
REVIEW

The radiology community has had a leading role in ex-
ploring medical applications of artificial intelligence 

(AI), and one of the primary drivers for this is the desire for 
increased accuracy and efficiency in clinical care. Radiolo-
gist responsibilities extend beyond image interpretation. AI 
tools have the potential to improve essential tasks in the 
imaging value chain, from image acquisition to generating 
and disseminating radiology reports (1). These applications 
are crucial in current medical environments with increas-
ing workloads, increasing scan complexity, and the need 
to decrease costs and reduce errors (2–4). AI applications 
related to radiologic quality, safety, and workflow improve-
ments can be grouped by their influence on various steps in 
the typical radiology workflow, as follows in their approxi-
mate order of occurrence: study selection and protocoling; 
image acquisition; worklist prioritization; study reporting, 
business applications, and resident education. This qualita-
tive review is a discussion of current research and commer-
cial models regarding these applications within the entire 
imaging chain.

Methods
Studies published from 1980 through 2019 were re-
trieved nonsystematically from academic search engines 
including PubMed, ScienceDirect, and Google Scholar 
by using search terms related to each application of 
interest. Public legal documents were also accessed in-
cluding the Medicare Physician Fee Schedule and Other 
Revisions to Part B, Quality Payment Program require-
ments, and Shared Savings Program requirements. 

Public news sources, such as Becker’s Hospital Review, 
Healthcare Finance, Optum, and Healthcare IT News, 
and vendor lists from meetings of the Radiological So-
ciety of North America and the Society for Imaging In-
formatics in Medicine were used to find any commercial 
efforts in each space. All searches were performed by the 
authors, all of whom are attending radiologists or train-
ees with a research interest in radiology AI.

Study Selection and Protocoling

Automated Study Vetting and Clinical Decision Support
Inappropriate imaging studies are inefficient because 
they expend health care resources, increase payer costs, 
increase patient risk, and delay care (5,6). Inappropriate 
imaging orders may represent up to 10% of ordered ex-
aminations, and not all are caught before the examina-
tion is performed (6–10). Imaging ordering errors have 
multifactorial causes but can include a lack of knowledge 
of appropriate imaging types, over-ordering by providers 
because of constrained resources, erroneous clicks in the 
computerized physician order entry system, and unneces-
sary duplicate examinations if a similar study was already 
performed (eg, chest radiography performed immediately 
after chest CT).

To address concerns regarding inappropriate imaging, 
the Protecting Access to Medicare Act of 2014 requires the 
use of an appropriate use criteria system for any advanced 
diagnostic imaging service. Many automated clinical deci-
sion support systems have been developed to meet these 
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Artificial intelligence has become a ubiquitous term in radiology over the past several years, and much attention has been given to 
applications that aid radiologists in the detection of abnormalities and diagnosis of diseases. However, there are many potential ap-
plications related to radiologic image quality, safety, and workflow improvements that present equal, if not greater, value propositions 
to radiology practices, insurance companies, and hospital systems. This review focuses on six major categories for artificial intelligence 
applications: study selection and protocoling, image acquisition, worklist prioritization, study reporting, business applications, and 
resident education. All of these categories can substantially affect different aspects of radiology practices and workflows. Each of these 
categories has different value propositions in terms of whether they could be used to increase efficiency, improve patient safety, increase 
revenue, or save costs. Each application is covered in depth in the context of both current and future areas of work.
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it is typically performed by the radiologist because of their 
domain expertise. This is a time-consuming process, how-
ever. At our institution, approximately 1–2 hours per day in 
each division is spent protocoling studies, totaling 50 hours 
per week across the department, which is the equivalent of 
the workload for one full-time equivalent radiologist. Pro-
tocoling is time-consuming for many reasons, including the 
frequent presence of dozens of protocol options, the need to 
look up information from the EMR, and the lack of intel-
ligent aids within the protocol workflow.

In recent years, NLP has shown good results for automating 
study protocols. For example, Lee (16) automated the selection 
of routine versus tumor or infection protocols for musculoskel-
etal MRI, and Trivedi et al (17) distinguished between musculo-
skeletal studies with and without gadolinium contrast enhance-
ment. Both models achieved overall accuracies of greater than 
90%. Brown and Marotta (18) automated three tasks for brain 
MRI (protocol selection, need for intravenous contrast agent, 
and examination prioritization) and achieved overall accuracies 
between 83% and 88%. More recent work focused on a model 
that functioned beyond a single anatomic region or imaging mo-
dality, achieving a precision of 76%–82% when tested on 18 000 
diverse CT and MRI examinations (19). Overall, we found 
that models with more advanced deep learning approaches had 
higher performance than those with traditional machine learn-
ing techniques.

A limitation of current protocoling model performance is the 
input data to which the model has access. Just as a radiologist 
may access EMR data to correctly protocol an examination, AI 
models also need access to these additional data to maximize their 
performance. This is challenging, however, because these data are 
stored in various locations within the EMR and often within 
free-text clinical notes, the interpretation of which is a difficult 
machine learning challenge. Approaches such as long short-term 
memory networks and bidirectional encoder representations of 
transformers have been used to automatically extract informa-
tion from the EMR and could be leveraged to provide more data 
to a protocoling model (20–23). In the meantime, human in-
the-loop verification of automatically selected protocols is likely 
necessary to ensure patient safety and optimal imaging.

Image Acquisition
Successful interpretation of medical imaging requires proper 
image acquisition. Radiation dose, imaging dimensions, pa-
tient positioning and motion, implanted hardware, and sen-
sor variability affect image quality for interpretation. Machine 
learning techniques in this domain have been shown to reduce 
radiation exposure, decrease scan times, reduce rates of false-
positive findings, and reduce unnecessary repeat imaging while 
maintaining image quality (24).

Dose Reduction
As the use of CT and PET increases worldwide, radiation ex-
posure to patients undergoing frequent examinations is a con-
cern. Radiology departments often must balance radiation dose 
and image quality against the practices of “as low as reasonably 
achievable” to avoid unnecessary radiation exposure (25). The 

requirements, including by vendors that license the American 
College of Radiology ACR Select database (11). Implementa-
tion of clinical decision support systems in the hospital setting 
has resulted in decreased inappropriate imaging and advanced 
imaging overall (12,13). For example, Yan et al (14) reported 
that the yield of CT angiography in detecting pulmonary em-
bolism doubled after implementation of a clinical decision sup-
port system. Doyle et al (15) reported an overall 6% decrease in 
imaging with the use of a clinical decision support system in a 
randomized clinical trial of 3500 health care providers. Exist-
ing systems, however, are not without substantial limitations: 
They are largely based on a branching decision tree structure 
that can be exploited to arrive at the desired examination type. A 
more advanced system that relies on natural language processing 
(NLP) of free-text input and integration of electronic medical 
record (EMR) data could decrease the so-called click fatigue as-
sociated with current systems by allowing more flexible input. 
However, our research did not reveal any advanced NLP-based 
system currently in existence or development.

Study Protocoling
Protocoling is the process of selecting the appropriate se-
quences for an MRI or CT examination to ensure that the 
desired anatomy and abnormalities are adequately captured; 

Abbreviations
AI = artificial intelligence, BI-RADS = Breast Imaging Reporting 
and Data System, BT-RADS = Brain Tumor Reporting and Data 
System, EMR = electronic medical record, LI-RADS = Liver Imag-
ing Reporting and Data System, NLP = natural language process-
ing, TI-RADS = Thyroid Imaging Reporting and Data System

Summary
Many noninterpretive artificial intelligence applications with the 
potential to improve multiple aspects of radiology practice, including 
workflow, efficiency, image acquisition, reporting, billing, and educa-
tion, are either currently available or in development.

Essentials
 n Artificial intelligence (AI) models to improve workflow efficiency 

and safety include automated clinical decision support, study pro-
tocoling, examination scheduling, and worklist prioritization.

 n Models to improve image acquisition focus on patient positioning, 
multimodal image registration, dose reduction, noise reduction, 
and artifact reduction.

 n Models to improve reporting include automatic finding categoriza-
tion using classification systems (eg, Breast Imaging Reporting and 
Data System, Liver Imaging Reporting and Data System), provider 
notification of incidental findings, and closing the loop on patient 
follow-up.

 n Business applications include automated billing and coding, 
obtaining preauthorization, and optimization of performance on 
quality measures to increase reimbursement.

 n Use of AI in resident education is somewhat controversial, but 
AI can be used to help flag high-risk cases for faster review by an 
attending physician, customize teaching files based on residents’ 
needs, and help improve resident reporting.

Keywords
Use of AI in Education, Application Domain, Supervised Learning, 
Safety
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tails of image reconstruction are beyond the scope of this re-
view, but there have been extensive research efforts to use ma-
chine learning techniques to improve image reconstruction 
in CT, MRI, and PET. Examples of targets for improvement 
include noise reduction, artifact suppression, motion com-
pensation, faster image acquisition, and multimodal image 
registration. These goals are often codependent and closely 
related, and it is therefore possible to reduce both radiation 
dose and contrast agent dose with the use of successful image 
reconstruction techniques.

Image quality is often a trade-off between radiation dose in 
CT and scan times for MRI. Filtered back projection (36,37), it-
erative reconstruction (38,39), and newer model-based iterative 
reconstruction techniques function by filtering raw sensor data 
or by considering noise statistics, optics, physics, and scanner 
parameters (38). However, all of these techniques are specific to 
the vendor and can have substantial overhead costs because of 
their long computational time (27).

Early machine learning–based CT reconstruction techniques 
caused over-smoothing, resulting in so-called waxy images (26). 
Since then, several subtypes of convolutional neural networks 
have been developed to denoise CT and MR images without loss 
of technical detail (25,40). One method combines deep learning 
techniques with standard filtered back projection principles to 
produce high-quality images with low noise, even with a 20-fold 
reduction in CT input data (41). Another vendor-agnostic CT 
solution achieved higher spatial resolution than filtered back pro-
jection and model-based iterative reconstruction for processing 
low-dose CT and has been granted U.S. Food and Drug Admin-
istration clearance (ClariCT.AI; ClariPi). A different company 

conventional method to reduce CT radiation dose is to de-
crease tube current but this increases noise and reduces diag-
nostic confidence (26). However, machine learning techniques 
for image reconstruction have recently demonstrated impres-
sive results that provide higher-quality images than traditional 
techniques while maintaining lower radiation doses (27,28). 
These denoising algorithms are discussed in further detail in 
the Image Reconstruction section below.

In PET imaging, radiotracer dose reduction has been targeted 
with models that reconstruct low-dose examinations to appear 
similar to full-dose examinations by using noise-reduction algo-
rithms. One commercial company has been able to use only one 
200th of the standard tracer dose and a reduced scan time of 
up to 75% while achieving image quality comparable to the in-
dustry standard by using encoder-decoder residual deep learning 
networks (25,29,30). Generative adversarial networks have been 
used to reconstruct PET images acquired with 1%–25% of the 
standard radiotracer dose with quality similar to that of normal-
dose PET images (31,32) (Fig 1). 

MRI does not produce ionizing radiation, but researchers 
have explored machine learning techniques to reduce gadolin-
ium-based intravenous contrast agent dosage (33). Gong et al 
(33) used machine learning to achieve a 10-fold reduction in 
gadolinium-based contrast agent administration with no signifi-
cant reduction in image quality or contrast information.

Image Reconstruction
Image reconstruction is fundamental to medical imaging to 
create high-quality diagnostic images while managing cost, 
reconstruction time, and risk to the patient (34,35). The de-

Figure 1: (A, B) Two examples of low-dose PET (left), ground truth standard-dose PET (middle), and low-dose PET with generative adversarial 
network-synthesized images (right). (Adapted, with permission, from reference 32.)
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is a frequent and repetitive task for radiologists during study 
interpretation. Several permutations of this mathematical 
problem exist because several variables can be considered, in-
cluding modality, region of interest, temporality, dimensional-
ity, and elasticity of tissues (51).

Several techniques for automatic image registration have been 
explored. Section-to-volume registration is a common implemen-
tation in which a two-dimensional image section is registered to an 
existing three-dimensional volume. The primary example of this 
type of application is registration of two-dimensional transrectal 
US with an existing three-dimensional MRI for targeted prostate 
biopsy (52). Cross-modality registration is also performed between 
three-dimensional volumes (eg, registration of a preoperative CT 
or MRI to an intraoperative CT for targeted thermal ablation of 
liver lesions [53] or registration of prostate lesions across CT and 
MRI [54]; Fig 4). Haskins et al (52) published a comprehensive 
list of image registration applications.

Patient Positioning
Radiation dose exposure to different organs depends on pa-
tient positioning within the CT gantry, and an inexperienced 
technologist may inadvertently over- or underexpose the re-
gion of interest because of miscalculations of patient size on 
the basis of the localizer radiograph (55,56). An offset of as 
little as 20 mm can result in significant changes in effective 
organ dose (55,56). Advances in patient positioning include 
a three-dimensional depth-sensing camera that recognizes the 
anatomic landmarks and models that automatically calculate 
the patient’s center, which is used to optimize the patient bed 
position for dose and image quality. This implementation is 
commercially available by one vendor and has been shown to 
be more accurate and less variable than manual positioning by 
technologists (55,57,58).

In mammography, poor positioning can result in missed 
breast cancers or technical recalls (59). Strict adherence to posi-
tioning and technique optimizes breast coverage and diagnostic 
quality while minimizing radiation (59,60). Models to automat-
ically evaluate image quality at the time of acquisition to ensure 
compliance with the Mammography Quality Standards Act and 
Program (61) could reduce technical recalls, and one such solu-
tion is registered with the U.S. Food and Drug Administration 
(Mia IQ; Kheiron Medical Technologies).

has commercialized a deep learning–based CT reconstruction 
product that provides quality similar to that of model-based it-
erative reconstruction but with a three- to fourfold reduction in 
reconstruction time (42,43).

In MRI, longer acquisition times can produce higher image 
quality, but they also increase the risk of motion artifacts (44). 
As a result, several machine learning approaches have targeted 
MRI noise reduction and artifact suppression (44) (Fig 2). Most 
of these applications are in the research phase, although a few 
vendor-agnostic denoising products have been approved by the 
U.S. Food and Drug Administration. These products reduce 
MRI acquisition times by 30%–40% (45,46).

Image Quality Control
Poor image quality can be particularly challenging in MRI 
because of suboptimal scan parameters, artifacts, or inappro-
priate coverage (47). Repeat MRI sequences are required in 
up to 20% of examinations, at a cost to hospitals of up to 
$115 000 per scanner annually (24). Various methods have 
been proposed to automatically assess image quality prospec-
tively or retrospectively.

Prospective image quality control can benefit scan protocols 
with high acquisition times, such as brain MRI (24) or real-
time T2-weighted liver MRI (48). In these cases, models have 
shown value in assessing for nondiagnostic scan quality during 
acquisition so technologists can adjust scan parameters during 
the examination rather than after its completion (24,48). Ret-
rospective image quality control explores techniques to mitigate 
metal artifact, respiratory motion, and banding artifact at MRI. 
Multiple groups have developed models that target noise and 
artifact suppression (44,49,50) (Fig 3).

One company has developed algorithms for image quality 
issues in radiography, US, and conventional angiography (Con-
textVision). They offer products to reduce over- or underexpo-
sure and metal artifact in radiography, suppress noise to improve 
contrast and tissue differentiation at US, and reduce noise and 
motion artifact for improved visibility of stents and catheter tips 
in coronary artery angiography.

Image Registration
Image registration refers to linking the same anatomic region 
together within an examination or across examinations, and it 

Figure 2: MRI with image aliasing, specifically respiratory artifact and blurring suppression (A) before and (B) after artifact 
reduction. DL = deep learning. (Adapted, with permission, from reference 44.)
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findings) and detected five new intracranial hemorrhages with a 
reduction in reporting time for these cases from 8.5 hours to 19 
minutes. Multiple similar models exist for detection of intracra-
nial hemorrhage (65,66) and emergency findings at abdominal 
CT (67) and chest CT angiography (68,69).

Typically, AI is used to detect positive findings that require 
emergency intervention (eg, pulmonary embolism, hemorrhage, 
and pneumoperitoneum), but this narrowed focus addresses 
only part of the problem in a resource-limited setting such as 
the emergency department. Prolonged turnaround times for ex-
aminations with negative findings also equate to prolonged turn-
around times for the emergency department, in which staff may 
be awaiting a negative result to discharge a patient (70,71). Neg-
ative results may also be necessary for taking appropriate steps 
in patient care, for example, clearing a noncontrast head CT for 
hemorrhage before a patient can undergo thrombolysis for acute 
stroke. In this scenario, rapid confirmation of the absence of a 
finding is crucial for patient care (72). As of the writing of this re-
view, there is no U.S. Food and Drug Administration–approved 
model for detection of examinations with definitively negative 

Worklist Prioritization
Radiologist worklists are typically populated by examinations 
on the basis of preset criteria, such as body part, modality, pa-
tient location, and priority. However, nonemergency examina-
tions are often mistakenly ordered as emergency examination 
in an effort to expedite imaging, thereby preventing the ra-
diologist from differentiating between routine and emergency 
studies and potentially delaying the interpretation of truly 
emergency cases.

Many AI algorithms have been developed across multiple 
body regions to prioritize examinations with emergent findings 
(62) (Fig 5). These models must be adequately sensitive and 
specific to identify emergency findings while avoiding excessive 
false-positive results. Annarumma et al (63) tested such a system 
to simulate a triage system for retrospective adult chest radio-
graphs, resulting in a theoretical reduction in reporting delay for 
critical studies from 11.2 to 2.7 days. Arbabshirani et al (64) 
prospectively implemented a prioritization system for detec-
tion of intracranial hemorrhage at head CT, which flagged 94 
of 347 routine cases (60 true-positive findings, 34 false-positive 

Figure 3: Noise suppression of (top) T1- and (bottom) T2-weighted images. Original images (left) and processed images (right). 
(Adapted, with permission, from reference 50.)

http://radiology-ai.rsna.org
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results; however, such models have the potential to substantially 
affect patient care and throughput.

Reporting

Structured Reporting
Integration of AI applications into radiology reporting has the 
potential to increase the clarity, accuracy, and quality of report-
ing and decrease report variability in some situations (73). For 
example, models have been created to improve patient care by 
automatically populating recommendations for follow-up of 
incidental findings (74–77). NLP models have also been devel-
oped as smart assistants. For example, Do et al (78) developed a 
tool that detected when the radiologist was reporting a fracture 

and displayed additional information regarding pertinent clas-
sifications, associated injuries, and further clinical recommen-
dations. Whereas multiple frameworks have been developed to 
convert unstructured findings in reports into structured tem-
plates to improve legibility (79–81), we were unable to find 
any recent system that has been systematically tested for per-
formance or implemented clinically.

Classification Systems
Several classification systems have been developed for fre-
quently encountered lesions, including thyroid (Thyroid Im-
aging Reporting and Data System [TI-RADS]) (82), breast 
(Breast Imaging Reporting and Data System [BI-RADS]) (83), 
liver (Liver Imaging Reporting and Data System [LI-RADS]) 

Figure 4: Sample image registration between CT and MRI scans shows original CT image with the manual contour in yellow (left), MRI scan 
with manual contour in blue (middle), and colocalized section and contour carried from the CT image to the MRI scan with a good overlap between 
contours (right). (Adapted, with permission, from reference 54.)

Figure 5: Analytic algorithm of noncontrast head CT examinations for urgent findings. AI = artificial intelligence. (Adapted, with permission, from reference 62.)
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(84), and primary brain malignancies (Brain Tumor Report-
ing and Data System [BT-RADS]) (85). Each of these scor-
ing systems relies on imaging characteristics and change over 
time to guide diagnosis or follow-up management. Many AI 
algorithms have been developed to automate the tasks associ-
ated with these scoring systems, including lesion measurement, 
image segmentation, and comparison with prior images. Some 
systems measure lesions that must first be identified by the ra-
diologist (86–88), whereas others detect candidate lesions and 
their characteristics and predict the likelihood of future cancer 
(89). For example, algorithms have been developed to derive 
BI-RADS scores and breast densities or to highlight lesions 
that are suspected for cancer directly from breast MRI, US, 
or mammography. These algorithms have achieved areas under 
the curve of greater than 0.9 (90–92). For liver lesions, models 
have been created to identify lesions at multisequence imag-
ing and perform sequence coregistration to help measurement 
and interpretation (93,94) or to derive the LI-RADS score di-
rectly from the images, with accuracies ranging from 57% to 
85% (95). In the BT-RADS, NLP algorithms have been able 
to derive BT-RADS classification scores directly from the MRI 
report, achieving F1 scores of up to 0.98 (96).

Machine learning algorithms have been incorporated into the 
data curation process used to update recommendations within 
the classification systems, as in the case of TI-RADS (97). A 
model trained with thyroid US lesions and their respective TI- 
RADS scores was able to improve the specificity of thyroid bi-
opsy from 47% to 65% (ie, decreased biopsy of nonmalignant 
nodules) while maintaining sensitivity (98).

Automatic Notification to Provider of Incidental and 
Emergent Findings
Communication of critical diagnoses is mandated by the Joint 
Commission as a part of National Patient Safety Goal 2, “Im-
proving the Effectiveness of Communication Among Caregiv-
ers” (99). In practice, implementing this trail of communica-
tion is inefficient and can disrupt workflow, contributing to 
burnout among radiologists (100). Communication failure is 

also one of the leading causes of malpractice lawsuits (101). 
Hiring reading room coordinators or medical students to help 
with communication increases work satisfaction among radi-
ologists; however, hiring personnel is costly. Therefore, AI has 
been a topic of interest in automating provider notification 
(62,102–104). A notable implementation of this technology 
was described by Do et al (105), who used AI in outpatient 
oncologic CT images to detect actionable incidental findings 
such as pulmonary embolism, gastrointestinal obstruction, 
hydronephrosis, and pneumothorax, resulting in a median 
1-hour decrease in notification time to referring physicians and 
a 37% improvement in radiologist interpretation time.

Patient Follow-up
Radiologist reporting and recommendations for incidental find-
ings is variable (106), and patient chain management can be chal-
lenging in large, complex health systems, sometimes resulting in 
lack of follow-up care. Many groups have used NLP to identify 
incidental follow-up findings in the radiology report to reduce 
the variability of recommendations or the number of patients for 
whom follow-up recommendations are not suggested or are not 
followed (107–111). Implementation of such systems into the live 
clinical environment remains rare; however, Hammer et al (112) 
implemented a closed-loop system for follow-up of incidental pul-
monary nodules, resulting in a significantly higher rate of appro-
priate follow-up by primary care physicians (P , .001). A sample 
report from such a system is shown in Figure 6.

Business Applications

Billing and Coding
AI applications in business analytics present an opportunity to 
create value and shape radiology practice. A major area of focus 
has been billing and coding because of the combined potential 
effect of increased revenue and decreased errors.

It has been estimated that health care organizations lose be-
tween 3% and 5% of net revenue annually because of insur-
ance claim denials (113,114). In 2010, the National Academy 
of Medicine synthesized one of the most extensive datasets of 
U.S. administrative costs related to billing and insurance, esti-
mating that billing-related costs account for 13% of physician 
care spending and 8.5% of hospital care spending (115,116). 
More than 100 variables contribute to claim denial by insurance 
companies, and although this number is too vast to assess manu-
ally for each report, NLP can automatically ensure that reports 
are billed and coded appropriately (117,118).

Research that uses NLP has shown that incomplete documen-
tation is common for many examinations. For example, docu-
mentation deficiencies have been identified in 9.3%–20.2% of 
abdominal US reports, representing a 2.5%–5.5% loss in profes-
sional reimbursement (119). AI can assist by creating predictive 
classification models for automated procedure coding. A study 
investigating the coding of MRI examinations demonstrated 
that the AI system achieved the same performance as manual 
coding by a technologist and did not require any human inter-
vention (120). Therefore, automated coding techniques may 

Figure 6: Sample of potential automaton for detection of an incidental pulmo-
nary nodule in the report and appropriate follow-up recommendation generation. 
Exam = examination. Red boxes = portions of report model would use to gener-
ated follow-up recommendation.
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optimize reimbursement, improve workflow efficiency, and as-
sess rejected claims to help reduce future denials (121).

Preauthorization
Lack of clinical documentation from referrals often leads to 
delays in authorization of procedures and imaging. Whereas 
computerized physician order entry was created as a tool to de-
crease errors in ordering and to help with preauthorization, it 
has had variable success depending on the use case and method 
of implementation (122). Even with computerized physician 
order entry, many referrals must be manually reviewed and are 
subject to time-consuming telephone calls to insurance com-
panies. Examples of missing information include incomplete 
patient demographics, outdated or inactive insurance informa-
tion, and incomplete clinical documentation. According to 
a survey of 500 health industry leaders in the United States, 
automation of preauthorization was seen as the AI application 
with the most potential (123).

A substantial amount of these relevant data resides in the ra-
diology information system and EMR, which may contain data 
pertinent to preauthorization such as patient orders, insurance, 
and clinical history that may be amenable to query by using 
NLP techniques. Prior authorization software enables health 
care organizations to identify authorization requirements at the 
time of scheduling by mining the radiology information system 
and EMR, therefore reducing manual administrative burden 
and patient scheduling delays (124).

Value-based Payment Models
Data-driven quality improvement lies at the intersection of new 
value-based payment models and AI. The Quality Payment Pro-
gram arose as part of the Medicare Access and CHIP Reauthori-
zation Act of 2015 and represented the shift to value-based care 
by enumerating a series of value-based paradigms for physician 
reimbursement (125). To understand AI applications within the 
Quality Payment Program, it is important to understand how 
reimbursement processes differ between the two major Quality 
Payment Program pathways—the Merit-based Incentive Pay-
ment System and the alternative payment model (Fig 7).

The Merit-based Incentive Payment System involves a 
100-point score related to quality, cost, interoperability, and im-
provement and results in positive, negative, or neutral adjust-
ments to reimbursements based on physician performance. For 
radiologists, the quality category is the most important, and ap-
proximately 85% of radiologist Merit-based Incentive Payment 
System scores were directly affected by the quality category in 
2019 (126,127). Many quality metrics center on reducing un-
necessary imaging and ensuring appropriate documentation and 
follow-up. AI-based tools may be used to optimize performance 
on quality measures such as carotid artery stenosis measurements 
or appropriate follow-up for incidentally discovered lesions 
(126). Similarly, AI could be used to develop tools to automati-
cally measure and track lesion progression, place information 
into reports, or even search the radiology information system 
and EMR to evaluate inclusion or exclusion criteria for certain 
patients (126).

The alternative payment model pathway has a greater focus 
on population health compared with the Merit-based Incentive 
Payment System, such that tools that improve the health of the 
entire population are specifically incentivized. AI applications 
that reduce cost while maintaining or improving quality are 
especially relevant to alternative payment model pathways and 
encourage team-based accountability within a health care orga-
nization. In 2019, up to 15% of the final alternative payment 
model scores were related to cost (127). Within this context, AI 
that is focused on reducing unnecessary procedures and imag-
ing is especially valuable (eg, models that predict the malignancy 
potential of a lesion to decrease unnecessary follow-up scans or a 
tool that mines the EMR for prior studies to reduce redundant 
imaging) (126). In the future, primary drivers of AI applications 
in radiology business analytics, such as applications in quality 
improvement, will likely continue to correlate with the regula-
tory landscape and payer reimbursement patterns.

Resident Education
There are many potential use cases for AI in radiology edu-
cation. As AI tools become ubiquitous in the daily workflow 
for radiologists, care must be taken to ensure that radiology 
trainees learn adequate interpretation skills and do not rely on 
AI software to locate abnormal findings or assign diagnoses. 
Beyond these potential risks, however, there are many opportu-
nities to improve resident education by using AI tools.

Tajmir and Alkasab (128) list various potential applications of 
AI in radiology education, including selection of trainee cases, im-
proved supervision of residents by attending physicians, analysis of 
report differences between trainees of various levels, and facilita-
tion of lifelong learning. For example, AI algorithms could iden-
tify cases that have educational value based on parameters such as 
common diseases; rare, interesting, or unique findings; complexity; 
and acuity. These cases could be automatically incorporated into 
a trainee’s worklist or into a teaching file for dedicated teaching 
sessions. Conceivably, such a process could be tailored to specific 
residents, thereby creating individualized learning opportunities.

Figure 7: A comparison of the Merit-based Incentive Payment System (MIPS) 
and the alternative payment model (APM) pathways and possible artificial intel-
ligence (AI) applications under each model. EMR = electronic medical record, RIS 
= radiology information system.
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Receiving feedback from supervising attending physicians is 
an integral part of clinical education; however, a balance must be 
struck between complete trainee autonomy and overbearing su-
pervision. AI could help by silently alerting a supervising radiol-
ogist when a junior resident opens a complex or high-acuity case 
(128). This workflow would allow the resident an opportunity 
to independently review a case while ensuring that an attending 
physician is also aware of the case, thereby maintaining patient 
safety and simultaneously allowing for the effective educational 
growth of residents.

There is also an opportunity for NLP-based applications to 
affect resident education. NLP and AI algorithms may be used 
to compare reporting differences between trainees and nontrain-
ees of various levels (128). Although this is a potentially sensitive 
area, a theoretical use case would demonstrate to junior residents 
how their reporting differs from that of more senior trainees. 
The AI system could then provide suggestions for changes that 
could be made by the junior resident. Care must be taken in 
implementation, however, so trainees do not feel unnecessarily 
“watched over” during interpretation.

AI applications could also facilitate lifelong education by 
incorporating new data and recent updates in imaging guide-
lines into a radiologist’s reporting (128), for example, the 
newest guidelines for incidental pulmonary nodule follow-
up. Such an application could benefit both trainees and at-
tending physicians alike.

Despite these potential benefits, AI must be used judiciously 
in resident training to avoid interfering with development of the 
resident’s skills. Residents must be educated in the appropriate 
use and interpretation of AI results because understanding how 
AI models are developed will better equip them to identify and 
appropriately manage model errors.

Areas of Future Work
A limitation of most machine learning applications for non-
interpretive use cases is the relative lack of exploration of 
clinical effect and generalizability. Most research models de-
scribed herein were developed and validated at a single insti-
tution. There is a vast technical, resource, time, and cost gap 
between developing a well-performing model on the basis 
of retrospective data and implementing the model in a live 
clinical setting at multiple disparate sites. Unlike imaging-
based AI models that work on standardized Digital Imag-
ing and Communications in Medicine imaging, noninter-
pretive models rely on heterogeneous data from multiple 
sources that are complex and varied across institutions. In 
our own institution, more than 80 interconnected software 
products are used in the radiology department and accessing 
data from these software products and integrating models 
into them is complex, requiring the agreement of multiple 
stakeholders. Those who are interested in trying publicly 
available research models at their own institution must be 
prepared to devote the time and personnel for implementa-
tion, even if the software is available free of charge. Com-
panies developing products in this space should understand 
the potential complexity of implementation, which may be 
unique for every customer.

Ordering, imaging, and billing patterns are also diverse 
across institutions and patient populations. To ensure models 
are generalizable, they must be developed and tested by using 
data from multiple sites. For example, brain MRI protocols 
likely differ across institutions. A protocoling model must have 
access to these varied data for training and testing; however, 
these data must be harmonized to a common schema to be 
combined. This increases the complexity, time, and cost of 
model development. The ongoing adoption of standardized 
lexicons and communications standards such as common data 
elements (129) and Fast Healthcare Interoperability Resources 
(130) could help mitigate these issues by reducing variations in 
the input data structure, thereby allowing easier collection of 
multisite data.

There are also some underexplored areas in the radiology 
value chain that could benefit from machine learning applica-
tions. Missed appointments, particularly for MRI examinations, 
represent substantial lost revenue for radiology departments. 
Several studies have described the use of machine learning to 
predict no-shows for hospital and outpatient visits (131–133) 
and outpatient appointment and surgery scheduling (134,135). 
However, this work has not yet been extended to the radiology 
domain. The largest study in this area used a multivariant model 
to show the effect of median income and commute distance on 
missed or canceled appointments, but it did not use more ad-
vanced modeling or any EMR data (136). Another study used 
an XGBoost model only on structured data from the hospital 
radiology information system and appointment system and 
achieved an area under the receiver operating characteristic curve 
of 0.746; however, the model did not include more diagnostic 
information from the EMR (137). NLP and machine learning–
based techniques could be used to process structured and un-
structured data from the EMR to potentially achieve improved 
performance. Intelligent hanging protocols could be trained to 
automatically extract series information and display examina-
tions according to the preferences of a radiologist, saving time 
during interpretation. Intelligent worklist optimization to en-
sure that radiologists read examinations for which they have the 
most experience or efficiency could improve diagnostic quality 
and turnaround times. Additionally, chatbots that interface with 
patients to answer questions or explain report findings could im-
prove health literacy and patient confidence. These are just a few 
of the many potential areas of exploration in the development of 
radiology AI models.

Conclusion
Radiology AI software has become increasingly popular over 
the past several years. Whereas the majority of research and 
commercial software focuses on diagnostic or interpretive ap-
plications, there are large areas of potential improvement in 
upstream workflow, including protocoling, acquisition, recon-
struction, and worklist management, and downstream applica-
tions such as reporting, follow-up, and billing and coding. In 
aggregate, these solutions could have a similar or even larger 
effect than most diagnostic AI software because of their ap-
plicability to a large number of cases and at multiple points in 
the radiology workflow.
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