90 research outputs found

    A new method for anomaly detection based on non-convex boundaries with random two-dimensional projections

    Get PDF
    [Abstract] The implementation of anomaly detection systems represents a key problem that has been focusing the efforts of scientific community. In this context, the use one-class techniques to model a training set of non-anomalous objects can play a significant role. One common approach to face the one-class problem is based on determining the geometric boundaries of the target set. More specifically, the use of convex hull combined with random projections offers good results but presents low performance when it is applied to non-convex sets. Then, this work proposes a new method that face this issue by implementing non-convex boundaries over each projection. The proposal was assessed and compared with the most common one-class techniques, over different sets, obtaining successful results

    Novel techniques of computational intelligence for analysis of astronomical structures

    Get PDF
    Gravitational forces cause the formation and evolution of a variety of cosmological structures. The detailed investigation and study of these structures is a crucial step towards our understanding of the universe. This thesis provides several solutions for the detection and classification of such structures. In the first part of the thesis, we focus on astronomical simulations, and we propose two algorithms to extract stellar structures. Although they follow different strategies (while the first one is a downsampling method, the second one keeps all samples), both techniques help to build more effective probabilistic models. In the second part, we consider observational data, and the goal is to overcome some of the common challenges in observational data such as noisy features and imbalanced classes. For instance, when not enough examples are present in the training set, two different strategies are used: a) nearest neighbor technique and b) outlier detection technique. In summary, both parts of the thesis show the effectiveness of automated algorithms in extracting valuable information from astronomical databases

    Brief Review of Vibration Based Machine Condition Monitoring

    Get PDF
    In the process of channeling energy into job to be performed all machines vibrate. Machines rarely break down without giving some previous warning. The signs of impeding failure are generally present long before a machine totally breaks down. When faults begin to develop in the machine, some of dynamic processes in the machine are changed as well, thereby influencing machine vibration level, temporal and spectral vibration properties. Such changes can act as an indicator for early detection and identification of developing faults. This paper briefly reviews the machine condition monitoring based on vibration data analysis. After the review of major, well established and mature approaches, new unsupervised approaches based on novelty detection are also briefly mentioned

    Machine learning: statistical physics based theory and smart industry applications

    Get PDF
    The increasing computational power and the availability of data have made it possible to train ever-bigger artificial neural networks. These so-called deep neural networks have been used for impressive applications, like advanced driver assistance and support in medical diagnoses. However, various vulnerabilities have been revealed and there are many open questions concerning the workings of neural networks. Theoretical analyses are therefore essential for further progress. One current question is: why is it that networks with Rectified Linear Unit (ReLU) activation seemingly perform better than networks with sigmoidal activation?We contribute to the answer to this question by comparing ReLU networks with sigmoidal networks in diverse theoretical learning scenarios. In contrast to analysing specific datasets, we use a theoretical modelling using methods from statistical physics. They give the typical learning behaviour for chosen model scenarios. We analyse both the learning behaviour on a fixed dataset and on a data stream in the presence of a changing task. The emphasis is on the analysis of the network’s transition to a state wherein specific concepts have been learnt. We find significant benefits of ReLU networks: they exhibit continuous increases of their performance and adapt more quickly to changing tasks.In the second part of the thesis we treat applications of machine learning: we design a quick quality control method for material in a production line and study the relationship with product faults. Furthermore, we introduce a methodology for the interpretable classification of time series data

    Detecting abnormalities in aircraft flight data and ranking their impact on the flight

    Get PDF
    To the best of the author’s knowledge, this is one of the first times that a large quantity of flight data has been studied in order to improve safety. A two phase novelty detection approach to locating abnormalities in the descent phase of aircraft flight data is presented. It has the ability to model normal time series data by analysing snapshots at chosen heights in the descent, weight individual abnormalities and quantitatively assess the overall level of abnormality of a flight during the descent. The approach expands on a recommendation by the UK Air Accident Investigation Branch to the UK Civil Aviation Authority. The first phase identifies and quantifies abnormalities at certain heights in a flight. The second phase ranks all flights to identify the most abnormal; each phase using a one class classifier. For both the first and second phases, the Support Vector Machine (SVM), the Mixture of Gaussians and the K-means one class classifiers are compared. The method is tested using a dataset containing manually labelled abnormal flights. The results show that the SVM provides the best detection rates and that the approach identifies unseen abnormalities with a high rate of accuracy. Furthermore, the method outperforms the event based approach currently in use. The feature selection tool F-score is used to identify differences between the abnormal and normal datasets. It identifies the heights where the discrimination between the two sets is largest and the aircraft parameters most responsible for these variations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Biologically Inspired Computer Vision/ Applications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing

    Get PDF
    Biologically Inspired Computer VisionApplications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing Reza Hojjaty Saeedy Abstract Biological vision systems are remarkable at extracting and analyzing the information that is essential for vital functional needs. They perform all these tasks with both high sensitivity and strong reliability. They can efficiently and quickly solve most of the difficult computa- tional problems that are still challenging for artificial systems, such as scene segmentation, 3D/depth perception, motion recognition, etc. So it is no surprise that biological vision systems have been a source of inspiration for computer vision problems. In this research, we aim to provide a computer vision task centric framework out of models primarily originating in biological vision studies. We try to address two specific tasks here: saliency detection and object classification. In both of these tasks we use features extracted from computational models of biological vision systems as a starting point for further processing. Saliency maps are 2D topographic maps that catch the most conspicuous regions of a scene, i.e. the pixels in an image that stand out against their neighboring pixels. So these maps can be thought of as representations of the human attention process and thus have a lot of applications in computer vision. We propose a cascade that combines two well- known computational models for perception of color and orientation in order to simulate the responses of the primary areas of the primate visual cortex. We use these responses as inputs to a spiking neural network(SNN) and finally the output of this SNN will serve as the input to our post-processing algorithm for saliency detection. Object classification/detection is the most studied task in computer vision and machine learning and it is interesting that while it looks trivial for humans it is a difficult problem for artificial systems. For this part of the thesis we also design a pipeline including feature extraction using biologically inspired systems, manifold learning for dimensionality reduction and self-organizing(vector quantization) neural network as a supervised method for prototype learning

    Biologically Inspired Computer Vision/ Applications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing

    Get PDF
    Biologically Inspired Computer VisionApplications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing Reza Hojjaty Saeedy Abstract Biological vision systems are remarkable at extracting and analyzing the information that is essential for vital functional needs. They perform all these tasks with both high sensitivity and strong reliability. They can efficiently and quickly solve most of the difficult computa- tional problems that are still challenging for artificial systems, such as scene segmentation, 3D/depth perception, motion recognition, etc. So it is no surprise that biological vision systems have been a source of inspiration for computer vision problems. In this research, we aim to provide a computer vision task centric framework out of models primarily originating in biological vision studies. We try to address two specific tasks here: saliency detection and object classification. In both of these tasks we use features extracted from computational models of biological vision systems as a starting point for further processing. Saliency maps are 2D topographic maps that catch the most conspicuous regions of a scene, i.e. the pixels in an image that stand out against their neighboring pixels. So these maps can be thought of as representations of the human attention process and thus have a lot of applications in computer vision. We propose a cascade that combines two well- known computational models for perception of color and orientation in order to simulate the responses of the primary areas of the primate visual cortex. We use these responses as inputs to a spiking neural network(SNN) and finally the output of this SNN will serve as the input to our post-processing algorithm for saliency detection. Object classification/detection is the most studied task in computer vision and machine learning and it is interesting that while it looks trivial for humans it is a difficult problem for artificial systems. For this part of the thesis we also design a pipeline including feature extraction using biologically inspired systems, manifold learning for dimensionality reduction and self-organizing(vector quantization) neural network as a supervised method for prototype learning
    • …
    corecore