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Abstract

To the best of the author’s knowledge, this is one of the first times that

a large quantity of flight data has been studied in order to improve

safety.

A two phase novelty detection approach to locating abnormalities in

the descent phase of aircraft flight data is presented. It has the ability

to model normal time series data by analysing snapshots at chosen

heights in the descent, weight individual abnormalities and quanti-

tatively assess the overall level of abnormality of a flight during the

descent. The approach expands on a recommendation by the UK

Air Accident Investigation Branch to the UK Civil Aviation Author-

ity. The first phase identifies and quantifies abnormalities at certain

heights in a flight. The second phase ranks all flights to identify the

most abnormal; each phase using a one class classifier. For both the

first and second phases, the Support Vector Machine (SVM), the Mix-

ture of Gaussians and the K-means one class classifiers are compared.

The method is tested using a dataset containing manually labelled

abnormal flights. The results show that the SVM provides the best

detection rates and that the approach identifies unseen abnormali-

ties with a high rate of accuracy. Furthermore, the method outper-

forms the event based approach currently in use. The feature selection

tool F-score is used to identify differences between the abnormal and

normal datasets. It identifies the heights where the discrimination

between the two sets is largest and the aircraft parameters most re-

sponsible for these variations.
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Chapter 1

Introduction

1.1 Background

Flight safety is an important issue, ever since the first flights over a hundred

years ago. Air accidents are almost always major headlines and can affect large

numbers of people. Accidents can be particularly tragic due to a significant loss

of life on the aircraft and possibly to civilians on the ground. Significant financial

losses occur when the aircraft is damaged or written off, leading to the cost of

replacement and the loss of revenue that the aircraft would have made had the

accident not occurred.

The black box recorder is a very well protected device in the aircraft that

records certain parameters and is designed to withstand a major crash. They

are located as soon as possible after an accident so that investigators can try to

identify the reasons behind it. Deducing why the aircraft crashed can take as long

as 12 months due to the complexity of the aircraft’s systems or if the accident

occurred in a remote area that is mostly inaccessible. Once they have discovered

the reasons behind the accident, they are then made known to the airlines and

sometimes to the manufacturer so they can learn from it.

Given the fact that air accidents can be disastrous in terms of loss of life, prop-

erty and revenue, research has been undertaken to try to identify any precursors

to accidents or incidents. The first Flight Data Monitoring (FDM) programmes

were created in order to routinely analyse data from all or most of the aircraft

in a fleet. One of their aims is to identity any possible signs of damage to the

1



1.1 Background

aircraft or any instances where the aircraft is being flown outside of the airlines

recommended procedures.

FDM programmes are an example of fault detection methodologies. If a

recorded flight parameter exceeds a pre-specified threshold for a pre-specified

time period then an exceedance or ’fault’ has occurred and flight safety offi-

cers can investigate it. Traditionally fault detection has been seen as a purely

engineering discipline. However, in the past 10 years or so, it has become a

multi-disciplinary approach, in particular utilising Artificial Intelligence (AI). AI

techniques, combined with a robust understanding of the problem domain (in this

case how aircraft are flown) have had success in not only detecting faults but also

in predicting them. Fault detection approaches usually split into two areas.

• Online Fault Detection: This usually consists of sampling, preprocessing

and analysing the data in real time or with a very minimal delay. This can

be very valuable in alerting operators instantly to possible faults. Efficien-

cies must be made on the method of sampling and computation in order

that the algorithm operates in real time.

• Offline Fault Detection: This usually consists of sampling, preprocessing

and analysing the data sometime afterwards. For this approach, time is not

as important, which can allow more computationally difficult algorithms to

be utilised. However, it will not alert the operator to faults until after they

have happened.

AI can be useful for both forms of fault detection, however this thesis is

only concerned with offline fault detection. In simple terms, flight data is sent

from aircraft, processed by software at Flight Data Services Ltd and can then

be viewed in graphical or table form. The condition of the aircraft at a given

height can be thought of as a function of ’useful’ recorded parameters at that

height. By considering a large sample of flights that have been flown within the

airlines Standard Operating Procedures, it is possible to create a profile of how

the aircraft should be flown. Deviations from this profile can thus be regarded as

abnormal and hopefully be detected and the airline alerted.

2



1.2 Problem Formulation

1.2 Problem Formulation

Fault detection is a very important part of modern civil and military systems.

It is often such that fault detection is just as important as the system itself,

particularly if a fault could be very dangerous. Whilst many fault detection

systems are built into the system in question, some are retrofitted, perhaps in

light of new information about possible faults or for reasons of cost.

Flight safety has been an important topic ever since the first aircraft flew.

Accidents as far as possible were fully investigated and their lessons distributed to

the relevant bodies. Modern aircraft have two backup systems for each of the main

systems on board so that even if a main system and a backup fails, the remaining

backup system should still be able to help fly the aircraft. Whilst these measures

will help reduce the chance of mechanical failures, a lot of information on the state

of the aircraft is available from the data recorded by the flight data recorders.

Modern aircraft can record upwards of 600 parameters of frequencies between

0.25Hz and 8Hz. A 2 hour flight could therefore provide around 100Mbs worth

of data. An event based system will utilise a small amount of these parameters

and will notify the analyst if a parameter exceeds a given limit over a given time

period. Furthermore, only events with the highest severity level (level 3) are

looked at by analysts. and flight safety officers and so a large amount of data is

not being inspected. A concern is that there may be unseen events or anomalies

that the event based system has not detected. Using the raw values, it might be

possible to identify any increasing trends; for example, airspeeds getting closer

and closer to the level 3 limit on a particular phase of flight. This information

could be passed onto the airline so that they can take remedial action before

a problem actually happens. Furthermore, a system should be able to provide

greater insight as to why level 3 events occur and provide a better understanding

as to how their pilots are flying the aircraft.

The problem is therefore to explore ways to utilise more of the data, from all

or part of a flight, in order to investigate if there are any unseen abnormalities

and assess their relative impact on the flight. The data is in the form of a time

series consisting of all recorded parameters over the period of the flight. To the

3



1.3 Aims and Objectives

best of the author’s knowledge, this is one of the first times that a large quantity

of flight data has been studied in order to improve safety.

1.3 Aims and Objectives

The dissertation intends to address the following aims.

1. To analyse individual flights and their parameters and identify which pa-

rameters are useful in understanding the state of the aircraft at a given

point in time.

2. To identify what, if any, new information on trends or anomalies can be

found from using more data than the event based system uses.

3. To create a system that is able to identify and assess the impact of anomalies

of a flight and compare that flight to other such flights.

In order to achieve these aims, the followings objectives will be undertaken.

• Understand the existing event system, how limits are chosen and how events

are triggered.

• Study which events are most common and why.

• Understand what parameters are available for analysis and their meaning

relative to the state of the aircraft.

• Understand how an aircraft flies and the reasons for the standard operation

procedures by which they are meant to be flown.

• Study the principles behind fault detection and one class classification.

• Investigate the available literature on flight safety.

• Investigate methods for ranking flights in terms of abnormalities and their

impact.

4



1.4 Outline of Thesis

1.4 Outline of Thesis

Chapter 2 contains a brief history of flight data recorders and flight safety in

general. It looks at flight data monitoring programs and their key components.

A literary review of research in the field of flight data analysis is conducted and

in particular, the event based system is analysed to determine its advantages and

disadvantages. Finally, the descent is analysed with reference to general descent

principles and instructions from the airline in question.

Chapter 3 contains a study on one class classification methods. It explores the

theory behind the methods, looks at each method and also identifies key papers

that have used a given method successfully. It also identifies properties that a

good classifier should have in order to potentially achieve good results. Finally,

there is a review of ranking systems and some of their applications.

Chapter 4 explains the method used. It explains how the method was chosen,

selection of the dataset, preprocessing, scaling, experimental methodology, pa-

rameter choice and the creation of the abnormal test set. Chapter 5 presents the

results of the thesis and it has been split into two parts. The first part looks at

a Descent Abnormality Profile (DAP) for each flight and how representative the

DAPs are to the actual flight data and whether they highlight points of interest.

The second section looks at how the overall effect of the abnormalities on a flight

can be assessed and shows the results of ranking the abnormal test set against the

normal data. The F-score algorithm is detailed and it highlights which heights

are most useful in identifying the differences between the abnormal and normal

data. Furthermore, it is also used to identify which parameters are responsible

for this.

Chapter 6 presents the conclusions, the main contributions of the thesis and

future work.
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Chapter 2

Flight Safety

2.1 Introduction

When aircraft are involved in a major incident such as a mid air collision or loss

of control resulting in a crash, the event almost always makes the front page of

newspapers and is often the main story on national news. For these reasons, flight

safety is of critical importance. An airline with a poor safety record will find it

much harder to attract customers, hire the best crews and insure its operation.

In this chapter, a brief history of flight data recorders and their impact on

flight safety can be found in section 2.2. Section 2.3.1 looks at the main features

of a typical FDM program. Section 2.4 provides a literary review of methods of

flight data analysis. Section 2.5 details the event based system and its advantages

and disadvantages. Section 2.6 describes how to fly the descent and lists stablised

approach criteria. Section 2.7 describes how the descent is flown by the airline

whose data is used in this thesis. Section 2.8 concludes the chapter.

2.2 History of Flight Safety

2.2.1 History of Flight Data Recorders

In 1908, five years after the first flight, Orville Wright was demonstrating his

flyer aircraft to the United States military in the hope of securing a contract with

them to provide them with a military aeroplane [Howard, 1998; Prendergast, 2004;
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Rosenberg, 2010]. The first two demonstration flights were successful. However,

on the third, ’two big thumps’ were heard and the machine started shaking.

Despite desperate attempts to regain control, from a height of 75ft, the aircraft

plunged into the ground, badly injuring Orville Wright and eventually killing his

passenger. On analysis of the wreckage, Wright determined that the accident was

caused by a stress crack in the propeller which caused it to fall off. The Wrights

were able to make design changes to the aircraft using this analysis to try and

reduce the chances of another such accident. Whilst in this case it was possible

to discover the cause of the accident from the wreckage, there have been several

accidents where either the wreckage is in a remote area or the wreckage provided

no indication of the cause of the accident. Further knowledge could be obtained

if a device was created that was attached to the aircraft and able to record data

such as airspeed, rate of descent and altitude.

There is some doubt as to when the first flight data recorder was produced.

In 1939, the first proven recorder was created by Francois Hussenot and Paul

Beaudouin at the Marignane flight test centre in France [Fayer, 2001]. It was a

photograph-based flight recorder. The image on the photographic film was made

by a thin ray of light deviated by a tilted mirror according to the magnitude of

the data to record.

In 1953, an Australian engineer, Dr David Warren created a device that would

not only record the instrument readings but also any cockpit voices, providing

further information as to the causes of any accident [Williamson, 2010]. A series of

fatal accidents, for which there were neither witnesses or survivors led to growing

interest in the device. Dr Warren was allocated an engineering team to help

create a working design. The device was also placed in a fire proof and shock

proof case. Australia then became the first country in the world to make cockpit

voice recording compulsory.

Today, flight data recorders are governed by international standards. Rec-

ommended practices concerning flight data recorders are found in International

Civil Aviation Organisation (ICAO) Annex 6 [ICAO, 2010]. It specifies that the

recorder should be able to withstand high accelerations, extreme temperatures,

high pressures and fluid immersions. They should also be able to record at least
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a minimum set of parameters, usually between 1 and 8Hz. Most recorders are

capable of recording around 17-25 hours of continuous data.

2.2.2 History of Flight Data Monitoring

The development of ’black box’ flight data recorders was a significant advance

and allowed investigators to look at the raw data at the time of an accident to

try and understand what happened. However, the device was only intended to be

analysed at the time of an accident and so was little use for accident prevention.

From the 1960’s and 70’s, some airlines found it beneficial to replay crash recorder

data to assist with aircraft maintenance. However, multiple replays tended to

reduce their lifespan and so the Quick Access Recorder (QAR) was introduced

to record data in parallel with the crash recorder. Increases in the size of data

storage devices made it became possible to store data from one or multiple flights.

The introduction of this technology led to the first FDM programs. The Civil

Aviation Authority (CAA) defines FDM as “the systematic, pro-active and non-

punitive use of digital flight data from routine operations to improve aviation

safety.” The success of such programs are such that ICAO recommend that

all aircraft over 27 tonnes should be monitored by such a program. The UK,

applying this recommendation, has made it a legal requirement since 1st January

2005 [CAA, 2003].

2.3 Flight Data Monitoring Programmes

There are a wide variety of aircraft in service with the world’s airlines today. Some

are very modern such as the Boeing 787 Dreamliner [Boeing, 2010] (first flight

December 2009) and some are very old such as the Tupolev Tu-154 [Airliners,

2010] (first flight October 1968). Not all these aircraft were designed for the easy

fitting of the QAR and furthermore there is a big difference as to what parameters

the aircraft can record. Thus it is such that there is no standard FDM program

but that one should be tailored to the aircraft in the fleet and the structure of

the airline.
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2.3.1 Features of a Typical Flight Data Monitoring Pro-

gram

According to CAA recommendations as found in [CAA, 2003], a typical FDM

program should include...

• The ability to identify areas of current risk and identify quantifiable safety

margins - Flight data analysis could be used to identify deviations from

the airlines Standard Operating Procedure (SOP) or other areas of risk.

Examples might include the frequency of rejected take offs or hard landings.

• Identify and quantify changing operational risks by highlighting when non-

standard, unusual or unsafe circumstances occur. - Flight data analysis

can identify any deviations from the baseline but it should also be able to

identify when any unusual or potentially unsafe changes occur. Examples

could include an increase in the number of unstable approaches.

• To use the FDM information on the frequency of occurrence, combined with

an estimation of the level of severity, to assess the risks and to determine

which may become unacceptable if the discovered trend continues - By

analysing the frequency of occurrence and by estimating the level of risk

involved, it can be determined if it poses an unacceptable level of risk to

either the aircraft or the fleet. It should also be able to identify if there is

a trend towards unacceptable levels of risk.

• To put in place appropriate risk mitigation techniques to provide remedial

action once an unacceptable risk, either actually present or predicted by

trending, has been identified - Having identified the unacceptable level of

risk, systems should be in place to undertake effective remedial action. For

example, high rates of descent could be reduced by altering the SOP so that

better control of the optimum rates of descent is possible.

• Confirm the effectiveness of any remedial action by continued monitoring -

The FDM program should be able to identify that the trend in high rates

of descent, for example, is reducing for the airfields in question.
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Captain Holtom of British Airways [Holtom, 2006] states that from a flight

operations perspective, an FDM program should identify

• Non-compliance and divergence from Standard Operating Procedures.

• An inadequate SOP and inadequate published procedures.

• Ineffective training and briefing, and inadequate handling and command

skills from pilots and flight crew.

• Fuel inefficiencies and environmental un-friendliness.

From a maintenance perspective he states they should identify

• Aerodynamic inefficiency.

• Powerplant deterioration.

• System deficiencies.

Holtom highlights the value of FDM by including a quote from Flight In-

ternational: “Knowledge of risk is the key to flight safety. Until recently that

knowledge had been almost entirely confined to that gained retrospectively from

the study of accident and serious incidents. A far better system, involving a

diagnostic preventative approach, has been available since the mid-1970s.”

2.3.2 Methodology of a Typical Flight Data Monitoring

Program

1. Acquisition of Aircraft Data - Data is sent to the airline either wirelessly or

by removing the tape/disk and uploading it via the Internet to the airline.

2. Validation of Aircraft Data - The binary data is processed into engineering

units and validated to in order to ensure the data is reliable and that aircraft

parameters are within ranges listed by the aircraft manufacturer.

3. Processing of the Data - The data is replayed against a set of events to look

for exceedances and deviations from the SOP.

10



2.4 Literature Review of Flight Safety

4. Interpretation of the Data - All events are analysed automatically and

checked by analysts. Maintenance events are immediately sent to the main-

tenance department so that aircraft can be checked for any stresses or other

damage. Operational events are then analysed and possible crew contacts

initiated. Statistics of trends by time period, aircraft type, event type, etc

can be created.

5. Remedial Action - Training procedures or SOPs can be modified to reduce

the identified risk.

This thesis is concerned only with interpreting the data.

2.4 Literature Review of Flight Safety

A common analysis technique is one that is event driven [FDS, 2010]. Software

such as Sagem’s Analysis Ground Station [SAGEM, 2008] can process the raw

data that the airlines have sent and then tabulate the parameters and display

them on graphs. Airlines choose which events they would like detected and the

limits that they should be triggered at. There are two main types of events:

operational and maintenance. Operational events are concerned with the way in

which the aircraft is flown and how that flying deviates (if at all) from the air-

line’s SOP. Maintenance events are concerned with the physical condition of the

aircraft, in particular the engines, hard landings and flying too fast on a certain

flap setting. When maintenance events occur, the maintenance department of

the airline in question is immediately notified so that if there is any damage, they

can repair it. Events are created based on parameter exceedances and the greater

the exceedance, the higher the severity level. Level 3 events are the most severe

and are always reported to the airline’s flight safety officer. From this, statistics

can be produced to see which flights have the most events, which airline has the

best event rate, which events are the most common, etc. Furthermore, each level

3 is validated by an analyst with experience in the field of flight safety to ensure

that the airlines only see valid events and that any statistics produced contain

valid events.
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There are several providers of FDM in the current market. Whilst all use

an event based approach, there are subtle differences in their implementation.

This thesis is not interested in providing an overview of the market’s solutions

for FDM but an overview of how they use their event and snapshot data to

identify abnormal flights. Aerobytes Ltd produced a fully automated solution in

which events are validated automatically [Aerobytes, 2010a]. This will greatly

reduce the workload for any analyst but it may prove difficult to configure the

machine such that almost all of the events are valid. They use histograms to

display information for a particular parameter from which the user can select

thresholds and identify the percentage of flights for which that threshold was

exceeded. Such an approach allows the user to gain a better understanding of

how their aircraft are actually flying and whether the event limits are reasonable.

They also utilise a risk matrix which consists of the state of the aircraft in the

columns (air, ground, landing and approach, take off and climb) and event type

(acceleration, configuration, height, etc) on the rows [Aerobytes, 2010b]. Each

event is described by a number from 0 to 100 which rates the severity of the event

with 100 being the most severe and 0 being normal. Severity appears to be based

on the main event parameter so a Ground Proximity Warning System (GPWS)

warning on the final approach at 400 feet radio altitude would be regarded as

more severe than one at 800 feet radio altitude. A similar system is also used at

British Airways [Holtom, 2006]. In this way, flight safety officers can focus on the

events which have the higher severity ratings. The system has several advantages

in that by attempting to measure event severity, flight safety officers can focus

on the more abnormal flights. However, it is impossible to assess if the severity

scale accurate reflects the impact of the event or if the automated system is able

to display only valid events. The author has not had access to this system and

this review is based on advertised capabilities.

In addition to event based analysis, British Airways uses histograms to show

the distribution of the maximum value of a selected parameter during a given

time period such as the maximum pitch during takeoff [Holtom, 2006]. These

charts can help explain if certain types of events are occurring because crews are

not adhering to the SOP. They can also identify if a problem is common to one

or two individuals or if it is occurring across the whole fleet. This information
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can be passed on to the training department. Then the individual in question or

all the pilots might benefit from extra training.

The airlines can see that an event has occurred but what they cannot see is

why it occurred. Notification is very useful but it is just as important to identify

any preliminary signs. Furthermore, the events are usually based on one or two

parameters, describing only part of the situation at a single point in time.

Van Es and the work of the National Aerospace Laboratory [van Es, 2002]

looks at the event based approach and extends it by making more use of the

available data. Rather than just focussing on parameter exceedances, he con-

siders data trends and looks at possible precursors to events. In other words,

he analyses the ’normal’ data and uses standard statistical significance testing

to identify whether trends are significant or just part of normal data variability.

A hard landing is one where the maximum recorded value of the acceleration

due to gravity of the aircraft at touchdown is higher than usual. He provides

examples such as the likelihood of a hard landing into certain airports and uses

the Kolmogorov-Smirnoff test to show that the landings for two different airports

are statistically different. This is deduced by comparing the cumulative frequency

charts showing the maximum recorded acceleration due to gravity of each aircraft

landing at these airfields and using the test to identify differences between the

charts. This is of great use to the airline.

This approach is extended further in [Amidan and Ferryman, 2005]. Amidan

and Ferryman have been involved in the creation of the analysis software Avionics

Performance Measuring System (APMS) [NASA, 2007]. It analyses data using

three phases. In the first phase, the individual flight is split into flight phases

(such as take off) and then into sub-phases. For each sub-phase, a mathematical

signature is created which stores the mean, the standard deviation, the minimum

and the maximum of each variable, thus reducing the storage cost for each flight.

The user then selects the characteristics of the flights to be studied and then

K-means clustering is applied to it to locate atypical flights. The mathematical

signatures are derived as follows. Each flight is split into the following flight

phases;

1. Taxi Out
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2. Take off

3. Low Speed Climb

4. High Speed Climb

5. Cruise

6. High Speed Descent

7. Low Speed Descent

8. Final Approach

9. Landing

10. Taxi In

Each of these phases is then split into subphases. The parameters are then

summarised in different ways, depending on if they are continuous or discrete.

For continuous parameters, the first second of a phase is taken as well as five

seconds either side, creating an eleven second window. A centred quadratic least

squares model

y = a+ bt+ ct2 + e (2.1)

is fitted where e is the error term. The error is the difference between the

actual value and the predicted value. This is summarised by

d =

[

∑ e2

n− 3

]
1/2

(2.2)

This is repeated for each second of the flight phase so if there were 10,000

seconds in the flight phase, a total of 10,000 sets of coefficients, a,b,c,d, would be

computed. Then for each flight phase, the mean, standard deviation, maximum

and minimum of each coefficient. Furthermore, the value of the parameter at the

start and at the end of the phase is included. So if n flights are considered with

p parameters then a data matrix can be formed with n rows and 18p columns.
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The discrete parameters are calculated differently. A transition matrix shows

the number of times the value of a parameter changes and how long it remains

in that change. It also contains counts of time periods during the phase. This is

converted into a related matrix by dividing the off diagonal counts by the total

number of counts for the phase so that the off diagonal shows the percentage

of time the parameter was recorded at each value. The diagonal of this matrix

consists of the count of the number of times the parameter changed value. If there

are q possible states for the parameter then the matrix is a q by q matrix. This

is then vectorised into a vector with q2 elements which is added to the signature

matrix.

Phase 2 consists of clustering the signatures of the selected flights using K-

means clustering and the computation of the atypicality score which is detailed

below.

Each flight is given an atypicality score which is computed in the following

way. Principal Component Analysis (PCA) is performed on the flight signatures

keeping 90 percent of the variance. Using the formula below

Ai =
n
∑

j=1

PCA(j)2i
/

λi
(2.3)

where i is the flight (row) from which the score is computed, A is the atypical-

ity score, PCA(j) is the jth PCA component vector of the ith flight and λj is the

associated eigenvalue. A score close to zero indicates a high degree of normality.

This is useful for comparing many flights to see which ones had a problem but

it is not very useful if one wishes to compare a certain flight phase of multiple

flights. To do this, they note that a gamma distribution is suitable for modelling

the atypicalities. A cluster membership score using K-means is computed via

cmsi =
ni

N
(2.4)

where cmsi is the cluster membership score for flight phase I, ni is the number

of flights in flight phase I’s cluster and N is the number of flights in that analysis.

Then a global atypicality score is computed via

Gi = − log(pi)− log(cmsi). (2.5)
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where Gi is the global atypicality score for flight/flight phase i, pi is the p-

value for flight/flight phase i and cmsi is the cluster membership score in equation

2.4. The negative values ensure the overall result is positive”, with small values

indicating a higher degree of normality. The atypicalities are all computed and

the top 1% of the results are regarded as level 3 atypicalities, the next 4% level

3, the next 15% level 1 and the rest as typical flights.

The key benefits of this approach are that flights and flight phases can be

compared for abnormality and a measure of the degree of abnormality can be

computed. Parameters over eleven second periods in the flight phases are mod-

elled by a quadratic. However, it may not have the flexibility to model the

parameter accurately. For example, the parameter vertical g is computed every

8Hz and varies a large amount, too much for a quadratic curve to model accu-

rately. Furthermore, the method requires a good selection of flights from which

to make comparisons and also a lot of domain knowledge. For example, if an air-

line suddenly changes its procedure for an approach into a certain airport, those

flights would be detected as abnormal initially even though they are regarded

as normal. The atypicality computation depends on modelling the atypicality

scores via a gamma distribution and on clustering. It is not known how suitable

a gamma distribution is for such modelling, i.e. how many flights are needed to

approximate the distribution to a certain degree of accuracy?

Furthermore there is no attempt to conduct experiments to identify how well

the method is able to detect abnormal flights and there is no mention of how the

authors define an abnormal flight. No figures are given for the numbers of flights

used or whether for example the data came from different aircraft types. There

appears to have been no attempt to compare their method to any other currently

used to analyse flight data. These reasons make it nearly impossible to assess the

validity of this method for identifying abnormal flights.

2.5 Event System

Events in FDM terminology are exceedances of one or more parameters at a spe-

cific height or between a specific height range. They are designed to identify

typical threats to an aircraft and are separated into two groups; operation and
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Table 2.1: A Sample of Flight Data Monitoring Events.

Event Type Description Level 1

Limit

Level 2

Limit

Level 3

Limit

Attitude Pitch high at take off 10 deg 11 deg 12 deg

Attitude Roll exceedance between

100ft and 20ft for 2 seconds

6 deg 10 deg 14 deg

Speed Speed high during the ap-

proach from 1000ft to 500ft

Vref30 + 35

for 5 sec-

onds

Vref30 + 45

for 5 sec-

onds

Vref30 + 55

for 5 sec-

onds

Speed Speed low during the ap-

proach from 1000ft to 500ft

Vref30 + 5

for 5 sec-

onds

Vref30 for 5

seconds

Vref30 - 5

for 5 sec-

onds

Descent High rate of descent during

the approach from 1000ft to

500ft

-1200ft/min

for 5 sec-

onds

-1500ft/min

for 5 sec-

onds

-1800ft/min

for 5 sec-

onds

Configuration Use of Speedbrakes in the fi-

nal approach

n/a n/a above 50ft

Engine Han-

dling

Low power on the approach

under 500ft

50% 45% 40%

maintenance. Maintenance events concern threats to the structural integrity of

the aircraft such as hard landings, flap over-speeds and engine temperature ex-

ceedances after take-off. These events are usually sent immediately to the airline

so they can check the aircraft for any damage. Operations events look at how

the pilots fly the aircraft and such events are triggered when the aircraft deviates

substantially from parameter limits given in the aircraft’s event specification.

Example events can be found in table 2.1.

Airlines are usually only interested in level 3 events, the most severe ex-

ceedance as these could be potentially hazardous to the aircraft, its crew and its

passengers. Statistics can be generated to show which event occurs most often.

Event rate is a common way of showing how often the events occur. See figure

2.1 for an example of some flight data with an event.

Figure 2.4 shows the number of events that occur in each flight phase. To

assist the reader in understanding the figure, table 2.2 gives a description of each

of the flight phases. The flight phases concerned with the take off and climb are

’take off’, ’initial climb and ’climb’ and they contribute 18.51% of the total events.
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Figure 2.1: Example Flight Data with an Event.

However, the flight phases ’descent’, ’approach’, ’final approach’, ’go-around’ and

’landing’ encompass the act of ’descending’ the aircraft from the cruise phase and

these phases account for 72.17%, nearly three quarters of all events. It is likely

that precursors to these events can also be found in these flight phases. Given

that the majority of events are generated from the act of descending the aircraft,

the research will focus on analysing flight data in the descent.

A further point to note is that while there are benefits for considering the

flight as a whole, the vast majority of the level three events occur around the

start and the end of a flight. In fact nearly 70% of level three events occur in the

descent, approach, final approach and landing phases and 21% of events in the

takeoff, initial climb and climb phases (see figure 2.4).
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Figure 2.2: Example Flight Data - High Speed Approach with Events.

2.5.1 Advantages and Disadvantages of the Event Based

System

The event based system is very popular because it allows comparisons with other

airlines provided they have similar events and it provides a good overview of

the airline’s operation. Whilst there are many advantages to this approach (see

section 2.5.1.1), there are several significant disadvantages (see section 2.5.1.2).

2.5.1.1 Advantages

• New events can be created as the need arises. Furthermore, they can be

created to include as little or as many triggers as required.

• The airline chooses the event limits and they can be changed as required.

• Event occurrences lend themselves to a variety of useful statistics for an

airline. A count of the number of events can show which events are causing

the most problems. The event rate can show which events occur the most
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Figure 2.3: Example Flight Data - Steep Descent.

frequently. Furthermore, one can compute the event rate per arrival airfield,

per month, per aircraft type, per dataframe, etc.

• The system is so widely adopted that airlines can be compared with each

other to identify any generic problems.

2.5.1.2 Disadvantages

• If an airline changes the event limits often, it becomes increasingly difficult

to identify any real changes in the parameter(s).

• If an event does not exist then a problem in a specific area may go unnoticed

which could lead to a significant incident.

• Only level 3 events are validated by analysts to check if the event has

triggered correctly in that instance. Whilst this is useful to the airline in

that it only sees real events, it is also such that level 3 events occur on

around 5% of flights so the vast majority of flights are unseen.
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Figure 2.4: Event Percentages by Flight Phase.

Operational Event Percentage by Flight Phase

ENG. STOP  ( 0.00 % )
PREFLIGHT  ( 0.02 % )

TOUCH + GO  ( 0.17 % )
ENG. START  ( 0.19 % )

CRUISE ( 1.81 % )

CLIMB  ( 2.57 % )

TAXI IN  ( 3.21 % )

TAXI OUT  ( 3.92 % )

INI. CLIMB  ( 5.66 % )GO AROUND  ( 6.58 % )

APPROACH  ( 8.79 % )

TAKE OFF  ( 10.28 % )

DESCENT  ( 10.56 % )

LANDING  ( 10.71 % )

FIN APPRCH  ( 35.53 % )

Flight Phase Number of Events

FIN APPRCH 36669

LANDING 11056

DESCENT 10897

TAKE OFF 10613

APPROACH 9070

GO AROUND 6789

INI. CLIMB 5838

TAXI OUT 4050

TAXI IN 3313

CLIMB 2649

CRUISE 1863

ENG. START 197

TOUCH + GO 173

PREFLIGHT 24

ENG. STOP 3

Flight Phase

Number of Events

PREFLIGHT

24

ENG. START

197

TAXI OUT

4050

TAKE OFF

10613

INI. CLIMB

5838

CLIMB

2649

CRUISE

1863

DESCENT

10897

APPROACH

9070

FIN APPRCH

36669

GO AROUND

6789

LANDING

11056

TOUCH + GO

173

TAXI IN

3313

ENG. STOP

3

• The system implies that one level 3 event is more serious than any combi-

nation of level 1 or 2 events in that flights with just level 1 and 2 events

will never be investigated. It is certainly feasible that a flight with 10 level

2 events in the descent is more concerning than a flight with just 1 level 3

event.

• The system has value in alerting airlines to events that have already hap-

pened, i.e. level 3 events. However it makes little attempt to identify

precursors to these events. A key aspect of flight safety is to try and un-

derstand risks and their causes. Identifying precursors to events would be

very useful in this regard.

2.6 Principles of the Descent

Whilst in the cruise and approaching the destination, the flight crew plan the

descent based on information provided pre-flight, on updates received in flight,
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Table 2.2: An explanation of flight phases.

Flight Phase Description

Pre-flight Fuel is flowing above a certain rate.

Engine Start Pre-flight phase has occurred and an engine has started.

Taxi Out Aircraft is moving and the heading changed are occurring.

Take Off Indicated airspeed is greater than 50 knots for more than 2 seconds.

Initial Climb Aircraft is climbing between 35 feet and 1500 feet.

Climb Aircraft height is greater than 1500 feet and there is a positive rate of

climb.

Cruise Aircraft height is above 10000 feet and there are no large positive or

negative rates of climb.

Descent Aircraft rate of descent is negative and remains negative.

Approach Height is less than 3000 feet or flaps are set greater than 0.

Final Approach Height is less than 1000 feet or landing flaps selected.

Go-Around Aircraft was in final approach or approach and initiated a climb.

Landing Aircraft landing gear is on the ground.

Touch and Go Aircraft lands momentarily and initiates climb.

Taxi In Aircraft has landed, height remains constant and heading changes are

occurring.

Engine Stop Aircraft has landed and engine prop speed is below a certain value.

existing conditions and on the pilot’s experience of a particular route, time of

day, season etc. They aim for a continuous descent with the engines at idle

power from the start of the descent until a predetermined point relative to the

arrival runway. A continuous descent provides the best compromise between fuel

consumption and time in the descent. It also minimises the noise footprint of

the aircraft. Rules of thumb are used in the planning stage. For example if H is

the altitude to be lost and D is the distance needed to descend and decelerate to

250kts then the following is used:

D = 3.5H + 3. (2.6)

Different aircraft types will have different descent profiles detailed in the Flight

Crew Manuals for that particular aircraft type based on manufacturers training

notes. The Boeing 757 for example should be 40NM from the airport at 250kts

as the aircraft passes 10000ft in the descent.

Traffic density, national Air Traffic requirements and weather can all be planned
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for. However, during the descent, these and many other factors can cause the

pilots to revise their plan. For example when conflicting traffic leads to the pi-

lot having to level the aircraft at an unplanned intermediate altitude. The pilot

needs to compensate for the extra distance travelled whilst level once the descent

resumes by either by descending faster in the remaining distance to the arrival

runway or by maintaining the planned rate of descent but extending the distance

over the ground or a combination of both.

All major airports have predetermined approach procedures - horizontal and

vertical profiles- that should be followed to maximise traffic flow and minimise

disruption to sensitive areas beneath the flight path. These can be viewed on

approach plates, often called Jeppeson Plates. At times when traffic is light the

restrictions detailed in these procedures can be removed, often at short notice; an

aircraft cleared for a direct visual approach rather than an instrument approach.

Whether the disruption to the planned descent happens at an intermediate

altitude or in the approach to the runway, the pilot has limited means to adjust

his airspeed and/or height. Slowing down is often achieved by decreasing rate of

descent and increasing rate of descent to meet a height restriction often causes

an increase in airspeed. Devices such as speedbrakes are used to minimise the

effects of speed/height changes but there are limits on their use e.g. speedbrakes

cannot be used with flaps extended beyond 25. In some cases, the pilots may

decide to extend the landing gear which increases the drag of the aircraft and

therefore its rate of descent. However this method is usually only used during

special circumstances.

Once in the approach phase the options available to slow down/lose height are

more limited. The aircraft should be ”stabilized” at a set point in the approach.

The airline in this thesis has an industry typical criteria for a stabilized approach

where the aircraft should be stabilized at 1000ft and must be stabilized at 500ft

above the runway. Stabilized is defined as: -

• On the correct flight path

• Only small changes in heading/pitch required to maintain the correct flight

path
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2.6 Principles of the Descent

• Airspeed is +20/-0kts on the reference speed

• Flaps and landing gear are correctly configured

• Rate of descent is no greater than 1000 feet per minute

• Engine power should be appropriate for the aircraft configuration

• All briefings and checklists completed

• For an ILS approach the maximum deviation is 1 dot

Approaches that are not stabilized are frequently referred to as ”rushed” or

unstablized approaches. The Approach and Landing Accident Reduction (ALAR)

task force, set up by the Flight Safety Foundation, state that “Unstablized ap-

proaches cause ALAs (Approach and Landing Accidents)” [FSF, 2000]. Pilots

are trained to recognise a rushed approach and are required to follow the air-

line’s instructions which is to abandon the approach and make a second, more

timely approach. The roots of a rushed approach can often be traced back to the

planning stage of the descent, with disruption in the actual descent highlighting

the planning deficiencies. Identifying the early signs of a rushed approach sooner

rather than later in the descent, and giving the crew a clear warning of the danger

ahead will be a positive step in accident prevention.

The Air Accident and Investigation Branch (AAIB) is a body in the UK

that investigates and reports on air accidents in order to determine their causes.

In 2004, they made a recommendation to the CAA [Foundation, 2004] that they

should consider “methods for quantifying the severity of landings based on aircraft

parameters recorded at touchdown” to help the flight crew determine if a hard

landing inspection was required. This recommendation is significant because it

understands that the state of the aircraft at touchdown can be better represented

by several parameters rather than one or two. Limits for a typical hard landing

event are thresholds on the parameter measuring the force exerted due to gravity

by the aircraft at touchdown. Other parameters such as the rate of descent are

useful in determining if a hard landing has taken place. However, to understand

why it happened, it is useful to consider how the aircraft was flown in the final

approach. Parameters such as airspeed, groundspeed, pitch and rate of descent
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2.7 How the Airline fly the descent

can also be useful in determining the state of the aircraft at various points above

the runway. By somehow quantifying how the state of the aircraft changes, it

might be possible to identify the points in the descent which could make a hard

landing more likely. Furthermore, it might be possible to apply this method to

analysing the severity of the whole descent.

2.7 How the Airline fly the descent

Section 2.6 explains the general principles behind flying the descent. In this

thesis, the data used in the experiments in chapter is taken from the approach

into the same airport, the same runway and by the same airline. The SOP for

this airline follows the general descent principles but includes some extra advice

and conditions to reflect the capabilities of their aircraft.

The flight crew training manual advises that the aircraft should reach a point

40NM from the airfield at a height of 10000ft above the runway with a speed of

250kts. In terms of the descent, it also states that “The distance required for

the descent is approximately 3.5NM/1000ft altitude for no wind conditions using

ECON (economy) speed.”Typical rates of descent for this aircraft at a speed of

250kts are 1500fpm or 2000fpmwith the speedbrakes deployed. Once the aircraft’s

speed reaches Vref30 + 80kts then typical rates of descent are 1200fpm rising to

1600fpm if the speedbrakes are open. It also advises that speedbrakes should

not be used with flap settings higher than 5 and that they should not be used

under 1000ft. It makes the point that if the rate of descent needs to be increased

then the speedbrakes should normally be used. The landing gear can also have

the same effect but it is not recommended as it reduces the life expectancy of

the landing gear door. It also recommends that the aircraft should satisfy the

stablised approach criteria as detailed in section 2.6. Furthermore, for a typical

3 degree ILS glidepath and flaps 30 in ideal landing conditions, the pitch angle

of the aircraft should be about 2.2 degrees. For a 2.5 degree glidepath, the pitch

angle should be around 2.7 degrees.

Whilst the use of speedbrakes in the descent below 10000ft is permitted, the

flight crew training manual advises that speedbrakes should not be used with

flaps greater than 5 selected. This is to avoid buffeting. However if circumstances
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dictate that such a course of action is necessary, high sink rates should be avoided.

Furthermore, speedbrakes should be retracted before reaching 1000ft AGL.

When the aircraft reaches approximately 20ft above the runway, the flare

should be initiated by increasing pitch altitude by around 2-3 degrees to slow

the rate of descent. The thrust levers should be smoothly set to idle and small

adjustments in pitch made to control the rate of descent. Ideally, the main gear

should touch down on the runway as the thrust levers reach idle. Touchdown

speed should be between Vref30 and Vref30 -5 kts. Pitch attitude should be

monitored carefully as a tailstrike will occur if the pitch attitude is 12.3 degrees

or greater. Touching down with thrust above idle should be avoided since this

may establish an aircraft nose up pitch tendency and increased landing role.

2.8 Conclusion

This chapter has looked at a history of flight safety and flight data recorders, a

typical FDM program, a literature review of flight data analysis methods and the

principles used in descending an aircraft.

The brief study of the history of flight data recorders and how they led to

the introduction of flight data monitoring programs illustrates the significant

progress made in terms of being able to better recreate the state of the aircraft

during flight. Furthermore, with the great increase in the number of parameters

available and the frequency of which they are recorded, it is possible to perform

a very thorough analysis of the condition of the aircraft. However, with the

large number of parameters, the frequency of which they are recorded and the

length of a typical flight, the quantity of flight data extracted from a single

flight can be very large. Around 60,000 parameters can be recorded on a typical

Boeing 777 and even if just 2,000 parameters are recorded then a single aircraft

can produce as much as 50 Mb of data a day [Holtom, 2006]. Furthermore the

engineering department at British Airways analyses 5 Gb of data each day! With

so much data, it can be very hard to detect abnormalities in flights or instigate a

comparison of many flights. Therefore the problem at hand should be simplified

and reduced in complexity.
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A typical flight data monitoring program was introduced and described briefly.

A key feature of the program is its emphasis on interpretation of the data and

remedial action. Whilst it is very valuable to produce charts and tables of events,

the most important thing is to understand why these events took place. The

events themselves tell the operator that deviances from the SOP have taken place

but they rarely provide any information on precursors that might explain why

the event(s) took place. If it is not clear to the airline why certain events have

occurred then it makes it very difficult to instigate changes to their procedures

to try and reduce the event rates.

Section 2.5 describes how the event based system works and in figure 2.4,

the distribution of events by flight phase is shown. The most significant point is

that nearly three quarters of events occur in the descent phases of flight, a level

of threat clearly recognised by the ALAR task force [FSF, 2000] at the Flight

Safety Foundation. By concentrating on understanding the descent, it is hoped

that greater insight can be achieved into why certain events occur.

Section 2.6 describes the general principles behind the descent. It suggests

that 1000ft above the runway on the approach is a good point to assess the state

of the aircraft given that there are a set of recommended conditions for this

height. Furthermore, recommendations made by the AAIB [Foundation, 2004]

suggest that assessing the severity of hard landings would be useful in determining

whether a full inspection of the aircraft is required. From their recommendation

it was considered that it might be possible to assess the severity of not just the

landing but the whole descent. In Chapter 3, methods for achieving are detailed

and analysed.
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Chapter 3

Novelty Detection

3.1 Introduction

A common problem in the area of machine learning is fault detection. In industry

today, there are two types of maintenance; preventative and corrective. Correc-

tive maintenance occurs when a machine, or part of a machine, is not working as

designed. Often, the response is to shut the machine down and repair it, costing

money for repair teams, replacement parts and loss of productivity. Preventative

maintenance occurs when the machine is monitored and any abnormalities are

spotted. Thus, potential problems can be corrected before they become danger-

ous.

A key challenge however is to define ’abnormality’. The Chambers dictionary

defines it as ”not normal” and more importantly ”different from what is expected

or usual” [Chambers, 2010]. This is imprecise and dependent on the situation in

question. Abnormality for a jet engine might include a temperature exceedence,

or a vibration exceedence. These might be events which have been seen before, or

they may not. The complexity of the problem is increased as a classifier therefore

has to detect possibly unseen errors.

A general multi-class classification problem can be reduced to a simpler two

class classification problem [Fukunaga, 1990], for example using the ’one versus

many’ method. The problem is thus reduced to separating the two classes of

data. A key point to note is that there are many examples of both classes and so

a decision boundary can be drawn using information from both classes. However
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3.2 Novelty Detection Methods

for novelty detection, this is not possible because one will have many examples of

the ’normal’ class but zero, or close to zero, of the abnormal class. Usually, there

will be a lot of examples of the normal class and the aim is to describe the normal

class so well that outliers can be identified as outliers [Tax, 2001]. In this chapter,

the topics of general novelty detection and one class classification are introduced

along with some general principles and an overview of some of the more popular

methods. In section 3.2, novelty detection methods are reviewed and analysed.

In section 3.3.1 one class classification is introduced and compared to the more

common two class classification problem. In section 3.3.2 common classification

terms are defined and the theory underpinning one class classification is analysed.

In section 3.3.3 key points in section 3.3.2 are highlighted in order to introduce

important considerations when selecting a one class classifier for a given problem.

The main types of one class classification methods are reviewed in sections 3.3.4,

3.3.5 and 3.3.6. Section 3.3.4 reviews density methods, section 3.3.5 reviews

boundary methods and section 3.3.6 reviews reconstruction methods. A literary

review is in these three sections on methods to highlight how they have been

used for novelty detection problems. Section 3.3.7 looks at all the methods listed

and assesses their properties with reference to section 3.3.3. Section 3.3.8 states

which classifiers were chosen for the experiments in this thesis. Section 3.4 looks

at a literature review of ranking systems.

3.2 Novelty Detection Methods

Novelty detection has been an important part of the topic of classification for at

least the last 20 years. Markou and Singh [Markou and Singh, 2003a,b] present

a thorough review of novelty detection methods by analysing the main methods.

Extreme Value Theory (EVT) [Roberts, 2002] studies abnormally high or low

values in the tails of a distribution and has been used with some success to identify

tremors in the hands of patients and also the detection of epileptic fits. They

use a Gaussian Mixture Model to train the data. However, this method can be

affected by the presence of abnormalities in the dataset.

Hidden Markov Models (HMM) [Duda and Hart, 1973] are stochastic models

for sequential data. A HMM contains a finite number of hidden states and tran-
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3.3 One Class Classification

sitions between such states take place using a stochastic process to form Markov

chains. State dependant events can occur for each state. The probability of these

events occurring is determined by a specific probability distribution for each state.

Usually an expectation-maximisation (EM) algorithm is used to determine the

parameters of the HMM. Thresholds can be applied for novelty detection. [Ye-

ung and Ding, 2003] use HMMs to detect intrusions in computer networks and

they show that dynamic model HMMs outperform static models. However, they

require that the dataset only contains normal data which could be difficult for

other applications where there are unknown faults.

Artificial Immune Systems (AIS) have inspired new methods for novelty detec-

tion. An overview of their development since the 1990s can be found in [Stepney

et al., 2004] and [Dasgupta, 2007]. In humans, novelty detection (detecting un-

known proteins) is carried out by T-cells. Should such an object be found, it

can be destroyed by the T-cells. [Dasgupta et al., 2004] use a negative selection

algorithm to analyse aircraft behaviour using a flight simulator and achieves a

high detection rate for minimal false positives. [Bradley and Tyrrell, 2000] use

artificial immune systems to detect hardware faults in machines and demonstrate

its ability to recognise invalid transitions as well error detection and recovery.

Section 3.3 is about one class classification, its principles and methods and

why it is useful for novelty detection.

3.3 One Class Classification

3.3.1 Definition and Description

In a typical two class classification problem, well sampled data is available for

both classes and the classification algorithm attempts to separate the two classes

accordingly and assigns a new object to either class. The success of the classifier

depends on many factors, such as the degree of representation of each class in the

training set and also the features used to differentiate between objects of both

classes. The classifier’s decision making process is thus aided by the fact that

well sampled data is available from BOTH classes [Tax, 2001].
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3.3 One Class Classification

The term ’one class classification’ appears to have originated from [Moya

et al., 1993]. One class classification differs in one essential regard to the two

classification problem. It assumes that data from only one class, the target class

is available. This means that the training set only consists of objects from the

target class and a decision boundary must be estimated without the benefit of a

well sampled outlier class or in fact any outlier objects at all. Such a situation

could arise when outlier objects are hard to obtain; either because of the rarity

of the event or the costs involved in generating such data.

In the literature, one class classification can be referred to as ’outlier detec-

tion’[Aggarwal and Yu, 2001; Hodge and Austin, 2004], ’abnormality detection’

[Davy et al., 2006; Duong et al., 2005] and ’novelty detection’ [Japkowicz et al.,

1995; Ma and Perkins, 2003]. These terms refer to the different applications that

one class classification can be applied to.

Several reviews of novelty detection methods have been carried out, for ex-

ample [Juszczak, 2006; Markou and Singh, 2003a,b; Tax, 2001]. This chapter

will not contain an exhaustive review of each and every such method but it will

highlight the principle methods and explain the author’s choice of classifiers used

in Chapter 4.

3.3.2 Theory

Let X = {xi} denote the dataset where each object x is represented in d dimen-

sional space by the feature vector xi = (xi1, xi2, xi3, ..., xip). For each object xi a

label yi is attached where yi ∈ {−1, 1}. In order to the perform the classification,

a function f must be derived from the training set and should be such that

f : Rd → {−1, 1}
f(x) = y

(3.1)

Usually the class of functions and the associated parameters are determined

beforehand, denoted by f(x;w) where w denotes the parameters. To find the

optimal parameters w for f on the training set Xtr, an error function must

be defined. Assuming that the objects in the training set are independently
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3.3 One Class Classification

distributed, the total error function is given as

ε(f,w, Xtr) =
1

N

∑

i

ε(f(xi;w), yi) (3.2)

The error function is the 0-1 loss function, given by

ε0−1(f(xi;w), yi) =
0 if f(xi;w) = yi
1 otherwise.

Thus by minimising the error ε on the training set, it is hoped that a good

classification can be achieved. However, this is unlikely if the training set is

unrepresentative of real data or it contains too few data points. Furthermore,

there can sometimes be no way of knowing if the distribution of points in the

training set is even representative of real life data. In this case, it is often such

that the larger the training set, the more representative it is of real life because

the characteristics of the data can be determined with greater clarity. However,

even if a training set which characterises real life data and is of a good size is

available, the number of possible functions that approximate the data can be very

large, even infinite. The main aim therefore is to choose a classification function

that has a good generalisation ability, in that it is able to classify new and unseen

data points successfully.

The ’true’ error is defined by

εtrue(f,w, X) =

∫

ε(f(x;w), y)p(x, y)dxdy (3.3)

where the integration is carried out over the whole of the ’true’ distribution

p(x, y).

A good classification function is not only one that has very low classification

error on the training set but also one with low error on an unseen independent

testing set. The best such function is the Bayes rule ([Duda and Hart, 1973]),

given by

fBayes(x) =

{

1 if p(wa|x) ≥ p(wb|x)
−1 if p(wa|x) < p(wb|x) (3.4)

where p(wa|x is the posterior probability of class wa and p(wb|x is the posterior

probability of class wb for a given x. The Bayes rule is the theoretical optimum
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rule and assuming all erroneously classified objects are weighted equally, it has

the best classification performance over all classifiers [Bishop, 1995a]. It is very

difficult to apply this rule in practise because it requires the true posterior prob-

abilities of all classes for all data points. Similarly, it is almost impossible to be

able to compute the true error (see equation 3.3). It is approximated by an error

term known as the empirical error, given by

εemp(f,w, Xtr) =
1

N

∑

i

ε(f(xi;w), yi). (3.5)

When the sample size is large and the training data is distributed like the

real life data, εemp is a close approximation to εtrue. However, a low value for

εemp on the training set can still lead to a large true error (see equation 3.3) on

an independent testing set and this situation is referred to as overfitting. This

is possible when a sufficiently flexible function f(x;w) fits all the data perfectly

including any noise. A function that is sufficiently flexible can always be found to

fit the training data perfectly and thus give zero empirical error. The overfitting

problem can become much worse as the number of features used increases. This

is because the volume needed to be described increases exponentially. This is

known as the curse of dimensionality [Duda and Hart, 1973]. Equally if the

function is not complex enough to describe all the characteristics of the data,

the phenomenon known as underfitting occurs. As the complexity of the model

increases, the bias component of the error decreases but the variance component

increases as see in figure 3.1. The best model is therefore one which minimises the

total error, that is, one that represents a tradeoff between the bias and variance

contributions [Geman et al., 1992].

Fortunately the bias-variance problem can be reduced by adding prior knowl-

edge into the design of the function f(x|w). An example of this is the number of

clusters in the K-means method. However, if no such prior knowledge is available,

an extra error term εstruct(f,w) is added to the empirical error 3.5 to make the

total error εtot, given by

εtot(f,w, Xtr) = εemp(f,w, Xtr) + λεstruct(f,w) (3.6)
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Figure 3.1: The tradeoff between the bias and variance contributions.

The error term εstruct adds extra complexity to the total error and λ is the

regularisation parameter, the size of which measures the impact of the structural

term. To simplify the problem the structural error term is modelled on the conti-

nuity assumption, that two objects close to each other in the feature space closely

resemble the other in real life, imposing a degree of smoothness on the function.

Thus the smoother the function the lower the complexity. The main point is that

that the minimisation of the structural error should suppress high complexity

solutions for f(x,w). It has been shown that if the complexity constraints are

enforced, then the true error closely approaches the empirical error and it is more

likely that f(x,w) can classify new objects with greater accuracy [Smolensky

et al., 1996].

One way to try and design smoother functions f is to minimise the curvature

of the function. Therefore large fluctuations are discouraged. Regularisation

theory [Girosi et al., 1995] is suited to designing such functions; for example the
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Table 3.1: Classification possibilities in one class classification

Target Object Outlier Object

Classified as a Target Ob-

ject

True Positive, f(T+) False Positive (εII),

f(O−)

Classified as a Outlier Ob-

ject

False Negative (εI),

f(T−)

True Negative, f(O+)

Tikhonov stabilizer:

εstruct =
K
∑

k=0

∫ x1

x0

∥

∥

∥

∥

∂k

∂xk
f(x;w)

∥

∥

∥

∥

2

µkdx (3.7)

where µk is a weighting function which is non-negative for 0 ≤ k ≤ K−1 and

strictly positive for k = K which indicates how smooth the kth derivative is of

f(x,w) ([Bishop, 1995a]).

When applying this theory to the one class classification problem, the imme-

diate issue is that there is only data from the target class which makes finding the

best separation between the target and outlier classes much harder. In order to

compute εtrue, the complete probability density p(x, y) should be known. How-

ever for one class classification, only p(x|wT ) is known where wT is the probability

density of the target class. Thus only those target objects not accepted, the false

negatives, can be minimised. This is referred to as an error of the first kind εI .

Unfortunately this can be easily satisfied by including all target objects in the

description. If there are no outlier objects available, or it is impossible to esti-

mate their probability density p(x|wO), then it is clearly impossible to estimate

the number of outlier objects accepted by the classifier. The number of outlier

objects accepted, or the false positives, is an error of the second kind εII

Table 3.1 shows the classification space, the space of all possible outcomes.

Note that f(T+) + f(T−) = 1 and f(O+) + f(O−) = 1. The main difficulty thus is

that whilst f(T+) and f(T−) can be estimated, nothing at all is known about f(O−)

or f(O+). Furthermore without example outliers, εemp can only be defined on the

target data. There should also be extra constraints on the structural error εstruct

so that smoothness can be enforced and conditions set in order to enclose the

target data in all directions.
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Several different models have been proposed for one class classification. The

simplest models involve the generation of artificial outlier data around a target

set. A classifier is then trained on such data to separate target and outlier data

[Roberts et al., 1994]. However, the method scales very poorly in high dimensions.

Another possible approach is to use density methods. They directly estimate

the density of the target objects p(x|wO) [Barnett and Lewis, 1994]. These meth-

ods assume a uniform outlier distribution and by application of the Bayes rule

(see equation 3.4), they are able to model the target distribution. Such methods

work best when they are able to produce a density estimate in the complete fea-

ture space. However, this often requires a large amount of data. In fact, if the

feature space is high dimensional, it can require an extremely large amount of

data. Furthermore, it also requires the data to be a typical sample from the true

data distribution and if the true data distribution is not known beforehand, this

can affect the performance of the model. However, it is often such that when a

large amount of typical data is available the method should work well. Exam-

ples of density models include a Parzen windows estimator [Bishop, 1994] and a

Gaussian estimator [Parra et al., 1996].

If prior knowledge is available, it is possible to take advantage of it by using

reconstruction methods. In these methods, an object x is encoded in the model

and measurements can be reconstructed from this encoded object. The recon-

struction error is a measure of how well the object fits the model. It is assumed

that the lower the error, the better the fit. The advantages of such methods

include their incorporation of prior knowledge into the model and also that they

can work well with a low sample size. However, if the model does not fit the data

well, then biases can severely weaken its ability to classify.

In cases where only small amounts of data are available, it can prove very

difficult to obtain an accurate density model. Boundary methods avoid estimating

the complete density of the data and seek to identify a boundary between the

target and outlier data samples. Therefore in training such methods, they are

only interested in data near the boundary so the data need not be completely

representative of the feature space. However, it is not immediately obvious how

to choose the boundary around the target class. Such methods generally depend

on distances, usually Euclidean, between objects x and the training set Xtr. The
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feature space must therefore permit well defined distances and the data should

also be scaled so one feature does not dominate the others.

3.3.3 Choosing a Suitable Classifier

There are many considerations to take into account when designing a one class

classifier. There are two key elements that all methods contain. The first element

is a measure of distance d(z) or probability p(z) of an object z to the training

class X. The second element is a threshold θ on this distance or probability.

Thus new objects are accepted when the distance to the training set is less than

θd:

f(z) = I(d(z) < θd) (3.8)

or when the probability is larger than θp:

f(z) = I(p(z) > θp) (3.9)

where I is an indicator function. The difference between the classification meth-

ods is in how d(z) and p(z) are defined, how these variables are optimised and

also how the thresholds are chosen.

Another important feature is the trade off between the fraction of the training

set that is accepted,f(T+), and the fraction of outliers that is rejected, f(O−); in

other words, a trade off between an error of the first kind, εI , and an error of

the second kind, εII . The f(T+) can easily be measured on an independent test

set drawn from the same distribution as the training class. The f(O−) are more

difficult to measure. It is usually assumed that outliers are drawn from a bounded

normal distribution.

There are several good characteristics that a one class classifier should exhibit.

Outlier Robustness: It is assumed that the training set is representative of

the modelled class and that it contains no outliers. However sometimes this is

not the case. A good classifier will be able to interpret these objects as outliers;

otherwise they are assumed to be normal objects and their inclusion will skew

the supposed distribution of the training data.

Outlier Incorporation: If there are labelled outliers in the training set then a

good method will be able to use them to make a better definition of the training
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data distribution. There should be a parameter that can manage the balance

between test set acceptance and outlier rejection.

Magic Parameters: Magic parameters are parameters that have a large impact

in the classifier performance but there are no clear methods of how to choose them.

A good method will be intuitive and there will be details of the impact certain

parameter settings will have. If there are many parameters to be set, it can be

very hard to find the optimum configuration for the problem at hand.

Computation Time/Storage: Such requirements of course depend on the prob-

lem. If the training class changes often, for example, aircraft have different oper-

ating abilities in different environments, then it would be desirable if the training

time was relatively fast.

There are four main approaches, yielding a variety of methods, for creating a

one class classifier and they are detailed below.

3.3.4 Density Methods

The most straightforward approach is to estimate the density of the training data

and then set a threshold on this density to determine outliers [Tarassenko et al.,

1995]. The simplest method is the Gaussian model.

3.3.4.1 Gaussian Model

The Central Limit Theorem [Ullman, 1978] says that when it is assumed that

objects from one class originate from one prototype and are additively disturbed

by a large number of small independent disturbances, then the model is valid.

The probability distribution for a d-dimensional object x is given by

P (z;µ,Σ) =
1

(2π)
d/2 |Σ|

1/2
exp

{

−1

2
(z− µ)TΣ−1(z− µ)

}

(3.10)

where µ is the mean and Σ is the covariance matrix. This method imposes a strict

uni-modal and convex density model on the data. The number of free parameters

in the model is given by

N = d+
1

2
d(d− 1). (3.11)
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The main computational effort is on the computation of the inverse of Σ. Prob-

lems may arise if the data is badly scaled as the inverse may not exist. In such

cases the pseudo inverse should be used,
∑+ =

∑T
(

∑∑T
)−1

[Strang, 1980] or

the matrix should be modified using a regularisation parameter
∑∗ =

∑

+λI.

If the data is truly normally distributed, it is possible to compute the opti-

mum threshold depending on the percentage of true positives desired. If there

are d independent normally distributed random variables xi, the new variable

x
∑

i (xi − µi)
2/σi is distributed with a X2

d distribution. Using the squared Ma-

hanalobis distance, the variable

∆2 = (x− µ)TΣ−1(x− µ) (3.12)

should also be distributed like X2
d. The threshold θ on ∆2 should be set at

θ :

∫ FT+

0

X2
d(∆

2)d(∆2) = F(T+) (3.13)

where FT+ is the required true positive rate. In practice however, the data is

rarely perfectly normally distributed and so it is not used.

In general, the distribution will not be known; that is, µ,Σ2 will need to be

estimated. A method for doing this is the maximum likelihood method. Given a

normal distribution N(µ, σ2) with probability distribution function (pdf)

f(x|µ, σ2) =
1√
2πσ

exp

(

−(x− µ)2

2σ2

)

, (3.14)

the likelihood function is defined as

f(x1, x2, ..., xn|µ, σ2) =
n
∏

i=1

f(xi|µ, σ2) (3.15)

=

(

1

2πσ2

)
n/2

exp

(

−
∑n

i=1 (xi − µ)2

2σ2

)

(3.16)

=

(

1

2πσ2

)
n/2

exp

(

−
∑n

i=1 (xi − x)2 + n(x− µ)2

2σ2

)

(3.17)

(3.18)
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Let the likelihood function for this distribution be defined as L(µ, σ2). This is

maximised over both parameters. Thus we have

0 =
∂

∂µ
log





(

1

2πσ2

)
n/2

exp

(

−
∑n

i=1 (xi − x)2 + n(x− µ)2

2σ2

)



 (3.19)

=
∂

∂µ



log

(

1

2πσ2

)
n/2

−
∑n

i=1 (xi − x)2 + n(x− µ)2

2σ2



 (3.20)

=
2n(x− µ)

2σ2
(3.21)

=
n(x− µ)

σ2
. (3.22)

(3.23)

Therefore
∧
µ = x =

1

n

n
∑

i=1

xi. (3.24)

The expectation value is E
[

∧
µ
]

= µ. This is a maximum as it is a unique solution

and the second derivative is negative. Also, it follows that

0 =
∂

∂σ
log









(

1

2πσ2

)
n/2

exp









−

n
∑

i=1

(xi − x)2 + n(x− µ)2

2σ2

















(3.25)

=
∂

∂σ









n

2
log

(

1

2πσ2

)

−

n
∑

i=1

(xi − x)2 + n(x− µ)2

2σ2









(3.26)

=
n(x− µ)

σ2
. (3.27)

(3.28)

Therefore
∧

σ2 =

∑n

i=1 (xi −
∧

µ2)

n
. (3.29)

Thus the maximum likelihood estimator is given by

(

∧
µ,

∧

σ2

)

. This provides an

estimator for the distribution and so one can locate abnormalities by defining

outlier percentages.
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This method is very useful if it is known beforehand that the data is normally

distributed. The main computational burden is in computing Σ−1. If the data

is badly scaled then the inverse might be impossible to compute. To overcome

this difficulty a regularization parameter is needed which must be chosen by the

user. Furthermore, the estimators for the mean and the covariance matrix are

not robust against outliers. To overcome this, a common approach is to use the

Minimum Covariance Determinant method [Rousseeuw and Van Driessen, 1999].

The user specifies a fraction of training data to be fitted with a Gaussian. The

subset that results in the smallest determinant of the covariance matrix is used

for training. This ensures robustness even if there are a high fraction of outliers

in the training data.

The difficulty in using this method is that there are very few situations where

a univariate Gaussian model will accurately represent the target distribution,

except in artificial cases.

3.3.4.2 Mixture of Gaussians Standard

The assumption that the data is uni-modal and convex is rarely true for most

data sets. To overcome this problem, a Mixture of Gaussians MoG can be used.

The method uses a linear combination of normal distributions [Bishop, 1995b].

The model looks like:

f(x) =
K
∑

i=1

Pi exp

(

−(x− µi)
T
∑

i

−1
(x− µi)

)

. (3.30)

The classifier is defined as:

h(x) =

{

target if f(x) ≥ θ
outlier otherwise f(x) < θ

The parameters Pi, µi and Σi are optimised using the expectation minimisa-

tion algorithm.

The MoG classifier has been used on a number of occasions for novelty de-

tection. [Hansen et al., 2002] used it to identify education related documents

from the CMU WebKB repository with a good degree of success. They also used

the classifier to identify a “miscellaneous” set drawn from the same repository
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as novel, of which 40% were identified as novel. There is no mention of error

rates on this set so it is difficult to judge how successful the classifier was. The

MoG method has been used before to detect motor faults [Parra et al., 1996] by

transforming the data via symplectic mappings to take the form of a Gaussian

distribution. The resulting classification error is comparable or better to multi-

layered Perceptrons, hyperspherical clustering and nearest neighbour. [Morgan

et al., 2010] compares a Gaussian and a MoG classifier against an existing fixed

limit method for detecting faults in marine engines. The sensitivity for all engines

was at least 65% and the resulting ROC curve was superior to that of the fixed

limit method.

3.3.4.3 Mixture of Gaussians

The MoG classifier has not been designed to handle the presence of outliers in

the training set and as such, any abnormal descents could negatively affect per-

formance. The classifier can be modified [Tax, 2009] to use outlier objects for

training. Individual mixtures of Gaussians are fitted to both target and outlier

data (having Kt and Ko Gaussians respectively). Objects are then assigned to

the class with the highest probability. Since this method allows outlier objects

in training, the decision boundary around the target class is not closed. This is

achieved by adding one extra outlier cluster with a very wide covariance matrix.

This cluster is fixed and although it is not adapted by the expectation minimi-

sation algorithm ([Bishop, 1995b]) in training, it is used in the computation of

probability density, resulting in the following model

f(x) =
K t
∑

i=1

Pi exp
(

−(x− µi)
TΣ−1

i (x− µi)
)

(3.31)

− P∗ exp
(

−(x− µi)
TΣ−1

∗ (x− µi)
)

(3.32)

−
K o
∑

j=1

Pj exp
(

−(x− µj)
TΣ−1

i (x− µj)
)

. (3.33)

In this model, µ is the mean of the complete dataset and Σ∗ is taken as 10Σ,

where Σ is the covariance matrix of the complete dataset. The P∗ is optimised

in the expectation minimisation procedure such that P∗ + ΣjPj = 1.
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Furthermore, to ensure that the covariance matrix is invertible, Principal

Component Analysis is performed on each of the training sets, retaining 90% of

the variance.

3.3.4.4 Parzen Windows Density Estimation

A probability density function (pdf) p(x) is a continuous real valued function

such that

1.

P (a < x < b) =

b
∫

a

p(x)dx

2.

p(x) ≥ 0 for all real x

3.
∞
∫

−∞

p(x)dx = 1.

Given n data samples x1,x2, ...xn, an estimate to p(x) is sought. Two formulae are

derived. The probability that a vector x lies in region R is given by P =
∫

R

p(x)dx.

Assume that R is small enough such that p(x) varies a tiny amount. Then the

following holds

P =

∫

R

p(x)dx ≈ p(x)

∫

R

dx ≈ p(x)VR (3.34)

where VR is the volume of R. Now suppose that n data samples x1,x2, ...xn are

independently drawn according to p(x) and that k out of n samples lie in region

R. Thus P = k
n
and so p(x) = k

nVR

. Let R be an d-dimensional hypercube and

let h be the length of its edge so that VR = hd. Position the hypercube so that it

is centred on the vector x. Define φ such that

φ

(

xi − x

h

)

=

{

1 if |xik−xk|
h

≤ 1
2
k = 1, 2, ..., d

0 otherwise.
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In other words, the function is non-zero if xi is in the hypercube. Thus when k

samples fall in the hypercube, k can be written as

k =
n
∑

i=1

φ

(

xi − x

h

)

. (3.35)

Thus the Parzen window density estimator [Parzen, 1962] can be written as

p(x) =
k

nVR

=
1

n

n
∑

i=1

1

hd
φ

(

xi − x

h

)

. (3.36)

A common choice for φ is the Gaussian function and so the estimator becomes

p(x) =
k

nVR

=
1

n

∑ 1
√

(2π)n ||Σ
exp

(

−1

2
(x− µ)TΣ−1(x− µ)

)

. (3.37)

This method is an extension on the mixture of Gaussians model. The density

estimated is a mixture of usually Gaussian kernels centred on the individual

training objects with (often) diagonal covariance matrices
∑

i = hI. It takes the

form

pp(x) =
1

N

∑

i

pN(x;xi, hI). (3.38)

The equal width h in each feature direction means that the Parzen density

estimator assumes equally weighted features and so will be sensitive to scaling.

The free parameter h is optimised using the maximum likelihood solution. Since

there is just one parameter, the data model is very weak and so success depends

entirely on a representative training set. The training time is very small but

the testing time is rather expensive, especially with large feature sets in high

dimensional spaces. This is because all the training objects have to be stored and

during testing, distances to all the training objects must be computed and then

sorted.

[Yeung and Chow, 2002] uses Parzen windows to detect network intrusion

attacks. They compare their method to the method with the best results in

the KDD cup for 1999 [ACM, 2010]. The results are comparable to the method

used by the winners which is an ensemble of decision trees with bagged boosting.

However the Parzen windows has more success in detecting some of the rarer

attacks such as U2R (user to root) with a success rate of around 93% compared
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to only 26%. [Stibor et al., 2005] use it in experiments on the same dataset used by

Yeung. Although the focus of their paper was introducing a real valued positive

selection algorithm based on artificial immune systems, they also compare their

method to parzen windows and the one class SVM. Whilst their method has the

best results, it is only marginally superior in performance to the parzen windows

and the one class SVM. [Tarassenko et al., 1995] used it to identify abnormalities

in mammograms and has a good degree of success though the method is not

available to discriminate between benign and cancerous tumours.

3.3.5 Boundary Methods

[Vapnik, 2000] argued that when there is just a limited amount of data, one

should avoid solving a more general problem as an intermediate step to solving

the original simpler problem. This is because more data might be needed to

solve the general problem than the intermediate problem so any answer produced

might be rather weak. In this case, the general problem is estimating a complete

data density for the one class classifier. Furthermore, it is only necessary to

find the optimised data boundary for the training set. Such methods rely on

distances from objects and thus are sensitive to scaling. Furthermore it should

not be assumed that the output of boundary methods can be interpreted as a

probability; in fact it cannot. Suppose that a method is trained such that a

fraction r of the data is rejected. There is now a threshold Tf for this rejection

rate based on the choice for d (which is a replacement for p(x)). Changing r might

require the retraining of the method as decreasing Tf does not guarantee that the

high density areas are captured.

3.3.5.1 One Class Support Vector Machine

The one class SVM [Schölkopf et al., 2000] is a useful novelty detection method

based on the support vector machine. To formalise the problem, a dataset is

drawn from a probability distribution P and a small subset S of the input space

is estimated such that the probability of a test point from P lying outside of S

equals some pre-specified v ∈ (0, 1). In other words, a function f that is positive

on S but negative on its complement is to be estimated.
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As before, consider training data x1, x2, ..., xl ∈ X ⊆ R
n. Let φ be the map-

ping φ : X → F into some feature dot product space F with a kernel given by

k(x, y) = (φ(x), φ(y)). The data is separated from the origin using the maximum

margin method.

The following quadratic programming problem is solved;

min
w∈F,ξ∈Rl,ρ∈R

1
2
‖w‖2 + 1

vl

l
∑

i=1

ξi − ρ,

subject to (w · φ(xi)) ≥ ρ− ξi,
ξi ≥ 0.

(3.39)

Using Lagrangian multipliers, it is such that

L(w, ρ, ξ,αi, βi) =
1

2
‖w‖2 + 1

vl

l
∑

i=1

ξi − ρ−
l
∑

i=1

αi(ξi − ρ− (w · φ(xi)))−
l
∑

i=1

βiξi.

(3.40)

The derivatives of L w.r.t. the primal variables are zero so it follows that

∂L

∂w
= 0 ⇒ w =

l
∑

i=1

αiφ(xi), (3.41)

∂L

∂ρ
= 0 ⇒

l
∑

i=1

αi = 1, (3.42)

∂L

∂ξi
= 0 ⇒ αi + βi =

1

vl
. (3.43)

The dual problem is formulated to give

min
α∈Rl

l
∑

i,j=1

αiαjk(xi, xj),

subject to
l
∑

i=1

αi = 1,

0 ≤ αi ≤ 1
vl
.

(3.44)

The support vectors are w =
l
∑

i=1

αiφ(xi) when 0 ≤ αi ≤ 1
vl
. Solutions for the

dual problem yield parameters w0, ρ0 where

w0 =
Ns
∑

i=1

αiφ(si), (3.45)

ρ0 =
1

Ns

Ns
∑

j=1

Ns
∑

i=1

αik(si, x). (3.46)
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Here, Ns is the number of support vectors and si denotes a support vector. The

decision function is given by

f(x) = sgn(w · φ(x)− ρ0) = sgn

(

Ns
∑

i=1

αik(si, x)− ρ0

)

. (3.47)

The ’abnormality’ detection function is then given by

g(x) = ρ0 −
Ns
∑

i=1

αik(si, x). (3.48)

The user has to choose the appropriate kernel, with its associated parameters,

for the problem. However, rather than choosing an error penalty C as via the

classical SVM method, one chooses a value for ν which is the fraction of outliers

to be misclassified.

In training an SVM, there are several parameters to consider and they are as

follows;

• Choice of Kernel - The choice of kernel for the SVM is limited to Mercer

kernels. Common choices are the linear kernel K(x,y) = xT ·y, RBF kernel

K(x,y) = e−‖x−y‖2/2σ2

, the polynomial kernel K(x,y) = (γx · y + r)p and

the sigmoid kernel K(x,y) = tanh(κx · y − δ).

The choice of kernel is an active research topic and there is no method for

choosing a kernel given a specific dataset. It has been proven by [Keerthi

and Lin, 2003] that under certain conditions, the linear kernel is essentially

a special case of the RBF kernel. The polynomial kernel has more parame-

ters than the RBF kernel and so increases the complexity of the model by

increasing the number of parameters that need to be optimised. Further-

more, the RBF kernel has fewer numerical issues. To illustrate this, it is

noted that 0 ≤ Ki,j ≤ 1 for RBF kernels. However for polynomial kernels,

if the degree is large, values may approach infinity when γx · y + r > 1 or

zero when γx · y+ r < 1. Furthermore, the RBF kernel is able to suppress

growing distances in larger feature spaces [Tax and Duin, 1999a]. The sig-

moid kernel is in general not the best choice as it is not positive definite for

all choices of κ and δ [Lin and Lin, 2003]. [Lin and Lin, 2003] also show
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that for certain values of κ and δ the sigmoid kernel behaves in a similar

fashion to the RBF kernel, in part due to the fact that the tanh function

can be written in terms of exponentials. They conclude that in general the

RBF kernel is the better choice. Therefore for the research contained in

this thesis, the RBF kernel is used.

• RBF Kernel Parameters - The RBF kernel parameters are the kernel width

σ and the fraction of the training set to be rejected ν. In addition, [Keerthi

and Lin, 2003] studied the asymptotic behaviour of the parameters σ and

C for the two class SVM and deduced several relations regarding σ and C.

– Severe Underfitting - This occurs if σ2 is fixed and C → 0, σ2 → 0 and

C is fixed sufficiently small and if σ2 → ∞ and C is fixed.

– Severe Overfitting - This occurs when σ2 → 0 and C is fixed sufficiently

large.

[Chen et al., 2005] showed that there is a connection between ν-SVM and C-

SVM and suggests that for admissible ν, where ν is increasing, C decreases.

This suggests that the problems of overfitting and underfitting could be

avoided if σ2 is not extremely large or small and ν is not extremely close to

0 or 1.

[Clifton et al., 2006] use the one class SVM to detect combustion instability.

Combustion occurs in 3 channels and a one class SVM is trained on each channel

to identify any instability. They identify the first sign of combustion instability

and note the data index where it occurred. The mean, maximum, minimum and

product of these data indices are computed in order to assess which rule is best

at detecting the first sign of combustion instability based on information from all

three combustion channels.

The maximum combination rule is given by

ĝ(x) =
R

max
i=1

gi(x) (3.49)
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The minimum combination rule is given by

ĝ(x) =
R

min
i=1

gi(x) (3.50)

The mean combination rule is given by

ĝ(x) =
1

R

R
∑

i=1

gi(x) (3.51)

The product combination rule is given by

ĝ(x) =

∏R

i=1 gi(x)
∏R

i=1 gi(x) +
∏R

i=1 (1− gi(x))
(3.52)

where gi(x) is the novelty score generated from the ith classifier and R is the

total number of classifiers.

They note that

R

R

min
i=1

gi(x) ≤
1

R

R
∑

i=1

gi(x) ≤
R

max
i=1

gi(x)

i=1

(3.53)

and so the maximum and the minimum serve as upper and lower bounds for

the mean rule.

They conclude that pre-cursors to combustion instability are detected via the

mean rule whereas the product rule gives little variability in novelty scores during

stable combustion, thus allowing a more sensitive novelty threshold to be applied.

The minimum rule provides little early warning whereas the maximum rule gives

optimum results. Their method therefore shows some success in detecting pre-

cursors for a defined abnormal event.

[Cohen et al., 2004] use the one class SVM to detect nosocomial infections.

Data consisted of 688 patient records (of which 11% had infections) and 83 vari-

ables. They sought the advice of experts in nosocomial infections to reduce the

number of variables and whilst they could detect around 92% of infections, just

over 1 in 4 patients with no infection were classified wrongly. However, some of

this imbalance could result from an apparent lack of scaling.
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[Gardner et al., 2006] use the one class SVM for seizure analysis in intercranial

EEGs. Their results outperform the benchmark results which were also produced

from the same dataset. The low false positive rate is attributed to the fact

that the non-parametric one class SVM is better at modelling the data than the

benchmark detector. Whilst results are a little worse than others reported in the

field, the key benefits of Gardner’s method are that it does not need to be trained

on seizures and nor is it patient specific.

[Hayton et al., 2000] use the one class SVM for novelty detection in jet engine

vibration spectra. The results show a clear difference between the cumulative

novelty scores of the training data (all normal engines) and the scores of the test

data (the abnormal engines).

[Manevitz and Yousef, 2002] uses the one class SVM for document classifica-

tion. They also compare the one class SVM with a modified version and also with

a compression neural network, prototype algorithm, naive Bayes and the near-

est neighbour classifier. The results for the one class SVM and the compression

neural network are comparable and the modified one class SVM is slightly worse.

The results for the other classifiers are much worse.

[Shin et al., 2005] use the one class SVM for machine fault detection. They

compare the one class SVM (using the four main kernels) and a multi-layered per-

ceptron. The results for each of the kernels and the neural network are compara-

ble though when the training set is increased in size, the RBF kernel consistently

produces the best results.

[Spinosa and de Carvalho, 2005] use the one class SVM for novel class detection

in bioinformatics. Results are presented for rates of Leukemia and Lymphoma

detection and whilst the accuracy rates for these novel data sets are high, the

percentage of false positives is between 30 and 60% which is rather high.

[Wang et al., 2005] use the one class SVM with different kernels for intrusion

detection. They compare the polynomial kernel, the RBF kernel, the STIDE

kernel and the Markov kernel. The STIDE and Markov kernels provided the best

results, although the RBF kernel was close behind. A disadvantage of the STIDE

and Markov kernels is that they can only be trained on normal data.
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3.3.5.2 Support Vector Data Description (SVDD)

Support Vector Data Description (SVDD) [Tax and Duin, 1999b] is based on sup-

port vector machines [Vapnik, 2000]. It seeks to enclose the data in the smallest

possible hypersphere, so that outliers are outside this hypersphere. Furthermore,

it utilizes kernels for difficult problems.

SVDD seeks to describe a class of objects, to be able to distinguish it from all

the others. A common approach is to estimate the probability density function

of the data distribution but if the data is not bountiful, this can be difficult and

often inaccurate.

The data set consists of N data objects {xi|i = 1, ...N}. A sphere of centre

a and radius R is to be computed so that it encloses all or almost all of the

data objects. Because of the difficulty in deciding which objects are outliers,

discrepancies are allowed for by introducing slack variables and constraints are

obtained below

(xi − a)(xi − a)T ≤ R2 + ξi, (3.54)

ξi ≥ 0. (3.55)

R is minimised and the size of the slack variables

F (R, a, ξi) = R2 + C
N
∑

i=1

ξi (3.56)

for a given constant C which balances the volume of the sphere against the size

of the slack variables. To solve this problem with the above constraints, the

following Lagrangian is constructed

L(R, a, ξi, αi, βi) = R2 + C

N
∑

i=1

ξi −
N
∑

i=1

αi(R
2 + ξi − x2

i + 2axi − a2)−
N
∑

i=1

βiξi .

(3.57)
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It is such that

∂L

∂R
= 0 ⇒ 2R− 2R

N
∑

i=1

αi = 0 (3.58)

⇒
N
∑

i=1

αi = 1 (3.59)

∂L

∂a
= 0 ⇒ 2a

N
∑

i=1

αi − 2
N
∑

i=1

αixi = 0 (3.60)

⇒ a =
N
∑

i=1

αixi (3.61)

∂L

∂ξi
= 0 ⇒ C − αi − βi = 0 (3.62)

⇒ 0 ≤ αi ≤ C. (3.63)

Thus L is maximised w.r.t. αi where L is given by

L =
N
∑

i=1

αi(xi · xi)−
N
∑

i,j=1

αiαj(xi · xj) (3.64)

with constraints

N
∑

i=1

αi = 1, (3.65)

a =
N
∑

i=1

αixi, (3.66)

0 ≤ αi ≤ C. (3.67)

If there is an unknown data object z then z is accepted if it is such that

(z − a)(z − a)T = (z · z)− 2
N
∑

i=1

αiK(z · xi) +
N
∑

i,j=1

αiαjK(xi · xj) ≤ R2 (3.68)

for some Mercer kernel K. As with support vector machines, popular kernel

choices are the polynomial and the radial basis function kernel. The RBF kernel

is given by

K(xi, xj) = exp(−(xi − xj)
2/σ2). (3.69)
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Since K(xi, xi) = 1, the acceptance rule becomes

(z − a)(z − a)T = 1− 2
N
∑

i=1

αiK(z · xi) +
N
∑

i,j=1,i 6=j

αiαjK(xi · xj) ≤ R2. (3.70)

A number of observations about the RBF kernel in this formulation can be made.

When σ is very small, K(xi, xj) ≈ 0, i 6= j and L is maximised when αi = 1/N .

This is similar to the Parzen density estimation where each object supports a

kernel. For very large σ, K(xi, xj) ≈ 1 and L is maximised when exactly one and

all the others are zero. We note that

1

N
≤ C ≤ 1. (3.71)

This is so because if 1
N

≥ C then
N
∑

i=1

αi = 1 cannot be satisfied.

To use this method, one only needs to supply FT−, the fraction of training

examples that should lie outside the hypersphere.

[Lai et al., 2002] uses this method to identify images. The images used are

texture images and the features extracted from a bank of filters applied to the

database of images. Weighting is applied so that no one feature is able to dom-

inate the others. Images are represented either by feature vectors (the average

of the filter response over the whole image), or by a cloud of points consisting of

multiple feature vectors representing different patches of the image. The SVDD

is fitted around the cloud of points and images are regarded as very similar if

the number of outliers is small. They also experiment with multiple classifiers

because performance could suffer from a large overlap between individual clouds

of points. The query image Q of a classifier profile is defined as

S(Q) = [S1(Q), S2(Q), ..., SN (Q)] (3.72)

They propose to compare the query profile with those of the images in the

database. To make this comparison, different dissimilarity measures are proposed

such as the Euclidean distance

DE(Q, Ii) = ‖S(Q)− S(Ii)‖ , i = 1, ..., N (3.73)
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or the cosine distance

Dcos =
1

2
(1− Sim(S(Q),S(Ii))) (3.74)

where Sim is defined by

Sim(Q, Ii) =
xT
QxIi

∥

∥xT
Q

∥

∥ ‖xIi‖
(3.75)

where xT
Q and xIi are vector representations of the query and image respec-

tively using the L2 norm. The larger the value the more similar the images. The

images most similar to the query image are found by ranking DE(Q, Ii), similar

to a method used by [Kuncheva and Jain, 2000].

The experiments consist of comparing each image against those in the training

set. The best results are obtained by combining the classifiers using the Euclidean

distance and the cosine distance. The ranking method was less promising, in part

because the outcome is only based on pairs of clouds which can suffer from large

cloud overlap.

The experiment does suggest that combinations of classifiers can help improve

performance.

3.3.6 Reconstruction Methods

These methods are not usually used for one-class classification problems but for

data modelling. By using prior knowledge about the data and making certain

assumptions, one can generate a model to fit the data. New objects can then be

described in terms of the model. Many of these methods make assumptions about

the clustering characteristics of the data or their distribution in subspaces. A set

of prototypes or subspaces is defined and a reconstruction error is minimised.

It is assumed that outliers are objects that do not satisfy assumptions about

the target distribution. The outliers should be represented worse than the true

objects and their reconstruction error should be high. The reconstruction error

of a test object by these data compression methods is used as a distance to the

target set. The empirical threshold has to be obtained using the training set.
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3.3 One Class Classification

3.3.6.1 K-means

The simplest method is the k-means clustering technique [Bishop, 1995b]. Tar-

get objects are represented by the nearest prototype vector measured by the

Euclidean distance. The placing of prototypes is optimised by minimising the

following error:

ε =
∑

i

(

min
k

‖xi − µk‖2
)

. (3.76)

In the k-means method, the distances to the prototypes of all objects are averaged.

This means that the method is more robust against remote outliers, more so than

the k-centers method. The distance d of an object z to the target set is defined

as the squared distance of that object to the nearest prototype:

d(z) = min
k

‖z − µk‖2 . (3.77)

3.3.6.2 Learning Vector Quantisation (LVQ)

The LVQ algorithm [Carpenter et al., 1991] is a supervised version of the k-means

clustering method. For each training object xi, a label yi indicates which cluster

it belongs to. The LVQ is trained as a conventional neural network, with the

exception that each hidden unit is a prototype, where for each prototype µk, a

class label yk is defined. The training algorithm is such that it only updates the

prototype nearest to the training object xi.

∆µk =

{

+η(xi − µk) if yi = yk
−η(xi − µk) otherwise.

(3.78)

where η is the learning rate. This update rule is iterated over all training objects

until convergence is reached. In this algorithm, the µ have to be estimated so we

have kd free parameters. Also, the user needs to supply the learning rate.

3.3.6.3 Principal Component Analysis (PCA)

This method is useful for data distributed in a linear subspace. The PCA mapping

[Bishop, 1995b] finds the orthonormal subspace which captures the variance in the

data as best as possible (using the squared error). The simplest procedure uses

eigenvalue decomposition to compute the eigenvectors of the target covariance
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matrix. The eigenvectors with the largest eigenvalues are the principal axis of

the d-dimensional data and point in the direction of the largest variance. These

vectors are basis vectors for the mapped data. The number of basis vectors M is

optimised to explain a certain user defined fraction of the variance of the data.

The basis vectors W become a d ×M matrix. Since these form an orthonormal

basis, the number of free parameters is

(

d− 1
M

)

. It is often assumed that the

data has a mean of zero. The reconstruction error of an object z is now defined

as the squared distance from the original object and its mapped version:

d(z) =
∥

∥z − (W (W TW )−1W T )z
∥

∥

2
(3.79)

=
∥

∥z − (WW T )z
∥

∥

2
. (3.80)

3.3.6.4 Auto-encoders and Diablo Networks

Auto-encoders [Bregler and Omohundro, 1994] and diablo networks [Schwenk,

1998] use neural networks in order to learn a representation of the data. They

are such that if trained successfully, the input patterns should be reproduced at

the output layer.

The main difference between auto-encoders and diablo networks is the number

and size of the hidden layers. Often, auto-encoders have very few hidden layers

but many units in these layers. Diablo networks have more hidden layers but

fewer units. The middle such layer is referred to as the bottle neck layer on

account of it having fewer units. In this section, the auto-encoder will have one

hidden layer and the diablo network will have three, with the middle layer being

the bottleneck layer.

They are both trained by minimising the mean square error

εMSE(f(xi;w), yi) = (f(xi;w)− yi)
2 (3.81)

using terminology from section 3.3.2. It is intended that the target data is

reconstructed with a smaller error than the outlier data.

Given an object z, its distance to the training set is given by

dautoen(z) = ‖f(z;w)− z‖2
ddiablo(z) = ‖f(z;w)− z‖2 (3.82)
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If just one hidden layer is used in the auto-encoder then the data description is

similar to a PCA data description. A small number of neurons in the bottleneck

layer of a diablo network compresses information. Best results are obtained (the

smallest reconstruction error) when the subspace coded by these neurons matches

the subspace of the original data. In fact, outliers can be perfectly rejected.

However, results can be very poor when the this subspace is as large as the

original feature space.

Both neural networks have a large number of parameters to be optimised.

The number of input and output neurons for both networks is given by the di-

mensionality of the data (d). Let hauto denote the number of hidden units in the

auto-encoder. Then the total number of weights in the network including bias

terms is

nauto = d× hauto + hauto + hauto × d+ d = (2d+ 1)hauto + d (3.83)

For the diablo network, let there be hdiab units in the bottleneck layer and

2hdiab in the other hidden layers. Then the number of parameters to be optimised

is

ndiab = d× 2hdiab + 2hdiab(hdiab + 1) + hdiab(hdiab + 1) + 2hdiab(d+ 1) + d
(3.84)

= hdiab(4d+ 4hdiab + 5) + d (3.85)

Whilst the networks in principle can be very effective, the number of parame-

ters to be optimised is very large. Furthermore they require the use to supply the

stopping criterion and the learning rates. Although they can be very powerful

when implemented correctly, this can be difficult for a non-expert user.

3.3.7 Method Analysis

In this chapter, many one class classification methods have been introduced and

their advantages and disadvantages have been mentioned. Robustness is an im-

portant factor in choosing a classifier. For extremely large amounts of target data
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it can be very difficult to identify any outliers in the training set, particularly if

they have been mislabelled or the outlier represents an unknown fault. Table 3.2

lists the classifiers compared in this chapter and whether they are resistant or

vulnerable to unlabelled or labelled outliers. For the full version of this table, see

section 3.6 of [Tax, 2001]. Whilst all methods are set to reject a certain fraction of

the training set, some methods are still vulnerable to outliers in the training set.

For example the estimation of the Gaussian covariance matrix will be impaired

if outliers are in the training set. The K-means and the Parzen windows can

model the density around the outlier and it will not have too much effect on the

classifier. The SVDD and the one class SVM are largely insensitive to outliers.

The classifiers used in the experiments in Chapter 4 will be training in prin-

ciple on normal data however, given the large amount of data and the possibility

of unidentified abnormalities in the training set, the classifiers will possibly en-

counter unlabelled outliers in training.

Another important consideration when choosing a classifier is the number

of parameters to optimise in order to achieve the best classification. Table 3.3

shows the number of free parameters and the number of user defined parameters.

It is adapted from a table in section 3.7 of [Tax, 2001]. Methods such as the

auto-encoder and the diabolo networks have a large number of parameters to

optimise which, if successful, can lead to very good results but a non-expert may

struggle. Classifiers such as Parzen windows have no free parameters to optimise

and so require little expert input. However, they are totally dependent on a

representative training set which may be hard to obtain or indeed verify that it

is representative.

3.3.8 Classifier Choices

The classifiers presented all have a variety of strengths and weaknesses. The

classifiers chosen for the experiments of Chapter 4 are the MoG classifier, the

K-means classifier and the one class SVM classifier. The Mixture of Gaussians

method has been adapted in order to model the presence of outliers in the training

set. This is considered to be a very valuable property, given the dataset contains

outliers, some of which are difficult to identify by experts. The K-means classifier
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Table 3.2: This table compares the robustness of one class classification methods. The ’+’

indicates the method is resistant to outliers and the ’-’ indicates the method is vulnerable to

outliers.
Method Unlabelled Outliers in Training Labelled Outliers in Training

Gaussian - Estimation of the covariance

matrix is impaired

- Outlier density should be mod-

elled on a few examples.

Mixture of

Gaussians

Standard

- Estimation of the covariance

matrix is impaired

- Outlier density should be mod-

elled on a few examples.

Mixture

of Gaus-

sians with

Outliers

- Estimation of the covariance

matrix is impaired

+ Outlier density can be mod-

elled.

Parzen

Windows

+ Density is estimated locally + Outlier density should be mod-

elled.

One Class

SVM

+ User can reject a given fraction + Outliers can be forced outside

the hyperplane

SVDD + User can reject a given fraction + Outliers can be forced outside

the sphere

K-Means - Outliers will influence proto-

type position

- Cannot repel from outliers

LVQ - Outliers influence prototype

position

+ Outliers are repelled
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Table 3.3: This table compares the robustness of one class classification methods. The ’+’

indicates the method is sensitive to scaling. In this table d denotes the dimensionality of the

data, N denotes the number of training objects, k denotes the number of clusters, M denotes

the dimensionality of the subspaces and h denotes the number of hidden units.

Method Scaling

Sensitivity

Number of Free Parameters Number of User Defined Pa-

rameters

Gaussian - d+ d(d+ 1)/2 Regularisation λ

Mixture of

Gaussians

Standard

+ (d+ 2)NMoG NMoG, number of iterations

Mixture of

Gaussians

+ (d+ 2)NMoG NMoG, number of iterations

Parzen

Windows

+/- 1 0

SVDD + N kernel parameters

OCSVM + N kernel parameters

K-means + kd K, number of iterations

PCA -

(

d− 1

M

)

Fraction of preserved variance

Auto-

encoder

- (2d+ 1)hauto + d Number of hidden units

Diabolo

network

- hdiab(4d+ 4hdiab + 5) + d Number of hidden units and di-

mension subspace size
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can be improved by scaling the data and with a suitable number of clusters can be

very powerful. The one class SVM is insensitive to outliers and it is guaranteed

to find the global minimum. Whilst there is no general method for choosing the

kernel, plenty of research has been done in this area.

3.4 Ranking Systems

There has been very little research into ranking systems. Often for a mechanical

system such as a machine, the focus is on accurately detecting faults rather than

assessing the severity of the faults. For many systems, the means to rank the

fault is not as important because all or many of the faults are regarded with equal

importance in the sense that the presence of such a fault can cause mechanical

failure [Nandi and Toliyat, 1999, 2002].

In many cases the faults are well defined and although they may be poorly

sampled due to the cost of obtaining them. For many mechanical systems, there

exists methods that have a high degree of success in detecting faults. However,

for some systems, the impact of a fault occurring can be disastrous and the safety

systems seek to measure how close the current state of the system is to an unsafe

state.

When driving along motorways and roads, it is quite likely that one will see

a sign on the back of a heavy goods vehicle with words similar to “How am I

driving?” and then an invitation to call a given number if the driving appears

poor (or good for that matter). Such an action is dependant on subjective opinion

and the person’s ability to correctly identify good or bad driving.

For a haulage firm, the knowledge of how its drivers are performing could be

very valuable. Drivers that were driving outside normal ranges often could be

interviewed about it or perhaps asked to take some more training and practise

to improve their skills. The firm may be able to identify a particular route that

causes even experienced drivers problems. They could then decide to choose

another route or look to provide extra training and advice about the difficulties

the current route poses. For a haulage firm, an accident can result in the loss of

the vehicle, the driver, nearby civilians and the loss of the goods being carried.

It leads to bad publicity for the firm and may make customers more reluctant to
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let the firm transport their goods. All of this assumes of course that accurate

and reliable information can be provided about the state of the vehicle and the

current level of driving.

A lot of the research done in this area is aimed at assessing the risks and their

severities for a given application or field. Coding errors in computer programs

are an important area of research. It is very important for software development

teams to deliver software to customers that is on time and which satisfies the

agreed specification. Pieces of software can contains millions of lines of code

and numerous classes and so it can be very difficult to spot errors in the design

and testing stages of development. To this end, fault prediction models based

on object orientated design metrics have been developed [Gyimothy et al., 2005;

Subramanyam and Krishnan, 2003; Thwin and Quah, 2005; Zhou and Leung,

2006]. Software faults vary in their degree of severity, ranging from low severity

(a cosmetic fault for example) to high severity faults which could have potentially

catastrophic consequences. [Zhou and Leung, 2006] compares various object ori-

entated design metrics. The research is important because whilst previous studies

had looked at predicting classes that were more fault-prone than others, no re-

search had been undertaken to study what type of faults occurred (high or low

severity) and the impact they had on a piece of software. The research concluded

that the object orientated design metrics considered were better able to predict

low severity faults than high severity faults in fault-prone classes.

[Gomes et al., 2002] looks at fault simulation in large mixed signal circuits.

A novel feature of this work is their attempt to rank the faults according to

their severity. They study the effect of a parameter deviation at a local level on

the system level specification for the general circuit. They show a strong linear

correlation between the true rank and expected rank for gain specification faults

and total harmonic distortion faults. An advantage of their study is that the true

rank of the faults is known already and it is clearly defined.

Ranking systems play an important role in sport. [Huang et al., 2006] con-

siders ranking methods for identifying the best performing partnerships in the

game of bridge. They make the point that sometimes it can be difficult to assess

the performance of an individual in a team sport because a rating often does not

take into account the abilities of his or her opponents. They consider two convex

62



3.4 Ranking Systems

minimisation formulas with efficient solutions in order to rank individual perfor-

mance. They minimise a regularised least squares formula and a log-likelihood

method. Results are assessed by computing the correlation between the rank-

ing methods but mainly by considering an order relation on partnerships. Let

r = (r1, r2) be the ranks of two bridge partnerships. They define an order rela-

tionship on two groups r = (r1, r2) and r = (r1, r2) by

r better than r if max(r1, r2) < min(r1, r2). (3.86)

That is, if the weakest partnership from r is better than the strongest part-

nership from r then the group r should be superior to r. From this, in order to

assess the performance, they use the ratio

number of violations

number of hits
(3.87)

where a violation occurs if r is better than r but r beats r and a hit occurs

if r is better than r and r beats r. The maximum likelihood method provides

the best results. This situation is not very similar to detecting abnormalities in

aircraft flight data because the relations between partnership performance (the

match results) are known beforehand whereas whether one flight is ’safer’ than

another is a matter of opinion. However, the methods in this paper show that

good rankings can be obtained using models that are convex (and so have a

guaranteed global minimum).

Wang et al. [Wang and Li, 2004] use rough set theory to rank faults occurring

on a bump machine which is used for energy transformation. Accelerometers

measure vibration signals which are then the attributes used to create the rule

base. The system is only capable of detecting the four known faults that can

affect the machine. An order on the faults is created and whilst this is not a

measure of severity, it is a measure on the likelihood of each fault. Thus in the

event of a machine breakdown, the maintenance engineer can reduce downtime

for that machine by checking for the most likely faults first.

Ranking systems and fault severity are topics that appear in aviation. [Za-

krajsek and Bissonette, 2005] use information about bird strikes on aircraft to

create a ranking system in order to identify which bird poses the greatest threat
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to the aircraft. Bird strikes can potentially be very dangerous as they can break

the windscreen in the cockpit or damage the engines if they are ingested inside.

Bird strikes are rated by the level of damage they cause to the aircraft. A class A

strike is most serious which usually involves loss of multiple lives and/or loss of

the aircraft. Class B strikes cause major damage to the aircraft and/or perma-

nent disability to a passenger or crew and a class C strike leads to minor damage

to the aircraft and passengers. The ranking system is based on the mean num-

bers of strikes per class each year and weighting constants for each class reflecting

the mean value of damage caused. Whilst the proposed method utilised low di-

mension inputs to create the ranking, it does show that there is good value in

assessing threats to aircraft. The ranking of blackbirds and starlings at number

4 was considered unusual given their relatively small size so ranking systems can

help identify threats that appear to be minor but on closer inspection are in fact

much more significant.

3.5 Conclusion

In this chapter, the field of novelty detection and one class classification has been

reviewed and analysed for their abilities to detect abnormalities. When construct-

ing the dataset and analysing flight data, it was clear that whilst events provided

information about a specific point or interval in the flight, there was no clear

method for identifying whether a descent was abnormal or not. This meant that

a training set could contain abnormal data and therefore it was important to

choose classifiers that would be able handle abnormal data in the training phase.

The classifiers chosen (SVM, MoG and K-means) were all able to accommodate

abnormal data in the training set. Furthermore, given the vastly differing nu-

merical ranges of some of the parameters (see table 4.3), scaling the data was

necessary and the classifiers chosen benefit from scaling.

Ranking systems were reviewed in this chapter and it was found that there is

very little research on ranking datasets with large numbers of features. However

Clifton et al [Clifton et al., 2006] has success in detecting precursors for combus-

tion instability. The ability to combine several channels of information via the

combination rules to make a conclusion about the combined state could be very
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valuable for a flight data monitoring approach. By extracting information from

different heights, it might be possible to say something about the whole descent.

This idea is explored more thoroughly in chapter 4.
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Chapter 4

Method

4.1 Introduction

In this chapter a two phase method is proposed for detecting abnormalities and

ranking flights based on these abnormalities. Section 4.2 details how the dataset

was chosen, the heights and features used, how it was pre-processed and also some

example data. Section 4.3.1 details the proposed method and how the parameter

ranges for the classifiers were selected so that the valid results could be achieved.

Section 4.4 details the abnormal test set and how it was constructed.

The first section details the proposed method and gives explanations for the

design. The next section introduces an abnormal test set. As stated before, whilst

events provide a good analysis of the state of a flight at a given point in time,

there is no formal system for assessing a larger section of the flight. The abnormal

test set therefore represents the opinions of experts at Flight Data Services who

analysed flights based on the principles with which the pilots descend the aircraft.

4.2 Data Preparation and Dataset Creation

4.2.1 Dataset Selection

The dataset consists of 1,518 flights into the same airport in the United Kingdom.

The flights are all by Boeing 757-200 aircraft. This is important as whilst the

approach into an airport is the same for large jet aircraft, airlines may have
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Table 4.1: Heights used in the training and testing sets.

10000 9000 8000 7000

6000 5000 4000 3500

3000 2500 2000 1500

1000 750 500 400

300 200 150 100

75 50 25 0

variations in their operating procedures for different aircraft types which could

confuse the model of normality. The time period was from May 2007 to June

2008. This time period covers both summer and winter flying variations and so

allows a better model of normality to be created.

4.2.2 Heights Chosen

When trying to analyse time series data for anomalies, it is useful to have some

idea about which anomalies are likely to be encountered for they can help de-

termine how often the data should be sampled. On the descent, height is very

important as the higher the aircraft, the more time it has to correct any possible

problems. Therefore anomalies affecting aircraft closer to the ground are likely

to be more serious than those higher up.

The events used for the 757-200 aircraft focus on heights mostly below 2000ft.

The purpose of these events in general is to detect a possible unstable approach by

monitoring parameters such as airspeed, rate of descent and flap setting. However,

as stated before, there are few events analysing heights higher up. Therefore, the

proposed system, whilst looking at heights below 2000ft, will also analyse heights

up to 10000ft. The upper height of 10000ft was chosen as it is the height at which

the pilots are not meant to engage in non-essential communication. Snapshot data

was extracted from the descent at the heights found in table 4.1.

Of these 24 heights, 14 are at or below 2000ft and the remaining 10 are between

10000ft and 2500ft. The benefit of having more heights at lower altitudes is that

a detailed analysis can be made of any abnormalities and the impact they have

on the flights. For example, it would be possible to identify if the same event on

one flight has a greater or lesser impact than the same event on another flight.
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Having extra heights above 2000ft should allow the system to spot abnormalities

or unusual behaviour that could help to explain events at lower altitudes.

4.2.3 Feature Choice

Feature selection is an active research topic [Polat and Guenes, 2009; Weston

et al., 2001] and has been shown to improve classifier performance [Chen and

Lin, 2006]. However for the purposes of creating this dataset, features were

selected on the advice of former pilots, navigators, aeronautical engineers and

air traffic controllers. In order to create an accurate model of the descent, these

experts were interviewed in order to understand how pilots of jet aircraft control

the aircraft and which parameters are important at which heights.

The features selected were chosen after extensive consultation with former

pilots, navigators, flight engineers and air traffic controllers with a combined

experience of over 150 years. Their experience includes time spent in the Royal

Air Force, the International Air Traffic Association (IATA), National Air Traffic

Control(NATS) and several UK airlines. The features can be found in table 4.2.

Features included at a given height are marked with Y and those which are not

are marked by N.

4.2.4 Pre-processing

Pre-processing is an important step in preparing a dataset for classification. Erro-

neous values can reduce the accuracy of the classification and distort the model of

normality which is trying to describe the data. From an operational perspective,

aircraft parameters are usually within a pre-defined range and so meaningless

values can be filtered out. For the dataset, only flights that had snapshot data

for all the 24 heights were used. Typical ranges for the parameters used can be

found in table 4.3.

4.2.5 Scaling

When a dataset contains features whose values occur in very different ranges,

scaling is used so that one feature does not dominate the others. In this thesis,
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Table 4.2: Features chosen (see table 4.3 for parameter meanings)

Height CASC V-Vref IVV Pitch GS Loc Flap LDG SPD

BRK

N1 DIST

RAT

ROD

DIFF

10000 Y N Y N N N Y Y N N Y N

9000 Y N Y N N N Y Y N N Y N

8000 Y N Y N N N Y Y N N Y N

7000 Y N Y N N N Y Y N N Y N

6000 Y N Y N N N Y Y N N Y N

5000 Y N Y N N N Y Y N N Y N

4000 Y N Y N N N Y Y N N Y N

3500 Y N Y N N N Y Y N N Y N

3000 Y N Y N N N Y Y N N Y N

2500 Y N Y N N N Y Y Y N Y N

2000 Y N Y N Y Y Y Y Y Y Y N

1500 Y N Y N Y Y Y Y Y Y N N

1000 N Y Y Y Y Y Y Y Y Y N Y

750 N Y Y Y Y Y Y Y Y Y N Y

500 N Y Y Y Y Y Y Y Y Y N Y

400 N Y Y Y Y Y Y Y Y Y N Y

300 N Y Y Y Y Y Y Y Y Y N Y

200 N Y Y Y Y Y Y Y Y Y N Y

150 N Y Y Y Y Y Y Y Y Y N Y

100 N Y Y Y Y Y Y Y Y Y N N

75 N Y Y Y N N Y Y Y Y N N

50 N Y Y Y N N Y Y Y Y N N

25 N Y Y Y N N Y Y Y Y N N

0 N Y Y Y N N Y Y Y Y N N
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Table 4.3: Typical Ranges for Dataset Parameters (all heights).

Parameter Description Units Typical

Range

Ratio of height to

distance to landing

Height divided by track miles to landing Feet/NM 200 to 400

Flap Flap setting No Units 0 to 30

Glideslope Devia-

tion

Deviation in the vertical from optimum

landing path

Dots -3 to 3

IAS Indicated Airspeed Knots 110 to 300

IVV Rate of Descent Feet/Min -4000 to 0

Landing Gear Landing gear deployment No Units 0 or 1

Localiser Deviation Deviation in the horizontal from opti-

mum landing path

Dots -3 to 3

Engine Speed Percentage of nominal maximum speed No Units 30 to 70

Pitch Angle of aircraft relative to the horizon Degrees -2 to 5

Difference between

IVV and Recom-

mended Rate of De-

scent (ROD)

Difference between actual descent rate

and recommended descent rate

Feet/Min -300 to 300

Speedbrake Speedbrake deployment No Units 0 or 1

V-Vref Difference between indicated airspeed

and reference landing speed

Knots -5 to 50
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4.2 Data Preparation and Dataset Creation

Table 4.4: Example Data from the Training and Testing Set at 1000ft

Data

Set

V-Vref IVV Pitch GS Loc Flap LDG SPD

BRK

N1 ROD

DIFF

Train 5.85 -728 2.3 0.031 0.003 30 1 0 56.3 21.0

Train 15.20 -622 0.7 0.009 -0.030 30 1 0 41.4 6.0

Train 10.52 -699 0.9 0.027 0.023 30 1 0 39.4 55.5

Train 13.77 -724 1.2 -0.031 -0.008 30 1 0 46.0 8.5

Train 12.40 -608 1.8 0.076 -0.043 30 1 0 62.0 25.5

Test 42.84 -1067 -0.2 1.295 0.320 20 1 0 38.1 -81.5

Test 48.88 -1202 -3.5 0.134 0.023 20 0 0 30.6 -370.5

Test 20.29 -896 -1.6 0.027 -0.010 30 1 0 38.1 -42.5

Test 5.65 -682 2.6 0.027 0.013 30 1 0 52.3 -21.0

Test 64.60 -1210 0.4 -0.063 -0.038 20 1 1 38.3 -296.0

range scaling and normalisation are compared. Range scaling linearly maps the

data onto a chosen range, commonly [0 1]. Range scaling preserves the distance

between features of different data points.

Let X = {xi|i = 1, ..., n} denote the training set and Y = {yi|i = 1, ...,m}
denote the testing set. Then the range scaled training and testing sets XR and

YR are given by

XR =

{

xi − xmin

xmax − xmin

|i = 1, ..., n

}

(4.1)

YR =

{

yi − xmin

xmax − xmin

|i = 1, ...,m

}

(4.2)

respectively where xmin and xmax are the smallest and largest elements of X.

4.2.6 Example Snapshot Data

Table 4.4 contains an example of some of the snapshot data from the dataset

used in this thesis. It is taken from 1000ft and shows the values of each of the

features that are most useful at this height (see table 4.2).
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4.3 Framework

4.3 Framework

4.3.1 Framework

In this section, the 2 phase method framework is introduced. Steps 1 to 3 consist

of selecting the data and partitioning it into the appropriate steps. Steps 4 to 5

represent Phase 1 of the method from which a DAP can be produced from. Steps

6 to 9 detail Phase 2 of the method.

1. Select flights to form training and testing sets in an 80%:20% ratio.

2. Extract snapshot data from training and testing flights at heights given in

table 4.1. The features used for each height can be found in table 4.2.

3. Form training and testing sets containing snapshot data at each of the given

heights.

4. Train a classifier on each of the training sets and test on the testing set

containing data at the same height.

5. For each data point at each height, compute the distance between the data

point and the threshold chosen by the classifier.

6. For each flight, form a feature vector containing distances to the thresholds

at each height.

7. Train a classifier on feature vectors from flights in the original training set

and test on those from the testing set.

8. Compute the distance of the data point to the threshold for each data point.

9. Sort the values in ascending order.

4.3.2 1st Phase Method

This subsection details the 1st Phase Method and how they produce the DAP.
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4.3 Framework

Figure 4.1: Block Diagram illustrating proposed method.
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4.3.2.1 Method Details

For the 1st phase, snapshot data from the dataset is extracted from the 24 heights

and then split into training and testing sets for each height such that for a given

descent, its snapshots are either all in the training set or the testing set. The

classifiers will be trained on the training set over their parameter space and then

tested on the testing set. Training is done by snapshot height so for example the

snapshot training set containing data from 50ft is trained upon and then tested

on the snapshot testing set also containing data from 50ft.

A block diagram of the method can be found in figure 4.1. For a given descent,

the distance from the classifier threshold is taken for each of the heights which is

then plotted against height. Such a chart is known as a DAP.

4.3.2.2 DAP Comments

A key point to note is that at each height, different numbers of features are

used (see section 4.2) to create the classifier model. If the number of features

used varies widely (by orders of magnitude) then it will become very difficult to

compare distances to thresholds at different heights (though abnormalities can

still be detected). This is because the volume of region enclosed by the classifier

threshold in the feature space increases if the numbers of features increase [Duda

and Hart, 1973]. However, because the numbers of features used for each height

varies between 5 and 10, the impact of this will be negligible.
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4.3 Framework

4.3.3 Parameter Selection

As already stated, the number of possible modes of abnormality for an aircraft is

large and ill defined. This makes the task of identifying the optimum parameter

set much harder because a framework needs to be established. As indicated, the

method for identifying abnormalities consists of two phases. The first tries to

identify abnormalities on individual flights and the second compares individual

flights to identify the most abnormal flights overall (given the abnormalities scores

computed for each of the heights).

To this end, in consultation with experts at Flight Data Services, an abnormal

test set was created which contains flights that would be of interest to the safety

departments of most airlines. The engine room at Flight Data Services has over

150 years combined experience in flight safety so the test set is based on expert

opinion. However, some airlines may have differing requirements regarding flight

safety so whilst the abnormal test set cannot be regarded as comprehensive, it

should be regarded as a solid basis by which the proposed method can be judged.

Details of the abnormal test set, which contains 63 flights, are found in section

4.4.

The parameters selected for each classifier are those which rank the highest

number of flights in the abnormal test set in the top 63 positions, such that

parameter choices conform as far as possible to best practise in current research.

For each of the three classifiers used, the following subsections explain how

the parameters were chosen.

4.3.3.1 Support Vector Machine Parameter choice

The SVM has the following parameters:

• 1st Phase Kernel Width σP1

• 1st Phase Fraction Rejected νP1

• 2nd Phase Kernel Width σP2

• 2nd Phase Fraction Rejected νP2
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4.3 Framework

Whilst there is no known method for choosing the optimum values for a given

training set, many studies have analysed the parameter space to see what impact

it has on generic classification. It is known that too large or too small values

for σ can result in under or over-fitting of the training set. If the training set is

under-fitted, the decision function may not be complex enough to describe the

data adequately whilst if over-fitting occurs, data points in the training set can be

given too much importance leading to a loss of generalization on the testing set.

A more detailed explanation can be found in Chapter 3. It has also been shown

that choosing σ as the reciprocal of the number of features in the dataset can

lead to good results. Thus a solution that contains too few or too many support

vectors should be rejected. Given that training sets in the 1st phase contain

between 5 and 13 features, σ = 0.1 would seem a good choice. The parameter ν

is an upper bound on the proportion of outliers and also a lower bound on the

number of support vectors. Common values for ν are 1%, 5% and 10%.

The ranges for the parameters are given below:

σP1, σP2 ∈
{

10i|i = −4,−3,−2,−1, 0, 1, 2
}

(4.3)

ν1, ν2 ∈ {0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. (4.4)

4.3.3.2 K-Means Data Description Parameter choice

The K-Means has the following parameters:

• 1st Phase Number of Clusters CP1

• 1st Phase Fraction Rejected νP1

• 2nd Phase Number of Clusters CP2

• 2nd Phase Fraction Rejected νP2

For this classifier, there is no optimum method for selecting suitable parame-

ters for a given training set. Therefore all possible parameter combinations will
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be analysed and averaged over 10 runs. The parameters are chosen from the

following ranges:

CP1, CP2 ∈ {1, 2, ..., 20} (4.5)

νP1, νP2 ∈ {0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. (4.6)

4.3.3.3 Mixture of Gaussians Parameter choice

The MoG has the following parameters:

• 1st Phase Fraction Rejected νP1

• 1st Phase Number of Training Gaussians TP1

• 1st Phase Number of Outlier Gaussians OP1

• 2nd Phase Fraction Rejected νP2

• 2nd Phase Number of Training Gaussians TP2

• 2nd Phase Number of Outlier Gaussians OP2

A brute force approach was used based on parameters chosen from these

ranges

νP1, νP2 ∈ {0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} (4.7)

TP1, OP1, TP2, OP2 ∈ {1, 2, ..., 20} . (4.8)
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4.4 Abnormal Test Set

Table 4.5: Severity level distribution in the Abnormal Test Set

Maximum

Severity

Level

Quantity

3 20

2 15

1 21

0 7

4.4 Abnormal Test Set

The abnormal test set contains 63 flights. Whilst there are several flights with

level 3 events in this set, there are also many flights with events whose maximum

severity level is 1 or 2. Furthermore there are also a few flights with no events

whatsoever. Table 4.5 shows the numbers of flights in the abnormal test that

have events where the maximum severity level is between 0 and 3. Note that a

flight with a maximum severity level of 0 indicates the flight has no events at all.

On investigation, it was found that the number of events and their severity

level bore little relation to the ranked position of the flight after 2nd Phase classi-

fication. This is not particularly surprising given that events mostly focus on the

state of the aircraft below 2,000ft whereas the method considers the descent from

10,000ft. Furthermore, an event is noted as having happened and the numerical

exceedance is not used for compiling airline statistics. Another key point to note

is that an event is representative of the state of one or perhaps two parameters

whereas the method in question looks at all relevant parameters for that height.

In order to compare how accurate the ranking was, the data was inspected by

hand and, after consultation with experts at Flight Data Services, a special test

set was created which contains flights that most flight safety departments would

like to know about. This set will be called the Abnormal Test Set throughout

the rest of the thesis.
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Chapter 5

Results

5.1 Introduction

This chapter presents the main results of the thesis. The results split into 2

phases, contained in sections 5.2 and 5.3. Section 5.2 contains DAPs of some

flights in the test and training sets and shows that flights that have no level 3

events in the descent can have large negative regions on their DAPs. It also shows

how negative regions on the DAPs compare with the actual parameter values at

those heights. Section 5.3 presents the raw-value and combination rule methods

for phase 2. Section 5.4 explains the performance metrics used to evaluate the

results and also introduces the feature selection tool F-score. Section 5.4.2 details

a simple method which is used in comparison with the 2nd phase methods to

validate them. Section 5.4.3 shows the results of the 2nd phase rankings for all

classifiers and compares the Balanced Error Rate (BER), Area Under the Curve

(AUC), False Positives (FP), False Negatives (FN), number of abnormal flights

in the top 63 and the average ranking of flights with level 3 events. Section

5.4.4 contains an analysis of the false positives for the SVM via the raw-value

and combination rule methods. Section 5.4.6 presents the details of the F-score

algorithm. It also details how F-score was used to analyse which heights were most

significant in identifying differences between the training set and the abnormal

test set. Section 5.5 introduces the concept of visualisation and demonstrates

how it can provide added value to flight safety officers and how it can identify

unusual flights in the training set.
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5.2 1st Phase Results

Figure 5.1: Training Flight DAP using SVM.

5.2 1st Phase Results

5.2.1 Descent Abnormality Profiles

Results of the first phase of classification are represented by Descent Abnormality

Profiles (DAPs). These are charts with the height on the x-axis and the abnor-

mality value produced by the classifier on the y-axis. In this thesis, negative

abnormality values indicate a deviation from normal parameter configurations

and positive values indicate normal parameter configurations. They provide a

clear visual representation of the behaviour of a particular flight during the de-

scent and allows the flight safety officer to quickly identify which heights, if any,

are of interest.

Figure 5.1 shows an example DAP. The line is always above the x-axis,

indicating that the vast majority of parameters for all heights are within the

expected ranges.

Note: The DAPs are created using the optimum settings that produce the

highest average number of abnormal flights in the top 63, whether from the raw-

value method or the combination rule method. More details can be found in

section 5.4.

In this subsection, a selection of flights are presented and their DAPs are

analysed. For each flight, the resulting DAPs from the 3 classifiers are looked at

and their similarities and differences studied. The flights presented are as follows.

• Flight 329601: Late capture of ILS

• Flight 418404: Early deployment of landing gear and flaps
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5.2 1st Phase Results

• Flight 421357: Unstable Approach. No events but the data shows otherwise

• Flight 524055: Very steep descent

• Flight 619605: High speed event

• Flight 312013: Normal descent

5.2.1.1 Flight 329601 - Late capture of the ILS.

The main point of interest is the failure to capture the localiser until around

500ft. Usually capture occurs from around 2000ft to 1500ft but it is almost

always captured by 1000ft. The events for this flight are found in table 5.2.

Table 5.1 shows various parameters at various heights on this descent and

compares them to the averages for those parameters at those heights in the train-

ing set. On the SVM and the K-means DAP (see figures 5.2 and 5.3), the data

points at 2000ft and 1500ft are close to zero. However, at 1000ft and 750ft, there

are large negative values indicating strong abnormalities. This is because almost

every flight is established on the ILS at these heights so it is very unusual to see

one that is not. However, because this flight has no level 3 events, it has not

been seen by a flight safety officer; thus highlighting the value of this method

in detecting abnormal flights over the event based system. The MoG DAP (see

figure 5.4) is very different to the others and it indicates regions of abnormalities

where the line is a little below or on the x-axis. Furthermore, regions from 7000ft

to 5000ft and 2500ft to 2000ft have similarly low values from which one could

draw the conclusion that such regions had a similar level of abnormality, which

is not the case.

5.2.1.2 Flight 418404 - Early deployment of landing gear and flaps.

This flight is notable more for the unusual descent rather than any safety issues.

The descent is rather late, 26.4NM at 10000ft and 20.5NM at 8000ft, a rate of

descent of nearly 400ft per NM, steeper than the 1 in 3 rule. At 8000ft, the

aircraft deployed the landing gear in order to increase the rate of descent. Flap

1 is selected which is very unusual. Flap 5 is selected around 5000ft and flap

20 at around 4000ft. The aircraft is stable at 1000ft and the final approach is
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5.2 1st Phase Results

Table 5.1: Points of Interest Flight 329601.

Height Parameter Parameter

Value

Parameter

Percentile

Average Parameter

Value

6000 IAS 199 2 235

2000 LOC 3.997 96 0.223

2000 GS 0.893 99 -0.412

1500 LOC 3.763 99 0.261

1500 GS 0.987 99 0.024

1000 LOC 4.688 100 -0.003

1000 GS 0.277 98 0.021

750 LOC 1.820 100 -0.067

750 GS -0.161 6 -0.001

Table 5.2: Event List Flight 329601.

Event Name Severity Level Height

Late Heading Change 2 42

Localiser Deviation Below

1000ft

2 990

Speed Low during Approach

1000-500ft

1 763

Speed Low during Approach

500-50ft

1 495
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5.2 1st Phase Results

Figure 5.2: Flight 329601 DAP using SVM.

Figure 5.3: Flight 329601 DAP using K-means.

Figure 5.4: Flight 329601 DAP using MoG.

normal, hence the lack of events. However, since this flight has no level 3 events, a

flight safety officer would not have seen it. Whilst the aircraft managed the steep

descent well, it is not recommended practise and the airline would be interested

to see if this type of descent happens often. See table 5.4 for a list of events.

Table 5.3 shows some of the heights and parameters of interest for this flight.

The SVM and the K-means DAPs (see figures 5.5 and 5.6) show a large region of

abnormality from around 9000ft to 3000-2500ft, resulting from the steep descent,
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5.2 1st Phase Results

Table 5.3: A Sample of Points of Interest Flight 418404.

Height Parameter Parameter

Value

Parameter

Percentile

Average Parameter

Value

9000 IAS 225 3 260

9000 DISTRAT 23.58 99 36.07

8000 IAS 192 0 252

8000 Flap 1 99 0.01

8000 LDG 1 99 0

8000 DISTRAT 20.49 1 32.22

5000 Flap 5 99 0.08

4000 Flap 20 100 0.63

Table 5.4: Event List Flight 418404.

Event Name Severity Level Height

No Events n/a n/a

Figure 5.5: Flight 418404 DAP using SVM.

the low airspeeds and the high flap settings. At 8000ft and 4000ft there is a clear

’spike’ on both charts, resulting from flap 1 and the landing gear being selected

at around 8000ft and from flap 20 being selected at around 4000ft. The MoG

DAP (see figure 5.7) positions the line approximately on the x-axis from 10000ft

to 1500ft and also from 300-200ft and 75-0ft. The SVM and the K-means DAPs

show slight dips in the line at these heights. This is due to slightly lower than

average power settings at these heights and a slightly higher than recommended

rate of descent; neither of which are significant.
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5.2 1st Phase Results

Figure 5.6: Flight 418404 DAP using K-means.

Figure 5.7: Flight 418404 DAP using MoG.

5.2.1.3 Flight 421357 - Unstable Approach. No events but the data

shows otherwise.

On the surface it might seem that the DAPs for this flight should contain mostly

positive regions due to the fact it apparently contains no events. However, after

around 2000ft, there is a large negative region and upon closer inspection of the

data, this flight should contain several events and does. The flight had been

incorrectly labelled and table 5.6 shows the events that were detected. This was

spotted during initial experimentation and it highlights the ability of the method

to detect abnormal flights however they are labelled.

Table 5.5 shows some of the heights of interest for this flight. The K-means

and the SVM DAP (see figures 5.8 and 5.9) both show a large region of negativ-

ity extending from around 1500ft down to around 25ft with the largest trough

at 750ft and 500ft. The unstable approach is clearly highlighted and it provides

an immediate visual indication to the flight safety officer that this unstable ap-

proach continued all the way to the ground. The MoG DAP (see figure 5.10) also
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5.2 1st Phase Results

Table 5.5: A Sample of Points of Interest Flight 421357.

Height Parameter Parameter

Value

Parameter

Percentile

Average Parameter

Value

2000 GS 1.174 99 -0.419

2000 LOC 1.754 93 0.223

1500 GS 1.326 99 0.024

1500 LOC 1.719 99 0.026

1000 GS 1.295 100 0.021

1000 LOC 0.32 99 -0.003

1000 V-Vref 43.84 99 12.46

1000 Flap 20 0 29.22

750 GS 2.402 100 -0.001

750 Flap 25 1 29.87

750 ROD -339.4 0 5.4

750 V-Vref 29.08 99 8.69

500 GS 1.915 100 0.001

Figure 5.8: Flight 421357 DAP using SVM.

illustrates this fact also via a line approximately on the x-axis. However, it gives

no indication of differing abnormalities during this phase, unlike the SVM and

the K-means DAPs.

5.2.1.4 Flight 524055 - Very steep descent.

Although the DAPs for flight 524055 show a large negative region, the flight

has no level 3 events and so therefore will not have been seen by a flight safety

officer. The large negative region is caused by the very steep descent of the

aircraft. At 10000ft, the aircraft has just 24NM track miles to go compared to

the average value of 40NM. This leads to high rates of descent, high airspeeds
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Table 5.6: Event List Flight 421357.

Event Name Severity Level Height

Low Power on Approach be-

low 500ft

3 199

Glideslope Deviation Below

1000ft

3 855

Glideslope Deviation Below

500ft

2 430

High Speed 500-50ft 2 494

Pitch Low on Final Ap-

proach

1 679

Late Flap on Approach 1 560

Figure 5.9: Flight 421357 DAP using K-means.

Figure 5.10: Flight 421357 DAP using MoG.

and heavy speedbrake usage. Furthermore, at 2500ft and 2000ft, the aircraft

has the speedbrakes deployed but with more than 10 degrees of flap set, which is

prohibited in the airline’s SOP. However, the aircraft manages the descent well as

seen by the largely positive region of flight after 1000ft. This is an example where

a potentially unsafe approach has been corrected and the lack of high severity
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Table 5.7: A Sample of Points of Interest Flight 524055.

Height Parameter Parameter

Value

Parameter

Percentile

Average Parameter

Value

10000 DISTRAT 23.75 0 40.05

9000 DISTRAT 20.36 0 36.07

8000 DISTRAT 18.03 0 32.22

7000 DISTRAT 15.54 0 27.22

6000 DISTRAT 13.03 0 22.71

3000 IVV -3002 0 -973.36

2500 IVV -2368 1 -875.33

2000 IVV -1926 1 -798.40

1500 IVV -1507 1 -823.33

Table 5.8: Event List Flight 524055.

Event Name Severity Level Height

High Descent Rate >2000ft 1 2935

High Speed 500-50ft 1 286

Figure 5.11: Flight 524055 DAP using SVM.

level events shows this. Nonetheless a flight safety officer would be interested in

this descent as it may indicate a wider problem. See table 5.8 for a list of events.

Table 5.7 shows some of the heights of interest for this flight. The SVM and

the K-means DAPs (see figures 5.11 and 5.12) are fairly similar from 10000ft

down to around 3000ft. However the K-means DAP is almost always negative

throughout the whole flight as is the MoG DAP (see figure 5.13) bar the region

1000ft to 750ft.
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Figure 5.12: Flight 524055 DAP using K-means.

Figure 5.13: Flight 524055 DAP using MoG.

5.2.1.5 Flight 619605 - High speed event

At 10000ft the aircraft is 60NM from the runway at an airspeed of 207kts. The

average track miles to landing is 40NM and the average indicated airspeed is

275kts. From the available evidence the aircraft chose a shallow descent, because

of high winds. Once the aircraft reaches a height of around 750ft, the airspeed

begins to increase and the pitch angle becomes negative. See table 5.10 for a list

of events.

Table 5.9 shows some of the heights of interest for this flight. The slightly

negative region shown on all DAPs (see figures 5.14, 5.15 and 5.16) resulted from

the aircraft descending earlier than usual and at a slower than average indicated

airspeed. Whilst this is not unsafe, it is unusual. However, the main point of

interest is after 500ft. At 1000ft the aircraft satisfies the criteria for a stable

approach but from 500ft, the airspeed has increased rapidly and the pitch angle

is negative. The impact of these parameters is visible on all DAPs.
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Table 5.9: A Sample of Points of Interest Flight 619605.

Height Parameter Parameter

Value

Parameter

Percentile

Average Parameter

Value

500 V-Vref 30.16 100 8.336

500 RODDIFF -139.9 5 4.87

500 Pitch -2.1 0 1.871

400 V-Vref 27.16 99 8.239

400 Pitch -2.5 0 2.002

300 V-Vref 27.16 100 7.914

300 RODDIFF -229.2 1 2.87

300 Pitch -0.7 1 2.073

Table 5.10: Event List Flight 619605.

Event Name Severity Level Height

Pitch Low 1000-100ft 1 568

High Speed 500-50ft 3 284

Low Pitch at Touchdown 3 20

G Landing 1 0

Figure 5.14: Flight 619605 DAP using SVM.

5.2.1.6 Flight 312013 - Normal descent

This descent is smooth with airspeed and rate of descent typical for this approach.

Landing gear and flaps are deployed at typical heights and by 1500ft, the aircraft

is established on the ILS with good speed. By 1000ft, the aircraft’s airspeed is

around vref + 8 kts with a rate of descent appropriate for its groundspeed. The

approach power is set and flap 30 (landing flap) has been chosen.

Table 5.11 shows some of the heights of interest for this flight. The SVM and

the K-means DAP (see figures 5.17 and 5.18) present a roughly similar profile.
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Figure 5.15: Flight 619605 DAP using K-means.

Figure 5.16: Flight 619605 DAP using MoG.

Figure 5.17: Flight 312013 DAP using SVM.

All data points are positive. The MoG DAP (see figure 5.19) however appears

to regard some heights as negative, for example at 2000ft and 1500ft where there

are some abnormal parameter values (see table 5.11). These are not enough to

regard the descent as abnormal.
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5.3 2nd Phase Results

Table 5.11: A Sample of Points of Interest Flight 312013.

Height Parameter Parameter

Value

Parameter

Percentile

Average Parameter

Value

2000 IAS 145 1 172

2000 Flap 25 98 8.52

1500 IAS 130 2 156

Figure 5.18: Flight 312013 DAP using K-means.

Figure 5.19: Flight 312013 DAP using MoG.

5.3 2nd Phase Results

5.3.1 Ranking Decents

The DAPs provide a clear visual method for identifying abnormalities on a descent

and the heights at which they occur at. In section 1.3, it was stated that it would

be a highly valuable feature to be able to compare flights and identify those

descents with the most abnormalities and those with the largest abnormalities.

To reiterate the task, the system needs to compare the abnormality scores at each

of the heights for individual descents and somehow rank them so that the descents
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5.3 2nd Phase Results

with large regions of abnormalities are ranked at the top and descents with mostly

positive regions are ranked near the bottom. It should not be assumed however

that a descent with only positive novelty scores has a lower ranking than a descent

with a few abnormalities. For example, a descent whose snapshot data took the

values at the centroid of each hypersphere for each height could be described as

”perfect” and hence rather unusual in the sense that there is no such thing as the

perfect descent. Therefore it would be ranked higher than a descent with a few

small abnormalities as this is more common. Two methods are compared here to

create a set of ranked descents.

5.3.1.1 Raw-Value

Each descent can now be represented by a feature vector of the 24 novelty values

(one from each of the 24 heights). The training and testing sets for this method

consists of those descents that formed the training and testing sets respectively in

the first phase. The output is the distance of each data point from the classifier

threshold. These are then sorted in ascending order so that the descents with the

most significant abnormalities are ranked at the top.

5.3.1.2 Combination Rule

The number of heights for which snapshot data could be taken from is quite large.

For example, if snapshot data was taken at 50ft intervals from 10000ft to 100ft

and also taken from 100ft to 0ft in 25ft intervals, there would be a total of 203

heights. Using the raw value method could result in noise from heights where

there is little abnormality. The combination rule method seeks to alleviate this

pitfall by extracting information about the shape and content of the DAPs. The

following set of statistics are generated:

For novelty values (x1, x2, ..., x24), we compute

1. StDev σ =

√

1
24

24
∑

i=1

(xi − µ)2,

2. Max Ma =
24

max(xi)
i=1

,
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3. Min Mi =
24

min
i=1

(xi),

4. NumNeg =

(

24
∑

i=1

i

)

wherexi < 0,

5. SumNeg
∑− =

(

24
∑

i=1

xi

)

wherexi < 0,

6. SumPos
∑+ =

(

24
∑

i=1

xi

)

wherexi ≥ 0,

7. Ratio Pos/Neg = ln
∣

∣

∣

∑
+ +1

∑
− −1

∣

∣

∣.

The standard deviation of the abnormality values was selected because an ab-

normal descent could alternate between positive and negative abnormality values,

whereas a normal descent would have mostly positive values, suggesting that for

an abnormal descent, the standard deviation might be larger.

The maximum abnormality value was chosen because if an abnormal descent

has mostly negative values, it might well have a low maximum. However, it is

also possible that an abnormal descent could have regions of heights where the

descent is largely normal and thus also have a large maximum. It is anticipated

that this feature may not be as useful as some of the others.

The minimum abnormality value was chosen because highly negative abnor-

mality values should indicate regions of flight where the aircraft data has deviated

from the norm. A very high negative value could indicate a level 3 event or an

unseen serious event.

The number of negative values was chosen because a large number could

indicate significant regions of abnormality which a flight safety officer would like

to know about. In contrast, for a normal descent, the value should be very low

or perhaps zero.

The sum of the negative values should have a large absolute value if the descent

has many negative abnormality values. For a normal descent, the absolute value

of this sum should be small or zero.

The sum of the positive values was chosen because a large value should indicate

a normal descent, though conversely a small value may not indicate an abnormal

descent as they can also have normal regions.
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Rather than a simple ratio of positive and negative sums, plus one is added

to the numerator and plus one is subtracted from the denominator (to ensure

neither becomes zero), and the natural log of the absolute value is taken. It is

anticipated that ratios less than one (giving negative natural logs) should be a

strong indicator of an abnormal descent.

5.4 Performance Metrics and F-score

5.4.1 Performance Metrics

To assess the performance of the classifiers in this paper, the standard confusion

matrix will be utilised, where True Positive (FN) denotes the percentage of cor-

rectly identified normal descents, True Negative (FN) denotes the percentage of

correctly identified abnormal descents, False Positive (FP) denotes the percent-

age of incorrectly identified normal descents and False Negative (FN) denotes the

percentage of incorrectly identified abnormal descents.

The Balanced Error Rate (BER) is given by BER = (FP + FN)/2. It is a very

useful error metric in one class classification problems where there is an imbalance

between positive and negative examples. Consider an example with 90 positive

examples and 10 negative examples and a classifier that predicts all examples are

positive. The accuracy is 90% and the error is only 10%, which appears high.

The BER however is 50%, highlighting the fact that the classifier is very poor at

detecting negative examples.

The other metric used is the number of abnormal descents appearing in the

top 63 ranked descents. Given that these descents have been analysed by hand

as the most abnormal, they should appear at the top so this metric should be a

good indicator of classifier performance. Note that the top 63 ranked positions

are considered because there are 63 descents in the abnormal test set
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5.4.2 A Basic Analysis of the Performance of the 2nd

Phase Classifiers

With flights numbering in the tens of thousands, it is not practical in terms of

time and man power to analyse each flight by hand and check that all ’abnormal’

descents are detected. A quick way of analysing this is by considering the average

number of standard deviations a datapoint is from the mean vector of all the

features in the training set and then taking the average over all heights used. This

simple approach provides a basic measure of detecting the level of abnormality

and may help to identify possible descents that have not been included in the

abnormal test set.

Let the training sets be given by {Xk|1 ≤ k ≤ 24} and an individual training

set be represented byXk = {xij|1 ≤ i ≤ 1215, 1 ≤ j ≤ ak} where ak is the number

of columns in Xk

Let the vector of column-wise averages of parameters for height training set

Xk be given by xk.

Then the matrix of novelty scores for Xk is given by

Sk =





√

√

√

√

24
∑

k=1

(xjk − xk)
2|1 ≤ k ≤ 24



 (5.1)

The overall novelty score for an individual descent yj is sj =

√

24
∑

k=1

S2
k(j).

A novelty score of 0 for a descent is such that all parameters at all heights

are equal to their relevant averages. It implies the descent is, by this definition,

’perfect’. The higher the value, the larger the absolute distance between the pa-

rameters and their averages and thus the greater the overall abnormality. Sorting

these values in descending order provides a list of descents that are comparable

to the ranking systems already introduced.

Table 5.12 shows the average ranking positions of level 3 flights for all classi-

fiers and all methods are presented and it is seen that the Norm method is 5th out

of 7 and outperforms the MoG classifier. Furthermore, in the top 63 ranked po-

sitions, there are 44 abnormal descents which is comparable to the performances

of the SVM and K-means classifiers.
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Table 5.12: Average ranking position for descents with level 3 events for all methods.

Classifier Highest Event Level Average Ranking Position Method

SVM 3 49 Combination Rule

K-means 3 53 Combination Rule

SVM 3 55 Raw Value

K-means 3 62 Raw Value

Norm 3 79 N/A

MoG 3 88 Combination Rule

MoG 3 194 Raw Value

Table 5.13: Average Best BER using raw value method.

Method Best Parameters Best Average BER (Standard

Deviation)

SVM σP 1=1, νP 1=0.05, σP 2=0.1, νP 2=0.05 0.029 (0.005)

K-means νP 1=0.3, CP 1=3, νP 2=0.05, CP 2=1 0.034 (0.007)

MoG νP 1=0.1, TP 1=1, OP 1=1, νP 2=0.05,

TP 2=1, OP 2=1

0.296 (0.055)

The norm method is included as an added check to illustrate the validity of

the proposed method since abnormalities in general are defined as a larger than

usual distance from the average.

5.4.3 Ranking Analysis of the Performance of the 2nd

Phase Classifiers

Table 5.13 shows the average best BER using the raw-value method. Whilst

the SVM and the K-means classifier are very similar, the MoG classifier is much

worse. Table 5.14 shows the corresponding averages for the false positives and

false negatives. False positives of nearly 5% and 6% for the K-means and SVM

classifiers may be seen as a little high. However, given the nature of the problem

and the lack of defined abnormalities, it may well be that some of these apparent

false positives are also of interest. Table 5.15 shows the AUC values for the best

BER values and whilst the SVM AUC and the K-means AUC are very similar,

the MoG AUC is very poor in comparison.

Tables 5.16 and 5.17 show the average best BERs and accompanying false

positives and negatives. The best average BER is a little higher than the best
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Table 5.14: Average Best BER using raw value method.

Method Average FP for Best

BER (SD)

Average FN for Best

BER (SD)

Best Average BER

(SD)

SVM 0.058 (3.929) 0.000 (0.000) 0.029 (0.005)

K-means 0.048 (3.778) 0.019 (1.135) 0.034 (0.007)

MoG 0.363 (3.400) 0.229 (2.591) 0.296 (0.055)

Table 5.15: Average Best BER using raw value method.

Method AUC for Best Average BER Best Average BER (Standard

Deviation)

SVM 0.9896 0.029 (0.005)

K-means 0.9893 0.034 (0.007)

MoG 0.6802 0.296 (0.055)

BER for the raw-value method but only marginally. What is of interest is the

far better performance of the MoG classifier with a average best BER of 0.084,

although it is still higher than the other classifiers. Table 5.18 compares the AUC

values for each of the best BERs. The MoG AUC is much higher for the method

compared to the raw-value method but it is still a little way behind the AUCs of

the SVM and the K-means classifiers.

Tables 5.19 and 5.20 show the average number of abnormal descents in the

top positions of the second phase ranking for the raw-value and the combination

rule methods. For the top 63 positions, for all classifiers, the combination rule

method does better with on average 5 more abnormal descents (for the SVM

classifier) in the top 63 than the raw-value method.

Tables 5.21 and 5.22 show the average ranked position of a descent with at

least one level 3 event. The SVM and K-means classifiers give similar perfor-

mances with the MoG classifier giving a worse performance, particularly using

the raw-value method.

In producing the data found in tables 5.21 and 5.22, two descents with level 3

events were excluded. One of these descents (see figure 5.20) triggered a Ground

Proximity Warning System (GPWS) event and the other triggered a Go Around.

Both of these descents had a very low novelty ranking and on further inspection, it

was found that the go around was spurious and whilst the GPWS alert appeared

valid, there was no appreciable effect on the flight data, hence the low novelty
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Table 5.16: Average Best BER using combination rule method.

Method Best Parameters Best Average BER (Standard

Deviation)

SVM σP1=1, νP 1=0.01, σP 2=0.1, νP 2=0.05 0.044 (0.005)

K-means νP 1=0.05, CP 1=6, νP 2=0.05, CP 2=1 0.035 (0.005)

MoG νP 1=0.05, TP 1=1, OP 1=1, νP 2=0.1,

TP 2=3, OP 2=2

0.084 (0.010)

Table 5.17: Average Best BER using combination rule method.

Method Average FP for Best

BER (SD)

Average FN for Best

BER (SD)

Best Average BER

(SD)

SVM 0.055 (4.248) 0.037 (0.675) 0.044 (0.005)

K-means 0.048 (2.367) 0.022 (0.516) 0.035 (0.005)

MoG 0.108 (5.238) 0.060 (1.135) 0.084 (0.010)

Table 5.18: Average Best BER using combination rule method.

Method AUC for Best Average BER Best Average BER (Standard

Deviation)

SVM 0.9865 0.044 (0.005)

K-means 0.9878 0.035 (0.005)

MoG 0.9154 0.084 (0.010)

Table 5.19: Average Position of Abnormal descents for best BER using raw value method.

Method Top 63 (Standard

Deviation)

Top 100 (Standard

Deviation)

Top Outlier (Standard Deviation)

SVM 48.2 (0.95) 60.1 (1.49) 63.0 (0.79)

K-means 46.3 (1.34) 58.2 (0.63) 61.8 (1.14)

MoG 23.5 (7.38) 31.6 (7.34) 48.6 (3.34)

Table 5.20: Average Position of Abnormal descents for best BER using combination rule

method.
Method Top 63 (Standard

Deviation)

Top 100 (Standard

Deviation)

Top Outlier (Standard Deviation)

SVM 53.2 (4.60) 60.0 (0.00) 60.7 (4.28)

K-means 47.3 (1.06) 57.6 (1.17) 61.6 (0.52)

MoG 41.9 (1.29) 49.6 (0.97) 59.2 (1.14)
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Table 5.21: Average ranking and overall novelty score for descents with level 3 events using

raw value method.
Method Highest Event Level Average Ranking Position

SVM 3 55

K-means 3 62

MoG 3 194

Table 5.22: Average ranking and overall novelty score for descents with level 3 events using

combination rule method.
Method Highest Event Level Average Ranking Position

SVM 3 49

K-means 3 53

MoG 3 88

Figure 5.20: Testing Flight DAP with a spurious level 3 Go Around event using

SVM.

ranking. It is possible that the GPWS system on this aircraft has developed a

fault.

5.4.4 An Analysis of False Positives

There will always be a degree of opinion in ranking the descents as different

airlines will have differing opinions as to what constitutes an unsafe or an unusual

descent. Hence some of these false positives, in the opinions of some flight safety

officers, could be regarded as true negatives. This section analyses the false

positives for the SVM raw-value and combination rule methods.
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5.4.4.1 False Positives Analysis for SVM

Table 5.23 shows the ranking positions of the false positives in the top 63 ranked

descents for both methods. Of immediate interest are the top 3 descents ranked 2,

3 and 4 for the raw-value method and 3, 6 and 5 for the combination rule method

respectively. In all three descents, the speedbrake is deployed somewhere between

4000ft and 2000ft and left open all the way to the ground. This is prohibited by

the airline’s SOP because it could lead much higher rates of descent that are

very hard to control. These descents were not included in the abnormal test set

because it was known that the speedbrake parameter for those flights developed

a fault and the data from it was incorrect. However, the algorithm only uses the

parameters as listed in table 4.2 and so based on this information, it was correct

to flag these descents as having a high degree of abnormality. The majority of the

other false positives are descents where the flaps and/or the landing gear were

deployed earlier than usual. These descents are more unusual than unsafe so it

depends on the airline whether they might be interested.

Whilst the rankings from the two methods are largely similar, there are a few

descents which show a large difference. Flight 420301 is ranked in the top 63 by

the raw-value method (see figure 5.22) whereas the combination rule method (see

figure 5.21) ranks it nearly bottom. The main region of abnormality (see figure

5.22 is between 3500ft and 2500ft. By 3500ft, the aircraft has deployed the landing

gear, which is highly unusual given only 8 of the 1455 descents have deployed it

by this height. Furthermore the Distance Ratio value is in the 97% percentile

and the IVV is in the 13% percentile. There was only one negative height on

the combination rule DAP and so this abnormality had very little impact in the

ranking. However, for the raw-value method, the large negative value at this

height (3500ft) had a much greater impact, leading it to be ranked in the top 63

positions. Similar reasons explain the difference in rankings for flight 418817.

5.4.4.2 An Analysis of the SVM Performance on the Abnormal Test

Set

In this subsection the performance of the glsSVM (Raw-Value and Combination

Rule) on the abnormal test set is analysed. Table 5.25 shows how many descents
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Table 5.23: Details of False Positives for the SVM Raw-Value and Combination Rule Methods
RV Ranking CR Ranking Identifier Event(s) of Significance

2 3 571049 Deployment of speedbrake from 2000ft to 0ft

3 6 388151 Deployment of speedbrake from 4000ft to 0ft

4 5 262228 Deployment of speedbrake from 4000ft to 0ft

17 20 390195 Early flap deployment

32 32 620240 Very early descent

35 80 419162 Early deployment of landing gear and flap 15

with speedbrake open

38 78 380257 Flap 5 and landing gear deployed early

39 79 420378 Flap 1 at high speeds and high altitudes

41 81 420157 Flap 1 at high speeds and high altitudes

48 69 394803 Flap 5 at 6000ft and 5000ft

55 1504 420301 Landing gear deployed early

60 70 510140 Low on glideslope on final approach with high

descent rates

61 1272 418817 Flap 15 and landing gear deployed at 3500ft

62 227 559258 Low pitch and high rates of descent after

1000ft

63 62 591773 Late final flap choice and lower power after

1000ft

71 60 503351 Flap 1 at 9000ft with 276kts airspeed and

then at 7000ft with 243kts airspeed

76 53 586293 High on GS from 400ft and vref+20 from

100ft-50ft

88 51 563111 Low power from 100ft-25ft and high pitch at

landing

102 63 525252 Distance out from 10000ft to 6000ft goes from

86.5NM to 70NM
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Table 5.24: Details of False Negatives for the SVMRaw-Value and Combination Rule Methods

RV Ranking CR Ranking Identifier Event(s) of Significance

42 70 391496 At 3000ft and 2500ft, flap 20 and speedbrakes

deployed. High IVV at 500ft.

47 71 522692 At 3000ft, the distance-height ratio is 405. At

2500ft and 2000ft, flap 15 and speedbrakes

open. From 150ft to 50ft, low power and high

IVV.

64 50 619615 High speeds and low power at 500ft and 400ft.

Very high rate of descent at 25ft.

66 57 421096 From 750ft, high rates of descent and some

low power.

68 84 348979 Maintains high speeds to 2000ft but has the

distance to slow down. High rates of descent

after 1000ft.

70 66 545063 Large localiser deviation at 200ft.

74 64 306479 At 750ft, high speed, low IVV, flap 20 and

slightly off on the ILS.

77 87 617014 High speeds and low pitches from 1000ft to

0ft.

79 43 398831 High speeds from 1000ft to 0ft and low pitch.

80 55 418007 Very high speeds from 1500ft to 750ft with

low power.

86 54 269542 At 1000ft, high speeds, high rates of descent,

flap 20 and speedbrake deployed.

91 49 282311 At 50ft, 80% power and pitch angle is 6.3 de-

grees.

93 76 497945 High speeds after 1000ft and low pitch angles.

Low pitch at touchdown.

95 34 345603 High rates of descent and high speeds from

150ft to 75ft.

99 85 414736 High speeds from 400ft to 200ft. High rates

of descent from 75ft.

114 203 377538 High speed descent to 2000ft.

126 343 603345 Low pitch at touchdown.
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Figure 5.21: Flight 420301 DAP using SVM Optimised for CR.

Figure 5.22: Flight 420301 DAP using SVM Optimised for RV

were detected by both methods, either method or neither. Nearly 3 in 4 descents

are detected by both methods which is very satisfying. However, 8 of the 63

descents are detected by neither method and in this subsection, these descents

are analysed to identify why neither method ranked them in the top 63.

Of the 8 such descents, 6 of these descents have a ranking by both methods

of less than 100 and both methods give them negative novelty scores, so abnor-

malities present in these descents have been identified. The remaining two are

ranked 114 (flight 377538) and 126 (flight 603345) by the raw-value method and

203 and 343 respectively by the combination rule method.

Figures 5.23 and 5.24 show the DAPs for flight 377538, where the first is the

DAP optimised for the combination rule method and the second is optimised for

the raw-value method. Both DAPs are similar, though the raw-value method

regards the troughs at 3000ft and 300ft as more severe than the combination rule

method, hence its higher ranking by this method. This descent was chosen as part

of the abnormal test set because of its unusual descent. The aircraft descends

103

Chapter4/Chapter4Figs/Fig420301SVMCR.eps
Chapter4/Chapter4Figs/Fig420301SVMRV.eps


5.4 Performance Metrics and F-score

Figure 5.23: Flight 377538 DAP using SVM Optimised for CR.

Figure 5.24: Flight 377538 DAP using SVM Optimised for RV

Figure 5.25: Flight 603345 DAP using SVM Optimised for CR.

quickly from 7000ft to 3000ft and maintains at least 250kts to 2000ft. It has the

distance to lose this speed and does so which satisfies the stable approach criteria

by 1000ft. The trough at 300ft results from the airspeed falling below Vref and

the pitch rising to 5.4 degrees. This descent has a valid GPWS warning on it,

occurring at 363ft. Whilst the descent has some abnormality, the DAP is mostly

positive for both methods during the final approach (from 1000ft to 0ft).

Figures 5.25 and 5.26 show the DAPs produced for flight 603345 optimised for
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Figure 5.26: Flight 603345 DAP using SVM Optimised for RV

Table 5.25: Details of False Negatives for the SVM Combination Rule Method

Method Ranked Results in the Top

63 (%)

Both 46 (73%)

None 8 (13%)

CR Only 7 (11%)

RV Only 2 (3%)

the combination rule and the raw-value methods respectively. The main abnor-

mality on this descent is a very low pitch angle at touchdown. This can be serious

if the aircraft’s nosewheel, rather than the back wheels, touched down first, as

the nosewheel was not designed to support such weight and can therefore buckle.

The DAPs for both methods are very similar, both identifying this abnormality

at 25ft and at 0ft. However the DAP for the raw-value method regards the de-

scent from 400ft to 0ft as more negative than the combination rule method. This

is because whilst both methods are using the same kernel width, the raw-value

method is set to reject 5% of the training set rather than 1%.

5.4.5 F-score

The classification in Phase 2 provides a method with which to rank descents.

Whilst it is very useful to know that a descent has a high ranking, it is also

beneficial to a flight safety officer to compare sets of descents to identify any

common trends. It would be useful to identify the heights which show the greatest

differences in novelty score and the features which cause these differences. F-score

[Chen and Lin, 2006] is a method which measures the discrimination between two
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sets of real numbers. Consider our data set (xi)
n++n

−

i=1 where n+ and n− denote

the number of positive and negative examples respectively. The F-score of the

ith feature is denoted by

F (i) ≡

(

x̄
(+)
i − x̄i

)2

+
(

x̄
(−)
i − x̄i

)2

1
n+−1
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(

x
(+)
k,i − x̄

(+)
i

)2

+ 1
n
−
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n
−

∑

k=1

(

x
(−)
k,i − x̄

(−)
i

)2
(5.2)

where x̄i, x̄
(+)
i , x̄

(−)
i are the average of the ith feature of the whole, positive,

and negative data sets, respectively; x
(+)
k,i is the ith feature of the kth positive

instance, and x
(−)
k,i is the ith feature of the kth negative instance. The numerator

provides a measure of the discrimination between the positive and negative sets.

The denominator provides a measure of the discrimination within each of the two

sets. Thus the larger the F-score value, the more likely that feature will be useful

in separating the positive from the negative examples. A disadvantage of F-score

is its inability to reveal mutual information among features.

5.4.6 Using F-score to Analyse the Data

All the descents can be represented by a feature vector of the 24 novelty values

as has already been seen. A flight safety officer might well be interested if there

are specific heights that affect the 2nd phase classification the most. Figure 5.27

shows the F-score values for each height. The two sets involved in the F-score

generation for this figure is the set of all 1455 normal descents and the set of the

63 abnormal descents (Abnormal Test Set). There are two peaks in this figure.

The first is around 6000ft to 4000ft and the second is around 500ft to 25ft. The

second peak is expected in that if the descent shows abnormalities and has made

an unstable approach, evidence of this will be seen in the final approach, perhaps

in the form of high airspeeds or low engine power settings. The first peak is more

unusual and suggests that early signs of an unstable approach may be visible at

higher altitudes.

For each height, F-score can analyse which features are most discriminative.

Figure 5.28 shows the F-scores for a selection of individual features over all the

heights. In the previous section, two peaks were noted whilst looking at the
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Figure 5.27: F-score values for 1st Phase Novelty Scores.
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Figure 5.28: F-score values for a selection of 1st Phase Features.
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F-score values over all the heights. The second of the two peaks, at the lower

altitudes is most influenced by V-Vref and pitch, which is not surprising given

the majority of the abnormal descents have higher than average speeds on the

final approach. The first peak, at the higher altitudes, is most influenced by

flap settings and landing gear deployment. In some descents, the landing gear

is deployed in order to make the aircraft descend faster, perhaps because the

descent was later than planned. High flap settings at higher altitudes are not

usually regarded as unsafe but it is often a sign that the aircraft is making a

vectored approach and is thus able to configure the aircraft for landing at a much

higher altitude than usual.
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5.5 Visualisation

5.5 Visualisation

5.5.1 Introduction

With great advances in processing power and ever larger data storage devices, it

is becoming increasingly possible to collect extremely large datasets. The dataset

in this thesis is a good size (1518 descents) and as such, it is possible to gain a

broad familiarity with individual descents. However, when the dataset(s) consists

of many millions of data points, it becomes virtually impossible to gain any deep

familiarity with the data unless the dataset is of a trivial nature.

Datasets containing particularly high dimensional data can be very hard to

interpret and comprehend, especially for those who do not have great experience

in data modelling. There are a variety of data visualisation tools such as clustering

or dendograms, principle component analysis, the Sammon map, Independent

Component Analysis and minimal spanning trees.

Recent innovations in visualisation algorithm development have tried to focus

on preserving the structural integrity of the original data. This implies the visu-

alisation space should be topographic in some sense. The very recent methods

have tried to extend the Sammon mapping so it is generalisable.

5.5.2 Theory

The Neuroscale algorithm [Lowe and Tipping, 1996] is an example of such a

method and is used in this section to visualise the data. The Neuroscale model

is a dimensionality reduction algorithm which uses the Sammon mapping [Sam-

mon Jr, 1969] to provide a transformation of data points from N to P dimensions

where N is greater than P . It attempts to preserve the structure of the data space

(original high-dimensional space) and retain it in the lower dimensional space. It

does this by attempting to keep the Euclidean distance between any two data

vectors as close as possible in the data space and in the latent space. The trans-

formation is generated by minimising the error function known as the Sammon
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5.5 Visualisation

Stress Metric, given by

E =
N
∑

i

N
∑

j>i

(d∗ij − dij)
2 (5.3)

and

dij = ‖yi − yj‖ , (5.4)

d∗ij = ‖xi − xj‖ (5.5)

where d∗ij and dij represent the distance between vectors in the high dimen-

sional space the lower dimensional space respectively. A RBF neural network

is used to learn the transformation. The number of hidden nodes should be an

order of magnitude lower than the number of training vectors [Tarassenko et al.,

2008].

Throughout the rest of this thesis, Neuroscale mappings will be trained on

the normal descents and tested on the abnormal descents. Given there are 1455

normal descents and that 140 is approximately a tenth of 1455, the number of

hidden centres used will be 140.

5.5.3 Results

In this subsection, the results of the visualisation are analysed. Figure 5.29 shows

the Neuroscale visualisation of the vectors for each descent produced from the

combination rules. There is a good level of separation between the normal and

abnormal datasets and if the Euclidean distance between each datapoint and

the origin is computed, 54 of the top 63 values are from the abnormal dataset.

Furthermore, it illustrates that although there is a good level of separation be-

tween the two datasets, there are some descents in the training set that should

be regarded as abnormal.

Figure 5.30 shows the Neuroscale visualisation of the vectors for each descent

produced from the raw values from Phase 1 classification. The degree of separa-

tion is also fairly good, though if the euclidean distance between the datapoints
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5.5 Visualisation

Figure 5.29: Neuroscale Visualisation for Combination Rule Phase 2 Results.

and origin is computed, only 45 of the top 63 values are from the abnormal

dataset.

The correlation can be computed between the Euclidean distances of the Neu-

roscale visualisations and the respective Phase 2 novelty scores. Let the Euclidean

distances be denoted by X = {xi|1 ≤ i ≤ 1518} and the Phase 2 novelty scores

be denoted by Y = {yi|1 ≤ i ≤ 1518}. Then the linear correlation between the

two variables is given by

Correl(X, Y ) =

1518
∑

i=1

(xi − x) (yi − y)

√

1518
∑

i=1

(xi − x)2

√

1518
∑

i=1

(yi − y)2
(5.6)

Table 5.26 shows the level of correlation between the Euclidean distances of the

Neuroscale visualisation and novelty scores for Phase 2 of the proposed method
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5.5 Visualisation

Figure 5.30: Neuroscale Visualisation for Raw Value Phase 2 Results.

when both use the same SVM parameters optimised for the raw-value method

or the combination rule method. It shows there is strong negative correlation in

both cases.
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5.5 Visualisation

Table 5.26: Correlation coefficients between the Visualisation and the Proposed Method

Method Correlation

Coefficients

Optimised for Raw-Value Method -0.867

Optimised for Combination Rule Method -0.940
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Chapter 6

Conclusions

6.1 Introduction

This thesis has provided a solution to the difficult problem of improving flight

safety during the descent for large jet aircraft. The field of flight safety and its

existing methods was introduced in Chapter 2. In Chapter 3 novelty detection

and one class classification methods were introduced with the aim of identifying

which methods were best for the type of data at hand. The proposed method

was introduced in Chapter 4 and was described in detail. In Chapter 5 the 1st

phase results were presented along with the 2nd phase method, results, F-score

analysis and visualisation of the data.

6.2 What has been achieved?

In reviewing current flight safety methods it became clear that there are a number

of issues.

There is very little literature concerning flight data analysis and there are

a number of reasons why this is so. It could be that it has not received much

academic interest, due to the fact that real world data is likely to be confidential

and not publicly available. Therefore if research has taken place in this field, it

is likely that the vast majority was confidential and undertaken by airlines able

to afford researchers or a research department. Statistics show (Board [2010])
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6.2 What has been achieved?

that for American airlines between 1990 and 2009, the accident rate per 200,000

departures was less than one for every year bar one. Hence it could be argued

that airlines did not feel the need to improve flight data analysis methods when

the accident rates were so low. Furthermore, current methods such as Amidan

and Ferryman [2005], are almost impossible to assess because there are no details

about the numbers of flights used, the detection rates or what they consider to

be an abnormal flight.

The event based method appears to be the most common and whilst it has

some good advantages, there are a significant number of disadvantages. It is

unable to detect exceedances if there are no events created for them. Further-

more, it is difficult to determine if there are any precursors in order to try and

explain the event and perhaps reduce its frequency which is part of the guidelines

recommended by the CAA (see section 2.3.1).

Given that airlines such as British Airways can analyse as much as 5 Giga-

bytes a day, it becomes very difficult to provide a thorough analysis of the flights,

identifying all abnormalities and their precursors (if they exist). A flight in crude

terms can be divided up into ’take off and climb’, ’cruise’ and ’descent and land-

ing’. The analysis of the event based system shows that over 70% of events occur

whilst the aircraft is in the act of descending (see section 2.5). Therefore it was

decided to focus on this region of flight as it appears to have a significant number

of abnormalities to be identified. Given that for each airport there are a set of

approaches that should be followed under normal circumstances and that ALAR

recommends that the aircraft satisfy certain conditions at 1000ft 2.6, it was con-

sidered that modelling the approach to an airfield and identifying any deviations

from the prescribed approach could be very valuable to an airline. A key mo-

tivator for this approach was the discovery that the AAIB had already made a

similar suggestion (Foundation [2004]).

Having decided on analysing the descent from considerations found in Chapter

2, it was necessary to consider what methods could be used to model an approach

to an airport. The overall goal is to detect abnormal descents and the branch

of machine learning concerned with this problem is known as ’novelty’ detection

or one class classification. The target class represents the normal flights and the

outlier class represents the abnormal flights. Chapter 3 looks at novelty detection
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6.2 What has been achieved?

methods and one class classification methods. Perhaps the biggest difficulty in

terms of classification was the fact that identifying descents had not been, to the

best of the author’s knowledge, attempted before. Whilst the analysts at Flight

Data Services have over 150 years experience in the field of aviation and are well

versed in analysing events, they have not routinely compared individual descents.

Therefore, whilst the Abnormal Test Set contains descents with abnormalities,

it is possible that the training set (which should contain normal descents only)

may contain some abnormal descents. Therefore the classifiers used should not

be negatively impaired by the presence of abnormal descents in the training set.

Furthermore, given that the parameters occupy different numerical ranges (see

table 4.2), scaling becomes necessary so that one feature does not dominate all

the others. Therefore the classifiers should not have their performance impaired

by scaling. With these attributes in mind, the classifiers chosen were the one class

SVM, the MoG that accepts outliers in training and K-means. Furthermore, the

number of parameters to be optimised for each method is small, thus reducing

the risk of overtraining.

Section 3.4 looks at ranking systems and their applications in modern day

problems; for example, ranking bridge players and the most ’harmful’ birds to be

ingested into aircraft engines. It is clear that ranking systems are often problem

specific and rely heavily on domain knowledge. It is felt that none of these

systems are applicable to this research but it is noted that such systems can have

value. For example, it was considered surprising that blackbirds and starlings

were ranked at number 4 in terms of the risk posed to aircraft engines.

Chapter 4 and Chapter 5 introduce the method proposed in this thesis for

analysing flight data and the corresponding results. The selection of suitable

features was achieved using expert advice as to which parameters the pilots would

be monitoring during the descent. In this way it was hoped that deviations from

the airline’s SOP could be captured. The abnormal test set was also created with

advice from the staff at Flight Data Services. The test set is most unusual in its

composition (see table 4.5) give that only 32% of the descents have class 3 events.

Perhaps the most surprising feature was that it included some flights that had

no events at all. It illustrates the fact that the event system is not detecting all

abnormalities during the descent.
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6.2 What has been achieved?

Classifiers are trained at each of the heights (see table 4.1). The output can

be plotted and the corresponding graph is known as a DAP which provides the

1st phase results. This method provides a clear visual aid to the flight safety

officer or the flight data analyst as to how the descent was flown. Regions of

abnormality are clearly highlighted and open to investigation. Furthermore, the

impact of events can usually be seen on the DAP (see figures 5.2, 5.8 and 5.14).

Key influences for phase 2 and to a lesser extent, phase 1, were the rec-

ommendation by the AAIB in Foundation [2004] and a paper by Clifton et al.

[2006] which details an intriguing method for combining information from sev-

eral combustion channels in order to determine the first early signs that unstable

combustion was taking place. Given the large numbers of flights processed, flight

safety officers and flight data analysts are clearly unable to analyse every DAP

for abnormalities. Therefore it was considered valuable to attempt to rank the

descents in order of severity and details of this approach are found in section

5.3.1. Section 5.4.3 presents the main 2nd phase results and shows that the SVM

classifier ranks the most flights from the Abnormal Test Set in the top 63 ranking

positions. It also demonstrates that the combination rule method outperforms

the raw-value method which is not too surprising given that the combination rule

method is less vulnerable to very large or very small abnormality values for a

given height.

Section 5.4.6 details the use of the feature selection tool F-score. Firstly, it is

able to identify the heights where there are the greatest differences between the

training set and the Abnormal Test Set and secondly, it is able to analyse these

heights to identify the most significant features that are causing these differences.

It was not surprising to see that features pitch and V-Vref are the most significant

at altitudes of less than 1000ft given that high speeds are a common feature of

an unstable approach. What is more unusual is that flap selection and landing

gear deployment are most significant at higher altitudes. This suggest that some

aircraft have decelerated early and are flying the approach with lower speeds and

a low flap setting in order to maintain lift. The early use of the landing gear for

some flights indicates that some aircraft are using it to descend faster because

they were a little high, or that some flights were configured ready for landing at

higher altitudes than usual.
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6.3 Main Contributions

Section 5.5 introduces the Neuroscale visualisation algorithm which is used

to provide a visual representation of the phase 2 results. It is immediately seen

that some flights in the training set are plotted away from the main cluster of

flights centred on the origin. Section 5.4.4.1 looks at the false positives and shows

that 3 flights from the training set are ranked in positions 2, 3 and 4. The data

shows that all 3 flights had their speedbrakes deployed at altitudes under 1000ft

which is prohibited by the SOP. On further investigation it was found that

there was a fault with that parameter and the speedbrake was not deployed this

low. However, if the parameter was functioning normally, the ranking system

performed as hoped because such an event is a serious deviation from the SOP

and should be ranked highly.

6.3 Main Contributions

• The thesis highlights the apparent lack of academic research in the field of

flight data analysis and it is hoped that other researchers will be motivated

to expand and improve upon these results and conclusions.

• A new method has been introduced that identifies abnormalities and their

impact during the descent and furthermore, allows descents to be ranked

so that the descents with the most significant abnormalities are ranked in

the top positions.

• The DAP is an innovative way of showing an overview of the level of abnor-

mality during the descent. Negative regions can be clearly identified and

further studied to gain a greater understanding of that approach.

• The ranking approach has successfully identified up to 84% of the flights in

the Abnormal Test Set in the top 63 ranking positions and illustrates the

value of the combination rules.

• The proposed method is able to detect abnormalities during descents that

the event based system has not. In the Abnormal Test Set, less than a third

of the flights have level 3 events. Furthermore, some descents that had class
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6.4 Future Work

3 events were ranked very low (see section 5.4.3), indicating that they had

no appreciable effect on the main parameters used during the descent.

• Visualisation is a valuable tool to provide a visual analysis of the rankings

produced by phase 2 and unusual descents in the training set are easily

identifiable.

• The main work of identifying a suitable model and appropriate features has

been achieved and this knowledge can be used to create models for different

aircraft types at different runways. This will enable an airline to assess how

their aircraft handle descents to different runways, take remedial actions

where required and identify any improvements in the second phase novelty

scores.

6.4 Future Work

To the best of the author’s knowledge, this is one of the first times that a large

quantity of flight data has been studied in order to improve safety. As a result,

there remains many avenues for further study.

• The study can be expanded to see how well the method performs on different

airfields.

• The method could also be applied to study the take off and climb phases

of flight to look for abnormalities.

• Different airlines flying the same aircraft type into the same airport can be

analysed and compared. Furthermore, with the agreement of all parties,

deidentified data could be shared to enable one or both airlines to improve

their SOP should it be necessary.

• The nature of flying an approach to the same airport is such that the aircraft

must fly through the same heights each time. Therefore the method can be

applied to any situation where there are a large number of repetitive actions.

For example, during a 100 metre sprint in athletics, all runners start at 0m,
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6.4 Future Work

then pass through 10m, 20m etc and all pass through 100m. The method

could be applied to analyse how the performance of one sprinter or many

sprinters change over time. Of course, this assumes that it is possible to

extract relevant features.
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Smart, E. and Brown, D. (2009). Using novelty detection methods to identify

abnormalities in aircraft flight data. In: Proceedings of the UK Workshop on

Computational Intelligence (UKCI 2009), Nottingham, UK: University of Not-

tingham.

Smart, E. and Brown, D. (2010). Using One Class Classifiers to Diagnose

Abnormalities in Aircraft Flight Data. Intelligent Transportation Systems, IEEE

transactions on, Submitted.
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