
1.64
0.50
-3.10
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1.08
0.52
-1.41
-2.38
-3.03
-0.66
0.20
-1.24
-0.39
1.02
-0.45
-0.10
-0.76
2.82
-1.53
-0.97
012
0.65
237
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Prob=|t|
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=.0001*
=.0001*
=.0001*
=.0001*
=.0001*
=.0001*
=.0001*
0.1755
=.0001*
02272
=.0001*
0.5901
=.0001*
0.0006*
0.3601
0.8993
0.8381
0.9799
0.8948
0.1087
0.0447*
0.6933
0.5413
02272
0.0810
=.0001*
0.3312
0.1389
0.49582
0.1445
0.3315
0.0142*
0.1811
=.0001*
0.0968
0.6274
0.6940
0.6293
0.1024
0.6208
0.0022*
0.0856
0.2803
0.6013
0.1606
0.0181*
0.0028*
0.5117
0.8436
0.21449
0.6977
0.3100
0.6534
0.89205
0.4471
0.0054*
01272
0.3336
0.8045
0.5148
0.0186*
0.0666
0.0013*
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Type5Tue*TypesFri -13753.14 453951 -3.03  (Q.00z28
Type5Tue*TypeGTue  -2981.671 453951 -0.66 0.5121
Type5Tue*TypeBThu 89568412  4539.51 0.20 0.8438
Type5Tue*Typed -56643.723 453951 -1.24 02154
Type5Tue*Type10 -1764.232 453951 -0.39  0.6980
Type5Tue*Releasel -4616.582 453951 -1.02 03105
Type5Tue*Release2 -2039.557 453951 D45 0.6538
TypebTue*Released -453.0242 453951 D10 09206
Type5Tue*Releases -3455.232 453951 076 04476
TypeSFri*TypeGTue 12773605  4539.31 2.81 0.0054
Type5SFri*Type&Thu -6947.946 453951 153 01276
TypeSFri*Typed -4395.944 453951 097 03341
TypeSFri*Type10 544 8961 453951 012 0.9046
TypeSFri*Release -2959.476 453951  -0.65 05153
TypeSFri*Release2 10767.93 453951 237 0.0187
TypeSFri*Released 8368.0637 4539.51 1.84  0.0669
TypeSFri*Releases -14823.08 453951 327 0.001%
Type6Tue*TypeBThuy 22719885  4539.51 050 06173
Type6Tue*Typed TG06.4219  4539.51 1.68 0.0955
Type6Tue*Type10 40841155 4539.51 090 0.3695
Type6Tue*Releasel -63.19121 453951 -0.01 0.9889
Type6Tue*Release2  4096.9787  4539.51 0.90 0.3680
TypeBTue*Released 59058446 453931 130 01947
Type6Tue*Releases -T115.602 453951 157 01187
Type6Thu*Types 58721451  4539.51 0.01 09897
Type&Thu*Type10 5331.4345 4539.51 147 02417
Type6Thu*Releasel -3116.694 453951 -0.69 04932
TypeBThu*Release? -1220534 453951 D27 0.7883
Type6Thu*Released -2536.867 453951 056 05770
Type6Thu*Released 25781697  4539.51 057 05708

Type9*Type10 44927112 4539.51 0.99 03236
Type8*Release -3581.655 453951 079 04289
Type9*Release? 34453984 453931 076 04484
Type9*Released 759.40847  4539.51 017 0.8673
Type9*Released -181.1878 453951 -D.04 09682
Type10*Release 5400502  4539.51 119 0.2357
Type10*Release2 1407.0332  4539.31 031 07570
Type10*Released -6802.058 453951 150 01358
Type10*Releases 8412.0844  4539.51 1.85 0.0655

Release1*Release? 10584.052  4539.31 233 0.0z208
Release1*Released 24503552  4539.51 0.05 0.9570
Release1*Released 9046.2256  4539.51 199 0.0478
Release2*Released -1204395 453951 -2.65 0.0087
Release2*Releases -919.9995 453951  -0.20 0.8396
Released*Released -3250.149 453951 D72 04749

Type1*Typel -33824.06 493569 170 0.0912
TypeZM*Type2h -13964.84 493569 -0.28 07776
Typed*Typed -4538.759 493569 -0.09 0.9263

Type5Tue*Type5Tue  -54665.43 493569 111 0.2695
TypeSFri*TypesFr 10848.225 493569 022 08263
Type6Tue*TypeGTue  -1131744 493569 -2.20 0.023¢
Type6Thu*TypeGThu  -3103552 4893568  -D.63 05303
Type9*Typed -40032.92 493569 -0.81 0.4184
Type10*Type10 58541951 493569 119 02371
Release1*Release 131976.95 493569 2.67 0.008Z
Release2*Release2 -G824.601 493569 -0.14 0.8902
Released*Released -419617 493569  -0.85 0.3963
Release5*Releases -37062.94 493569 075 04537

Figure 58 Continued: Parameter estimates for 13 factors
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Using the general solution in equation 4.3, it was possible to locate the stationary point,

as shown below:

The RSREG Procedure
Canonical Analysis of Response Surface Based on Coded Data

Critical Value

Factor Coded Uncoded
typet -0.392639 14 822084
type2l -2.116584 3.766232
typed -0.846728 12 459816

typeSTue 0.798722 9.597445
typeSFri -2.724972 2580057
typebTue 0.132008 10.264016
type6Thu | -0.614308 13.771384
typed 0.498522 8.997044
typell 0.625090 18.250181
Release1 0.347999  53.567979
Release?2 = 4642090 | 106.273444
Released | -0.766084  35.742660
Releaseb 1461963 | 55391402

Figure 59: Canonical Analysis for 13 factors

The predicted response at the stationary point was $1,664,242, with some extrapolation
required to determine some of the larger predicted values, 4 out of 13 predicted values are
located outside the experiment region(outside the range of [-1, +1]). Canonical analysis was
conducted on the Hessian matrix B to classify stationary point into maximum, minimum or
saddle point. Our finding of both positive and negative eigenvalues, as shown below, indicated
that the stationary point is a saddle point.

To determine the best path toward improving the profit (response) away from the saddle
point, a ridge analysis was conducted. The path was started from midpoint location in the

experiment region. The result is summarized in Figure 60.
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Estimated
Response

1639932
1656238
1677375
1698398
1721822
1747788
1769457
1799677
1833062
1869794
1890807

type2M
0.021873

0.070651
-0.024043
-0.578794

0.166591

0.698999
-0.218190
-0.118508

0.102230

0.230083
-0.053505

0.120767

0.009981

Standard
Error

13927 | 16.000000
13925 15.837774
13924 | 15.688978
13945 | 15.555011
14025 | 15.436960
14232 | 15.338973
14634 | 15.256558
15205 | 15.215391
17348 | 15.203689
22269 | 15.198677
29566 | 14.953688

typed
0.015717

0.047622
0.015049
0.629571
0.673121
0.251484

-0.057095

0.041087
0217721
0.169242
0.015664
0.045666

-0.035196

type5Tue
0.012756
-0.006360
-0.095434
0.002206
0.027497
0.072341
-0.053042
-0.089110
-0.216453
-0.018016
0.962514
-0.004319
0.017685

-0.057498

-0.006859

Eigenvectors

type5Fri | typebTue  typebThu

0.011399
0.000546
0.945933

-0.162056

0.144031

0.098762
0.131103
0.065820

-0.072772

0.126082

-0.047471

typed

0.000413 | 0.009173 0.008159

0.011416
0.056981
0.025736
0.015159

-0.013000

0.026838

-0.048006

0.033106
0.044387

-0.006823
-0.014182

0.994597

0.034247
-0.080570
-0.022101

0.032394

0.276356

0.950635
-0.046734
-0.088326
-0.014954
-0.001361
-0.012173
-0.016573

0.019517
-0.020384
-0.035191
-0.199682
-0.172922

0.116539
-0.349179

0.841538

0.207986

0.184728
-0.064020
-0.054303

Stationary point is a saddle point.

type10

-0.035770

0.992999
0.009513
0.009961

-0.030187
-0.078653
-0.017427
-0.022086
-0.055910

0.001708

-0.000757
-0.036316
-0.012087

Rel 1

Rel 5

0.997589
0.034253
-0.002343
0.022420
-0.045849
-0.004336
-0.006885
0.027761
-0.006905
0.003248
-0.010944
0.004138
0.000983

-0.039275
0.001171
0.248156
0.476557

-0.656162
0.468683

-0.088163

-0.038468

-0.084775
0.206236

0.015727
0.008437

-0.016266

Canonical curvature, Eigenvalues and Eigenvectors for 13 factors

typel  type2l
.000000

8.026479
8.055385
8.085536
8.115295
8.142459
8.162986
8.169068
8.165804
8.160955
.155940

Estimated Ridge of Maximum Response for Variable Profit

The RSREG Procedure

typed | typeSTue
15.000000  8.000000
14.909429  8.075100
14.811964  B.145835
14.709166  B.210685
14.603595  B.268292
14.499037  8.317328
14.403493  B.354745
14.341844  8.371803
14.299887  8.374347
14.088911 | 8.373388
13.805153 | 8.371508

typeSFri
8.000000
B.057708
8.120382
8.186910
5.255399
8.322790
8.362087
8414351
8.422765
8424568
8424397

Unceded Factor Values

typebTue
10.000000
10.052796
10.097606
0.135017
10.165626
10.189953

10.207821
10.216822
10.219606
10.220697
10.221260

typebThu

14.953693 7.993698
14.906704 7.986988
14.860040 7.980029
14.614841 7.972972
14.772401 7.965911
14.735281 7.958891
14.696068 7.952863
14291683 7.948548
13.953688 7.945856
13.851443 7943322

typed
15.000000 8.000000

Figure 61: Ridge analysis for 13 factors
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The predicted response reached $2M, 44% higher than the estimated profit of $1.4M at
the current operational level (the experiment region at the center point). The modified stationary

point is thus located at:

(—0.777

—0.95

This result suggests that in order to achieve a superior OR allocation plan, four out of the
nine block factors--Type 1, Type 4, Type 6 and Type 10 --would have to be reduced further.
However not all of the reductions in block size are due to block release optimization. For Type 1
and Type 4, introducing the block release factor into the model results in a further reduction of
block sizes, but, when release effects is excluded from the model, even further reductions are
required in order to achieve optimization under a lower utilization rate (referring to Table 37,

superior block schedule decision under 60% utilization rate).

Thus, we have excluded Types 1 and 4 block size reduction from our analysis of the
marginal benefits of the joint optimization of allocation and release policy. In addition, the effect
of introducing block release factors into the model suggests that setting earlier release times for
Block Types 2 and 5 and postponing release times for Block Type 1 and Type 4 would be a
viable way to improve profits or to reduce overall waiting cost. More explanation, including the
reasoning for and potential financial gains associated with these results, is provided in the next

chapter.

Step 3. The third and final step will be to optimize the scheduling policy so that overall

waiting costs are minimized.
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The application of reserve policy in case scheduling for the multi-priority patient

As noted in Chapter 2, the third and the last step in the process of optimizing individual
patient scheduling must center on daily decisions about patient scheduling policies where the
waiting costs vary—that is, in cases of multiple-priority patients with semi-urgent needs. This
step in the optimization process applies only to those patients who are scheduled in open hours or
in released hours since for the patients who are scheduled in home blocks, their surgery times are
assigned on a first-come-first-served basis. We assume the best release policy remain unchanged
from the result of the joint-optimization of block hour and release policy.

Around 25% of Stafford’s surgeries are performed either in open hours or in released
hours. This means that an improved appointment policy can generate an improved overall yield
(profit) from these patients by reducing their waiting times. The previous chapter reported on the
benefit of our reserve policy for the scheduling of two-priority patients. These findings can be
extended to multi-priority patient scheduling by introducing booking limits (protection levels)
for each priority level. The protection level is calculated for every combination of classes while
comparing each class with all other priority classes. The results of the simulation model
presented here incorporate the idea of accepting/postponing requests for surgeries from several
competing classes of patients who present fluctuating demands and service hours. Traditionally,
the primary concern in the healthcare operations literature has been how to reduce operating
costs and increase OR utilization. Since the survival and prosperity of the surgical suite in the
long run also depends on the revenue it generates, it is also crucial to investigate how to better
manage the mix of patients that request elective surgeries, with the goal of increasing the
expected revenue generated by the surgical department and reducing the risk of delays and
cancellations of surgical cases (Stanciu et al., 2010).

The problem of allocating service capacity among several competing customer classes,
who arrive randomly over a period of time, has been studied in diverse applications including
airlines, hotels and car rentals. In particular, airline Revenue Management (RM) has been studied
thoroughly; see McGill and Van Ryzin (1999) and Talluri and Van Ryzin (2004) for detailed
reviews. Whereas capacity reservation is also an important aspect of health care access
management, there are important differences that make it difficult to simply “tweak™ existing

models to fit the needs of the health care industry. For example, of the various models suggested
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for airline RM, comparisons with the Expected Marginal Seat Revenue (EMSR) model (see
Belobaba, 1989) help to highlight the complexity of healthcare operations (Gupta and Denton,
2008).

To outline the main differences between Stafford’s multi-priority policy and the earlier

two-priority case, we briefly review the following:

Urgency level. In the 2-priority case, the waiting cost function was linear (e.g., f(t,pp) =
¢ + pp, * t,with the same intercept c for type a and type b), which means one type of patient is
always dominant (or has higher priority). In contrast, at Stafford, the waiting cost function
follows a log function, where the priority of patients changes as a function of waiting time. The
probability of cancellation and the expected revenue per case defines the overall cost of waiting
for each patient type. Expected revenue per case is calculated based on the average revenue per
hour of operation (including pre-op, surgery and post-op). Due to the confidentiality of financial
data, proportional revenue per hour is used for comparing patient types. Waiting costs are
quantified as the potential loss of profit due to a patient leaving the system without getting the

surgery. It can be represented as follows.

S N .
i=1 Zj=0 niT;

T, Expected revenue per case, associated with surgeon i
TT;, Probability of cancellation, given j waiting time unit

Stafford does not have any type of patient who is the highest priority at all times. Waiting
penalties ($ profit loss) given waiting time are presented in Figure 62. Type B patients have the
highest priority until time 45, after which Type A becomes the highest priority. This function
makes the assigning decision more challenging because the decision must depend on the state of
the system.

Secondary arrival rate. In order to calculate the protection level for multi-class patients,
the arrival rate for all types of patients must first be calculated. The arrival rate is not the original

arrival rate of each patient type but rather the arrival demand for a released block or open hours
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(we refer to this as “secondary arrival demand”), which may be completely different from the
initial arrival rate due to differences in original block hours, urgency levels and original arrival

rates of patients.

To estimate the secondary arrival rate (and overall demand) for released time and open
ORs, the Stafford simulation was run under the superior scheduling block time and release policy
(Step 2 optimization). This result has been used to estimate the optimal secondary demand rate
for off-block hours (Table 39).

Table 39: Secondary arrival rate driven from simulation under superior block size/release policy

. Initial Mean inter- Secondary Mean inter-
Specialty Surgeon/Group arrival time (day) arrival time (day)
EAR, NOSE AND

THROAT G 2.53 4.46
H 3.20 17.67

GENERAL /
VASCULAR B 3.17 13.78
E 1.06 7.05

OBSTETRICS/GYNEC

OLOGY F 1.23 6.80
| 5.32 19.40
ORTHO A 2.45 4.22
D 1.50 5.44
PLASTICS K 5.93 47.88
C 1.26 5.88

PODIATRY
J 4.80 20.34

Surgeons’ preferences and available days of the week to do surgery. In the 2-priority
patient case, surgeons were available and willing to perform surgery on any day. In contrast, at
Stafford, surgeons are only available to conduct surgery on a limited number of days. This
additional restriction make the scheduling decision even more challenging since the optimal
scheduling decisions will be a function of waiting time as well as the day of week for the
available released hours. Due to the Markov property (memoryless), it does not matter if we have

released hours for higher priority patient before this available time, so each available released
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block is evaluated separately but we will give a higher penalty weight to those patients whose

surgeons have less opportunity to assign their case to open and/or released hours.

Open blocks versus released block. There is a slight difference between available
capacity in open and released OR hours. As hospitals already have committed staff for released
hours, schedulers tend to fill released hours first and then look for possible open ORs. This
difference results in revenue lost for unfilled released hours, while there is no penalty for unfilled
open ORs. To incorporate this difference in our study, we have assumed two scenarios for cost
per hour of open hours of 1.5 and 2.0 times the cost per hour of released block. This cost
difference makes it possible to compare the trade-off between the cost of leaving released hours

unfilled and the cost of unnecessary open hours.

These features and the need to accommodate urgent demand, make it more difficult to
apply popular heuristic revenue management methods such as the Expected Marginal Seat
Revenue (EMSR) model, for the surgery scheduling (access) decisions. Currently, at Stafford,
surgeries are assigned to off-block hours based on first-come-first-serve strategy. The proposed

reserve policy at Stafford exploits the multi-priority patients in assigning patients as follow,

Algorithm 2. A scheme of Stafford proposed reserve policy algorithm

Given a patient C has exceeded the maximum release time threshold, T,,,,; and is eligible to

assign to release/open time.

1. Obtain
a. Patienttype, | = {4,B, ...,K}
b.  Arrival rates (secondary arrival rate), Ag;
c.  Maximum release time of each patient type, Thuax:
d.  Surgeons’ preference matrix , M
2. Find the first available spot, R;, for patient C in released hours, which
a.  matches with the surgeon’s preference matrix (1.d) and
b. is within the maximum release time of the patient (1.c, refer to block release policy)
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. Look up the surgeons’ preference table for this day (the weekday associated with R;;) and
identify all patient types whom their surgeon(s) can perform surgery on this day (e.g.,
Monday)

. Calculate the priority (expected waiting loss) of selected patients, P .oy, based on
secondary arrival rates, A5;, and the waiting cost at time unit T;, where T; is calculated
based on T; = (R;; — current time) > 0, and sort patients in ascending priority order

{PC =m.(T1) * 1, ;case c
T1

chomp = 1/T1 * (1 — e‘Ale)) * yz Teomp(t) * Teomp ; competitor cases
t=0

* 1., Tcomp: $ Revenue per case

o 1 /T1 « (1 — e~TD) : Probability of arrival for competitor cases in the next T;time unit

. nyio Teomp(t) © Probability of leaving for each competitor case, given waiting time ft;
y: daily discounted factor
_ T
b Pcomp = 1/T1 * (1 —-e Ale) * thio T[comp(t) * Tcomp:

Expected waiting cost penalty of competitor

. Iterate until simulation time ends,
a. If the requesting patient type C, has the highest priority rank, assign it to this
available spot R,
b. Else if, in spite of allocation of higher priority type(s) to this released block, and
there is still enough space remaining, assign the case C to Ry,
. Else, find the next open/release hour, R;, for all higher priority patients and this patient C,
which
a. matches with surgeon’s preference matrix and
b. R;, <maximum time of the patient (refer to block release policy)
. Calculate cost of postponing each higher priority patients to the next available spot, R;, as

follow, T, = (R;, — current time) > 0
T

1/T2 * (1 - elsz) * Yz Teomp(t) * Teomp * Popens
t=0
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* Pypens = 1: Penalty of using open hour versus utilizing current release hour

Cost per hour of open block

; R;, bel t h
Popeng = cost per hour of release block ’ t2 belongs to Open hours
1 ; R, belongs to release hours
a. If the cost of postponing case C to the next available spot is higher than postponing
higher priority case(s), or if following equation holds, schedule case C to the first

available space, R;4,

T
— 1 _ AT
P, =m(Ty) * 1. * openB > kérclgép /T2 * (1 e Mk 2) *yz T () * 1 * openB
t=0

b. Else, return to 6.

An experiment is conducted for the proposed reserve policy on the Stafford simulation
from the step 2 final result, Stafford under superior block size and block release policy. The same
duration of 4800 time units is selected in order to ensure the comparability of results. We have a
fixed amount of daily release/open capacity. Patients of different priorities who have exceeded
their maximum wait time arrive randomly over time and it must be decided whether to assign a
case to the first available release block or postpone it to the later time (either open or own block)
in order to reserve earlier hours to higher priority patients. There is always a risk of
underutilization in the event that release hours are not fully used. On the other hand, proceeding
with filling released hours with lower priority cases will incur additional waiting cost for higher
priority patients. In order to capture this tradeoff in the simulation, we ran the simulation under
two scenarios; cost of open hours being 1.5, and 2.0 times cost of released block. The higher the
cost, the greater the tendency to assign cases to released hours rather than open hours (thereby
penalize under-utilization more). We will evaluate the overall cost (including underutilization
and waiting cost) under these scenarios. We are interested in minimizing the total expected cost
(or maximizing expected profit) over a finite planning horizon considering patient priority. More
explanation, including the reasoning for and potential financial gains/loss associated with these

results, is provided in the next chapter.
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Chapter 6 : Summary and Conclusion

Figure 62, shows the marginal profit gain at each step of our optimization process. To
summarize, we took two steps to estimate improved values for block schedule and release policy
factors. The purpose of Step 1 of the process was to find superior block schedule allocations for
multi-priority patients in the experiment region. The results of Step 1 were used in Step 2 to
establish a joint optimization of allocation and block release policy. Overall, we found that
profits could be increased 44% above the current Stafford operational level, with 21% of the
improvement coming in Step 1 through the combination of better alignment of the OR time
allocations with the requirements of each surgical specialty and relaxed utilization rate
assumptions.

An additional 10% improvement was gained merely by optimizing the release block
policy with reference to the patient waiting penalty function or priority-level and the block
utilization rate. The remaining 9% was due to the effect of further OR block size reductions of
Types 1 and 4 surgeons, who had been excluded from our analysis of the marginal benefits of the
joint optimization of allocation. The first step of optimization involved reducing OR block sizes
when there was minimum impact on patients’ waiting time or increasing OR block sizes when
the additional gain in terms of waiting-cost reductions outweighed the costs of incremental block

hours.

Marginal profit gain at each step of the optimization

2,500,000

2,000,000 n @ 0%
| 4a% N 10%
| ! o, v

1,500,000 v 21% =—@=—step2: Margical gain due to
W

jointconsideration ofblock
size/release policy (exclude
block size factor)

Profit $

1,000,000
—#—Step-wise incremental gain

500,000

Stafford Operational stepl: finding optimal  step2:Joint optimization
profit block size under 75%  of block size and release
utilization factors under 75%

utilization

Figure 63: Marginal profit gain at each step of optimization
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In contrast, the second step emphasized improving utilization by means of an improved
release policy, based on the principle that the value of postponing release time must be calculated
in terms of the valued gained by dedicating space to higher priority patients or releasing blocks
earlier to provide more access to higher priority patients and thereby reducing overall waiting
time.

Table 40 summarizes the step-wise optimization results and shows how these results
compare with the current operational level at Stafford. As shown below, both OR block costs and
waiting costs can be reduced through these two steps. In Step 1 alone, waiting costs can be
reduced by 5% by means of 1) improved access to earlier off-block OR times for high priority
patients via increasing open OR hours, 2) the addition of OR block times for medium priority
surgeons with more frequent schedules, and the provision of better opportunities for high priority
patients to use unfilled blocks.

Table 40: Summary of step-wise optimization results

- Optimized block
Stafford Optimized % F;n d Release %
(quer 6.34% o _(_unc!er change (under 75% change
utilization) 75% utilization) .
utilization)
Total # of performed surgeries 792 803 1% 809 1%
Revenue $9,633,062 $9,734,990 1% $9,849,774 1%
Total block cost $6,635,124 $6,519,367 -2% $6,345,443 -3%
Total waiting cost $1,590,791 $1,519,078 -5% $1,478,226 -3%
Profit $1,407,147 $1,696,545 21% $2,026,105 19%
Total occupied block hours 1601 1603 0% 1595 -1%
Total occupied open block hrs 306 405 32% 414 2%
Total occupied release block hrs 73 83 14% 103 24%
Initial block hours available 3155 3047 -3% 2984 -3%
Utilization 64% 70% 6% 73% 3%

As explained above, in the first step, the total number of occupied open blocks was

increased by 32%, thereby reducing the waiting time of those patients who couldn’t find
available OR times in another surgeons’ released block or whose first available space in
surgeon’s block was extremely delayed. Step 2, in turn, generated a significant change in
occupied release hours due to a policy for earlier release time and the channeling of high priority
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patients into unfilled spaces, thereby improving utilization and waiting time. Although all the
simulations were run for the same duration (of 4800 time units) in order to ensure the
compatibility of results, the model shows that revenue as well as the number of performed
surgeries can be increased through step-wise optimization. Revenue is generated based on the
number of performed surgeries (exclude waiting and canceled cases) by the end of the simulation
time. As utilization increases and waiting times decrease through the optimization steps, Stafford
can perform more surgeries over the same period of time. Although the rate of utilization
improved from 64% to 70% in the first step of the model’s implementation, it did not reach the
target rate of 75% due to variations in demand such as variation in case durations, arrival rates
(coefficient of variation), the probability of cancellations (multi-priority patients) and restrictions
on providing services such as surgeons’ preferences or limitations in the availability of
equipment. Although we cannot control such variables, we can reduce their effects by offering
more flexibility to surgeons to assign their cases based on a first-come-first-served rule. An
optimal release policy, which considers both differences in waiting costs and multi-class patients,
can effectively control variation and improve utilization across surgeons. As can be seen in
Figure 63, the utilization rate improved to 73% in the second step of the model’s implementation
thanks to modifications in release times. Figure 64 displays the resulting utilization rates across

patient types.

Utilization Rate
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Figure 64: Utilization rate across surgeon types and through each optimization step
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Utilization has improved for almost all groups, partially due to the modification of the
utilization rate from the current rate of 64% to 75% and partially due to the optimization of the
release policy considering the waiting-penalty function of multi-class patients. Although the
same percentage of block size reduction is achieved in both steps (a 3% reduction in initial block
hours available), the second optimization step makes a greater contribution to utilization
improvement by providing fair access to all patients via a better release policy.

Table 41 lays out the result of the improved block schedule allocations across specialties.
In the model, the overall block size is reduced by 6% with a combination of increases and
reductions in block size. The highest percentage of block size reductions occur for Types A, D
and 1, all ortho surgeons. These types of surgery have the highest priority with the steepest
waiting cost function and the highest coefficient of variation in arrival rates. These surgeons also
have the shortest scheduling lead time, so keeping the block size unchanged and releasing blocks
earlier would not be a viable way to reduce waiting times or block costs. The results indicate
that, for these high priority patients, it is more valuable (lower waiting penalties) to have fewer
allocated blocks aggregated on one day while allocating more surgeries to off-block hours with
higher flexibility or spreading surgeons’ block hour across multiple days instead of one day

every other week.

Table 41: Summary of change in block schedule allocations in stage-wise optimization

Stafford Optimized block Optimized block Optimal Stafford

Surgeon (under 64% (under 75% and Release (under (under 75% %
/Group utilization) utilization) 75% utilization) utilization) change
Type A 192 -27% -1% 130 -32%
Type B 239 0% 0% 240 0%
Type C 288 0% 0% 288 0%
Type D 312 -22% -14% 202 -35%
Type E 480 5% 0% 502 5%
Type F 648 0% -6% 608 -6%0
Type G 96 0% 0% 96 0%
Type H 144 0% 0% 144 0%
Type | 120 -40% 0% 72 -40%
Type J 120 0% -20% 96 -20%
Type K 96 0% 0% 96 0%
Open block hrs 416 23% 0% 512 23%
Total 3151 -3% -3% 2984 -5%
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It is also clear from the improved block time allocation decision result in Table 41 that an
increase is needed in block sizes--both in dedicated block times and open block hours-- to
provide more access to higher priority patients notwithstanding the high cost of block hours.
Figure 65 shows how block size reallocation and overall block size reduction affected waiting
times across different types of surgery, as well as how each of the optimization steps contributed
to the shift in the distribution of OR services, and thus to the rebalancing of resources across
competing classes of demand. It is obvious that waiting time has not been reduced for all types of
patients nor is the reduction rate the same among groups. This difference in outcome is due to

differences in the sensitivity of patients to waiting times.

Average waiting time
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Figure 65 : Average waiting time across patient types and through each optimization step

As illustrated in Figure 66, each surgeon/group shows different sensitivity to waiting
times. Some start with a very low waiting penalty but see a rapid increase in the waiting penalty
over time; others show less sensitivity to the waiting time with nearly constant waiting penalties
over time. Table 42 provides the details on how this behavior causes priority ranking changes over
time among these groups. For example, Type A, with steepest slope, stands at the fourth rank at
the start but, after a short waiting time, reaches the first rank while Type G’s ranking just
fluctuates around ranks nine to eleven over time. This behavior adds more complexity to the
optimal block allocation and release policy decision at Stafford.
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Figure 66: Waiting cost functions across surgeon/group; indicates $ profit loss per waiting time unit

Table 42: Time-based priority of surgeon/group

Priority-Ranking (t) Time
Surgeon

Specialty /Group O |10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
A-Ortho Type A 4 2 2 1 1 1 1 1 1
B-GEN/VASC | Type B 1 1 1 2 2 2 2 3 4
C-PODIATRY | Type C 7 7 8 9 9 9 9 9 9
D-Ortho Type D 11 |11 | 11 | 9 9 7 6 6 4 4 3
E- GEN/ VASC | Type E 2 2 2 3 3 4 4 5 6 6 6
F- GYN Type F 5 5 5 5 5 6 7 7 7 7 7
G-ENT Type G 9 9 |10 |11 |11 | 11 |11 |11 ]| 10 | 10 | 10
H- GEN/ VASC | Type H 3 3 4 4 4 3 3 3 5 5 5
1-Ortho Type | 10 | 10 | 9 8 5 5 4 3

J- PODIATRY | TypeJ 6 6 6 6 8 8 8 8

K-Plastic Type K 8 8 8 |10 |10 |10 | 10 | 10 | 11 | 11 | 11
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As explained before, Stafford has a modified block approach in which 75% of OR hours
are dedicated to surgeons/group and 25% are kept open to share with other groups. Stafford
employs a predefined block release policy that is calculated so that the required scheduling lead-
time accommodates 75% of a service’s patients. This time must be managed carefully to be fair
to both block owners and other groups. Our objective was to derive an improved release policy
based on historical data so that waiting times and overall block costs could be minimized across
multi-priority patients. Figure 67 displays the percentage of cases that are handled in non-
primary blocks (off-block %) across groups through each optimization step. The percentage of
off-block surgeries for Surgeons A, D and | has increased more than 15% due to high waiting
times and the surgeons’ inflexible schedules. On the other hand, the percentage of surgeries that
are performed off-block have been reduced for Surgeons G and K, who have the lowest priority
patients but have also seen higher waiting costs. Our decision of block size reduction in the first
step along with postponing release time for high priority surgeons resulted in less possible off-
block opportunity for these two surgeons to assign their surgeries to off-block hours. This
decision resulted in forcing low priority patients into a home block for Surgeon G and K,
essentially freeing space and giving higher priority patients a better chance at being scheduled

for off-block surgeries.

Percent of off-block surgeries
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Patient Type

Figure 67: Percent of off-block surgeries across patient types and through each optimization step
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Figure 68 presents summary statistics regarding the percentage of off-block surgeries at

Stafford under an improved block and release policy. Each number represents the percent of the

surgeries of each type performed in blocks allocated to each type, under existing conditions and

under improved conditions. Comparing these two tables indicates that the improved release

policy results in lower waiting times and higher utilization, as summarized below:

Postponing the release time of Type A and Type D surgeons has resulted in more reliable
block times for these high priority patients. As a result, there is less sharing with other
surgeons. For example, referring to the current schedule at Stafford (Figure 68a), Type G
has performed 2% of his surgeries in Surgeon A’s block, with the highest waiting penalty
and shortest scheduling lead time, while under the superior policy (Figure 68b) no
surgery has been performed in Surgeon A’s block hours.

The utilization rate has improved by 10% for Surgeon B (refer to Figure 63) due to an
increase in the percentage of off-block cases performed in Surgeon’s B block hours. The
improved release policy results in earlier release time with more available time for use by
other groups. This decision resulted in a slight increase in off-block percentage for
surgeon B for those cases that come in at the last minute but the utilization improvement
appears to have offset the increase in open block hours.

Although we have increased Surgeon’s E block size in the first step, the utilization rate
stayed the same due to a higher percentage of off-block cases performed in Surgeon’s E
block hours as a result of earlier release time with more available time for use by other

groups.

Table 43 provides the complete results of the optimization including a short description

of the surgeon/group properties and the proposed action for each group in terms of block

hour reductions (or increases) and release time adjustments along with the rationale for the

changes. The results confirm the earlier statement that “the main goal of optimization is to

improve profit with block cost reduction where there is a minimum effect on waiting cost and

reducing waiting cost considering waiting penalty function for multi-class patients.”

147



e e o % % % 1% 1% 11%
% 0%
[ 1% 1% 17%
8% 13%

% 1%

0.7% 1%  [NS0N 9%

2% % 2% [ 1% 51%
7.5% 7.5% % 0%

- 100% 0%

8% 13%

W 1% 5% 2 N 0%
(TypeA TypeB  TypeC TypeD TypeE TypeF Type TypeH Typel Typel TypeK Openblock
R 10% % 1% % 1% 2%

% 1%
1% e 19%

N v 4%

8% 12%

2% 1% [0 %

5% A% 1% 53%

6% % 4% % 3%

10% % 11%

2% 8% 13%

2% 3% 1% O %

Figure 68: a) Percentage of off-block surgeries in Stafford b) Percentage of off-block surgeries under
superior block schedule and release policy

The third and final step focused on evaluating the case scheduling or reserve policies for
multi-priority patients. Currently, at Stafford, released or open hours are occupied according to
first-come first-serve policy. We generated two scenarios of reserve policy under different
penalizing functions for using open hours versus release block hours and we estimated total
expected cost by simulating Algorithm 2 (introduced in Chapter 5) for the population of patients

who are eligible to be assigned to either released or open hours.
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Table 43: Detailed description of surgeon/group along with the result of optimization

The highest priority patient
type with short scheduling
lead time (urgent), utilization
of 66%, and the steepest
waiting cost function.

A high priority patient type
with a low utilization rate of
51%. (Surgeon B performs
three days a week every
week), and very high and flat
waiting cost function.

A low priority patient type
with long scheduling lead
time, a high cancellation rate,
high utilization, and a flat
waiting cost function.

A medium-to-high priority
patient type with low
utilization and a

steep waiting cost function

A medium-to-high priority
patient type at the target
utilization, with medium
waiting costs that show a flat
slope function

In spite of high priority level, a reduction in block hours is
proposed along with postponement of release time to create
access to more reliable space and re-direct patients to use
even more off-block hours (current off-block is high).
Performing surgery only one day every other week results
in higher waiting costs for these high priority patients. By
assigning more than half of these patients to off-block
hours, the average waiting time is reduced by 26%

In spite of low utilization, no reduction in block size is
proposed due to high waiting penalty and short scheduling
lead time for these patients. However, a shift of release time
to earlier times is proposed so that underutilized hours can
be shared with other surgeons, improving overall
utilization.

Because it has no significant effect on profit , Type C was
not selected as an important factor in factor screening so it
remains at its current operational level

A reduction of block size is proposed but with a
postponement of the release time and a redirection of more
patients to off-block spaces. Allowing surgeons to assign
patients on a more flexible schedule helps to reduce waiting
times for these high-priority patients by 11%

A slight (5%) increase in block hours is proposed, while
releasing the unfilled spaces earlier to share with others.
Given the short lead time and the surgeon’s need for a
specialized room, an increase in block hours is an
appropriate decision for these medium-to-high priority
patients. Increasing the block hours along with earlier
release time will reduce the waiting time while letting
higher priority patient utilize unfilled spaces on any of three
days each week.
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A low-to-medium priority
patient type with low
utilization, and a

flat waiting function

The lowest priority patient
type, with very high waiting
time, a high utilization rate,
high off-block use, and a low,
flat waiting cost function

A medium-to-high priority
patient type with low
utilization (Surgeon H
performs one day per week
with high % of semi-urgent
patients) and a

medium waiting cost function
with mild slope

A medium priority patient
type with low utilization, a
very low waiting penalty at
low waiting times, but a
steeply rising slope over time
A low priority patient type,
with low utilization (one day
of surgery every other week),
a very high percentage of
semi-urgent patients, and a
medium-to-flat waiting cost
function

A low priority patient type
with low utilization, a low
volume of surgery, low initial
block hours, a high
cancellation rate, and low
penalty with a flat waiting
cost function

Table 43 Continued: Detailed description of surgeon/group along with the result of optimization

This type of surgery requires a specialized room so, even
with the low utilization, only a 6% reduction in block size
is proposed. There is no need to retain the entire block for
this low-priority patient type with its high coefficient of
variation in arrival rates. Changes to an earlier release time
for more surgeons will redirect cases out of this block hours
to released hours of other blocks.

Type G did not emerge as an important type during factor
screening, so it remains at its current operational level.

Type H did not emerge as an important type during factor
screening, so it remains at its current operational level.

Because this surgeon has a low number of patients and only
performs surgery one day every other week, a reduction in
the block size is proposed while re-directing patients to off-
block hours, thereby facilitating more flexible scheduling.

To facilitate release-time optimization, a reduction in block
size is proposed for this low-priority patient by re-directing
a higher portion of cases to off-block hours while re-
directing other surgeons’ cases who use this surgeon’s
hours out of this block. This decision has minimum effect
on waiting cost of patient type J.

Although this type of surgery occurs only one day every
other week, it was not identified as an important factor.
The block release is already set at the earliest possible time,
taking advantage of the high cancellation rate and allowing
high priority patients to occupy unfilled space.
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In Figure 69, we plot the marginal profit gain/loss utilizing a reserve policy under two
scenarios of open block cost, 1.5 times and 2.0 times the cost of occupying release hours.
Although one expects the performance to improve under the reserve policy when we have multi-
priority patients, comparing the performances of two scenarios indicates that applying the
reserve policy does not necessarily result in superior performance under all conditions. Rather, it
depends on the optimal balance between underutilization cost and waiting cost. A penalty of

using open hours versus released hours performs quite well in balancing these two cost types.

Marginal profit gain at each step of the optimization
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Figure 69: Marginal $ profit gain/loss at case scheduling optimization

In the case of a higher penalty in occupying open hours (2.0x) than release hours, we
gained some improvement in profit due to a reduction in overall waiting time with a minimal
reduction in utilization rate. Under this scenario, we tend to fill release block first rather than
assigning them to open blocks in exchange for the risk of higher waiting cost for future higher
priority patients. However, the system performs substantially worse under 1.5 times penalty (and
even worse than the first-come-first serve policy), showing the importance of the under-

utilization rate while protecting capacity for the future high priority cases.
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A comparison of utilization rates among surgeons (in Figure 70) indicates that, under the
first scenario, more cases are assigned to open hours thus the utilization rate is reduced in order
to keep more space for possible high priority patients. While under the second scenario, we are
inclined to assign cases to the last spot in the release time block range. In this case, utilization
will improve with minimal impact on the waiting time of high priority patients. We noticed that
under the higher penalty for open block, fewer cases are assigned to open blocks, which indicates

there is higher chance to force high priority cases to wait for longer times in the system.
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Figure 70: Utilization rate across patient types under improved case scheduling

However, assigning a smaller number of jobs does not immediately translate to a higher
waiting cost for higher priority patients. It is due to having open hours in the near future if the
released block has already been filled. Figure 71 shows how the improved case scheduling policy
affected waiting times across different types of surgery, as well as how open block penalty cost
contributed to waiting cost, and thus to the rebalancing of resources across competing classes of

demand.
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Figure 71: Average waiting time across patient types under improved case scheduling

Figure 72 displays the percentage of cases that are handled in primary or non-primary
blocks (off-block %) across groups under FCFS and reserve scheduling policy. The reserve
policy tends to postpone low priority cases with high arrival rate in favor of high priority cases
(referring to patient type G and D in Figure 72 (b)). We see the same behavior under both
scenarios of reserve policy with the difference that a greater percentage of cases are still assigned

to release block as we penalize open blocks more.

Concluding Remarks:

In this dissertation, we focused on developing realistic models for elective surgery
scheduling for multi-priority patients in order to solve the joint optimization of allocation and
release policy decisions and providing practical insights for practitioners. The goal was not to
instruct hospitals as to how they should schedule their cases and block times, but rather to
provide options for practitioners to explore. Parameters, conditions, and goals may vary from
hospital to hospital, so having some rules of thumb helps to tailor these differences. The majority
of earlier studies looked at either a single allocation scheduling stage (case mix planning,
surgical master schedule or elective case scheduling) or a reduction in surgery waiting lists (in

contrast with online scheduling).
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However, this study (Chapter 2) addressed the importance of joint optimization
specifically under online scheduling. Recognizing this fact, we characterized a mathematical
programming model and conducted simulation modeling (Chapter 3) to examine a class of
policies that are characterized by reserve levels. We drew valuable scheduling insights from our
extensive computational study and from suggested solutions from the case studies. Numerical
results from Stafford hospital (Chapter 4) showed that consideration of patient priority resulted
in better performance as compared to a schedule that ignores the patient priority (using first-
come-first-serve policy), despite the fact that the reserve policy only applies to 25% of Stafford’s
patient.

Hospitals should be in a continuous search for more efficient and timely utilization of
their resources (time, ORs, personnel) in order to better respond to patients’ requests for service.
What we offer in this study would help hospitals make better decisions at the strategic and
operational level. In addition to answering the questions on how many ORs to allocate per
surgeons/specialty, this study offers insights about how much time to optimally reserve for
higher priority patients, and what would be an improved release time. The problem of allocating
multi-priority patients is complex and requires incorporating some revenue management
techniques that, despite their proven results in airline and hotel management, are still not very
widespread in healthcare. We presented the specifics of these techniques when applied to
healthcare and we believe that continued research in this direction will provide hospital
managers, practitioners and schedulers with adequate decision making tools.

Insights for the Practitioner

In this section, we convey the key insights of this study in a way that is clear, relevant
and actionable, so that practitioners can use our findings to make the best possible business
decisions in their own contexts. More importantly, this section will allow practitioners to develop
a real-world understanding of the complexities of this field. The section addresses compromises
practitioners must make when deciding how to allocate and release blocks, as well as how they
can take into account different levels of tolerance for waiting across different classes of patients.
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Many hospitals have policies about allocating block hours among specialties based on the

demand for surgeries regardless of differences across specialties or levels of urgency for

different classes of patients. Although calculations of average demand and utilization are a good

starting point for estimating the number of hours a surgical group needs to schedule, these

calculations cannot provide answers to questions such as ‘When do we need to allocate more

block time than average demand would suggest?’ or ‘Which mix of open/block scheduling

strategy is best for each combination of patients?” The concepts of waiting penalties, arrival

rates, and scheduling lead time can serve as useful indicators for allocating resources among

surgeons. For example,

When a surgical group has high priority patients with short lead times who require
specialized rooms, then an increase in block hours along with earlier release time
is recommended, so that underutilized hours can be shared with other surgeons,
improving overall utilization.

When a surgical group has patients with very steep waiting penalties, short lead
times and a high coefficient of variation in demand, then a reduction in block
hours and higher use of open/released hours along with postponement of release

time is recommended, so as to create more reliable access to space.

Although our results confirm that no single case scheduling policy is superior for all sets

of parameters, our findings do suggest some useful rules of thumb for scheduling multi-priority

patients:

In general, when there is little or no information about the arrival rates of multi-
priority patients or their waiting penalties, it is best to proceed with a first-come,
first-serve (FCFS) policy, since this policy is simple and less sensitive to
parameters than other policies, and also guarantees the highest rate of utilization.
However, having more information about patient types can facilitate the choice of
an optimal policy and improve patient waiting times and overall profit.

If lower priority patients are arriving at a faster rate than higher priority patients,
then a FCFS will be the simplest, but not the best, policy for the entire range of

waiting cost-ratios. At the same time, a prioritization policy, i.e. a policy of
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postponing all lower priority patients until a future time will likely be the worst
choice because it results in unnecessary reserve space for higher priority and an
exponential increase in lower priority waiting time.

e If higher-priority patients are arriving at a faster rate than lower-priority patients,
then it is best to book less-urgent patients further into the future and to reserve
more space in the immediate future for high priority patients. This raises the
question of how much capacity should be reserved for later-arriving but higher-
priority demand, which we refer to as the threshold-based reserve policy.

The answer to this question will depend on your patients’ arrival rates and ratios
of waiting penalties: as either or both of these numbers increases, the threshold
will also increase. This simple policy can help you estimate the necessary

protection limit for every class of patient.

e |If the arrival rate of urgent patients is about the same as that of non-urgent
patients, the optimal policy varies due to differences in system utilization and
waiting penalties:

o If the utilization rate and ratios of waiting penalties are both high, it makes
sense to apply the threshold reserve policy, postpone lower penalty
patients to the future. Otherwise, if ratios of waiting penalties are close to
one, there is no significant difference in the choice of policy.

o If the utilization rate is medium (50%), it makes sense to apply the
threshold reserve policy across all waiting penalty ratios, and

o If utilization is low, the choice of scheduling policies makes little or no

difference.

Another set of questions that operating room managers frequently ask concerns released
blocks: what is the optimal time to release allocated blocks and who should access released
hours? A common approach is to allocate released blocks a fixed number of days before surgery,

without regard for differences across specialties and different levels of patient-urgency. Because
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of variability in demand across specialties, however, this approach often results in uneven
utilization and waiting costs.

As a best practice, when waiting penalties are steep, lead time is short, and the coefficient
of variation is high, it makes sense to postpone the release of blocks. This practice can insure that
there is space available for late-coming, high priority patients. In contrast, if waiting penalties are
flat, the coefficient of variation is low (close to 1) and lead time is long, then it makes sense to
release blocks earlier. This practice can improve utilization with minimal impact on waiting
costs.

The optimal way to determine the recipients for released blocks is to base the decision on
the ratio of waiting penalties to underutilization costs, rather than on fixed cost numbers. This
approach provides superior access rules for release hours, because it facilitates flexibility, and it
provides fair opportunities for all types of patients to access the released blocks, so long as the
cost of waiting penalties is greater than the cost of underutilization.

This access rule also applies to recipients for open or shared blocks with one caveat:
filling an open hour costs more than utilizing current released blocks since current released
blocks are already fully staffed. To account for this difference and to encourage the use of
release hours, a penalty needs to be applied for using open hours; this penalty provides flexibility
for practitioners in determining whether to open extra ORs or to utilize current release hours.
Hospitals with surgical groups that are not accustomed to releasing unfilled blocks may want to
start off with a very small penalty value so as to encourage only a small amount of sharing of
released blocks. As surgical groups get more used to the idea, the hospital can encourage more

release time with higher penalties for open hours, and potentially require fewer ORs.
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Appendix A: The differences between abstract model and real model

Parameter Abstract Real

i

Case duration 1 hour (deterministic) Lognormal distribution (stochastic)

i

OR scheduling policy Block schedule policy Modified schedule policy

Cancellation There is no cancellation There is cancellation

Appendix B-1: Surgery scheduling simulation model Main interface

P=

Open Database
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Appendix B-2: Surgery scheduling simulation model code/dialog interface

Scenario dialog snapshot

f1[40]ﬁ'] Schedulerv2 <5cheduling fo.. =
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Code snapshot
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Appendix C-1: Simulation algorithm of the scheduling process (Block policy)
Pilot Model

4 Types of patent- 2 ORs

Scenario 1: Each patient just allowed to be scheduled in his home block and not in other blocks

A case comes

Look up the
wieekly sched

2

Find next available
spot inOR2

Find first available

IsHourleft *SurgeryTime?

I= the StartTime
FArrivalTime?

&E3

62 |Stay withOR2Z

NO | |c the StartTime OR1

le spotin OR 1

._.lg N

5

L A
. .

Get the Patientd D,
AmrivalTime,
PatientType,
SuregnyTime

Check the current
statusof home block
{in ORLog table]
Find next available
spot in OR1

Case is scheduled

< 5tartTime OR 27
6 | 7

Find first availpble

. Yes
spot in OR 2
] B-1 Stay with
OR1
No Iz the StartTime
FArrivall ime?
Yes

No iz Yes

St it azScheduleTime and
Update the current s@atus
{in ORLog & PotientlogOR
tabie 5]

Is HourLeft =5urgenyTime?
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Appendix C-2: Simulation algorithm of the scheduling process (Modify Policy)

Pilot Model

o Types of padens- 2 ORs

Scenario 2: Each patient allowed to be scheduled in any block at long as @ satisfy the Logic

Look up the
weekh schedule

A case comes

I= the S@ErnTime »Arrivall ime? &
I= HourLeft =5urgeryTime?

Find next available
=pot in OR2

Find first available No
spot in OR 1

I= the ZtartTime OR1
= StartTime OR 27

2 3 - 5 ¥

Getthe PatiendD,
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Mo p—— ¥ es
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Appendix D: Simulation Database
Current state of patients ~ Scheduling policy

Weekly schedule @
ORLeg1 [7] PatientLogOR [4] surgeonPreference [1]
[ \ r|Block [1] d | T r
ScheduleForPeriodOR1 [3] r[week[2) r[PatientiD 2] L :I ?;;Q:;ﬂ[z[;l ::
r|Block[1] r r|Day[3] r| ORLogID [3] " " [Tussday B ]
r|Week[2] r | Dayofweek [4] r|Block [4] "M\ - [Wearesaara |
r|DayOfweek 3] r| PatientType [5] r| BlockType [5] M| - rorsaar s
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Keep track of how much time is o .
available still on each block ~ Scheduling policy  Objective function

174



Appendix E: ExtendSim’s Scenario manager factors (Model Inputs) tab snapshot

J Factors (Model Inputs) | Responses (Model Results) | Scenarios | Export | Comments |

OK —
Configures and runs multiple simulation model scenarios

Cancel
r Enter dialog factors (dialog variables that are inputs)
| Factor Name Block Name Block Number Block Label H-Block Name  H-Lsbel[num] Dislog Varishle Row,Column Warizble Valus Min Value Max Valus Step J

Link |

To add factors, either Shift-click or clone-drag a target dialog item

v Enter database factors (database variables that are inputs)

Target Mame  Target Type Targst Datab Target Table Targst Field Target Record  Use Sowrce List Source Datsbsse  Source Table Source Field  «
1] Reless=1 Record o Surgery - Relezs=Time - MinTime 1 - |:| Surgery | ReleassTimeRag Walus -
1 Releazasd Record o Surgery o - MinTims 3 - O Surgery 4 RelesssTimseRag Valus -
2 Felesssd Record o  Surgery - ReleassTims - MinTima . 4 - O Surgery ReleassTimeRag Walus -
3 FTIOR1Tus Record Surgery » ScheduleForPeniedOR1. EndingTime - 2 - O ExpDB FTIORT . EndingTime -
4 PTIOR1Thu Record | Surgery . ScheduleForPericdOR1,  EndingTime - 4 - O ExpDB

PTIOR1 . EndingTime . ¥
Link | 4 v 3

Enter source value in "Scenarios” tab after completing database factor table
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Appendix F: ExtendSim’s Scenario manager response (Model Results) tab snapshot

| Factors (Model Inputs)| Responses (Model Results) | Scenarios | Export | Comments |

Configures and runs multiple simulation model scenarios

Cancel

rEnter dialog responses (dialog variables that are resulis)

Block Name Block Number Block Label
Display Value 205 Profit

|R5ponse Mams
[ Profit

H-Block Nams H-Lsbel[num]
Schedule iz2

Dislog Varishle Row, Column MiinsMax Report 5=t
Walus_prm MNone - M -

Inclede in Report J
]

Link | 7

To add responses, either Shift-click or clone-drag a target dialog item [ lgnore blanks in responses

|+ Enter database responses (database variables that are results)

| Target Nams Target Type  Targst Datshsse  Tangst tsble Tanget Field  Sowrce Datshase  SowrceTable Source Field Source Record  Awuto-creste Targ  Uss Factor List J

Link | |

Enter target value in "Scenarios” tab after completing database response table
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Appendix G: ExtendSim’s Scenario manager scenario (upon DOE method) tab snapshot

| Factors (Model Inputs) | Responses (Model Results)| Scenarios | Export | Comments |

Cancel

Configures and runs multiple simulation model scenarios

rRun control -
: - Runs per scenario: ais
Choose DOE method: [Full factorial design - ) -p - | Run count 1/1 Scenario count: 1113/6561
Simulation start time: |0
Create Scenarios | Run Scenarios Stop | | Simulation end time: (300 M
Confidence interval: 95 % [~ Save model after each scenario
rScenarios
Select . _Soenaric Name Releaszsl Releaszsd Releasz=d PT10R1Tue PT10R1Thu PT10R2Tue PT10R2Thu PT10R2Fri

530 OJ Soanario 0531 i H [ E) H H Z [

331 O Soenario 0532 i z 1 3 z z 2 2
932 O Soenario 0933 1 2 1 3 2 2 2 3
333 O Soanario 0534 1 z 1 3 z z 3 [
534 O Soenario 0535 i z 1 3 z z 3 2
335 O Soenario 0938 1 z 1 3 2 2 3 3
938 O Soenario 0937 1 2 1 3 2 3 1 [

a7 O Scanario 0538 1 z 1 3 z 3 1 2
338 O Soenario 0939 1 z 1 ] 2 ] 1 3
939 O Soenario 0940 1 z 1 3 2 3 2 [
240 O Soenario 0541 1 z 1 3 z 3 2 2
341 O Soenario 0542 i z 1 3 z 3 2 3
942 O Soenario 0943 1 z 1 3 2 3 3 [
343 O Soanario 0544 1 z 1 3 z 3 3 2
44 O Soenario 0545 1 z 1 3 ] 3 3 3
245 O Soenario 0948 1 z 1 ] ] 1 1 [
946 O Soenario 0947 1 z 1 3 3 1 1 2
247 O Soanario 0543 1 z 1 3 3 1 1 3
248 O Soenario 0543 i z 1 3 3 1 2 [
943 O Soenario 0950 1 2 1 3 3 1 2 2
Link_|

177



Appendix H: Logistic regression for 6 cluster (Stafford)

Analysis of Maximmum Likelihood Estimates

Model Fit Statistics

- - - Standard Wald
Criterion | Intercept Only | Intercept and Covariates e 57| Erem Ervor | Chi-Square
AIC B36.705 211.626 Intercept 1 -2.3045 0.2728 71.2442
5C 541.776 872435 waitingTime 1 0.0200 | 0.00872 58642
2 Logl 234705 77626 Group A 1 -0.38132 0.5330 04555

Group B 1 0.5531 06218 0.7817
Type 3 Analysis of Effects Group [ i -0.3584 0.4857 0.5783
Wald Group D| 1 -1.6538 0.7827 4.7016
Effect DF | Chi-Square | Pr> ChiSq Group E| 1| -nieoz| 04824 0.1174
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Appendix I: Logistic regression SAS code

/* Read Data */

Proc Import out= Data Datafile= "H:\my documents\logistic\semiurgent11j.xIsx"
DBMS = xIsx REPLACE;

Run;

/* define input and output data sets */

proc logistic data=data;

class Group/param =ref;

model status(event='1")= waitingTime |Group;
output out = result

p=pred,;

run;

/* define symbol characteristics */

symboll value=dot color=Blue height=0.7;
symbol2 value=star color=red height=0.7;
symbol3 value=circle color=green height=0.7;

/* define legend characteristics */
legendl label=none frame;

/* define axis characteristics */

axisl label=("waitingTime") minor=none offset=(1,1);

axis2 label=(angle=90 "ProbabilityofLeaving")
order=(0 to 1 by 0.1) minor=(n=1);

/* Plot result using gplot function */
proc gplot data= result;
plot pred*waitingtime=Group / overlay legend=legendl
haxis=axisl vaxis=axis2 ;
run;

Appendix J: Cluster Analysis SAS code

Proc Import out= Data Datafile= "H:\my documents\logistic\semiurgent11.xIsx"
DBMS = xIsx REPLACE;
Run;

ods graphics on;

proc cluster data=Data method=ward ccc pseudo trim=10 k=50 print=25;
var waitingTime status;

copy Group;

run;

ods graphics off;

ods graphics on;

proc cluster data=Data method=average ccc pseudo trim=10 k=50 print=25;
var waitingTime status;

copy Group;

run;

ods graphics off;
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Appendix K: Visual Basic code, used to generate the best sequential decisions
/*write output file, including "Appointment Time, Patient Id, Patient Type, Arrival Time, OR Type”*/

Imports System.10
Imports System.Text

Public Class Processor
Public Sub Process(inputFile As String, outputFile As String, TypelCost As Integer, Type2Cost As Integer,
NumberofAppointment As Integer)
Dim inputResult As InputPatients = ReadlnputPatient(inputFile)
Dim output As Result = AssignPatientToRoom(inputResult, TypelCost, Type2Cost, NumberofAppointment)

Dim ora As New StringBuilder
ora.AppendLine("Appointment Time, Patinet Id, Patient Type,Arrival Time,OR Type")
For Each key In output. ORA.PatientList.Keys
ora.AppendLine(key.ToString & "," & output. ORA.PatientList(key).ld & "," &
output. ORA PatientList(key).PatientType & "," & output. ORA.PatientList(key).ArrivalTime & ",1")
Next

Dim orb As New StringBuilder

For Each key In output.ORB.PatientList.Keys
orb.AppendLine(key.ToString & "," & output.ORB.PatientList(key).ld & "," &
output.ORB.PatientList(key).PatientType & "," & output. ORB.PatientList(key).ArrivalTime & ",2")
Next

File.WriteAll Text(outputFile, ora.ToString & orb.ToString)
End Sub

Private Function ReadlnputPatient(path As String) As InputPatients
Dim inputLines() As String = File.ReadAllLines(path)
Dim output As New InputPatients With {.Patients = New List(Of Patient)}

For i As Integer = 0 To inputLines.Count - 1

Dim line() As String = inputLines(i).Split(",")

output.Patients.Add(New Patient With {.1d = i, .ArrivalTime = line(0), .PatientType = line(1)})
Next

Return output
End Function

/* Initialize: Read input file (input file including Arrival time and Patient Type)*/

Private Function AssignPatientToRoom(ByVal input As InputPatients, TypelCost As Integer, Type2Cost As Integer,
NumberofAppointment As Integer) As Result
Dim output As New Result With {. ORA = New ORRoom With {.PatientList = New Dictionary(Of Integer, Patient)},
.ORB = New ORRoom With {.PatientList = New Dictionary(Of Integer, Patient)}}

For i As Integer = 0 To NumberofAppointment
FindPatientForAppointment(i, input, output, 2)

Next

For i As Integer = 0 To NumberofAppointment
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FindPatientForAppointment(i, input, output, 1)
Next

Return output
End Function

Private Sub FindPatientForAppointment(timeld As Integer, inputPatient As InputPatients, output As Result, fillType As

Integer)
Console.WriteLine(timeld)

first find patient type, fill type which has not been assigned yet

Dim typeBefore As List(Of Patient) = inputPatient.Patients.Where(Function(x) x.ArrivalTime <= timeld AndAlso

x.PatientType = fill Type AndAlso

output.ORB.PatientList.Where(Function(y) y.Value.ld = x.1d).Count =0

AndAlso

output.ORA.PatientList.Where(Function(y) y.Value.ld = x.1d).Count =0

).OrderBy(Function(x) x.ArrivalTime).ToList

If typeBefore.Count = 0 Then
Return
End If

For Each p As Patient In typeBefore

fill the first available slot for type
Dim hasTime As Boolean = False
Dim currentTime As Integer = timeld

While Not hasTime
If Not output.ORA.PatientList.ContainsKey(currentTime) Then
output.ORA.PatientList.Add(currentTime, p)
hasTime = True
End If

If Not hasTime AndAlso Not output.ORB.PatientList.ContainsKey(currentTime) Then
output.ORB.PatientList. Add(currentTime, p)
hasTime = True

End If

currentTime += 1
End While
Next

End Sub

End Class
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Appendix L: Optimality proof of 2-room scheduling policy
The objective is to find the minimum waiting cost across all patients. The weight p; of case j
represents a waiting penalty per unit time. Theorem 1 formalizes the optimality of sequencing
the cases where the high priority patients are assigned first and then the low priority patients are
assigned in non-decreasing order of arrival time in remaining spots. In other words, the goal is to
sequence the cases such that all high priority patients that arrived before lower priority patients
are assigned before any lower priority patients (referred to BA sequencing). The proof of
optimality is based on a useful technique called the method of adjacent pairwise interchange,
Theorem 1: The total waiting time is minimized by BA sequencing
Proof: By contradiction, suppose a schedule S that is not BA sequence is optimal. In this
schedule, there must be at least two adjacent cases-say case | followed by case k, such that

P < Pk
Under the original schedule S, job | starts its processing at time t and is followed by job k. All
other jobs remain in their original positions. Refer to the new schedule S’. The total waiting cost
of cases processed before case | and k is not affected by the interchange. Neither is the total
waiting cost of cases processed after case | and k. Thus, the difference in the waiting cost under

schedules S and S is due only to cases | and k (see following figure)

Schedule S
Y | k Y
t t+1+1
Schedule S’ A><A
L Y K | Y

Under S, the total waiting cost is, (t + Dp; + (t + 1+ 1)py
Whereas under S’ and assuming can be started at time t, the cost is,(t + Dp, + (t + 1 + D)p;

It is easily verified that if p; < pi , the sum of the two waiting cost functions under S is strictly

less than under S. This contradicts the optimality of S and completes the proof of the theorem.
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Appendix M: ExtendSim Code for optimal scheduling

/I Declare constants and static variables

Real
Integer
Real
Real

grTotalLagDays;
giTotalPatients;

EarliestDate[5][13]; // room / PT Type
EarliestRecord[5][13]; // room / PT Type
Integer possiblePType[12];//this is holding the competetor to the spot, this means if we have a spot for ptype 1

what other types can be there

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Constant

giMaxORRooms;
giMaxPatientTypes;
giSurgeryDBIdX;
giPatientLogORTIdx;
giORLogIDPLORFIdx;
giWeekPLORFIdx;
giBlockPLORFIdx;
giBlockTypePLORFIdx;
giORPLORFIdx;
giPatientTypePLORFIdXx;
gilnitialHoursPLORFIdXx;
giTimeLeftPLORFIdX;
giTimeOfSchedulingPLORFIdX;
giPatientiDPLORFIdXx;
giTimeOfSurgeryPLORFIdXx;
giDaysOutToSchedulePLORFIdXx;
giPlanningTimePLORFIdXx;
giORTablesTldx;
giWeeklyScheduleORTFIdx;
giORLogORTFIdx;
giReleaseTimeTIldx;
giPatientTypeRTFIdx;
giMaxTimeRTFIdX;
giMinTimeRTFIdX;
giSecondaryArrivalRateTIdx;
giSurgeonPreferenceTldx;
giMondaySPFIdx;
giTuesdaySPFldx;
giWednesdaySPFldx;
giThursdaySPFldx;
giFridaySPFIdx;
giRevenueTIldx;
giTotalPatientRevenueFldx;
giCostsTIdx;
giRevenueTFIdx;
giPatientRevenueFIldx;
giBlockCostFldx;
giTotalRoomHoursFldx;
giTotalRoomCostFldx;
giScheduleType;
giSurgeryTimeTldx;
giPlanningtimeFldx;
giSecArrivalRateFldx;
cBlockSPORXFIdx is 1;

ConstantcWeekSPORXFIdX is 2;
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Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant
Constant

1
called at

cDayOfWeekSPORXFIdx is 3;
cStartingTimeSPORXFIdXx is 4;
cEndingTimeSPORXFIdx is 5;
cPatientTypeSPORXFIdx is 6;
cBlockORLXFIldx is 1;
cWeekORLXFIdx is 2;
cDayORLXFIldx is 3;
cDayOfWeekORLXFIdx is 4;
cPatientTypeORLXFIdx is 5;
cStartingHourORLXFIdXx is 6;
cTotalHoursORLXFIdx is 7;
cHoursLeftORLXFldx is 8;
cPatientsORLXFIldx is 9;
cBlockWSORFIdx is 1;
cDayOfWeekWSORFIdX is 2;
cStartingTimeWSORFIdx is 3;
cEndingTimeWSORFIdx is 4;
cPatientTypeWSORFIdx is 5;
cPatientType0 is O;

This procedure will capture all of the database variables needed during the simulation run. This will get
the beginning of the run.

Procedure GetDBVariables()

{

giSurgeryDBIldx = DBDatabaseGetIndex( "Surgery" );

giPatientLogORTIdx = DBTableGetIndex( giSurgeryDBIdx, "PatientLogOR™ );
giORLogIDPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "ORLogID" );
giWeekPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "Week" );
giBlockPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "Block™ );
giBlockTypePLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "BlockType" );
giORPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "OR");
giPatientTypePLORFIdx = DBFieldGetIndex( giSurgeryDBIldx, giPatientLogORTIdx, "PatientType" );
gilnitialHoursPLORFIdx = DBFieldGetIndex( giSurgeryDBIldx, giPatientLogORTIdx, "InitialHours™ );
giTimeLeftPLORFIdx = DBFieldGetindex( giSurgeryDBIdx, giPatientLogORTIdx, "TimeLeft" );
giTimeOfSchedulingPLORFIdx = DBFieldGetindex( giSurgeryDBIdX, giPatientLogORTIdX,
"TimeOfScheduling" );

giTimeOfSurgeryPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx,
"TimeOfSurgery" );

giPatientiDPLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "PatientID" );
giDaysOutToSchedulePLORFIdx = DBFieldGetindex( giSurgeryDBIdX, giPatientLogORTIdx,
"DaysOutToSchedule" );

giPlanningTimePLORFIdx = DBFieldGetIndex( giSurgeryDBIdx, giPatientLogORTIdx, "PlanningTime"
);

giORTablesTldx = DBTableGetIndex( giSurgeryDBIldx, "ORTables" );

giWeeklyScheduleORTFIdx = DBFieldGetIndex( giSurgeryDBIdx, giORTablesTldx, "WeeklySchedule™ );
giORLogORTFIdx = DBFieldGetIndex( giSurgeryDBIdx, giORTablesTIdx, "ORLog" );
giReleaseTimeTldx = DBTableGetIndex( giSurgeryDBIdx, "ReleaseTime" );

giPatientTypeRTFldx = DBFieldGetIndex( giSurgeryDBIdx, giReleaseTimeTldx, "PatientType" );
giMaxTimeRTFIdx = DBFieldGetIndex( giSurgeryDBIdx, giReleaseTimeTldx, "MaxTime" );
giMinTimeRTFIdx = DBFieldGetIndex( giSurgeryDBIdx, giReleaseTimeTIdx, "Mintime" );
giSurgeonPreferenceTldx = DBTableGetIndex( giSurgeryDBIdx, "SurgeonPreference™ );
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giMondaySPFIdx = DBFieldGetIndex( giSurgeryDBIdx, giSurgeonPreferenceTIdx, "Monday" );
giTuesdaySPFldx = DBFieldGetindex( giSurgeryDBIdx, giSurgeonPreferenceTldx, "Tuesday" );
giWednesdaySPFldx = DBFieldGetIndex( giSurgeryDBIdx, giSurgeonPreferenceTldx, "Wednesday" );
giThursdaySPFIdx = DBFieldGetindex( giSurgeryDBIdx, giSurgeonPreferenceTldx, "Thursday" );
giFridaySPFldx = DBFieldGetindex( giSurgeryDBIdx, giSurgeonPreferenceTIdx, "Friday" );
giRevenueTldx = DBTableGetIndex( giSurgeryDBIldx, "Revenue" );
giPatientRevenueFldx = DBFieldGetIndex( giSurgeryDBIdx, giRevenueTIdx, "PatientRevenue" );
giTotalPatientRevenueFldx = DBFieldGetIndex( giSurgeryDBIdx, giRevenueTldx, "TotalPatientRevenue
);
giCostsTldx = DBTableGetIndex( giSurgeryDBIdx, "Costs" );
giBlockCostFldx = DBFieldGetIndex( giSurgeryDBIdx, giCostsTIdx, "BlockCost");
giTotalRoomHoursFldx = DBFieldGetIndex( giSurgeryDBIdx, giCostsTIdx, "TotalRoomHours");
giTotalRoomCostFldx = DBFieldGetIndex( giSurgeryDBIdx, giCostsTldx, "TotalRoomCost");
giMaxORRooms = DBRecordsGetNum(giSurgeryDBIdx, giORTablesTldx);
giMaxPatientTypes = -1 + DBRecordsGetNum(giSurgeryDBIdx, giCostsTIdx);
giSurgeryTimeTldx = DBTableGetIndex( giSurgeryDBIdx, "SurgeryTime");
giPlanningtimeFldx = DBFieldGetIndex( giSurgeryDBIdx,
giSurgeryTimeTldx, "PlanningTime");
giSecondaryArrivalRateTldx = DBTableGetIndex( giSurgeryDBIdx, "secondaryArrival™);
giSecArrivalRateFldx = DBFieldGetIndex( giSurgeryDBIldx, giSurgeryTimeTIldx, "secondaryArrival™);
giSecondaryArrivalRateTIdx = DBTableGetIndex( giSurgeryDBIdx, "secondaryArrival");
giSecArrivalRateFldx = DBFieldGetIndex( giSurgeryDBIdx, giSurgeryTimeTIldx, "secondaryArrival™);

}
I This function is testing to see if the specified patient type has been already scheduled in another OR at the
same time.

Integer TestIfPatientTypelsScheduledAtTheSameTimeSomeWhereElse(integer thisOR, integer thisPType, real
thisSimulationTime, real thisPlanningTime)
{

integer lIORToTest;

integer i;

integer [INumOfRecords;

integer tempPatientType;

integer liORLogTable;

integer liDrNotUsedElseWhere;

real tempHoursLeft;

real tempSimulationTime;

real tempTotalHours;

real tempBeginTimeORBlock;
real tempEndTimeORBIlock;
real tempTestBeginTime;

real tempTestEndTime;

for(liORToTest = 1; liORToTest <= giMaxORRooms; liORToTest++)

if(liORToTest == thisOR)
Continue;

l[iORLogTable = DBDataGetAsNumber(giSurgeryDBIldx, giORTablesTIdx, giORLogORTFIdXx,
l[iIORToTest);
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liNumOfRecords = DBRecordsGetNum(giSurgeryDBIdx, liORLogTable);
for(i = 1; i <= liNumOfRecords; i++)

{
tempPatientType = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cPatientTypeORLXFIdX, i);
tempHoursLeft = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cHoursLeftORLXFIdx, i);
tempSimulationTime = DBDataGetAsNumber(giSurgeryDBIldx, liORLogTable, cStartingHourORLXFIdx, i);
tempTotalHours = DBDataGetAsNumber(giSurgeryDBldx, liORLogTable, cTotalHoursORLXFIdx, i);

tempBeginTimeORBIlock = tempSimulationTime + tempTotalHours - tempHoursLeft;
tempEndTimeORBIlock = tempSimulationTime + tempTotalHours;

if( tempPatientType != thisPType)
Continue;

/I 1f the block of time is in the future then the Begin time of the OR Block will be larger then the ending time of the
patient scheduled time.
if (tempBeginTimeORBIlock > thisSimulationTime + thisPlanningTime)
Continue;

/' the block of time is in the past then the Ending time of the OR Block will be smaller then the starting time of the
patient scheduled time. At this point | can pass back the false because the rest of the records will be in the future
if(tempEndTimeORBIlock < thisSimulationTime)
Return False;

/I Finally, it is the same patient, it is not TOO early and not TOO late.
return True;
}

}

/I'If it hasn't hit the return TRUE option then it is in the same block of time.
return False;

}
/I this function will search the OR Log table for the next spot in the specified OR for a specified Patient Type. If it
doesn't find a spot it will return -1. If it does then it will return the time that it could be scheduled. If the actual

patient type is not the block type you are looking for then another test will be done to make sure the doctor isn't
already simultaniously being used.

/I The thisPType variable is the patient being scheduled
/I The thisPossiblePType variable is the spot we want to test to see if the current patient can be scheduled in.

Real TestForNextAvailabileSpotForType(integer thisOR, integer thisPossiblePType, real thisPlanningTime, integer
thisPType)

integer i;

integer liNumOfRecords;

integer tempPatientType;

integer liORLogTable;

integer liPatientTypelsAlreadyScheduledElseWhere;
integer tempDay;

integer tempTest;

integer parentArray[3];

integer tempDayOfWeek;
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real tempHoursLeft;

real tempSimulationTime;

real tempTotalHours;

real tempNextActual AvailableTime;
real tempValue;

[iORLogTable = DBDataGetAsNumber(giSurgeryDBIldx, giORTablesTldx, giORLogORTFIdx, thisOR);
[iNumOfRecords = DBRecordsGetNum(giSurgeryDBIdx, liORLogTable);

for(i = 1; i <= liNumOfRecords; i++)

{

tempPatientType = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable,
cPatientTypeORLXFIdX, i);

tempHoursLeft = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cHoursLeftORLXFIdXx,
i);

tempSimulationTime = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable,
cStartingHourORLXFIdX, i);

tempTotalHours = DBDataGetAsNumber(giSurgeryDBIdx, [iORLogTable,
cTotalHoursORLXFIdX, i);

tempDay = DBDataGetAsNumber(giSurgeryDBIldx, liORLogTable, cDayORLXFIdX, i);

DBDataGetParent(giSurgeryDBIdx, liORLogTable, cDayOfWeekORLXFIdX, i, parentArray);
tempDayOfWeek = parentArray[2];

tempTest = true;

if( tempPatientType = thisPossiblePType )
tempTest = False;

if(tempHoursLeft < thisPlanningTime )
tempTest = False;

tempNextActualAvailableTime = tempSimulationTime + tempTotalHours - tempHoursLeft;
if(tempNextActual AvailableTime < CurrentTime )
tempTest = False;
tempValue = Floor(CurrentTime/24) + 1 + wDaysOutToSchedule;
if( tempDay < tempValue)
tempTest = False;
tempValue = DBDataGetAsNumber(giSurgeryDBIdx, giSurgeonPreferenceTIdx,
tempDayOfWeek+1, thisPType);
if(thisPType != thisPossiblePType and tempValue == False)
tempTest = False;
if(tempTest)
liPatientTypelsAlreadyScheduledElseWhere = False;
/I Check if patient type is schedule elsewhere at the same time if | am trying to schedule in an alternate block.

if(thisPossiblePType != thisPType and wCheckOtherPatientSlots == True)
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liPatientTypelsAlreadyScheduledElseWhere =

TestlfPatientTypelsScheduled AtTheSameTimeSomeWhereElse(thisOR, thisPType, tempSimulationTime,
thisPlanningTime);

if(liPatientTypelsAlreadyScheduledElseWhere == False)

EarliestDate[thisSOR][thisPossiblePType] = tempNextActual AvailableTime;
EarliestRecord[thisOR][thisPossiblePType] = i;
return 1,

}
}

return -1;

/I Once the OR room and Block is chosen, this function will place the appropriate data in the OR Log table. After it
places the data in the table it will return the record number it placed the data in.

integer ScheduleToUseOR(integer thisPatientID, integer thisPType, integer thisOR, integer thisRoomPType, real
thisPlanningTime)
{ - -
integer i;
integer l[iINumOfRecords;
integer tempPatientType;
integer tempPatients;
integer tempPatientLogID;
integer liORLogTable;
integer tempBlockType;
integer tempSurgeonPreference;
real tempSimulationTime;
real tempHoursLeft;
real tempWeek;
real tempBlock;
real tempStartingHour;
real tempTotalHours;

liORLogTable = DBDataGetAsNumber(giSurgeryDBIdx, giORTablesTldx, giORLogORTFIdx, thisOR);
[iNumOfRecords = DBRecordsGetNum(giSurgeryDBIdx, liORLogTable);
for(i = 1; i <= liNumOfRecords; i++)
{
tempPatientType = DBDataGetAsNumber(giSurgeryDBIldx, liORLogTable,
cPatientTypeORLXFIdx, i);
tempHoursLeft = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cHoursLeftORLXFIdx,

i);
tempStartingHour = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable,
cStartingHourORLXFIdX, i);

if(tempPatientType == thisRoomPType)
{
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if(tempHoursLeft >= thisPlanningTime)

{
if( tempStartingHour >= (Floor(CurrentTime/24)+1)*24)

tempWeek = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable,
cWeekORLXFIdx, i);

tempBlock = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable,
cBlockORLXFIdx, i);

tempBlockType = DBDataGetAsNumber(giSurgeryDBIldx,
liORLogTable, cPatientTypeORLXFIdx, i);

tempStartingHour = DBDataGetAsNumber(giSurgeryDBIdx,
l[iORLogTable, cStartingHourORLXFIdX, i);

tempTotalHours = DBDataGetAsNumber(giSurgeryDBIdx,
liORLogTable, cTotalHoursORLXFIdx, i);

tempPatients = DBDataGetAsNumber(giSurgeryDBIdXx,
l[iORLogTable, cPatientsORLXFIdX, i);

DBDataSetAsNumber(giSurgeryDBIdx, liORLogTable,
cHoursLeftORLXFIdx, i, tempHoursLeft - thisPlanningTime);

DBDataSetAsNumber(giSurgeryDBIdx, liORLogTable,
cPatientsORLXFIdx, i, tempPatients+1);

tempPatientLoglD = DBRecordsGetNum(giSurgeryDBIdx,
giPatientLogORTIdx) + 1;

DBRecordsInsert(giSurgeryDBIdX, giPatientLogORTIdx,
tempPatientLogID, 1);

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORT Idx,
giORLogIDPLORFIdx, tempPatientLogID, i);

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORT Idx,
giWeekPLORFIdx, tempPatientLogID, tempWeek);

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORT Idx,
giBlockPLORFIdx, tempPatientLogID, tempBlock);

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdXx,
giBlockTypePLORFIdx, tempPatientLoglID, tempBlockType);

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdXx,
giORPLORFIdx, tempPatientLoglD, thisOR);

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdXx,
giTimeOfSurgeryPLORFIdx, tempPatientLoglD, tempStartingHour + (tempTotalHours - tempHoursLeft));

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORT Idx,
giPatientTypePLORFIdx, tempPatientLogID, thisPType);

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORT Idx,
gilnitialHoursPLORFIdx, tempPatientLoglID, tempTotalHours);

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdXx,
giTimeLeftPLORFIdx, tempPatientLoglD, tempHoursLeft - thisPlanningTime);

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx,
giTimeOfSchedulingPLORFIdx, tempPatientLogID, CurrentTime);

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORTIdx,
giPatientiIDPLORFIdx, tempPatientLogID, thisPatientID);

DBDataSetAsNumber(giSurgeryDBIdx, giPatientLogORT Idx,
giPlanningTimePLORFIdx, tempPatientLoglD, thisPlanningTime);

return tempPatientLogID;
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}
¥

return -1;

//Find competetors for a recorded (appointment) under multi-priority patient types

Integer FindCompetetorForDay(integer thisPatientType,integer thisOR,integer thisRecordld)
{ S

integer i;

integer liNumOfRecords;

integer tempPatientType;

integer liORLogTable;

integer liPatientTypelsAlreadyScheduledElseWhere;

integer tempDay;

integer tempTest;

integer parentArray|[3];

integer tempDayOfWeek;

integer tempPTType;

real tempHoursLeft;

real tempSimulationTime;

real tempTotalHours;

real tempNextActual AvailableTime;

real tempValue;

real IrPlanningTime;

real thisPlanningTime;

for(i = 1; i <= giMaxPatientTypes; i++){
possiblePType[i]=0;
}

liORLogTable = DBDataGetAsNumber(giSurgeryDBIldx, giORTablesTldx, giORLogORTFIdx, thisOR);
liNumOfRecords = DBRecordsGetNum(giSurgeryDBIdx, liORLogTable);

tempPatientType = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable,
cPatientTypeORLXFIdx, thisRecordld);

tempHoursLeft = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cHoursLeftORLXFIdx,
thisRecordld);

tempSimulationTime = DBDataGetAsNumber(giSurgeryDBIldx, [iORLogTable,
cStartingHourORLXFIdx, thisRecordld);

tempTotalHours = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable,
cTotalHoursORLXFIdx, thisRecordld);

tempDay = DBDataGetAsNumber(giSurgeryDBIldx, liORLogTable, cDayORLXFIdx,
thisRecordld);

DBDataGetParent(giSurgeryDBIdx, liORLogTable, cDayOfWeekORLXFIdx, thisRecordld,
parentArray);

tempDayOfWeek = parentArray[2];
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for(tempPTType = 1; tempPTType <= giMaxPatientTypes; tempPTType++)
{

tempTest=True;
if(thisPatientType!=tempPTType){
IrPlanningTime = DBDataGetAsNumber(giSurgeryDBIdx, giSurgeryTimeTIdx,

giPlanningtimeFldx, tempPTType);

IrPlanningTime = Ceil(IrPlanningTime);

if(tempHoursLeft < IrPlanningTime )
tempTest = False;

tempValue = DBDataGetAsNumber(giSurgeryDBIdx, giSurgeonPreferenceTIdX,

tempDayOfWeek+1, tempPTType);

I

Integer

{

if(tempValue==False)
tempTest=False;

if(tempTest)
possiblePType[tempPTType]=1;
}
}
}
return -1;

This function will set the earliest date for the specified patient. This would be for a fixed patient type.
SetEarliestDateForSpecificBlock(integer thisPatientType, real thisPlanningTime, integer thisPatientID)

integer liMIinOR;
integer liMinRecord;
integer l[iRoomPtType;
integer i;

integer liLogID;
integer thisRecord;
integer tempRecord,;
integer tempOR,;

real tempDate;
real IrMinDate;

liMinOR = -1;

liMinRecord = -1;

IrMinDate = 99999;

for(i = 1; i <= giMaxORRooms; i ++)

{
tempDate = EarliestDate[i][thisPatientType];
tempRecord = EarliestRecord[i][thisPatientType];
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tempOR = i;
if(tempDate < IrMinDate)

{
IrMinDate = tempDate;
liMinRecord = tempRecord;
[iMinOR = tempOR;
[iRoomPtType = thisPatientType;
}

tempDate = EarliestDate[i][cPatientType0];
tempRecord = EarliestRecord[i][cPatientType0];
tempOR = i;
if(tempDate < IrMinDate and IrMinDate -tempDate > 120)
{
IrMinDate = tempDate;
liMinRecord = tempRecord;
[iIMinOR = tempOR,;
l[iRoomPtType = 0;

}
}
if(liMinOR >= 0)
{

thisRecord = EarliestRecord[liMinOR][thisPatientType];
liLogID = ScheduleToUseORGivenRecordNumber(thisPatientID, thisPatientType, liMinOR,
liRoomPtType, thisPlanningTime, thisRecord );

}
else
liLogID = -1,
return liLogID;
}
Il This function will search for the earliest date but only looking at the blocks for the specified patient type

and place the data in that date. This function will return the record number in the log table it placed the data in.

Integer TestForEarliestDateAndincludeAllTypesUnderConditions2(integer thisPatientType, real thisPlanningTime,
integer thisPatientID)

tc
integer i, j;
integer liLoglD;
integer liORID;
integer tempType;
integer liMinRecord;
integer liMinOR,;
integer tempRecord;
integer tempOR,;
integer liRoomPtType;
real tempDate;
real IrMinDate;
real tempTestingPatientTypeMinTime;
real tempOriginalPatientTypeMaxTime;
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real IrTimeWaiting;
integer tempPTType;
real PTypeCost[13][2];

for(i = 0; i <= giMaxPatientTypes+1; i++){
PTypeCost[i][0]=-1;
PTypeCost[i][1]=-1;

}

[iMinOR = -1,
liMinRecord = -1;
IrMinDate = 99999;
for(i = 1; i <= giMaxORRooms; i ++)
{
tempDate = EarliestDate[i][thisPatientType];
tempRecord = EarliestRecord[i][thisPatientType];
tempOR = i;
if(tempDate < IrMinDate)
{
IrMinDate = tempDate;
liMinRecord = tempRecord;
liMinOR = tempOR;
liRoomPtType = thisPatientType;
}

tempDate = EarliestDate[i][cPatientTypeQ];
tempRecord = EarliestRecord[i][cPatientType0];
tempOR = i;
if(tempDate < IrMinDate and IrMinDate -tempDate > 120)
{
IrMinDate = tempDate;
liMinRecord = tempRecord;
liMIinOR = tempOR;
liRoomPtType = 0;

}

tempOriginalPatientTypeMaxTime = DBDataGetAsNumber(giSurgeryDBIdX, giReleaseTimeTIdx,
giMaxTimeRTFIdx, thisPatientType);

/I within X days of call
if(IrMinDate - CurrentTime < tempOriginalPatientTypeMaxTime and liMinRecord > 0 and liMinRecord <
99999)

{
liLoglD = ScheduleToUseORGivenRecordNumber(thisPatientID, thisPatientType, liMIinOR,

l[iRoomPtType, thisPlanningTime, liMinRecord );
return liLogID;
}

/I These are outside X days of call
/I These are patients who are eligible to assign to open/release hours
tempType = 0;
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liMinOR = -1;
liMinRecord = -1;
IrMinDate = 99999;
for(i = 1; i <= giMaxPatientTypes; i++) // Patient Types
{
if (i !=thisPatientType )

{
for(j = 1; j <= giMaxORRooms; j++) // OR Rooms

tempDate = EarliestDate[j][i] - CurrentTime;

tempRecord = EarliestRecord[j][i];

tempOR = ;

tempTestingPatientTypeMinTime = DBDataGetAsNumber(giSurgeryDBIdx,
giReleaseTimeTldx, giMinTimeRTFIdx, i);

if(tempDate < IrMinDate and tempDate < tempTestingPatientTypeMinTime)

{
tempType = i;
IrMinDate = tempDate;
liMinRecord = tempRecord,;
[iIMinOR = tempOR;

}

}

/I'If | found an available block and it is withing the Alternate block X day call window,
Il first, check if matches with surgeons preference

Il second, find all patienttype whom surgeons can operate on this weekday

/I calculate waiting cost of selected patient types and sort them

real IrTimeOfScheduling;
real IrTimeOfSurgery;
real IrWaitingCost;
integer flagl,;
integer temp[2];
integer numLength;
real IrPatientRevenue;
if(  liMinOR > 0)
{
FindCompetetorForDay(thisPatientType,liMinOR,liMinRecord);

/MiPatientType = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORTIdX, giPatientTypePLORFIdX, i);

IrTimeOfScheduling = DBDataGetAsNumber(giSurgeryDBIdX, giPatientLogORT Idx,
giTimeOfSchedulingPLORFIdx, liMinRecord);

IrTimeOfSurgery = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORT ldx,
giTimeOfSurgeryPLORFIdx, liMinRecord);

/lliDaysOutToSchedule = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORTIdX,
giDaysOutToSchedulePLORFIdX, i);

/lliCanceled = DBDataGetAsNumber(giSurgeryDBIdXx, giPatientLogORTIdx,
giCanceledPLORFIdX, i);

[rTimeWaiting = (IrTimeOfSurgery - IrTimeOfScheduling)/1.5;
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for(tempPTType = 1; tempPTType <= giMaxPatientTypes; tempPT Type++)
{
if(possiblePType[tempPTType]==1){

/I Calculate waiting cost for multi-priority patient

if(tempPTType == 1)
{IrWaitingCost = exp(-2.665+(0.061*IrTimeWaiting))/(exp(-2.665+(0.06 1 *Ir TimeWaiting))+1);

}
if(tempPTType == 2 or tempPTType == 5 or tempPTType == 11)
{IrwaitingCost = exp(-1.751+(0.0179*IrTimeWaiting))/(exp(-1.751+(0.0179*IrTimeWaiting))+1);
}

if(tempPTType == 3 or tempPTType == 6 or tempPTType == 7 or tempPTType == 8 or tempPT Type == 10)
{IrwaitingCost = exp(-2.45+(0.0248*IrTimeWaiting))/(exp(-2.45+(0.0248*Ir TimeWaiting))+1);

}
if(tempPTType == 4 or tempPTType ==9)
{IrWaitingCost = exp(-3.958+(0.0672*IrTimeWaiting))/(exp(-3.958+(0.0672*Ir TimeWaiting))+1);

}

IrPatientRevenue = DBDataGetAsNumber(giSurgeryDBIdx, giRevenueTIldx,
giPatientRevenueFldx, tempPTType);

PTypeCost[tempPTType][1] = (IrWaitingCost*IrPatientRevenue) ;

PTypeCost[tempPTType][0]=tempPTType;

flagl=1;
numLength = 12;
for(i = 1; (i <= numLength && flagl==1); i++)

flagl = 0;
for (j=1; j < (numLength -1); j++)

if (PTypeCost[j+1][1] > PTypeCost[j][1]) // ascending order simply changes to <

temp[0] = PTypeCost[j][0];

temp[1] = PTypeCost[j][1]; /I swap elements

PTypeCost[j][0] = PTypeCost[j+1][0];
PTypeCost[j][1] = PTypeCost[j+1][1];

PTypeCost[j+1][0] = temp[0];

PTypeCost[j+1][1] = temp[1];

flagl = 1, /l indicates that a swap occurred.
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if(thisPatientType==PTypeCost[1][0])

{

liLoglD = ScheduleToUseORGivenRecordNumber(thisPatientID, thisPatientType, liMinOR, tempType,
thisPlanningTime, liMinRecord );

return liLogID;

}

real IrPlanningTime;
real totalTime;
totalTime=0;

integer index;
index=0;

for(i=1;i<12;i++){
if(PTypeCost[i][0]==thisPatientType){
index=i;
break;
}
}

for(i=1;i<=index;i++){
IrPlanningTime = DBDataGetAsNumber(giSurgeryDBIdx, giSurgeryTimeTIdx,
giPlanningtimeFldx, PTypeCost[i][0]);
total Time=total Time+IrPlanningTime;
[[if(PTypeCost[i][1]==thisPatientType){
Il break;
I}
}

integer liORLogTable;
real tempHoursLeft;
liORLogTable = DBDataGetAsNumber(giSurgeryDBIldx, giORTablesTldx, giORLogORTFIdx, liMinOR);
/tempPatientType = DBDataGetAsNumber(giSurgeryDBIldx, liORLogTable, cPatientTypeORLXFIdX,
liMinRecord);
tempHoursLeft = DBDataGetAsNumber(giSurgeryDBIdx, liORLogTable, cHoursLeftORLXFIdXx,
liMinRecord);

if(tempHoursLeft>total Time){
liLoglD = ScheduleToUseORGivenRecordNumber(thisPatientID, thisPatientType, liMIinOR,
tempType, thisPlanningTime, liMinRecord );
return liLogID;
}

real mycost;
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for(i=1;i<=numLength;i++){
if(PTypeCost[i][0]==thisPatientType){
mycost=PTypeCost[i][1];
break;
}

}

real totalDelay;

for(i=1;i<=numLength;i++){
if(PTypeCost[i][0]==thisPatientType){
mycost=PTypeCost[i][1];

break;
}
}
/I'1f No other room fit (available), First search in OPEN room and then schedule the patient in thier proper patient
block
liMinOR = -1;
liMinRecord = -1;

IrMinDate = 99999;
for(i = 1; i <= giMaxORRooms; i ++)
{
tempDate = EarliestDate[i][thisPatientType];
tempRecord = EarliestRecord[i][thisPatientType];
tempOR = i;
if(tempDate < IrMinDate)
{
IrMinDate = tempDate;
liMinRecord = tempRecord,;
[iIMinOR = tempOR,;
liRoomPtType = thisPatientType;
}

tempDate = EarliestDate[i][cPatientTypeQ];
tempRecord = EarliestRecord[i][cPatientType0];
tempOR = i;
if(tempDate < IrMinDate and IrMinDate -tempDate > 120)
{
IrMinDate = tempDate;
liMinRecord = tempRecord:;
[iMinOR = tempOR;
liRoomPtType = 0;

¥

if( liMinRecord > 0 and liMinRecord < 99999 )
liLogID = ScheduleToUseORGivenRecordNumber(thisPatientID, thisPatientType, liMIinOR,
[iRoomPtType, thisPlanningTime, liMinRecord);
else
liLoglD =-1;
return liLogID;
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}

real FindArrivalRate(integer paitientType)
{
[linteger i;
real rate;
[linteger liMaxrows;

/MliMaxrows = DBRecordsGetNum(giSurgeryDBIdx, giSecondaryArrivalRateTIdx);
rate = DBDataGetAsNumber(giSurgeryDBIdx, giSecondaryArrivalRateTldx,
giSecArrivalRateFldx, paitientType);

return rate;

}
procedure InitializeEarliestDateArray()
{
integer i, j, k;
for(i = 0; i <= giMaxORRooms; i++) // OR Rooms
{
for(j = 0; j <= giMaxPatientTypes; j++) // Patient Types
{
EarliestDate[i][j] = 99999;
EarliestRecord[i][j] = 99999;
}
}
}
I This message handler will first capture the data for all patient types and all ORs. Then it will call different
functions to test different logic for choosing the right block.
on PTypeln
{

real tempScheduleTime;
real tempSurgeryTime;
real IrPlanningTime;

integer tempDaySurgery;
integer tempDayScheduled,;
integer tempORRoom;
integer tempPTType;
InitializeEarliestDate Array();

IrPlanningTime = DBDataGetAsNumber(giSurgeryDBIdx, giSurgeryTimeTIldx, giPlanningtimeFIldx,
PTypeln);

IrPlanningTime = Ceil(IrPlanningTime);

for(tempORRoom = 1; tempORRoom <= giMaxORRooms; tempORRoom++)
{
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if( wCheckOtherPatientSlots == True )
TestForNextAvailabileSpotForType(tempORRoom, cPatientType0, IrPlanningTime,
PTypeln);

for(tempPTType = 1; tempPTType <= giMaxPatientTypes; tempPTType++)
{

if( wCheckOtherPatientSlots == True or PTypeln == tempPTType )
TestForNextAvailabileSpotForType(tempORRoom, tempPTType,
IrPlanningTime, PTypeln);
}

}

if(wEarlyDateDedicatedSpotRBtn == True)
LogIDOut = SetEarliestDateForSpecificBlock(PTypeln, IrPlanningTime, PatientIDIn);
else
LogIDOut = TestForEarliestDateAndInclude All TypesUnderConditions2(PTypeln,
IrPlanningTime, PatientIDIn);

giTotalPatients ++;
if(LogIDOut > 0)
wPatientsScheduled++;

tempSurgeryTime = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORTIdXx,
giTimeOfSurgeryPLORFIdx, LogIiDOut);

tempScheduleTime = DBDataGetAsNumber(giSurgeryDBIdx, giPatientLogORTIdXx,
giTimeOfSchedulingPLORFIdx, LogIDOut);

tempDaySurgery = Floor(tempSurgeryTime/24);
tempDayScheduled = Floor(tempScheduleTime/24);
LagDaysOut = tempDaySurgery - tempDayScheduled - 1;
grTotalLagDays += LagDaysOut;

wAvgLagDays = grTotalLagDays / wPatientsScheduled;
SendMsgTolnputs(LagDaysOut);

}

wPatientsNotScheduled = giTotalPatients - wPatientsScheduled;
}
1 Initialize any simulation variables.
on initsim
{
integer liNumOfRecords;
integer [INumOfWeeks;
integer i;
wPatientsScheduled = 0;
wAvgLagDays = 0;
wPatientsNotScheduled = 0;
grTotalLagDays = 0;
giTotalPatients = 0;
GetDBVariables();
InitializeEarliestDateArray();
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