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Abstract

The contributions in this thesis are divided into two main parts: 1) a theoretical analysis of
learning in neural networks and Learning Vector Quantization (LVQ) in model situations
using statistical physics techniques and 2) the application of machine learning to smart
industry settings.

In the first part we address highly relevant situations and questions for current machine
learning practice: using tools from statistical physics we analyse the learning behaviour in
Rectified Linear Unit (ReLU) neural networks and compare it to sigmoidal neural networks
in both on-line and off-line supervised learning settings, in order to contribute to the much
needed theoretical insight into the properties of the use of the ReLU function, the most
popular type of activation function in deep neural networks that are used in many machine
learning tasks. Secondly, we analyse neural networks and LVQ under real and virtual
concept drift processes that affect many applications of machine learning systems. Our
analyses reveal several significant effects, which are, among others: ReLU networks handle
overparameterization differently than sigmoidal networks, ReLU networks exhibit favourable
second order phase transitions towards hidden unit specialization instead of the first order
phase transitions observed for sigmoidal networks and applying weight decay in concept drift
scenarios is more effective for ReLU neural networks, in which it significantly accelerates
the onset of specialization. For LVQ we find non-trivial dependence of the generalization
performance on the learning rate in concept drift situations. Moreover, it is shown that
an appropriate amount of weight decay can be beneficial to the performance in the real
drift settings. In contrast, the resulting limited flexibility of the prototypes decreases the
performance under virtual drift.

In the second part of the thesis we focus on the use of computational intelligence approaches
in applications in industry. First, we perform a typical Industry 4.0 case study in collaboration
with industry that concerns the development of real-time material quality control in a high-
throughput production line of steel-based products. In this case study, material measurements
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taken with a fast non-invasive sensor are related to material properties measured by tensile
tests. Due to significant correlations between the two types of measurements, we successfully
fit and evaluate a model that can estimate material properties in real-time. Furthermore,
it is shown on 108 kilometres of processed steel that the model is able to prevent expensive
production problems and that it can indicate a risk of the occurrence of production faults.

Additionally, we propose a methodology for time series classification that combines
Generalized Matrix Learning Vector Quantization (GMLVQ) formulated for complex-valued
data with complex-valued Fourier and wavelet features. On several benchmark datasets and a
heart beat classification task, learning in the space of complex-valued coefficients is found to
yield better classification accuracy with fewer adaptive parameters compared to time domain
classification. Moreover, we formulate a back-transformation of prototypes and relevance
values that facilitates the interpretation of the classifier in both the transform- and the time
domain.
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Chapter 1

Introduction

Machine Learning algorithms play an increasingly important role in science and
applications. Although the origins of machine learning go back to at least the second
half of the 20th century and arguably earlier due to its strong dependence on statistical
theory, the advances in several fields are currently revealing more of the potential of
machine learning methods. Most prominently, the prevalence of advanced sensors,
cameras, web and mobile applications has increased significantly. Combined with
developments in communication technology and cloud computing, it has become
possible to measure, transfer and store large amounts of data. Simultaneously, the
ever-increasing speed and availability of computational devices have facilitated the
training of large artificial neural network architectures on big datasets to perform
remarkably complex tasks. Some tasks that neural networks currently perform
had been thought earlier to belong to the realm of human intelligence mainly and
particularly difficult for computers to carry out. Examples can be found, among
others, in advanced speech processing (Khalil et al. 2019, Wang and Chen 2018),
self-driving cars (Gupta et al. 2021), advanced recommendation systems (Fessahaye
et al. 2019) and medical applications (Shen et al. 2017, Singh et al. 2020).

The increased capabilities of neural networks and the accessibility of tools that
facilitate their implementation have come at a cost: the growth in model size has
inevitably complicated the analysis of the model’s inner workings and overall be-
haviour. The black box character of the large networks makes it extremely challenging
to give guarantees about the model’s performance on new data beyond the set on
which it was trained and evaluated. This causes various vulnerabilities in the models,
see for instance (Göpfert et al. 2020) for a study related to so-called adversarial exam-
ples. These are inputs altered in a way humans can hardly perceive, but that cause
neural networks to make drastically different and unexpected predictions. Whereas
failing models merely cause annoyances in some recommendation systems on the
web, in safety-critical autonomous systems such as self-driving cars the consequences
can be life-threatening (Tu et al. 2020).

Although the increase in model and data scale explains the recent advances to a
large extent, it has certainly not been the only driver of progress. The intricate field of
neural networks, and more generally machine learning, can broadly be described by
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three interdependent main components: model architecture, learning algorithm and
data (Zdeborová 2020). The interplay of these three components determines crucial
performance characteristics, such as the learning speed of neural networks and their
generalization ability beyond the training and evaluation data. Neural network
architectures have been proposed that are highly efficient for certain tasks, such as
convolutional neural networks for computer vision tasks (LeCun 1989). In the neural
network learning algorithms and optimization domain prominent recent studies
have adapted and extended the default gradient descent formulation (Kingma and
Ba 2015). Other examples are active learning algorithms which decide for which
data points or parts of the data space a target label would be most informative
(Settles 2009).

Zooming in on model architecture, studies have focused on a key component:
the non-linear activation function that is used in neurons in the network to map
input- to output activations. The choice of activation function defines the non-trivial
functional representations within neural networks and therefore plays an important
role in learning. The so-called Rectified Linear Unit (ReLU) function has been found
to result in faster convergence and better generalization error in a variety of tasks
implemented by deep neural networks (Jarrett et al. 2009, Nair and Hinton 2010). It
is hypothesized that this is partly due to the resulting sparse activity in the networks
and the prevention of the vanishing gradient problem that hampers learning in deep
sigmoidal neural networks. However, the properties and characteristics of the use of
ReLU in various learning scenarios and architectures are not understood thoroughly
and hence there is a need for more theoretical investigations.

A second topic of great interest in machine learning is the frequently occurring
phenomenon of concept drift (Zliobaite et al. 2016, Faria et al. 2016). This refers to
situations that contain a changing input data distribution over time, known as virtual
drift, and/or a change in the target task, which is referred to as real drift. The
appropriate handling of the various types of concept drift requires a combination of
different approaches that depend on the application and machine learning models.
Theoretical approaches that study the behaviour of machine learning models and
algorithms under different types of concept drift are necessary to contribute to
the design of effective methods that retain the performance of these systems in
applications exhibiting concept drift.

The need for theoretical analyses and understanding of these neural network and
machine learning settings could be addressed by the statistical physics of learning, as
has recently been argued in (Zdeborová 2020), among others. The general idea is to
use methods of statistical physics to study the average-case properties of machine
learning models that exhibit many parameters. These types of analyses complement
other theoretical investigations of deep learning settings.
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Starting from at least the 1980s, statistical physics techniques have been used
extensively for the analysis of various neural network- and machine learning archi-
tectures. For instance, the Hopfield network that realizes an associative memory
strongly resembles an Ising model of magnetic spins with the same energy func-
tion associated with the state of the network. A Hebbian update rule minimizes
the energy and the network dynamics are attracted by stable states correspond-
ing to the stored patterns (Hopfield 1982). A quantity of interest in the Hopfield
model and several related theoretical studies of neural networks is the storage ca-
pacity, which is the ratio of patterns to neurons that can be reproduced by the net-
work, see also (Hopfield 1982, Gardner and Derrida 1988, Gardner 1988, Baldassi
et al. 2019, Zavatone-Veth and Pehlevan 2021). In many subsequent studies statistical
physics methods and analogies have also been used in the analysis of, among others,
supervised regression and classification problems implemented by neural networks.

The so-called student teacher setting has frequently been used in the formulation
of such learning scenarios (Engel and van den Broeck 2001): the teacher is a model
instance that defines the target regression or classification rule and thus provides
the target labels for the input data. The student is a model instance that represents a
data-driven hypothesis about the rule. In the general treatment, the many degrees of
freedom on the microscopic level - the weights of the networks - are summarized by
a few macroscopic order parameters, which describe both student and teacher models
and their relationship. To facilitate the analytical treatment, the input data is assumed
to be independently and identically distributed. Both on-line and off-line learning
scenarios have been analysed using these ideas (Engel and van den Broeck 2001).

In the statistical physics analysis of on-line learning, a machine learning system
is modelled that learns in an incremental fashion from a stream of independently
generated data points, i.e. in these systems the data points are used once for model
optimization with respect to the cost function and are discarded afterwards. Hence,
in the modelling of the dynamics of the order parameters it becomes possible to
compute averages of the learning rule over the data distribution with respect to the
latest input. For an increasing number of input dimensions of the system the variance
of the resulting dynamics decreases, which is due to the self-averaging property of the
order parameters. Hence by computing averages of the learning rules for updating
the order parameters, closed form equations are obtained for the average dynamics
which describe the dynamics for finite systems with higher accuracy for increasing
system size. In the limit of the number of input dimensions to infinity, the dynamics
of the order parameters coincide with the average dynamics.

In the modelling of off-line learning, the statistical physics-based modelling
describes a machine learning system that is optimized with respect to datasets of a
fixed size. In off-line machine learning settings, the stochastic optimization of the cost
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function over all training points with respect to the weights of the model requires
the repeated use of the data points, which contrasts the on-line learning setting and
therefore asks for a different modelling approach: in the modelling the cost function
is regarded as an energy which is then analysed using techniques from equilibrium
statistical mechanics. Energy minimization is modelled as an optimization process
that exhibits noise that is dependent on a formal temperature parameter. In this
setting the equilibrium properties are determined by the minimization of the so-
called free energy: the minimization reflects the existence of a competition between a
few highly probable low energy states and a large number of less probable states with
a higher energy. The latter is the entropy that is defined by the volume of states that
exhibit a particular energy. An additional average over the data distribution provides
typical equilibrium results with respect to the order parameters independent of an
exact realization of a dataset.

For a detailed overview of the concepts in the statistical physics of learning
including many examples, see (Engel and van den Broeck 2001, Watkin et al. 1993,
Opper and Kinzel 1996, Saitta et al. 2011), among others. In the next sections we
detail the research aims relating to the ReLU function and concept drift that we
address using methods from the statistical physics of learning.

A second topic in this thesis concerns the application of machine learning tech-
niques to the optimization of manufacturing processes. The potential of machine
learning techniques in combination with the aforementioned advances in, among
others, communication and sensor technologies, has been recognized to be particu-
larly powerful in the realization of highly optimized manufacturing processes. The
vision of manufacturing of the future, which consists of densely interconnected net-
works of sensors, machines, and entire factories in production chains that perform
optimization of production processes in real-time, is regarded as the next major
step in the development of manufacturing and has therefore been called Industry
4.0 (Schwab 2017). The implementation of Industry 4.0 is a challenging process that
relies on research and solutions from diverse fields.

In order to contribute to these efforts, in collaboration with a manufacturer of
steel-based products we perform a typical Industry 4.0 case study. In steel-based
mass production settings it is crucial that the machinery operates on material that is
within specifications, in order to prevent costly damage to the production tooling
(Vaidya et al. 2018). Hence, in the steel-based manufacturing industry there is a need
for real-time material quality control approaches to ensure all material conforms
to the specifications before entering the production process. To this end, the use
of in-line sensors that perform fast contactless measurements has become common
(Garcı́a-Martı́n et al. 2011). However, connecting these sensor measurements to
production control systems and preventive intervention systems is highly non-trivial
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and application dependent. Our case study aims at the prediction of material prop-
erties from contactless Eddy Current measurements, in order to obtain a real-time
quality control solution. A second important aim is to relate the model predictions to
faults that occurred in production. With the latter analyses we study the ability of
the system to prevent faults in the future.

1.1 Scope of the thesis and research questions

Part I of this thesis addresses the need for more theoretical understanding of neural
networks, the role and properties of the activation function and learning under con-
cept drift. To this end, we analyse learning processes in model settings with tools
from the statistical physics of learning. These methods yield typical and average case
results, which complement other empirical and theoretical studies well to provide a
more thorough understanding. In particular, we analyse learning and optimization
processes in ReLU neural networks on the level of order parameters for a large num-
ber of input dimensions. Furthermore, learning under various types of concept drift
is studied for Learning Vector Quantization (LVQ) and neural networks. Specifically,
we investigate the following research topics in the chapters of the thesis:

• We formulate a modelling framework for analysing on-line gradient descent
learning scenarios based on the student-teacher setup and averaging over a
high-dimensional density of uncorrelated inputs. Using the modelling frame-
work we put forward the typical dynamics of order parameters in two-layer
neural networks with ReLU activation. The obtained system of ordinary dif-
ferential equations describes the dynamics of the order parameters in the limit
of an infinitely large number of input dimensions. The average error over the
input distribution is obtained analytically in terms of the order parameters of
the model.

• With the obtained modelling framework, we address the following research
question: what are key differences between learning in ReLU and sigmoidal
neural networks in relevant on-line learning settings? We address this re-
search question by solving the dynamical system numerically and analysing
the obtained learning curves for three highly relevant settings: 1) matching
student and teacher complexity, 2) an overparameterized student and 3) an
unlearnable target rule. A qualitative comparison is made for these three set-
tings between the learning curves obtained for ReLU neural networks and for
sigmoidal neural networks.

• How does concept drift affect the learning performance of neural networks
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and LVQ? To address this question, we first formulate the on-line learning
dynamics of LVQ and then extend the modelling framework to include various
forms of drift. In particular, in case of LVQ, we include virtual drift of class
biases and real drift using random displacements of cluster centers of the
data generating distribution. In the case of two-layer networks, real drift
processes are considered that are modelled by random displacements of the
weight vectors in the teacher network. Here the comparison between ReLU-
and sigmoidal networks is also in the center of interest. Does weight decay
improve learning performance in concept drift situations? For both LVQ
and neural networks, a weight decay is included as a forgetting mechanism.
Besides the analysis of the effect of the different types of drift on the two models,
we also study the properties of applying weight decay in these concept drift
situations.

• How does off-line learning behaviour in ReLU networks differ from off-
line learning in sigmoidal networks? Using a different modelling framework
based on equilibrium statistical physics we analyse off-line learning in both two-
layer ReLU- and sigmoidal neural networks: for datasets of uncorrelated high-
dimensional inputs we formulate the quenched free energy function in terms
of order parameters of a canonical ensemble of networks in the simplifying
limit of high formal training temperatures. The minimization of the free energy
function yields the typical result of stochastic optimization in terms of the order
parameters of the system for increasing values of the dataset size.

In the application in collaboration with industry we contribute to the Industry
4.0 effort by performing a case study of a production line in a typical smart industry
setting. We address the need for advanced real-time quality control systems in
steel-based mass production and devise a methodology for the early detection of
production faults. The research questions and scope are as follows:

• The case study addresses the prediction of material properties from fast Eddy
Current sensor measurements. In particular, we address the question: are ma-
terial properties of steel that are obtained by tensile testing predictable from
fast contactless Eddy Current sensor measurements? We consider the real-
time estimation of material properties and quality in a mass production setting
of steel-based products. We explore the predictability of material properties
obtained by tensile tests from measurements performed by an Eddy Current
sensor.

• 1) Can the Eddy Current sensor measurements prevent material of insuffi-
cient quality from entering the production? 2) Can Eddy Current measure-
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ments be used to prevent production faults? We study whether the real-time
estimation of material properties can prevent material of insufficient quality
or material exceeding the specifications from entering production. Secondly,
we test using sensor measurements and logbooks of previous production data
whether faults that occurred in production could have been prevented. This
study is performed using sensor measurement and logbook data covering 108
km of strip steel that was used for production.

Lastly, we consider the highly relevant task of time series classification that arises
in many domains including smart industry settings. These types of data often have a
continuous functional nature that should be taken advantage of.

• To which extent is it possible to increase classification accuracy and reduce the
number of dimensions by exploiting the functional nature of time series data
in combination with complex-valued GMLVQ? We propose a method that
uses complex-valued feature representations of time series as obtained by the
complex-valued Fourier or wavelet transform in combination with an extension
of Generalized Matrix Learning Vector Quantization (GMLVQ) to the complex
domain. Furthermore, a backtransformation of the classifier is formulated in
order to obtain additionally a time domain interpretation of relevance values
and prototypes. The method is exemplified on a variety of time series datasets
and on a heart beat classification task. Central to our investigation is the analysis
of the classification accuracy in comparison to time domain training and to the
standard approach of handling complex values by the concatenation of real
and imaginary parts in a real-valued vector. Simultaneously, the potential of
reducing the number of dimensions in the classification tasks is analysed.

Although this thesis contains proposed methods and analyses from different
settings and perspectives, the relevance between the topics is emphasized. As one
example: an increased understanding of machine learning under concept drift as
addressed in Part I is highly relevant to processes in smart factory settings such as in
Part II.

1.2 Outline of the thesis chapters

This thesis is divided into two parts. Part I concerns the theoretical analyses of model
scenarios in machine learning and Part II consists of the Industry 4.0 case study and
the classification of time series data. Here we provide how the various analyses and
aims of the thesis as discussed in the previous sections are arranged in the chapters.
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1.2.1 Part I

Part I consists of three chapters. In Chapter 2 we introduce a generic modelling
framework based on the student-teacher concept to analyse on-line gradient descent
learning in machine learning models. The order parameters of the system, the input
data distribution and the behaviour in the limit of a large number of input dimen-
sions are introduced and discussed. Using the modelling framework, we perform
the required calculations to formulate Ordinary Differential Equations (ODE) that
describe the exact large input dimension evolution of order parameters in on-line
learning of ReLU two-layer neural networks in a number of scenarios: matching
student and teacher, an overparameterized student and an unlearnable rule. Sub-
sequently, the generalization error is formulated analytically in terms of the order
parameters. In these settings, we focus on the comparison of the learning behaviour
in ReLU networks with sigmoidal networks.

In Chapter 3 we extend the analysis to incorporate concept drift. First, using the
generic modelling framework introduced in Chapter 2, we formulate macroscopic
learning dynamics of LVQ for input data that is generated by a clustered density. In
this setting, the cluster membership defines the target label. We extend the modelling
framework to incorporate a variety of virtual and real drift processes: for LVQ, we
consider changing class biases in the input stream and the random displacement
of cluster centers in the input space. For two-layer networks, a real drift process is
introduced in the modelling by random displacements of the teacher weight vectors.
Moreover, weight decay is introduced in the modelling framework as a mechanism
of forgetting. The second part of the chapter contains the results of the learning
behaviour of the models under the various drift settings. In concept drift settings, the
role of the learning rate and weight decay in LVQ is analysed and the use of weight
decay in ReLU and sigmoidal neural networks is discussed in detail.

Chapter 4 concerns the analysis of off-line learning in two-layer ReLU and sig-
moidal networks. Following previous work, we formulate the free energy of a
canonical ensemble of networks in the simplifying high temperature limit. The
quenched free energy with respect to the input data distribution depends on the
order parameters, which fully define its two components in the considered limit: the
generalization error and the entropy. Hence, in order to formulate the free energy for
ReLU networks we use the generalization error derived in Chapter 2 and combine
it with the result of previous work for the entropy of the system. Typical results of
stochastic optimization are obtained by numerically minimizing the free energy with
respect to the order parameters for an increasing control parameter, interpreted as
dataset size. In previous work, this type of analysis was done for sigmoidal networks.
We reproduce those results and compare them to the results obtained for ReLU net-
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works. The systems exhibit phase transitions and their study and comparison is of
central interest in the discussion in the chapter.

Although the aim is to keep the thesis’ chapters as self-contained as possible
with separate introductions to each chapter, in this part of the thesis later chapters
contain some references to discussions and equations in earlier chapters. Chapter 2
in particular introduces concepts and equations that are used in Chapters 3 and 4.
For instance, Chapter 3 relies on the discussion of the on-line gradient descent setting
in the limit of a large number of input dimensions. Therefore the discussion and
a few equations describing the modelling framework in Chapter 2 are referenced.
Furthermore, Chapters 3 and 4 refer to the definition of the student teacher setting,
the order parameters and the generalization error in Chapter 2.

1.2.2 Part II

Chapters 5 and 6 constitute Part II of the thesis. Chapter 5 discusses our work in
collaboration with industry. We describe the Industry 4.0 vision and introduce the
typical case study. The case study concerns real-time quality control of steel in a
high-throughput production line, in which it is crucial that the material conforms to
the specifications in order to prevent costly damage to the main production press in
the line. The real-time quality control is based on Eddy Current sensor measurements
that are performed in a non-invasive manner. We analyse the relationship between
the sensor measurements and the manual destructive tests that are usually taken to
measure properties of the material. Based on this analysis, a model is proposed and
evaluated that estimates two key material properties given the sensor measurements.
Furthermore, we analyse on previous production data whether the model could
have prevented various types of production faults that occurred, in order to test the
model’s ability to prevent faults in the future.

Chapter 6 concerns the classification of time series data. The problem is highly
relevant to various settings: industrial, natural, financial and medical settings con-
tain many problems that revolve around the classification of time series. Often,
time series have a functional continuous nature that can be taken advantage of in
the machine learning task by using functional decompositions. In particular, we
propose a methodology that uses complex-valued Fourier- and wavelet features
in combination with an adaptation of GMLVQ that works directly with complex-
valued data. The benefits of the approach and the appropriateness of the method are
discussed by showing its performance on several benchmark datasets. In a larger
experiment, we consider the classification of heartbeats using only complex-valued
wavelet features. In all experiments, we test whether dimensionality reduction by
means of truncation of the complex-valued feature vectors is a promising strategy
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for reducing the number of adaptive parameters and thereby over-fitting effects. A
back-transformation of prototypes and relevance values is formulated to obtain the
time domain interpretation of the classifier besides the transform interpretation.

In Chapter 7 the thesis and the main results are summarized. The thesis is
concluded by a discussion about possible future directions of research.



Part I

Model scenarios of machine
learning
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Chapter 2

Dynamics of online gradient descent in ReLU
networks

Abstract

In this chapter we study learning behavior in ReLU neural networks using a previously
established framework based on statistical physics techniques. It uses the concept of a
student- and teacher model, in which the student model learns from data with target
labels that are provided by the teacher model. For the limit of large inputs N Ñ 8

and independent examples, it is possible to derive exact learning dynamics in terms of a
system of differential equations that describe the evolution of macroscopic parameters that
aggregate the many weights of the network. We focus on the gradient descent learning
algorithm and our formulation is generic in the number of hidden units in the student
and teacher model and the activation function. By performing the required calculations
for the ReLU activation function, we obtain the Ordinary Differential Equations (ODE)
of the learning dynamics for ReLU networks. Using numerical integration of the ODE
we study an overparameterized student and an unlearnable rule, and we find significant
differences of the learning dynamics of ReLU neural networks compared to the dynamics
of sigmoidal neural networks. In some of the experiments, we perform Monte Carlo
simulations which are in excellent qualitative agreement with the theoretical results. We
emphasize the broad applicability of the modelling framework in the analysis of typical
learning dynamics in a variety of machine learning situations. For instance, in Chapter 3,
the modelling framework is extended to analyse Learning Vector Quantization (LVQ) and
neural networks in non-stationary situations.

2.1 Introduction

The many challenges of modern data science call for the design and putting forward
of efficient methods for automated analysis. Machine learning techniques play a
key role in this context (Hastie et al. 2001, Bishop 2006, Goodfellow et al. 2016). The
subfield of artificial neural networks within machine learning has especially seen



14 2. Dynamics of online gradient descent in ReLU networks

a tremendous rise in popularity, which is largely due to the successful application
of so-called deep learning in a number of practical contexts, see e.g. (Goodfellow
et al. 2016, LeCun et al. 2015, Angelov and Sperduti 2016) for reviews and further
references. The successful training of these powerful, multi-layered deep networks
has become feasible for a number of reasons, including the automated acquisition of
large amounts of training data in various domains, the use of modified and optimized
architectures, e.g. convolutional neural networks for image processing, and the ever-
increasing availability of computational power needed for the implementation of
efficient training (Goodfellow et al. 2016).

One particularly important modification of earlier models is the use of alternative
activation functions (Goodfellow et al. 2016, Ramachandran et al. 2017, Eger et al.
2018). Arguably, the so-called Rectified Linear Unit (ReLU) constitutes the most
popular choice in Deep Neural Networks (Hahnloser et al. 2000, Krizhevsky et al.
2012, Goodfellow et al. 2016, Ramachandran et al. 2017, Eger et al. 2018, Maas
et al. 2013). Compared to more traditional activation functions, the simple ReLU and
recently suggested modifications warrant computational ease and appear to speed
up the training, see for instance (Nair and Hinton 2010, Maas et al. 2013, Villmann
et al. 2019). The one-sided ReLU function is found to yield sparse activity in large
networks, a feature which is frequently perceived as favorable and biologically
plausible (Hahnloser et al. 2000, Goodfellow et al. 2016, Glorot et al. 2011). In
addition, the problem of vanishing gradients, which arises when applying the chain
rule in layered networks of sigmoidal units, is avoided (Goodfellow et al. 2016).
Moreover, networks of rectified linear units have displayed favorable generalization
behavior in several practical applications and benchmark tests, e.g. (Ramachandran
et al. 2017, Hahnloser et al. 2000, Krizhevsky et al. 2012, Eger et al. 2018, Maas
et al. 2013).

In this chapter we investigate the on-line learning behavior of two-layer neural
networks with ReLU activation. To this end, we develop a modelling framework
based on statistical physics techniques, in which to obtain general insights into
practically relevant phenomena. This is instrumental in order to achieve the necessary
theoretical understanding.

Analytical and computational approaches that come from or are related to statisti-
cal physics (Hertz et al. 1991, Engel and van den Broeck 2001, Seung et al. 1992, Watkin
et al. 1993, Biehl and Caticha 2003, Biehl et al. 2009) have played an important role
in this field and continue to do so. These methods are used to analyse the typical,
average-case, learning behavior of various learning systems in model scenarios. Ex-
amples of the successful application of these techniques is the study of the on-line gra-
dient descent learning dynamics of neural networks (Biehl and Schwarze 1995, Saad
and Solla 1995b, Straat et al. 2018, Vicente and Caticha 1997, Inoue et al. 2003) and
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prototype-based models (Biehl et al. 2007, Straat et al. 2018), the analysis of learning
in non-stationary environments (Straat et al. 2018), and the analysis of off-line batch
learning (Biehl, Schlösser and Ahr 1998).

The particularly successful analysis of on-line learning is based on the assump-
tion that a sequence of independently generated random N -dimensional examples is
presented to the learning system (Saad 1999, Biehl and Caticha 2003, Biehl et al. 2009).
Macroscopic quantities, the so-called order parameters of the system, aggregate
and summarize the usually large number of individual parameters of the machine
learning system. Further simplifying assumptions and the consideration of the so-
called thermodynamic limit N Ñ 8 in combination with the Central Limit Theorem
facilitate the exact mathematical description of typical macroscopic learning curves in
terms of Ordinary Differential Equations (ODE). These equations provide a useful
tool to study the behavior of learning theoretically, in order to gain a deeper un-
derstanding of the learning process, which could potentially be used to improve
algorithms used in practical scenarios. Various reviews, article collections and mono-
graphs present and discuss the approach with respect to supervised learning in
simple perceptrons and multilayered neural networks, see e.g. (Saad 1999, Hertz
et al. 1991, Engel and van den Broeck 2001, Seung et al. 1992, Watkin et al. 1993, Biehl
and Caticha 2003, Biehl et al. 2009) and references therein. The Soft Committee
Machine (SCM) in stationary environments has been studied extensively from the
statistical physics perspective. Practically relevant phenomena, such as the occur-
rence of quasi-stationary plateau states have been investigated in great detail, see
(Biehl and Schwarze 1995, Saad and Solla 1995a, Saad and Solla 1995b, Riegler and
Biehl 1995, Biehl et al. 1996, Vicente and Caticha 1997, Inoue et al. 2003, Saad 1999) for
examples and further references. Similarly, the dynamics of unsupervised learning
has been studied, including prototype-based competitive learning, Principal Com-
ponent Analysis and related schemes (Biehl et al. 1997, Biehl, Freking, Reents and
Schlösser 1998, Biehl and Schlösser 1998). For detailed discussions of the limita-
tions of the approach as well as extensions that allow to overcome them, see several
contributions in (Saad 1999) and, for instance, (Biehl et al. 2007).

Our investigation in the dynamics of ReLU neural networks starts with a brief
revisit of the analytical treatment of on-line gradient-based learning in stationary
environments. We present a so-called student-teacher scenario (Engel and van den
Broeck 2001, Seung et al. 1992, Watkin et al. 1993) for the learning of a regression
scheme with shallow, layered neural networks of the feedforward type. In this case,
the discussion is restricted to the SCM: A two-layer neural network with non-linear
activations in the hidden layer, fixed second layer weights and linear output.

The macroscopic dynamics are first given generically in a unified description
and modelling framework. This modelling framework can be used to analyse the
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training dynamics in various classification and regression systems. In Chapter 3, we
use and extend the modelling framework of this chapter to formulate the on-line
training dynamics for the Learning Vector Quantization classifier and the SCM in
non-stationary situations.

The main result in this chapter is the formulation of the macroscopic learning
dynamics for the special case of two-layer ReLU neural networks. These learning
dynamics are studied in various model situations that are of great practical interest.
In one setting the teacher has more hidden units than the students, which represents
an unrealizable rule. In another setting the student is over-parameterized, which
represents an overrealizable rule. Specific focus is on the comparison of the results
obtained in these settings for ReLU networks to the results obtained earlier for
traditional sigmoidal activation (Biehl and Schwarze 1995, Saad and Solla 1995a, Saad
and Solla 1995b, Riegler and Biehl 1995, Biehl et al. 1996).

2.2 Definitions and Methods

2.2.1 Soft Committee Machines

The term Soft Committee Machine (SCM) has been coined for feedforward neural
networks with sigmoidal activations in a single hidden layer and a linear output
unit, see for instance (Biehl and Schwarze 1995, Saad and Solla 1995a, Saad and
Solla 1995b, Riegler and Biehl 1995, Biehl et al. 1996, Vicente and Caticha 1997, Inoue
et al. 2003, Biehl, Schlösser and Ahr 1998, Ahr et al. 1999). Its structure resembles
that of a (crisp) committee machine with binary threshold hidden units, where the
network’s response is given by their majority vote, see (Engel and van den Broeck
2001, Seung et al. 1992, Watkin et al. 1993) and references therein.

Network Definition

The output of an SCM with K hidden units and fixed hidden-to-output weights is of
the form

ypξq “

K
ÿ

k“1

gpwk ¨ ξq (2.1)

where wk P RN denotes the weight vector connecting the N -dimensional input layer
with the k-th hidden unit. A non-linear transfer function or activation function gp¨ ¨ ¨ q

defines the hidden unit states and the final output is given as their sum. Traditionally,
sigmoidal-shaped activation functions have been used. Here, we consider specifically
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gpxq “ erf
´

x{
?
2
¯

with the derivative g1pxq “

c

2

π
e´x2

{2 . (2.2)

The activation resembles closely other sigmoidal functions, e.g. the popular tanhpxq,
but offers great mathematical ease in the analytical treatment as exploited in (Biehl
and Schwarze 1995), originally. The ReLU function is defined as:

gpxq “ max t0, xu “ xΘpxq “

"

0 for x ď 0

x for x ą 0
with the derivative g1pxq “ Θpxq ,

(2.3)

where Θpxq is the Heaviside step function defined as:

Θpxq “

"

0 for x ď 0

1 for x ą 0
. (2.4)

Note that the ReLU function is only semi-differentiable in x “ 0; In this point the left
derivative is zero and the right derivative is one. This mathematical subtlety is con-
sidered irrelevant in practice (Goodfellow et al. 2016) and one is free to choose a value
in r0, 1s. However, a recent study shows empirical evidence for better training and
generalization performance in neural networks with lower numerical precision using
ReLU1

p0q “ Θp0q “ 0 compared to other choices for ReLU1
p0q (Bertoin et al. 2021). In

our simulations we use Θp0q “ 0 as defined in Eq. (2.4). In the theoretical modelling
framework that is introduced in Section 2.2.4, which relies on the integration of
expressions involving the Heaviside functions Θp¨q in case of ReLU activation, the
choice of value for Θp0q is irrelevant.

In the rest of the discussion, we will refer to an SCM that uses erf activation
as Erf-SCM and to an SCM that uses ReLU activation as ReLU-SCM. Note that an
SCM, cf. Eq. (2.1), is not quite representing a universal approximator. However, this
property could be achieved by introducing hidden-to-output weights and adaptive
local thresholds ϑi P R in hidden unit activations of the form g pwi ¨ ξ ´ ϑiq, see
(Cybenko 1989, Hornik 1991, Hanin 2017) for a proof. Adaptive hidden-to-output
weights have been studied in, for instance, (Riegler and Biehl 1995) from a statistical
physics perspective. However, we restrict ourselves to the simpler model defined
above and focus on the basic dynamical effects and potential differences between the
ReLU- and Erf-SCM.

2.2.2 Regression Scheme and On-Line Gradient Descent

In the context of continuous regression, the training of neural networks with output
ypξq P R based on examples

␣

ξµ P RN , τµ P R
(

, where τµ is the target value, is
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frequently guided by the quadratic deviation of the network output from the target
values (Hastie et al. 2001, Bishop 2006, Goodfellow et al. 2016). It serves as a cost
function which evaluates the network performance with respect to a single example
as

eµ
`

twkuKk“1

˘

“
1

2

`

yµ ´ τµ
˘2 with the shorthand yµ “ ypξµq. (2.5)

In stochastic or on-line gradient descent, updates of the weight vectors are based
on the sequential presentation of single examples:

wµ
k “ wµ´1

k `
η

N
∆wµ

k with ∆wµ
k “ ´

Beµ

Bwk
“ ´

`

yµ ´ τµ
˘ Byµ

Bwk
(2.6)

where η ą 0 is the learning rate and N is the number of dimensions of the input and
weight vectors. The gradient is evaluated in twµ´1

k uKk“1. For the SCM architecture
specified above we have

Byµ

Bwk
“ g1 phµkq ξµ . (2.7)

Hence, for the erfp¨q activation function the update applied to the weight vectors is
proportional to:

∆wµ
k “ ´

˜

K
ÿ

i“1

erf

„

1
?
2
hµi

ȷ

´ τµ

¸

1
?
2π

exp

„

´
1

2
phµkq

2

ȷ

ξµ (2.8)

with the inner products hµi “ wµ´1
i ¨ ξµ of the current weight vectors with the next

example input in the stream. For ReLU activation the update applied to the weight
vectors is proportional to:

∆wµ
k “ ´

˜

K
ÿ

i“1

hµi Θphµi q ´ τµ

¸

Θphµkq ξµ . (2.9)

Note that the change of weight vectors is proportional to ξµ and can be interpreted
as a form of Hebbian Learning (Hastie et al. 2001, Bishop 2006, Goodfellow et al. 2016).

2.2.3 Student-Teacher Scenario and Model Data

In order to define and model meaningful learning situations we resort to the con-
sideration of student-teacher scenarios (Engel and van den Broeck 2001, Seung
et al. 1992, Watkin et al. 1993, Biehl and Caticha 2003). We assume that the regression
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can be defined in terms of an SCM with a number M of hidden units and a specific
set of weights

␣

Bm P RN
(M

m“1
:

τpξq “

M
ÿ

m“1

gpBm ¨ ξq and τµ “ τpξµq “

M
ÿ

m“1

gpbµmq (2.10)

with bµm “ Bm ¨ ξµ. This so-called teacher network can be equipped with M ą K

hidden units in order to model regression schemes which cannot be learnt by an SCM
student of the form (2.1); this learning scenario is therefore called unrealizable. On the
contrary, K ą M would correspond to an over-learnable target or over-sophisticated
student. For the discussion of these highly interesting cases in the context of the
SCM with sigmoidal erf activation, see for instance (Biehl and Schwarze 1995, Saad
and Solla 1995a, Saad and Solla 1995b, Riegler and Biehl 1995, Biehl et al. 1996). In
a student-teacher scenario with K and M hidden units, the update of the student
weight vectors by on-line gradient descent reads:

wµ
k “ wµ´1

k ´
η

N
ρµk ξ

µ where ρµk “

˜

K
ÿ

i“1

gphµi q ´

M
ÿ

m“1

gpbµmq

¸

g1phµkq (2.11)

with the quantities bµm “ Bm ¨ ξµ and hµk “ wµ´1
k ¨ ξµ. In the equation above, the

teacher output for the example ξµ is used as the target. We will perform the analysis
of the matching scenario K “ M as well as the K ‰ M cases. The equations for the
erf and ReLU activation function are obtained by substituting in the equation above
the definitions from Eq. (2.2) and Eq. (2.3), respectively.

The vectors Bm define the target output τµ “ τpξµq explicitly via the teacher
network of Eq. (2.10) for any input vector. While clustered input densities can also be
studied for feedforward networks as in (Meir 1995, Marangi et al. 1995), we assume
here that the actual input vectors are uncorrelated with the teacher vectors Bm.
Consequently, we can resort to a simpler model density and consider vectors ξ of
independent, zero mean, unit variance components with, e.g.,

P pξq “
1

p2πqN{2
exp

„

´
1

2
ξ2
ȷ

. (2.12)

Note that the student-teacher scenario considered here is different from an equally
named concept used in studies of knowledge distillation, see (Wang and Yoon 2021)
and references therein. In the context of distillation, a teacher network is first trained
on a given data set to approximate the target function. Thereafter a student network,
frequently of a simpler architecture, distills the knowledge in a subsequent training
process. In our work, as in most statistical physics based studies (Barkai et al. 1993,
Engel and van den Broeck 2001, Watkin et al. 1993), the teacher network is taken
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to directly define the true target function. A particular architecture is chosen and,
together with its fixed weights, it controls the complexity of the task. The teacher
network provides correct target outputs to all input data that are generated according
to the distribution in Eq. (2.12). In the actual training process, a sequence of such
input vectors and teacher-generated labels is presented to the student network.

2.2.4 Mathematical analysis of the on-line training dynamics

In the following we sketch the successful theory of on-line learning (Saad 1999, Engel
and van den Broeck 2001, Seung et al. 1992, Watkin et al. 1993, Biehl and Caticha 2003)
as, for instance, applied to the dynamics of on-line gradient descent in the SCM in
(Biehl and Schwarze 1995, Saad and Solla 1995a, Saad and Solla 1995b, Biehl et al.
1996, Riegler and Biehl 1995, Vicente and Caticha 1997, Inoue et al. 2003) or applied
to the dynamics of LVQ algorithms in (Biehl et al. 2007, Biehl et al. 2005, Ghosh
et al. 2005, Ghosh et al. 2006). The reader is referred to the original publications for
details.

We consider learning systems with adaptive vectors wi P RN while the character-
istic vectors Bj P RN specify the target task that the learning system must implement.
For the SCM, the adaptive vectors are student weight vectors and the characteristic
vectors are teacher weight vectors. In Chapter 3, we treat the LVQ classifier in which
the adaptive weights are the prototypes and the characteristic vectors are cluster
centers of the input density.

The consideration of the thermodynamic limit N Ñ 8 is instrumental for the
theoretical treatment. The limit facilitates the following key steps which, eventually,
yield an exact mathematical description of the training dynamics in terms of ordinary
differential equations (ODE):

a) Order parameters
The many degrees of freedom, i.e. the components of the adaptive vectors,
can be characterized in terms of only very few quantities. The definition
of meaningful so-called order parameters follows naturally from the specific
mathematical structure of the model. After presentation of a number µ of
examples, as indicated by corresponding superscripts, we describe the system
by the projections

Rµim “ wµ
i ¨Bm and Qµik “ wµ

i ¨wµ
k with i, k P t1, ...,Ku , m P t1, ...,Mu.

(2.13)

Obviously, the K order parameters Qµii relate to the norms of the adaptive
vectors and the KpK ´ 1q{2 order parameters Qµik “ Qµki relate to the mutual
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overlaps of the adaptive vectors. The KM quantities Rim specify their projec-
tions into the linear subspace defined by the characteristic vectors tBmuMm“1,
respectively. The projections

Tmn “ Bm ¨ Bn (2.14)

relate to the norms and mutual overlaps of the teacher vectors that are charac-
teristic for the target rule. In this chapter these vectors are fixed to Tmn “ δmn.

b) Recursions
For the order parameters in Eq. (2.13), recursion relations can be derived directly
given the learning algorithm of the machine learning model which dictates the
updates applied to the adaptive weight vectors. It is of the generic form:

wµ
k “ wµ´1

k `
η

N
∆wµ

k .

The corresponding inner products yield

Rµim ´Rµ´1
im

1{N
“ η∆wµ

i ¨ Bm

Qµik ´Qµ´1
ik

1{N
“ η

´

wµ´1
i ¨ ∆wµ

k ` wµ´1
k ¨ ∆wµ

i

¯

`
η2

N
∆wµ

i ¨ ∆wµ
k .

(2.15)

Terms of order Op1{Nq on the r.h.s. of Eq. (2.15) will be neglected in the follow-
ing. Note however that the inner products ∆wµ

i ¨ ∆wµ
k comprise contributions

of order ||ξ||2 9N . Furthermore, in the limit of small learning rates η Ñ 0, the
terms of order Opη2q become negligible in comparison to the terms of order
Opηq.

c) Averages over the Model Data
Applying the central limit theorem (CLT) we can perform an average over
the random sequence of independent examples. Note that ∆wµ

k 9 ξµ. Conse-
quently, the current input ξµ enters the r.h.s. of Eq. (2.15) only through its norm
||ξ||2 “ OpNq and the quantities

hµi “ wµ´1
i ¨ ξµ and bµm “ Bm ¨ ξµ . (2.16)

These inner products of the student- and teacher weight vectors with the input
are commonly referred to as pre-activations, since the activation function of a
unit receives these values as input. Since these inner products correspond to
sums of many independent random quantities in our model, the CLT implies
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that the projections in Eq. (2.16) are correlated Gaussian quantities for large N .
Hence, their joint density P phµ, bµq, with hµ “ thµi uKi“1 and bµ “ tbµmuMm“1, is
given completely by first and second moments.

SCM: In the case of the isotropic, spherical input density of Eq. (2.12) the
moments are

xhµi y “ 0, xbµmy “ 0, xhµi h
µ
ky ´ xhµi y xhµky “ Qµ´1

ik

xhµi b
µ
my ´ xhµi y xbµmy “ Rµ´1

im , xbµmb
µ
ny ´ xbµmy xbµny “ Tmn “ δmn . (2.17)

Hence, the mean of phµ, bµqT is the pK `Mq-dimensional vector of zeroes and
the covariance matrix is given as:

C “

„

Qµ´1 Rµ´1

pRµ´1qT T

ȷ

P RpK`MqˆpK`Mq . (2.18)

Subsequently, the joint density P phµ, bµq is defined as:

P phµ, bµq “
1

a

p2πqK`M |C|
exp

„

´
1

2
phµ, bµqTC´1phµ, bµq

ȷ

. (2.19)

Hence, the joint density P phµ, bµq is fully specified by the values of the order
parameters in the previous time step and the parameters of the model density.
This important result enables us to perform an average of the recursion relations
(2.15) over the latest training example in terms of Gaussian integrals over the
density P phµ, bµq. Moreover, the resulting r.h.s. can be expressed in closed
form in tRµ´1

im , Qµ´1
ik , Tmnu. Obviously, the precise form depends on the details

of the algorithm and model setup.

d) Self-Averaging Properties
The self-averaging property of order parameters makes it possible to restrict the
description to their mean values: Fluctuations of the stochastic dynamics can
be neglected in the limit N Ñ 8. This concept has been borrowed from the sta-
tistical physics of disordered materials and has been applied frequently in the
study of neural network models and learning processes (Hertz et al. 1991, Engel
and van den Broeck 2001, Seung et al. 1992, Watkin et al. 1993). For a de-
tailed mathematical discussion in the context of sequential on-line learning see
(Reents and Urbanczik 1998). As a consequence, we can interpret the averaged
equations (2.15) directly as deterministic recursions for the actual values of
tRµim, Q

µ
iku, which coincide with their disorder average in the thermodynamic

limit.
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e) Continuous Time Limit and ODE
In the thermodynamic limit N Ñ 8, ratios of the form p. . .q{p1{Nq on the left
hand sides of Eq. (2.15) can be interpreted as derivatives with respect to a
continuous learning time α defined by

α “ µ {N with dα „ 1{N. (2.20)

This scaling corresponds to the natural assumption that the number of examples
should be proportional to the number of adaptive quantities in the system.

Averages are performed over the joint density P phµ, bµq defined in Eq. (2.19)
corresponding to the latest, independently drawn input vector. For simplicity,
we omit indices µ in the following. The resulting sets of coupled ODE obtained
from Eq. (2.15) are of the generic form:

dRim
dα

“ ηFim and
dQik
dα

“ ηG
p1q

ik ` η2G
p2q

ik . (2.21)

As mentioned before, when the dynamics are studied for the limit of small
learning rate η Ñ 0, the term η2G

p2q

ik can be neglected in Eq. (2.21). In order to
retain non-trivial performance, the small step size has to be compensated for
by training with a large number of examples that diverges like N{η. Formally,
we introduce the quantity rα in the simultaneous limit

rα “ lim
ηÑ0

lim
αÑ8

pηαq, (2.22)

which leads to a simplified system of ODE

dRim
drα

“ Fim ;
dQik
drα

“ G
p1q

ik (2.23)

in rescaled continuous time rα for η Ñ 0.

SCM: In the modelling of non-linear regression in a student-teacher scenario
we obtain

Fim “ xρibmy , G
p1q

ik “

A

pρihk ` ρkhiq
E

and G
p2q

ik “ xρiρky (2.24)

where the quantities ρi are defined in Eq. (2.11) for the latest input vector. The
averages Fim and G

p1q

ik consist of at most three-dimensional averages of the
form:

I3 “ x g1puq v gpwq y . (2.25)

The quantities Gp2q

ik consist of at most four-dimensional averages of the form:

I4 “ x g1puq g1pvq gpwq gpzq y . (2.26)
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These averages are performed over the marginal distributions P pu, v, wq and
P pu, v, w, zq of the joint density P ph, bq as defined in Eq. (2.19). For the Erf-
SCM, i.e. gpxq “ erfpx{

?
2q, the closed-form expressions for the averages of the

forms (2.25) and (2.26) can be found in (Saad and Solla 1995b). In case of the
ReLU-SCM with gpxq “ xΘpxq, a closed-form expression for the averages of
the form (2.25) reads:

xΘpuq v wΘpwqy “

pC12
b

pC11 pC33 ´ pC2
13

2π pC11
`

pC23 sin´1

ˆ

pC13?
pC11

pC33

˙

2π
`

pC23
4
, (2.27)

where pC P R3ˆ3 is the covariance matrix of the marginal distribution P pu, v, wq.
The derivation of the average can be approached in several ways, but perhaps
the most succinct derivation is found in (Yoshida et al. 2017), where the integra-
tion is re-written to a three-dimensional orthant probability that has a known
closed form solution. The averages of the form Eq. (2.26) posed mathematical
difficulties for ReLU activation and can also not be approached in a similar
way as in (Yoshida et al. 2017), because a closed form solution for the orthant
probability in four dimensions does not exist. Hence, we resort to the ODE in
Eq. (2.23) that is valid for the limit of small learning rates η Ñ 0.

f) Generalization error

After training, the success of learning is quantified in terms of the generalization
error ϵg , which is also given as a function of the macroscopic order parameters.

SCM: In the regression scenario, the generalization error is defined as an
average x¨ ¨ ¨ y of the quadratic deviation between student and teacher output
over the isotropic density, cf. Eq. (2.12):

ϵg “
1

2

C«

K
ÿ

k“1

g phkq ´

M
ÿ

m“1

g pbmq

ff2G

. (2.28)

In order to compute the full average of the r.h.s. of Eq. (2.28), averages of the
form

I2 “ xgpuq gpvqy (2.29)

need to be evaluated. Again, these are evaluated over the marginal distributions
P pu, vq of the joint density P ph, bq defined in Eq. (2.19). For the Erf-SCM, the
full form of the generalization error for arbitrary K and M can be found in
(Saad and Solla 1995a, Saad and Solla 1995b). For the ReLU-SCM a closed-form
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expression for the average in Eq. (2.29) reads:

xuΘpuq vΘpvqy “
pC12
4

`

b

pC11 pC22 ´ pC2
12

2π
`

pC12
2π

sin´1

¨

˝

pC12
b

pC11 pC22

˛

‚ , (2.30)

where pC P R2ˆ2 is the covariance matrix of the marginal distribution P pu, vq.
The derivation of the above result can be found easily using the elegant formu-
lation used in (Yoshida et al. 2017). Using the closed-form expression (2.30), the
full form of the generalization error of the ReLU-SCM for arbitrary K and M is
in Eq. (A.5). For a teacher SCM with orthonormal weight vectors as considered
here, i.e. Tmn “ δmn, the full expression of the generalization error reduces to:

ϵg “
1

2

«

K
ÿ

i“1

K
ÿ

j“1

¨

˚

˚

˝

Qij
4

`

b

QiiQjj ´Q2
ij

2π
`

Qij sin
´1

ˆ

Qij?
QiiQjj

˙

2π

˛

‹

‹

‚

´ 2
K
ÿ

i“1

M
ÿ

m“1

¨

˝

Rim
4

`

a

Qii ´R2
im

2π
`
Rim sin´1

´

Rim?
Qii

¯

2π

˛

‚

`
M

2
`

pM ´ 1qM

2π

ff

.

Learning curves

The (numerical) integration of the ODE for a given particular training algo-
rithm, model density and specific initial conditions tRimp0q, Qikp0qu yields the
temporal evolution of order parameters in the course of training.

Exploiting the self-averaging properties of order parameters once more, we
can obtain the learning curves ϵgpαq “ ϵg ptRimpαq, Qikpαquq, i.e. the typical
generalization error after on-line training with pαNq random examples.

2.2.5 Intial conditions in the ODE and simulations

In previous research it has been shown that the learning process in the SCM is char-
acterized by the occurrence of quasi-stationary plateau states in which the student
vectors are equally specialized to the teacher vectors (Saad and Solla 1995b, Biehl
et al. 1996). These plateau states are caused by a weakly repulsive fixed points of the
ODE. In Chapter 3 the plateau states are discussed in more detail and their occurrence
in the presence of concept drift is studied. For the discussion here, we note that one of
the factors that determines the length of the plateau is the amount of initial student
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specialization towards the teacher vectors. We define the student specialization of
student vector wi as:

Si “ |Ri1 ´Ri2| . (2.31)

In (Biehl et al. 1996) it was found that the length of the plateau is proportional to
´ logpSip0qq, where Sip0q is the initial student specialization. For Sip0q Ñ 0, the
repulsion of the fixed point decreases and for Sip0q “ 0 the fixed point is attractive.
Hence, for initial conditions that satisfy Sip0q “ 0 for all 1 ď i ď K in the ODE, the
system is not able to specialize. In the experiments concerning the SCM with multiple
teacher units, it is therefore necessary to start with non-zero student specialization
Si ą 0.

In order to compare the learning dynamics for N Ñ 8 with finite N Monte Carlo
simulations of the training process, it is useful for the simulations to initialize the
student weight vectors twiu

K
i“1 and the teacher weight vectors tBnuMn“1 to satisfy

specific values of the order parameters Rim, Qik and Tmn. The algorithm provided
in Algorithm 2.1 initializes vectors one-by-one, ensuring that each initialized vector
satisfies given overlaps with the previously initialized vectors. This is similar to the
Gram-Schmidt procedure for the orthogonalization of a set of linearly independent
vectors, with the difference that with the provided algorithm the specified mutual
overlaps between the vectors can be general instead of only orthogonal.

2.3 Experiments

We studied the macroscopic on-line learning dynamics for networks with ReLU
activation in different settings:

1. K “ M “ 1: This setting corresponds to a student perceptron learning a rule
defined by a teacher perceptron. Hence, the order parameters are R and Q

describing the overlap between the student and teacher vector and the student
norm, respectively. Since for this case the averages of the form (2.26) are at most
two-dimensional (there are only two Gaussian variables h and b), they could be
obtained analytically. Hence, the ODE were obtained for general learning rate
η from Eq. (2.21) for K “ M “ 1.

We studied the learning dynamics by numerically integrating the ODE for
several learning rates η “ r0.1, 0.5, 0.8, 2.2s starting from initial conditions
pRp0q, Qp0qq “ p0, 0.25q, which correspond to a random initialization of the
student weights. Monte Carlo simulations of the training process for N “ 1000

were also performed and compared to the results of the theoretical learning
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Algorithm 2.1 Generalized Gram-Schmidt initialization

Input: Number of dimensions N , number of student vectors K, number of teacher
vectors M .

Input: Order parameters Rim, Qik and Tmn, for 1 ď i, k ď K and 1 ď m,n ď M .
Output: Vectors twi P RNuKi“1 and tBn P RNuMn“1 satisfying wi ¨ Bm “ Rim, wi ¨

wk “ Qik and Bm ¨ Bn “ Tmn, for 1 ď i, k ď K and 1 ď m,n ď M .
for i “ 1, . . . ,K `M do

ri Ð randomly generated vector from N p0, Iq P RN

ri Ð ri{||ri||

end for
B1 Ð

?
T11r1

for n “ 2, . . . ,M do
c Ð vector with symbolic coefficients tciu

n´1
i“1

P̂ Ð matrix of previously initialized vectors, i.e., ptBmu
n´1
m“1q P RNˆpn´1q

Bn Ð P̂ c ` cnrn
eqns Ð system of equations consisting of Tnn “ Bn ¨ Bn and tTmn “ Bm ¨

Bnu
n´1
m“1

Solve eqns numerically for the coefficients c and cn.
end for
for j “ 1, . . . ,K do

c Ð vector with symbolic coefficients tciu
M`j´1
i“1

P̂ Ð matrix of previously initialized vectors, i.e., (tBmuMm“1, twku
j´1
k“1, q P

RNˆpM`j´1q

wj Ð P̂ c ` cM`jrM`j

eqns Ð system of equations consisting of Qjj “ wj ¨ wj , tQij “ wi ¨ wju
j´1
i“1

and tRjm “ wj ¨ BmuMm“1

Solve eqns numerically for the coefficients c and cM`j .
end for

dynamics for N Ñ 8 obtained from the ODE. The weight vectors in the
simulations were initialized using Algorithm 2.1 to satisfy the same initial
conditions of the order parameters as the ones used in the ODE.

2. K “ M “ 2: In this setting, the student and the teacher SCM both have two
hidden units and are therefore of matching complexity. The formulation of the
dynamics for this learning scenario requires the evaluation of four-dimensional
averages (2.26) for the Gaussian variables ph1, h2, b1, b2q. Since we did not
obtain this average analytically, the ODE describing the evolution for the seven
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order parameters

R11, R12, R21, R22, Q11, Q12, Q22 , (2.32)

was obtained for η Ñ 0 with Eq. (2.23). This was also necessary in settings 3
and 4. We numerically integrated the ODE starting from initial conditions

R11p0q “ 10´3, R12p0q “ 0, R21p0q “ 0, R22p0q “ 10´3,

Q11p0q “ 0.2, Q12p0q “ 0, Q22p0q “ 0.3 .
(2.33)

Monte Carlo simulations of the training process for N “ 10000 were also
performed and compared to the results of the theoretical learning dynamics for
N Ñ 8. Since the N Ñ 8 dynamics are formulated for learning rate η Ñ 0, we
used a reasonably small learning rate η “ 0.1 in the simulations to approximate
this limit. The weight vectors were initialized using Algorithm 2.1 to satisfy
the above initial conditions of the order parameters.

3. K “ 3,M “ 2: In this setting, the student SCM with three hidden units is
over-parameterized compared to the teacher SCM with two hidden units. The
equations of motion describing the evolution of the KM ` KpK ` 1q{2 “ 12

order parameters were obtained for η Ñ 0 using Eq. (2.23). The evolution of
the order parameters was obtained by numerically integrating the equations of
motion starting from zero-valued initial conditions except for:

R11p0q “ 10´3, Q11p0q “ 0.2, Q22p0q “ 0.3, Q33p0q “ 0.25 . (2.34)

4. K “ 2,M “ 3: In this setting the teacher SCM with three hidden units is more
complex than the student SCM with two hidden units. The equations of motion
describing the evolution of the KM `KpK ` 1q{2 “ 9 order parameters were
obtained for η Ñ 0 using Eq. (2.23). The evolution of the order parameters
was obtained by numerically integrating the equations of motion starting from
zero-valued initial conditions except for:

R11p0q “ 10´3, Q11p0q “ 0.2, Q22p0q “ 0.2, Q33p0q “ 0.2 . (2.35)

In all experiments the teacher vectors are fixed to

Tmn “ δmn for 1 ď m,n ď M . (2.36)

2.4 Results and Discussion

We first consider perceptron learning as described in setting 1. A numerical solution
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Figure 2.1: Left panel: Evolution of the order parametersR andQ for ReLU perceptron
learning with gradient descent using a learning rate η “ 0.1, starting from initial
conditions Rp0q “ 0 and Qp0q “ 0.25. Right panel: Evolution of the generalization
error ϵg at the start of learning for different learning rates η. In both panels solid and
dashed lines show the theoreticalN Ñ 8 results obtained from numerical integration
of the ODE and symbols show Monte Carlo simulation results for N “ 1000.

to the ODE system is shown in the left panel of Figure 2.1 for learning rate η “ 0.1.
It can be seen that the results obtained from Monte Carlo simulations had excellent
agreement with the ODE results. In the initial stage of learning from α “ 0 to α « 10,
the process is characterized by a steep increase of the student-teacher overlapRwhile
the student vector’s norm hardly changes and shows a small dip. Hence, the initial
increase in R is only caused by the decrease of the student vector’s angle with the
teacher vector. After α « 10, the increase in Q indicates that the norm of the student
vector increases in addition to the alignment of the student and teacher vector. For
α Ñ 8 both R and Q increase towards pR,Qq “ p1, 1q. This state corresponds to
perfect learning of the rule in which the student vector is equal to the teacher vector,
i.e., w “ B. The point pR,Qq “ p1, 1q is a fixed point of the ODE for all meaningful
learning rates, i.e. η ą 0. Defining pr, qq “ pR ´ 1, Q ´ 1q, the linearized dynamics
dynamics around the fixed point read:
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, (2.37)

where ApR “ 1, Q “ 1q is the Jacobian matrix of first derivatives of the non-linear
differential equations evaluated in the fixed point. The eigenvalues of ApR “ 1, Q “
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Figure 2.2: Left: Evolution of the order parameters for a student ReLU SCM with
K “ 2 hidden units learning a rule defined by a teacher ReLU SCM with M “ 2

hidden units using gradient descent. Right: Evolution of the generalization error
corresponding to the order parameters in the left panel. In both panels solid lines
show the result obtained by numerically integrating the ODE and symbols show
Monte Carlo simulation results for N “ 10000 and η “ 0.1.

1q determine the stability of the fixed point and are given by:

λ1 “ ´
η

2
, λ2 “ η

ˆ

1

2
η ´ 1

˙

. (2.38)

The eigenvalue λ1 is always negative for η ą 0 and λ2 is negative for 0 ă η ă 2.
Therefore the fixed point is asymptotically stable for learning rates η ă 2. For η ą 2,
λ2 is positive and the fixed point becomes unstable. Experimentation reveals that
there exists other stable fixed points of the dynamics which are approached for η ą 2

with ηg ą 0. At an even larger value of η, the norm of the student vector grows
indefinitely.

We define the critical value of η where the transition of the fixed point stability
from stable to unstable occurs as ηc “ 2. Figure 2.1 (right) shows the evolution of
ϵg for several values of η. Convergence is slow for η ăă ηc but also for η « ηc. The
Monte Carlo simulations agree with the theoretical results very well for all considered
values of eta.

Figure 2.2 shows the results for setting 2: The dynamics for the ReLU network
with K “ M “ 2. Monte Carlo simulation agree well with the theoretical results
already for a reasonably small learning rate of η “ 0.1. The learning process is
characterized by a suboptimal plateau during which the student vectors are not
specialized towards specific teacher vectors and therefore the specialization quantity
defined in Eq. (2.31) evaluates to S1 « 0 and S2 « 0. The fixed point in the ODE that
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Figure 2.3: Evolution of student-teacher order parameters for overrealizable case
with K “ 3 hidden units in the student SCM and M “ 2 hidden units in the teacher
SCM. Left: ReLU-SCM. Right: Erf-SCM. The correlation of each student unit to the
teacher units is shown shown by the style of the curves. A pair of the same style of
curves shows the correlation of the student unit to each of the two teacher units. The
legends point to the upper curve of the pair.

causes the observed plateau is found numerically:

Rin « 0.52 for 1 ď i ď 2, 1 ď n ď 2 , (2.39)

Q11 « 0.72 , Q22 « 0.72 , Q12 « 0.38 . (2.40)

In contrast to the results for the erf SCM (Biehl and Schwarze 1995, Saad and Solla
1995b), the student vectors are not identical during the plateau. Similar to the
perceptron case, we formulate the Jacobian and find its eigenvalues numerically to
determine the stability of the fixed point. One positive eigenvalue is positive and
guides the repulsion away from the fixed point:

λ5 « 0.24 with eigenvector u5 “ p0.5,´0.5,´0.5, 0.5, 0, 0, 0qT . (2.41)

It indicates symmetry breaking: The increase of R11 and R22 and the decrease of
R12 and R21. Therefore, at the end of the plateau the learning algorithm starts to
position student vector w1 into the direction of teacher vector B1 and student vector
w2 into the direction of teacher vector B2. Shortly after the symmetry breaking, it
can be observed that the norms of the student vectors increase further. The onset
of specialization is associated with a decrease in generalization error, see Figure 2.2
(right).

In Figure 2.3, numerical integration results for the overparameterized student
SCM of setting 3 are shown for ReLU activation (left) and sigmoidal Erf activation
(right). In both cases, student vector w1 specializes to teacher vector B1 and align
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Figure 2.4: Evolution of the generalization error obtained in the overrealizable setting
with K “ 3 hidden neurons in the student SCM and K “ 2 hidden neurons in the
teacher SCM. Left panel: ReLU-SCM. Right panel: Erf-SCM.

Q11p8q Q12p8q Q13p8q Q22p8q Q23p8q Q33p8q

ReLU 1.00 0.00 0.00 0.24 0.25 0.27
Erf 1.00 0.00 0.00 0.00 0.00 1.00

Table 2.1: Asymptotic values of the student-student overlaps Qik for the over-
parameterized scenario corresponding to the same setting and ODE integration
as the results in Figure 2.3.

fully with it, which is caused by the specialization given in the initial conditions. In
the ReLU case, student vectors w2 and w3 achieve a similar overlap with teacher
vector B2. From the values of Q22, Q23 and Q33 obtained for large rα as shown in
Table 2.1, it follows that the student vectors w2 and w3 have become nearly identical.
Moreover, both vectors have become practically fully aligned with teacher vector B2,
which follows from the numerical values of the order parameters at rα “ 80:

R22
?
Q22

“ cos pϕpw2,B2qq « 1 ,
R32

?
Q33

“ cos pϕpw3,B2q « 1 . (2.42)

The generalization error that corresponds to the order parameters of Fig. 2.1 is shown
in Fig. 2.4, left panel. For large α, the generalization error approaches zero. The
reason that this configuration of order parameters results in perfect learning of the
rule is that the ReLU is a piece-wise linear function, for which we have:

ReLUpa uq “ ReLUpb uq `ReLUpc uq , for a “ b` c and sign a “ sign b “ sign c ,

(2.43)
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Figure 2.5: Evolution of student-teacher order parameters for the unrealizable case
with K “ 2 hidden units in the student SCM and M “ 3 hidden units in the teacher
SCM. Left: ReLU-SCM. Right: Erf-SCM.

and equivalently for the inner field inputs to the units in our case:

ReLUpB2 ¨ ξq “ ReLUpw2 ¨ ξq ` ReLUpw3 ¨ ξq

ðñ

pw2 “ aB2q ^ pw3 “ bB2q ^ pa` b “ 1q ^ a ě 0 ^ b ě 0 .

(2.44)

Therefore, during training, two units of the ReLU student SCM aligned to one unit
of the teacher SCM. These two student vectors were scaled to exactly reproduce the
teacher vector. In this case all non-negative scale factors a and b with a` b “ 1 would
yield a student SCM that perfectly represents the rule. Which particular scale factors
are achieved is dependent on the initial conditions.

Different behavior is observed for this training setting with the Erf-SCM as shown
in the right panel of Fig. 2.3. Similar to the ReLU-SCM, after the plateau the second
and third student unit compete for the specialization in the second teacher unit.
However, in this case the third student unit specializes more quickly and eventually
approaches full specialization S3 Ñ 1. The second student unit loses its specialization
and its weights approach the zero-vector, i.e. w2 Ñ 0, as indicated by Q22pα Ñ 8q “

0 shown in Table. 2.1. The second student unit is therefore effectively removed from
the network and the generalization error approaches zero for large rα, as shown in the
right panel of Fig. 2.4. There is a clear explanation for this behavior: It’s not possible
for the non-linear erf units’ weight vectors to linearly combine and thereby fully
represent a teacher unit. The superfluous complexity in the student Erf-SCM has to
be removed from the network by shrinking the redundant weight vectors to zero.

In Figure 2.5 and Table 2.2, the results of setting 4 are shown: The unrealizable
setting withK “ 2 hidden units in the student andM “ 3 hidden units in the teacher.
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Q11p8q Q12p8q Q22p8q

ReLU 1.76 -0.15 1.84
Erf 1.06 0.38 1.01

Table 2.2: Asymptotic values of the student-student overlaps Qik for the unrealizable
setting. The results correspond to the ODE integration of Figure 2.5.
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Figure 2.6: Evolution of the generalization error obtained in the unrealizable setting
with K “ 2 hidden neurons in the student SCM and K “ 3 hidden neurons in the
teacher SCM. Left panel: ReLU-SCM. Right panel: Erf-SCM.

For the ReLU (left panel), student vector w1 mainly specializes to teacher vector B1,
almost achieving full alignment. A small overlap with teacher vector B2 and B3

remains. Student vector w2 achieves significant overlap with the second and third
student vector B2 and B3. In fact, from the numerical values of the order parameters
at rα “ 80, we obtain:

R22
?
Q22

“ cos pϕpw2,B2qq «
π

4
,

R23
?
Q22

“ cos pϕpw2,B3qq «
π

4
. (2.45)

Therefore the second student unit approximates a superposition of the second and
the third teacher units. Since the student SCM cannot not realize the rule, the
generalization error does not approach zero, as shown in the left panel of Fig. 2.6.

The learning behavior of the Erf-SCM is very similar in this case; the student
vectors also represent a combination of the teacher vectors. The generalization error
is shown in the right panel of Figure 2.6.
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2.5 Conclusion and Future Work

In this chapter we first introduced a generic modelling framework for the analysis
of learning dynamics based on techniques from statistical physics that are already
successfully used in previous studies. The modelling framework uses the concept of a
student- and teacher model, in which a learning algorithm adapts the student model
based on the available data and corresponding target labels provided by the teacher
model. A few order parameters can be defined and quantify the state of learning. For
a data distribution with an infinitely large number of independent dimensions, the
evolution of the order parameters becomes deterministic. By averaging the learning
equations, a system of ordinary differential equations can be defined.

Using the modelling framework, we studied gradient descent learning of the Soft
Committee Machine. The equations are formulated for a student-teacher scenario
with an arbitrary number of hidden units in the student and the teacher model and
an arbitrary choice of activation function in the hidden units. In order to study
the learning dynamics for the popular ReLU function, we derived closed-form
expressions for the required averages in the case of small learning rates. This allows
the formulation of various on-line gradient descent learning settings of the ReLU-
SCM model.

Using the obtained formulation for the ReLU-SCM and the formulation for the
Erf-SCM from the literature, we studied the learning dynamics in a number of
settings: 1) For the ReLU perceptron learning we showed the learning behavior for
different values of the learning rate and analytically derived the maximum learning
rate for which perfect learning is achieved. 2) In a matching scenario of SCM learning
where the student and teacher both had two hidden units, the characteristic plateau
was studied analytically and the specialization of student units was discussed. In
contrast to the Erf-SCM, in the ReLU-SCM a plateau is favored that corresponds to an
unspecialized configuration in which the student vectors are different. In both 1) and
2), Monte Carlo simulations had good correspondence with the theory. 3) We showed
the existence of a qualitative difference between the ReLU-SCM and the Erf-SCM
in an overrealizable setting. The learning algorithm can combine ReLU units by
aligning the directions of the weight vectors and scaling. The extra complexity of the
Erf-SCM has to be eliminated by shrinking the redundant weights to zero. In both
settings, perfect learning is achieved. In the unrealizable case, both SCM approximate
the rule by correlating with multiple weight vectors.

Future works should address the learning dynamics of ReLU networks for larger
learning rates and learning rate adaptation schemes. This can be done by finding a
closed-form expression for the required four-dimensional averages. If a closed-form
expression cannot be obtained, an approximation of the ReLU function may be used.
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One possibility is to consider a generalization of the so-called Gaussian Error Linear
Unit (GELU) activation function (Hendrycks and Gimpel 2016)

GELUpx, γq “ xΦpγxq “
1

2
x

ˆ

1 ` erf

ˆ

γx
?
2

˙˙

,

lim
γÑ8

GELUpx, γq “ lim
γÑ8

pxΦpγxqq “ xΘpxq “ ReLUpxq ,
(2.46)

where Φp¨q is the standard Gaussian’s CDF and γ a scaling factor.
Besides the potential of simplifying the derivation of the equations for the ReLU,

studying the GELUpx, γq for γ “ Op1q is highly relevant, as the activation function
and the similarly shaped version gpxq “ xσpγxq has been found in (Ramachandran
et al. 2017, Eger et al. 2018) to perform well on a variety of tasks and has gained in
popularity in deep learning applications.

To further simplify the derivations, the error function could be closely approxi-
mated by (Tsay et al. 2013):

erfpxq “

"

1 ´ expp´c1x´ c2x
2q for x ě 0

´1 ` exppc1x´ c2x
2q for x ă 0

. (2.47)

New activation functions with desirable properties could be designed using this
approach.

Another important direction for future studies is the extension of the theory to
more hidden layers. A starting point could be the consideration of deep tree-like
neural networks. In these networks the receptive field of each neuron in the receiving
layer is a dedicated non-overlapping part of the previous layer’s activations. This
property is maintained throughout the network. Hence, for independent inputs the
units in every layer of the network are mutually independent, so that the central
limit theorem applies to the pre-activations in the subsequent layer.

Furthermore, we emphasize the broad applicability of the presented modelling
framework in the analysis of a variety of machine learning situations. As one example,
in the next chapter the modelling framework is extended for the analysis of typical
learning behaviour of learning vector quantization and neural networks in non-
stationary learning settings.
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Chapter 3

Learning under concept drift

Abstract

In this chapter we extend the modelling framework of the previous chapter to incorporate
supervised learning in non-stationary environments. Specifically, we model two example
types of learning systems: prototype-based Learning Vector Quantization (LVQ) for
classification and shallow, layered neural networks for regression tasks. We investigate
so-called student teacher scenarios in which the systems are trained from a stream of high-
dimensional, labeled data. Properties of the target task are considered to be non-stationary
due to drift processes while the training is performed. Different types of concept drift are
studied, which affect the density of example inputs only (virtual drift), the target rule itself
(real drift), or both. Furthermore, we introduce weight decay as an explicit mechanism of
forgetting. The required extensions of the modelling framework to incorporate these effects
are shown. We then obtain the systems of ODE that describe the typical learning behavior
of the two models under the different types of drift and weight decay. Our results show
that standard LVQ algorithms are already suitable for the training in non-stationary
environments to a certain extent. We show that the application of weight decay is effective
for increasing the performance under real drift processes. On the other hand, a clear benefit
of weight decay can not be confirmed under drifting class biases. In the investigation of
gradient-based training of layered neural networks, we focus on the comparison of the
use of sigmoidal- and Rectified Linear Unit (ReLU) activation functions. It is shown that
concept drift can cause the persistence of sub-optimal plateau states in the evolution of the
weights in the networks. Furthermore, we show that the sensitivity to concept drift and
the effectiveness of weight decay differs remarkably between the two types of activation
function: For instance, we find that the plateau lengths in the learning curves of ReLU
networks can be significantly shortened by the weight decay.
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3.1 Introduction

In this chapter, we address a topic which is currently attracting increasing interest
in the scientific community: the efficient training of machine learning systems in a
non-stationary environment, where the target task or the statistical properties of the
example data vary with time, see for instance (Zliobaite et al. 2016, Losing et al. 2017,
Ditzler et al. 2015, Joshi and Kulkarni 2012, Ade and Desmukh 2013, Morales and
Bifet 2015) and references therein. Terms like continual learning or lifelong learning
have been coined in this context.

Frequently, the set-up of machine learning processes comprises two different
stages, see for instance (Hastie et al. 2001, Bishop 2006, Goodfellow et al. 2016): In the
training phase, a given set of example data is analyzed, information is extracted and a
corresponding hypothesis is parameterized in terms of, say, a classifier or regression
system. In the subsequent working phase, this hypothesis is applied to novel data.
Implicitly, one assumes that the training set is representative of the problem and
that statistical properties of the data and the actual target task do not change after
training.

For many practical applications of machine learning the assumption of stationarity
may be well justified. However, the conceptual and temporal separation of training
and working phase is not very plausible in human and other biological learning
processes (Grandinetti et al. 2014, Amunts et al. 2014), in which learning and applying
are continuously intertwined. As an example, in a predator and prey system, strategies
can change continuously with species trying to adapt to their adversaries’ behavior.
Also in many technical applications of machine learning the separation becomes
inappropriate if the actual task of learning, e.g. the target classification, changes
over time (Zliobaite et al. 2016). Moreover, very frequently the training samples
become available in the form of a non-stationary stream of data, e.g. (Losing et al.
2017, Ditzler et al. 2015, Joshi and Kulkarni 2012, Ade and Desmukh 2013). In such
situations, the learning system must be able to detect and track concept drift, i.e.
forget irrelevant, older information while continuously adapting to more recent
inputs. Examples for this situation can be found, for instance, in robotics. Other
problems like the filtering of spam messages in e-mail communication, resemble the
predator prey example in that the learning systems try to adapt to changing strategies
of their opponents. Further applications range from fraud detection, quality control
and customer segments management to drop out prediction for e-learning and
gaming (Zliobaite et al. 2016). Overviews of earlier work and recent developments
in the context of machine learning in non-stationary environments are provided in
(Zliobaite et al. 2016, Losing et al. 2017, Ditzler et al. 2015, Joshi and Kulkarni 2012,
Ade and Desmukh 2013, Morales and Bifet 2015), for instance. While drift can occur
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in any learning scenario, in this contribution, we will focus on supervised learning.
In the literature, two major types of non-stationary environments have been

discussed (Zliobaite et al. 2016, Losing et al. 2017, Ditzler et al. 2015, Joshi and
Kulkarni 2012, Ade and Desmukh 2013, Morales and Bifet 2015): In so-called virtual
drifts, the statistical properties of the available example data change with time, while
the actual target task, e.g. the classification or regression scheme, remains unaltered.
The term real drift has been coined for situations in which the target itself is time-
dependent. Frequently, both effects coincide and a clear distinction of the two cases
becomes difficult.

3.1.1 Models of On-Line Learning Under Concept Drift

There exists a large variety of technologies which address learning in the context
of drift, see (Zliobaite et al. 2016, Losing et al. 2017, Ditzler et al. 2015, Joshi and
Kulkarni 2012, Ade and Desmukh 2013) for overviews of earlier work and more
recent developments in the context of non-stationary learning. On a global level, one
often differentiates so-called active methods, which aim for an explicit detection of
drift and according action of the learning system, and passive methods, which can
implicitly react to drift by their design.

Popular active methods combine statistical tests for novelty detection (Faria
et al. 2016) with a rearrangement or retraining of the system to account for the
observed drift. The latter is particularly efficient if, for instance, ensemble methods
are used (Krawczyk et al. 2017, Gomes et al. 2017). The need for explicit drift detection
often has the consequence that only specific types of drift can be dealt with (one
exception being e.g. (Gomes et al. 2017)). In particular, small gradual drifts are
notoriously difficult to detect (Losing et al. 2018).

Passive methods continuously adapt the model according to the given data. Thus,
they automatically react to all types of drift which are present in the training data.
The presence of drift requires some form of forgetting of dated information while
the system is adapted to more recent observations. Yet, these passive methods face
the classical stability-plasticity dilemma: relevant novel information has to be dealt
with while preserving already learned signals. Local or hybrid schemes have been
particularly successful in the past years, see e.g. (Losing et al. 2018, Loeffel et al. 2015).
Other popular passive technologies rely on online learning schemes, in particular
online gradient descent, which has been incorporated into drift learning strategies
for the simple perceptron, neural networks, or extreme learning machines, as an
example (Benczúr et al. 2018, Janakiraman et al. 2016). The behavior of such models
varies extensively across different learning scenarios (Losing et al. 2017).

In this contribution, we study two basic scenarios of on-line learning in non-
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stationary environments, addressing binary classification and continuous regression
problems. We present a mathematical model of drifting concepts in on-line training
from high-dimensional data. The design of useful, forgetful training schemes hinges
on an adequate theoretical understanding of the relevant phenomena. To this end, the
development of a suitable modelling framework is instrumental. Methods borrowed
from statistical physics facilitate the study of the typical learning dynamics for
different training scenarios and strategies. Here we extend the statistical physics
based modelling framework of on-line learning in stationary settings as given in
Chapter 2 to cover non-stationary learning contexts and weight decay as a mechanism
of forgetting. Specifically, we use the modelling framework to analyze gradient based
learning in non-stationary situations in prototype-based binary classification and
continuous regression with feedforward neural networks. Both virtual and real drift
processes are addressed.

Learning Vector Quantization (LVQ) is a prototype-based learning system orig-
inally suggested by Kohonen (Kohonen et al. 1988, Kohonen 2001, Kohonen 1990,
Nova and Estevez 2014, Biehl et al. 2016). LVQ training is most frequently performed
in an on-line setting by presenting a sequence of single examples which are used
to improve the system iteratively (Nova and Estevez 2014, Biehl et al. 2016). There-
fore, LVQ should constitute a promising framework for incremental learning in the
presence of concept drift.

Layered neural networks with sigmoidal- and Rectified Linear Unit (ReLU) acti-
vation functions serve as example systems in the context of regression. Specifically,
we consider the so-called Soft Committee Machine (SCM) as formulated and stud-
ied in stationary settings in Chapter 2. This shallow architecture can be trained by
means of on-line (stochastic) gradient descent (Biehl and Schwarze 1995, Saad and
Solla 1995a, Saad and Solla 1995b, Biehl et al. 1996, Riegler and Biehl 1995, Vicente and
Caticha 1997, Inoue et al. 2003). Gradient based techniques are widely used also for
multi-layered deep architectures and their suitability for the learning of non-stationary
targets is a question of significant relevance (Goodfellow et al. 2016, Marcus 2018).
For the SCM model in the context of concept drift, the emphasis is on the comparison
of sigmoidal and ReLU activation with respect to the sensitivity to drift and the effect
of weight decay.

The reason for the selection of these two learning systems is that they are rep-
resentatives of important paradigms in machine learning. Therefore, the analysis
of these systems also provides an example of the use of the workshop in which to
develop modelling techniques and analytical approaches that will facilitate the study
of other learning systems and setups in the future.
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3.1.2 Relation to earlier Work

Stationary model densities of clustered data, similar to the ones considered here for
LVQ, have been studied with respect to several unsupervised and supervised training
schemes, see (Biehl et al. 1997, Biehl, Freking, Reents and Schlösser 1998, Biehl and
Schlösser 1998, Barkai et al. 1993, Marangi et al. 1995, Meir 1995) for examples and
further references. Supervised LVQ training was considered more recently in the
framework of simplifying model situations in (Biehl et al. 2007, Ghosh et al. 2006,
Biehl et al. 2005, Ghosh et al. 2005, Witoelar et al. 2010).

The presence of concept drift has also been addressed within the statistical physics
of on-line learning. In particular, the learning of time-dependent, linearly separable
rules served as a model system in (Biehl and Schwarze 1992, Biehl and Schwarze 1993,
Kinouchi and Caticha 1993, Vicente and Caticha 1998). Note, that the assumption of
statistically independent examples in the stream of data does not hinder the study
of meaningful drift scenarios. It is, for instance, well possible to consider settings
in which the characteristics of the generating density or the target itself depends,
implicitly, on the previous training. As an example, adversarial drifts have been
considered in (Biehl and Schwarze 1992, Biehl and Schwarze 1993, Kinouchi and
Caticha 1993, Vicente and Caticha 1998) for the simple perceptron.

To the best of our knowledge, we present here the first statistical mechanics
analysis of on-line learning under concept drift in prototype-based classification and
layered neural networks for regression.

3.1.3 Outline

This chapter is organized as follows:
In Section 3.2 the LVQ learning system is introduced briefly, together with the

model update rule and the assumed data density that we use in the modelling. In
this section, we also provide the expressions of the quantities that are required for
the formulation of the macroscopic learning dynamics and the generalization error
according to the modelling framework. The same order of steps in the derivation is
used as in the derivation of the dynamics for the SCM in Chapter 2.

Section 3.3 discusses the mathematical modelling of the considered drifts and the
incorporation of weight decay as an explicit mechanism of forgetting. We then discuss
the extension of the modelling framework in order to include the drifts and weight
decay, which is identical for both learning systems.

The results of our analyses are presented in Sec. 3.4, which exemplify and demon-
strate the usefulness of the methodological approach: We obtain insights into the
ability of prototype-based systems to track a time-varying classification scheme and
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changing class-wise prior probabilities. Furthermore, in this section we show the
results of real concept drift on regression systems trained by gradient-based methods.

In Sec. 3.5 we conclude with a general discussion and outlook on future work.

3.2 Model and Methods

We first introduce Learning Vector Quantization for classification tasks with emphasis
on the well-established heuristic LVQ1 training scheme. We furthermore introduce a
suitable, clustered density of input data which is taken to define the target task in the
model and formulate the typical learning dynamics.

3.2.1 Learning Vector Quantization

Learning Vector Quantization constitutes a family of prototype-based algorithms
which are used in a wide variety of practical classification problems (Kohonen
et al. 1988, Kohonen 1990, Nova and Estevez 2014, Biehl et al. 2016). The popularity
of the approach is due to a number of attractive features: LVQ procedures are easy
to implement, very flexible and intuitive. Moreover, it constitutes a natural tool
for multi-class problems. The actual classification scheme is very often based on
Euclidean metrics or other simple measures, which quantify the distance of inputs or
feature vectors from the class-specific prototypes. In contrast to the black-box character
of many less transparent methods, LVQ facilitates straightforward interpretations of
the classifier since the prototype vectors are embedded in the actual feature space
of the data and directly parameterize the classifier (Nova and Estevez 2014, Biehl
et al. 2016). The approach is based on the idea of representing classes by more or less
typical representatives of the classes among the training instances.

3.2.2 Nearest Prototype Classifier and generic training rule

In general, several prototypes can be employed to represent each class. However,
we restrict the analysis to the simple case of only one prototype per class in binary
classification problems. Hence we consider two prototypes wk P RN in total, where
prototype k is supposed to represent the data from class k P t1, 2u. Together with a
distance measure dpw, ξq, the system parameterizes a Nearest Prototype Classifica-
tion (NPC) scheme: Any given input ξ P RN is assigned to the class of the closest
prototype, i.e. it is assigned to class 1 if dpw1, ξq ă dpw2, ξq and to class 2, otherwise.
In practice, ties can be broken arbitrarily.

A variety of distance measures have been used in LVQ, enhancing the flexibility
of the approach even further (Biehl et al. 2016, Nova and Estevez 2014). This includes
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the conceptually interesting use of adaptive metrics in relevance learning, see (Biehl
et al. 2016, Biehl et al. 2014) and references therein. Throughout the following, we
restrict our analysis to the simple (squared) Euclidean measure

dpw, ξq “ pw ´ ξq2. (3.1)

We assume that in the training process, a sequence of single examples is presented
to the system (Biehl and Caticha 2003): At time step µ “ 1, 2, . . . , the data point ξµ

is presented, together with its class label σµ “ 1, 2. Iterative on-line LVQ updates are
of the general form (Biehl et al. 2007, Witoelar et al. 2007, Ghosh et al. 2006)

wµ
k “ wµ´1

k `
η

N
∆wµ

k with ∆wµ
k “ fk rdµ1 , d

µ
2 , σ

µ, . . .s
´

ξµ ´ wµ´1
k

¯

(3.2)

where dµi “ dpwµ´1
i , ξµq is the distance between the data point and the prototype

of class i. The learning rate η is scaled with the input dimension N . The precise
algorithm is specified by the choice of the modulation function fkr. . .s, which depends
typically on the Euclidean distances of the data point from the current prototype
positions and on the labels k, σµ “ 1, 2 of the prototype and the training example,
respectively.

3.2.3 The LVQ1 training algorithm

A popular and intuitive LVQ training scheme was already suggested by Kohonen
and is known as LVQ1 (Kohonen et al. 1988, Kohonen 2001). Following the NPC
concept, it updates only the currently closest prototype according to a so-called
Winner-Takes-All (WTA) scheme. Formally, the LVQ1 prescription for a system with
two competing prototypes is given by Eq. (3.2) with

fkrdµ1 , d
µ
2 , σ

µs “ Θ
´

dµ
pk

´ dµk

¯

Ψpk, σµq, where pk “

"

2 if k “ 1

1 if k “ 2,
(3.3)

Θpxq “

"

1 if x ą 0

0 else
, and Ψpk, σq “

"

`1 if k “ σ

´1 else.
.

Here, the Heaviside function Θp. . .q singles out the winning prototype and the factor
Ψpk, σµq determines the sign of the update: The WTA update according to Eq. (3.3)
moves the prototype towards the presented feature vector if it carries the same class
label k “ σµ. On the contrary, if the prototype is meant to present a different class, its
distance from the data point is increased. Note that LVQ1 cannot be interpreted as a
gradient descent procedure of a suitable cost function in a straightforward way due
to discontinuities at the class boundaries, see (Biehl et al. 2007) for a discussion and
references.
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Numerous variants and modifications of LVQ have been presented in the liter-
ature, including heuristically motivated extensions of LVQ1, cost function based
schemes and variants employing unconventional or adaptive distance measures
(Kohonen et al. 1988, Kohonen 2001, Kohonen 1990, Nova and Estevez 2014, Biehl
et al. 2016, Biehl et al. 2014). These variants usually aim at better convergence or
classification performance. Most of these modifications, however, retain the basic
idea of attraction and repulsion of the winning prototypes.

3.2.4 Clustered Model Data

LVQ algorithms are most suitable for classification problems which reflect a given
cluster structure in the data. In the modelling, we therefore consider a stream of
random input vectors ξ P RN which are generated independently according to a
mixture of two Gaussians (Biehl et al. 2007, Witoelar et al. 2007, Ghosh et al. 2006)

P pξq “
ÿ

m“1,2

pm P pξ | mq with P pξ | mq “
1

p2π vmqN{2
exp

„

´
1

2 vm
pξ ´ λBmq

2

ȷ

.

(3.4)

The target classification is taken to coincide with the cluster membership, i.e. σ :“ m

in Eq. (3.3). The class-conditional densities P pξ | m“1, 2q correspond to isotropic,
spherical Gaussians with variance vm and mean λBm. Prior weights of the clusters
are denoted as pm and satisfy p1 ` p2 “ 1. We assume that the vectors Bm are
orthonormal with B 2

1 “ B 2
2 “ 1 and B1 ¨ B2 “ 0. Obviously, the classes m “ 1, 2

are not perfectly separable due to the overlap of the clusters. As an illustration,
Fig. (3.1) displays data in N “ 200 dimensions, generated according to a density of
the form (3.4). While the clusters are clearly visible in the subspace given by B1 and
B2, projections into a randomly chosen plane completely overlap.

We denote conditional averages over P pξ | mq by x¨ ¨ ¨ ym, whereas mean values
x¨ ¨ ¨ y “

ř

m“1,2 pm x¨ ¨ ¨ ym are defined with respect to the full density (3.4). One
obtains, for instance, the conditional and full averages

xξym “ λBm, xξ 2ym “ vmN ` λ2 and xξ 2y “ pp1v1 ` p2v2q N ` λ2. (3.5)

In the thermodynamic limit N Ñ 8, which will be considered later, λ2 can be
neglected in comparison to the terms of OpNq in Eq. (3.5).

Similar clustered densities have been studied in the context of unsupervised
learning and supervised perceptron training, see e.g. (Barkai et al. 1993, Biehl et al.
1997, Marangi et al. 1995). Also, online LVQ in stationary situations was analysed in
e.g. (Biehl et al. 2007).
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Figure 3.1: Clustered Model Density
Illustration of the clustered density, Eq. (3.4), in N “ 200 dimensions, here with
p1 “ 0.4, p2 “ 0.6 and v1 “ 0.64, v2 “ 1.44. Blue triangles (black squares) represent
120 p180q vectors ξ from the clusters centered at λB1 (λB2) with λ “ 1.5, respectively.
Left panel: Projections B1,2 ¨ ξ of the data. The cluster centers are marked by larger
symbols. Right panel: Projections r1,2 ¨ ξ on two randomly chosen orthonormal
vectors r1,2.

Here we focus on the question whether LVQ learning schemes are able to cope
with drift in characteristic model situations and whether extensions like weight decay
can improve the performance in such settings.

Note that the density used in the analysis of the Soft Committee Machine (SCM)
in Eq. (2.12) is recovered formally from Eq. (3.4) by setting λ “ 0 and v1 “ v2 “ 1, for
which both clusters in Eq. (3.4) coincide in the origin and the parameters p1,2 become
irrelevant.

3.2.5 Macroscopic learning dynamics of LVQ

For convenience, the definitions of the order parameters, their stochastic updates and
their averaged dynamics for N Ñ 8 as derived in Chapter 2 are repeated here:

Rµim “ wµ
i ¨ Bm and Qµik “ wµ

i ¨ wµ
k , (3.6)

Tmn “ Bm ¨ Bn “ δmn with i, k P t1, ...,Ku , m, n P t1, ...,Mu . (3.7)
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Rµim ´Rµ´1
im

1{N
“ η∆wµ

i ¨ Bm

Qµik ´Qµ´1
ik

1{N
“ η

´

wµ´1
i ¨ ∆wµ

k ` wµ´1
k ¨ ∆wµ

i

¯

`
η2

N
∆wµ

i ¨ ∆wµ
k . (3.8)

dRim
dα

“ ηFim and
dQik
dα

“ ηG
p1q

ik ` η2G
p2q

ik , (3.9)

where in the case of LVQ the adaptive vectors twiu
K
i“1 are prototype vectors and

tBnuMn“1 are cluster centers. To formulate the macroscopic learning dynamics, we
substitute the definition of the LVQ1 updates ∆wµ

i 9

´

ξµ ´ wµ´1
i

¯

from Eq. (3.2)
in the generic Eq. (3.8), which then becomes an equation in the projections thµi “

wµ´1
i ¨ ξµuKi“1 and tbµn “ Bn ¨ ξµuMn“1. Note that the current discussion focuses on

settings with two prototypes and two cluster centers, i.e. K “ 2,M “ 2, but we define
the modelling framework for settings with general K and M . The class-conditional
moments of the projections for the clustered input density (3.4) are:

xhµi ym “ λRµ´1
im , xbµmyn “ λδmn ,

xhµi h
µ
ky
m

´ xhµi ym xhµky
m

“ vmQ
µ´1
ik ,

xhµi b
µ
nym ´ xhµi ym xbµnym “ vmR

µ´1
in ,

xbµl b
µ
ny
m

´ xbµl y
m

xbµnym “ vm δln ,

(3.10)

with i, k, l,m, n P t1, 2u and the Kronecker-Delta δij “ 1 for i “ j and δij “ 0 else.
For the limit N Ñ 8, the dynamics can be found by defining the LVQ expressions

for Fim, Gp1q

ik and Gp2q

ik :

Fim “ pxbmfiy´Rim xfiyq ,

G
p1q

ik “

´

xhifk ` hkfiy´Qik xfi`fky

¯

and G
p2q

ik “
ÿ

m“1,2

vmpm xfifkym
(3.11)

with the LVQ1 modulation functions fi from Eq. (3.3) and (conditional) averages
with respect to the density (3.4), which are computed using the joint Gaussian of the
projections with moments given in Eq. (3.10).

The expressions (3.11) required for the formulation of the learning dynamics
can be expressed in terms of elementary functions of order parameters and can be
substituted in Eq. (3.9) to formulate the ODE. For the straightforward yet lengthy
results, we refer the reader to the original literature (Biehl et al. 2007, Ghosh et al.
2006).

After training, the success of learning is quantified in terms of the generalization
error ϵg, which can also be expressed as a function of order parameters as was also
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done for the SCM. For the LVQ model ϵg is given as the probability of misclassifying
a novel, randomly drawn input vector. The class-specific errors corresponding to
data from clusters k “ 1, 2 in Eq. (3.4) can be considered separately:

ϵg “ p1 ϵ
1
g ` p2 ϵ

2
g, where ϵkg “

B

Θ
`

dk ´ d
pk

˘

F

k

(3.12)

is the class-specific misclassification rate, i.e. the probability for an example drawn
from a cluster k to be assigned to pk ‰ k with dk ą d

pk. For the derivation of the
class-wise and total generalization error for systems with two prototypes as functions
of the order parameters we also refer to (Biehl et al. 2007). One obtains

ϵkg “ Φ

ˆ

Qkk ´Q
pkpk ´ 2λpRkk ´R

pkkq

2
?
vk

?
Q11 ´ 2Q12 `Q22

˙

where Φpzq “

z
ż

´8

dx
e´x2

{2

?
2π

. (3.13)

The (numerical) integration of the ODE (3.9) starting from initial conditions

tRimp0q, Qikp0qu

yields the temporal evolution of order parameters in the course of training. By
substitution of the solutions in Eq. (3.12) and Eq. (3.13), we can obtain the general
learning curve ϵgpαq “ ϵg ptRimpαq, Qikpαquq and the class-wise learning curves
ϵkgpαq, respectively. Hence, we determine the typical generalization error after on-line
training with pαNq random examples.

3.3 The Learning Dynamics Under Concept Drift

The analysis summarized in the previous section and in Chapter 2 concerns learning
in the presence of a stationary concept, i.e. for a density of the form (3.4) or (2.12)
which does not change in the course of training. Here, we introduce the effect of
concept drift to the modelling framework and consider weight decay as an example
mechanism for explicit forgetting.

3.3.1 Virtual Drift

Virtual drifts affect statistical properties of the observed example data while the
actual target function remains unchanged. A variety of virtual drift processes can
be addressed in our modelling framework. As one example, time-varying label
noise in classification or regression could be incorporated in a straightforward way
(Engel and van den Broeck 2001, Seung et al. 1992, Watkin et al. 1993). Similarly,
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non-stationary cluster variances in the input density, cf. Eq. (3.4), can be introduced
through explicitly time-dependent vσpαq into Eq. (3.9) for the LVQ system. One part
of our analysis of the LVQ system focuses on the particularly relevant case in the
context of classification tasks, namely, a varying fraction of examples of the classes in
the data stream. We consider non-stationary prior probabilities p1pαq “ 1 ´ p2pαq in
the mixture density (3.4). In practical situations, varying class bias can complicate the
training significantly and lead to inferior performance (Wang et al. 2017). Specifically,
we distinguish the following scenarios:

(A) Drift in the training data only
Here we assume that the true target classification is defined by a fixed reference
density of data. As a simple example we consider equal priors p1 “ p2 “ 1{2 in a
symmetric reference density (3.4) with v1 “ v2. On the contrary, the characteristics of
the observed training data are assumed to be time-dependent. In particular, we study
the effect of non-stationary class priors pmpαq and weight decay on the learning
dynamics. Given the order parameters of the learning systems in the course of
training, the corresponding reference generalization error

ϵref pαq “
`

ϵ1g ` ϵ2g
˘

{2 (3.14)

is obtained by setting p1 “ p2 “ 1{2 in Eq. (3.12), but inserting Rimpαq and Qikpαq

as obtained from the integration of the corresponding ODE with time dependent
p1pαq “ 1 ´ p2pαq in the training process.

(B) Drift in training and test data
In the second interpretation we assume that the variation of pmpαq affects training
and test data in the same way. Hence, the change of the statistical properties of
the data is inevitably accompanied by a modification of the target classification:
For instance, the Bayes optimal classifier and its best linear approximation depend
explicitly on the actual priors (Biehl et al. 2007).

The learning system is supposed to track the actual drifting concept and we refer
to the corresponding generalization error as the tracking error

ϵtrack “ p1pαq ϵ1g ` p2pαq ϵ2g. (3.15)

In terms of modelling the training dynamics, both scenarios, (A) and (B), require
the same straightforward modification of the ODE system: the explicit introduction
of α-dependent quantities pσpαq in Eq. (3.4). The obtained temporal evolution of
order parameters yields the reference error ϵref pαq for the case of drift in the training
data (A) and ϵtrackpαq in interpretation (B).
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Note that in both interpretations, we consider the very same drift processes
affecting the training data. However, the interpretation of the relevant performance
measure is different. In (A) only the training data is subject to the drift, but the
classifier is evaluated with respect to an idealized static situation representing a fixed
target. On the contrary, the tracking error in (B) is thought to be computed with
respect to test data available from the stream, at the given time. Alternatively, one
could interpret (B) as an example of real drift with a non-stationary target, where
ϵtrack represents the corresponding generalization error. However, we will refer to
(A) and (B) as virtual drift throughout the following.

3.3.2 Real Drift

In the presented framework, a real drift can be modelled as a process which displaces
the characteristic vectors B1,2, i.e. cluster centers in LVQ or the teacher weight
vectors in the SCM, in the N - dimensional feature space.

A variety of time-dependences could be considered in the model. We restrict
ourselves to the analysis of diffusion-like random displacements of vectors B1,2pµq

at each time step. Upon presentation of example µ, we assume that random vectors
B1,2pµq are generated which satisfy the conditions

B1pµq ¨ B1pµ´ 1q “ B2pµq ¨ B2pµ´ 1q “

ˆ

1 ´
δ

N

˙

B1pµq ¨ B2pµq “ 0 and | B1pµq |2 “ | B2pµq |2 “ 1 .

(3.16)

Here δ quantifies the strength of the drift process. The displacement of the character-
istic vectors is very small in an individual training step. We assume for simplicity
that the orthonormality of the characteristic vectors is preserved in the drift. In terms
of the continuous time α “ µ{N , the drift parameter defines a characteristic scale 1{δ

on which the overlap of the current teacher vectors with their initial positions decay:

Bmpµq ¨ Bmp0q “ expr´δµ{N s . (3.17)

The effect of such a drift process is easily taken into account in the formalism: For
a given adaptive vector wi P RN we obtain (Biehl and Schwarze 1992, Biehl and
Schwarze 1993, Kinouchi and Caticha 1993, Vicente and Caticha 1998)

rwi ¨ Bkpµqs “

ˆ

1 ´
δ

N

˙

rwi ¨ Bkpµ´ 1qs for k “ 1, 2 (3.18)

under the above specified small displacement in discrete learning time. Hence, the
drift tends to decrease the quantities Rik which clearly deteriorates the success of
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training compared with the stationary case. The resulting ODE for the training
dynamics in the limit N Ñ 8 under the drift process (3.16) read

„

dRim
dα

ȷ

drift

“

„

dRim
dα

ȷ

stat

´ δ Rim and
„

dQik
dα

ȷ

drift

“

„

dQik
dα

ȷ

stat

(3.19)

with the terms r¨ ¨ ¨ sstat denoting the dynamics of the stationary environments defined
in Eq. (2.21) and Eq. (3.9). Note that now order parameters Rimpαq correspond to
the inner products wipαq ¨ Bmpαq, as the characteristics vectors themselves are also
time-dependent.

3.3.3 Weight Decay

Possible motivations for the introduction of so-called weight decay in machine learning
systems range from regularization as to reduce the risk of over-fitting in regression and
classification (Hastie et al. 2001, Bishop 2006, Goodfellow et al. 2016) to the modelling
of forgetful memories in attractor neural networks (Mezard et al. 1986, van Hemmen
et al. 1987).

Here we introduce weight decay as to enforce explicit forgetting and to potentially
improve the performance of the systems in the presence of concept drift. We consider
the multiplication of all adaptive vectors by a factor p1 ´ γ{Nq before the generic
learning step given by ∆wµ

i in Eq. (3.2) is performed:

wµ
i “

´

1 ´
γ

N

¯

wµ´1
i `

η

N
∆wµ

i . (3.20)

Since the multiplications with p1 ´ γ{Nq accumulate in the course of training, weight
decay enforces an increased influence of the most recent training data as compared
to earlier examples. Note that analogous modifications of perceptron training under
concept drift were discussed in (Biehl and Schwarze 1992, Biehl and Schwarze 1993,
Kinouchi and Caticha 1993, Vicente and Caticha 1998).

In the thermodynamic limit N Ñ 8, the modified ODE for training under real
drift, cf. Eq. (3.16), and weight decay, Eq. (3.20), are obtained as

„

dRim
dα

ȷ

decay

“

„

dRim
dα

ȷ

stat

´ pδ ` γqRim ,

„

dQik
dα

ȷ

decay

“

„

dQik
dα

ȷ

stat

´ 2 γ Qik .

(3.21)

3.4 Results and Discussion

Here we present and discuss our results obtained by integrating the systems of ODE
with and without weight decay under different time-dependent drifts. For compari-
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son, averaged learning curves obtained by means of Monte Carlo simulations are
also shown. These simulations of the actual training process provide an independent
confirmation of the ODE-based description and demonstrate the relevance of results
obtained in the thermodynamic limit N Ñ 8 for relatively small, finite systems.

We present the results in the following order:

• Real drift in LVQ training: In Sec. 3.4.1 we present the results that were
obtained for the learning dynamics of LVQ under a random displacement
of the cluster centers of the Gaussian mixture that defines the classification,
shifting the optimal decision boundary.

• Virtual drift in LVQ training: In Sec. 3.4.2 we present the results of the virtual
drift that consists of changing class biases.

• Real drift in the Erf-SCM for general learning rate: Sec. 3.4.3 contains a
discussion of results obtained for the learning dynamics of the Erf-SCM under
a random drift of the teacher vectors. These results are obtained using the full
system of ODE (2.21) for general learning rate η.

• Real drift in the Erf-SCM and the ReLU-SCM: In Sec. 3.4.4 the analysis of the
Erf-SCM in Sec. 3.4.3 is extended significantly: The results are compared with
the learning behavior in the ReLU-SCM under real drift and we analyse the
sensitivity to drift and weight decay of the two systems in terms of the obtained
generalization performance and plateau length in the learning curves.

3.4.1 Learning Vector Quantization in the Presence of Real Concept
Drift

We study the typical behavior of LVQ1 under real concept drift as defined in Sec.
3.3.2. Throughout the following we consider prototypes initialized as independent,
normalized random vectors with no prior knowledge of the cluster structure, which
corresponds to

Q11p0q “ Q22p0q “ 1, Q12p0q “ 0 and Rimp0q “ 0 for i,m P t1, 2u. (3.22)

Fig. 3.2 (left panel) displays example learning curves ϵgpαq for a drift with δ “ 1

for different learning rates, see the caption for other model parameters. Details of
the initial phase of training depend on the interplay of initial values Qiip0q and the
learning rate. Note that a non-monotonic behavior of ϵgpαq can be observed for some
settings.

Monte Carlo simulations show excellent agreement with the pN Ñ 8q theoretical
predictions already for relatively small systems. This parallels the findings presented
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Figure 3.2: LVQ under Concept Drift: Learning Curves and the Role of the Learning Rate
LVQ1 training from data according to the model density (3.4) with λ “ 1, p1 “ p2 “

0.5 and v1 “ v2 “ 0.5 in the presence of real concept drift. Left panel: Learning
curves ϵgpαq for δ “ 1 and various learning rates η. Symbols and error bars mark
the mean results and standard deviations observed in 25 randomized simulations
for N “ 1000 with η “ 1 as an example. Right panel: Asymptotic pα Ñ 8q

generalization error as a function of the learning rate η for different drift parameters
δ and in the stationary environment with δ “ 0.

in (Biehl et al. 2007, Ghosh et al. 2006) for stationary environments. As just one
example, Fig. 3.2 (left) also shows the mean and standard deviation of ϵg over 25

randomized runs of the training for η “ 1 and N “ 1000.
The results for large α show that the success of learning, i.e. the degree to which

the drifting concept can be tracked by LVQ1, depends on the learning rate in a non-
trivial way. In contrast to learning in stationary environments, the use of very small
learning rates obviously fails to maintain the ability to generalize in the presence of
a significant real drift. On the other hand, too large learning rates result in inferior
performance as well.

After presenting many examples, i.e. in the limit α Ñ 8, the system approaches a
quasi-stationary state in which the LVQ prototypes track the drifting center vectors
B1,2 with constant overlap parameters Rim, Qik. The configuration corresponds to
the stationarity conditions

„

dRim
dα

ȷ

drift

“0 and
„

dQik
dα

ȷ

drift

“0 . (3.23)

Fig. 3.2 (right panel) shows the α Ñ 8 asymptotic generalization error ϵ8
g “

limαÑ8 ϵgpαq as a function of the learning rate η. Only in absence of drift, i.e. for
δ “ 0, the best possible generalization ability of LVQ1 is obtained in the limit η Ñ 0.
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Figure 3.3: LVQ under Concept Drift: Asympotic Generalization and the Influence of
Weight Decay
LVQ1 in the presence of a real drift with model parameters λ “ 1, v1 “ v2 “ 0.5, p1 “

p2 “ 0.5. Left panel: The pα Ñ 8q asymptotic generalization error of LVQ1 as
obtained with an optimized constant learning rate. Empty circles correspond to
numerical results for different drift parameters, the filled circle represents stationary
data, for which ϵ8

g pδ“0q « 0.158. The dashed line corresponds to a fit of the form
ϵ8
g pδ“0q ` 0.166 δ1{2. Right panel: Learning curves in the model with learning rate
η “ 2.0 and drift parameter δ “ 1.0. The three curves correspond to learning without
weight decay (upper, solid line), with γ “ 2 (lower, dash-dotted line) and γ “ 5

(middle, dashed line) respectively.

We refer the reader to (Biehl et al. 2007, Ghosh et al. 2006) for a detailed discussion of
ϵ8
g and its dependence on the model parameters λ, p˘ and v˘. For δ ą 0, the limit
η Ñ 0 results in trivial asymptotic behavior corresponding to random guesses, with
ϵ8
g “ 1{2 for the symmetric input density with p1 “ p2 and v1 “ v2, for instance.

Given the drift parameter δ, an optimal constant learning rate can be identified
with respect to the generalization ability in the quasi-stationary state. The use of this
learning rate yields, for α Ñ 8, the best ϵ8

g achievable under drift. It is displayed
in Fig. 3.3 (left panel) as a function of δ for small values of the drift parameter. The
optimal quasi-stationary generalization error under concept drift scales like

“

ϵ8
g pδq ´ ϵ8

g p0q
‰

9δ1{2 for small δ . (3.24)

As expected, the drift impedes the learning process. However, our results show that
already the simplest LVQ scheme is capable of tracking randomly drifting clusters
and to maintain a significant generalization ability, even in very high-dimensional
spaces.

We have also studied the effect of weight decay in the presence of the above
discussed real concept drift. Fig. 3.3 (right panel) displays example learning curves for
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LVQ1 training under a random drift with δ “ 1 with various weight decay parameters
γ for a given learning rate η “ 2. As these examples show, the implementation of
weight decay has the potential to improve the generalization behavior significantly
when tracking a drifting concept. The simultaneous optimization of learning rate
and weight decay tη, γu with respect to the success of training in the tracking state
will be addressed in forthcoming studies.

3.4.2 Virtual Drift in LVQ training

All results presented in the following are for constant learning rate η “ 1 in the LVQ
training. The results remain qualitatively the same for a range of learning rates. LVQ
prototypes were initialized as normalized independent random vectors without prior
knowledge:

Q11p0q “ Q22p0q “ 1, Q12p0q “ 0, and Rikp0q “ 0 . (3.25)

We study three specific scenarios for the time-dependence p1pαq “ 1´ p2pαq as
detailed in the following.

Linear increase of the bias

Here we consider a time-dependent bias of the form p1pαq “ 1{2 for α ă αo and

p1pαq “
1

2
`

ppmax´1{2q pα ´ αoq

pαend ´ αoq
for α ě αo. (3.26)

where the maximum class weight p1 “ pmax is reached at learning time αend.
Fig. 3.4 shows the learning curves as obtained by numerical integration of the

ODE together with Monte Carlo simulation results for pN “ 100q-dimensional inputs
and prototype vectors. As an example we set the parameters to αo “ 25, pmax “

0.8, αend “ 200. We set v1,2 “ 0.4 and λ “ 1 in the density 3.4. The learning curves
are displayed for LVQ1 without weight decay (upper) and with γ “ 0.05 (lower
panel). Simulations show excellent agreement with the ODE results.

The system adapts to the increasing imbalance of the training data, as reflected
by a decrease (increase) of the class-wise error for the over-represented (under-
represented) class, respectively. The weighted over-all error ϵtrack also decreases,
i.e. the presence of class bias facilitates smaller total generalization error, see (Biehl
et al. 2007). The performance with respect to unbiased reference data deteriorates
slightly, i.e. ϵref grows with increasing class bias as the training data represents the
target less faithfully.
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Figure 3.4: LVQ1 in the presence of a concept drift with linearly increasing p1pαq

given by αo “ 20, αend “ 200, pmax “ 0.8 in (3.26). Solid lines correspond to the
integration of ODE with initialization as in Eq. (3.25). We set v1,2 “ 0.4 and λ “ 1

in the density (3.4). The upper graph corresponds to LVQ1 without weight decay,
the lower graph displays results for γ “ 0.05 in Eq. (3.20). In addition, Monte Carlo
results for N “ 100 are shown: class-wise errors ϵ1,2pαq are displayed as downward
(upward) triangles, respectively; squares mark the reference error ϵref pαq; circles
correspond to ϵtrackpαq, cf. Eqs. (3.14,3.15).

Sudden change of the class bias

Here we consider an instantaneous switch from low bias p1pαq “ 1´pmax for α ď αo
to high bias

p1pαq “

"

1 ´ pmax for α ď αo.

pmax ą 1{2 for α ą αo.
(3.27)

We consider pmax “ 0.75 as an example, the corresponding results from the integra-
tion of ODE and Monte Carlo simulations are shown in Fig. 3.5 for training without
weight decay (upper) and for γ “ 0.05 (lower panel).

We observe similar effects as for the slow, linear time-dependence: The system
reacts rapidly with respect to the class-wise errors and the tracking error ϵtrack
maintains a relatively low value. Also, the reference error ϵref displays robustness
with respect to the sudden change of p1. Weight decay, as can be seen in the lower
panel of Fig. 3.5 reduces the over-all sensitivity to the bias and its change: Class-wise
errors are more balanced and the weighted ϵtrack slightly increases compared to the
setting with γ “ 0.
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Figure 3.5: LVQ1 in the presence of a concept drift with a sudden change of class
weights according to Eq. (3.27) with αo “ 100 and pmax “ 0.75. Only the α-range
close to αo is shown. All other details are provided in Fig. 3.4.

Periodic time dependence

As a third scenario we consider oscillatory modulations of the class weights during
training:

p1pαq “ 1{2 ` ppmax ´ 1{2q cos
`

2π α
L

T
˘

(3.28)

with periodicity T on α-scale and maximum amplitude pmax ă 1. Example results
are shown in Fig. 3.6 for T “ 50 and pmax “ 0.8. Monte Carlo results for N “ 100 are
only displayed for the class-wise errors, for the sake of clarity. They show excellent
agreement with the numerical integration of the ODE for training without weight
decay (upper panel) and for γ “ 0.05 (lower panel). These results confirm our
findings for slow and sudden changes of the prior weights: Weight decay limits the
flexibility of the LVQ system to react to the presence of a bias and its time-dependence.

Discussion: LVQ under virtual drift

Our results for the different realizations of time-dependent class weights show that
Learning Vector quantization can cope with this form of drift to a certain effect. By
design, standard incremental updates like the classical LVQ1 allow the prototypes to
adjust to the changing statistics of the data. This has been shown in Sec. 3.4.1 for the
actual drift of the cluster centers in the model density. Here we show that LVQ1 can
also cope with the virtual drift processes.
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Figure 3.6: LVQ1 in the presence of oscillating class weights according to Eq. (3.28)
with parameters T “ 50 and pmax “ 0.8, without weight decay γ “ 0 (upper graph)
and for γ “ 0.05 (lower). For clarity, Monte Carlo results are only shown for the
class-conditional errors ϵ1 (downward) and ϵ2 (upward triangles). All other details
are given in Fig. 3.4.

In analogy to our findings in Sec. 3.4.1, one might have expected improved
performance when introducing weight decay as a mechanism of forgetting. As we
demonstrate, however, weight decay does not have a very strong effect on the sys-
tem’s reaction to changing prior class weights. Essentially, weight decay limits the
prototype norms and hinders shifts of the decision boundary by prototype displace-
ment. The overall influence of class bias and its time-dependence is reduced in the
presence of weight decay. As a consequence, the tracking error slightly increases for
γ ą 0, in general. On the contrary, the error ϵref with respect to the reference density
decreases compared to the training without weight decay.

A clear beneficial effect of forgetting previous information in favor of the most
recent examples cannot be confirmed in this case. The reaction of the learning system
to sudden (B) or oscillatory changes of the priors (C) remains also largely unchanged
and similar to (A) when introducing weight decay.

3.4.3 SCM Regression in the Presence of Real Concept Drift

Here we present results concerning the SCM student-teacher scenario with K “ M “

2. Already in this simple setting and in the absence of concept drift, the learning
dynamics display non-trivial effects which have been shown and studied in detail
in, among others, (Saad and Solla 1995a, Saad and Solla 1995b, Biehl et al. 1996) for
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erf activation and in Chapter 2 for ReLU activation. Perhaps the most thoroughly
studied phenomenon in the SCM training process is the existence of quasi-stationary
plateaus in the evolution of the order parameters and the generalization error. In the
most clear-cut cases, they correspond to approximately symmetric configurations
of the student network with respect to the teacher network, i.e. Rim « R for all
i,m. In such a state, all student units have acquired the same, limited knowledge
of the target rule. Hence, the generalization error in the plateau is sub-optimal. In
terms of Eqs. (2.21), plateaus correspond to weakly repulsive fixed points of the ODE
system. One can show in case of orthonormal teacher units and for small learning
rates that a symmetric fixed point with Rim “ R and the associated plateau state
always exists, see e.g. (Saad and Solla 1995b). In order to achieve a further decrease of
the generalization error, the symmetry of the student with respect to the teacher units
has to be broken by specialization: Each student weight vector w1,2 has to represent a
specific teacher unit and Ri1 ‰ Ri2, i.e., the student specialization Si ą 0, is required
for successful learning.

Note that in general, more complex fixed point configurations with different
degrees of (partial) specialization can be found. The number of observable plateaus
depends on the learning rate and increases for larger K and M , see (Biehl et al. 1996)
for a detailed discussion in the absence of drift.

The problem of delayed learning due to saddle points and related effects in
gradient-based training is obviously also of interest in the context of Deep Learning, see
(Goodfellow et al. 2016, Marcus 2018, Dauphin et al. 2014, Tishby and Zaslavsky 2015)
for recent investigations and further references.

In practice, one expectsRimp0q « 0 for all i,m unless prior knowledge is available
about the target. Hence, also the student specialization Sip0q “ |Ri1p0q ´Ri2p0q| is
expected to be small, initially. A nearly unspecialized configuration with Sipαq « 0

persists in a transient phase of learning, which can extend over large values of α.
The actual shape and length of the plateau depends on the precise initialization and
the repulsive properties of the corresponding fixed point of the dynamics, see (Biehl
et al. 1996) for a detailed discussion, which also addresses the effect of finite N in
Monte Carlo simulations.

Fig. 3.7 (left panel) shows an example (lowest curve) of a pronounced plateau
state in on-line gradient descent for initial conditions

Rim “ Ro ` Up10´5q with Ro “ 0.01, Q11 “ Q22 “ 0.5, Q12 “ 0.49. (3.29)

Here UpXq denotes a random number drawn from the interval p0, Xs with uniform
probability, hence also Sip0q “ OpXq. The initialization corresponds to nearly identi-
cal student vectors with little prior knowledge. It is inspired by the analyses in (Saad
and Solla 1995b, Biehl et al. 1996) which showed that the actual value of Ro is largely
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Figure 3.7: Regression under Concept Drift: Learning Curves
Gradient-based training of the Soft Committee Machine with K “ M “ 2 and or-
thogonal teacher vectors in the presence of real target drift. Erf activation is used
in the hidden units and, the learning rate is set to η “ 0.5 and initial conditions are
as specified in Eq. (3.29). Left panel: Learning curves for the stationary case with
δ “ 0 (lower line), for weak drift with δ “ 0.005 (middle) and for strong drift with
δ “ 0.03 (upper line). Symbols represent the result of single Monte Carlo simulation
runs for system size N “ 500. Right panel: The corresponding evolution of the
student-teacher overlaps R11 “ R22 and R12 “ R21 vs. α for the stationary case with
δ “ 0 (lower and upper line), for weak drift with δ “ 0.005 (intermediate) and strong
drift with δ “ 0.03 (center, all overlaps equal).

irrelevant for the observed plateau length, while it depends logarithmically on X
(Biehl et al. 1996). Corresponding Monte Carlo simulations are shown in the left
panel of Fig. 3.7 for N “ 500 and randomly drawn initial student vectors, resulting in
Rimp0q “ Op1{

?
Nq, with Qikp0q fixed according to Eq. (3.29). Simulations confirm

the theoretical predictions very well, qualitatively.
For very slow drifts of the target concept, the behavior is still similar to the

stationary case. For an example with δ “ 0.005, Fig. 3.7 (left panel) shows the
N Ñ 8 theoretical learning curve and Monte Carlo simulations: After a rapid,
initial decrease of the generalization error, a quasi-stationary, unspecialized plateau
is reached. Eventually, the symmetry is broken and the system approaches its α Ñ 8

asymptotic state, in which a smaller but non-zero ϵ8
g pδq is achieved. Obviously,

on-line gradient descent training enables the SCM to track the drifting target to a
reasonable degree and maintains a specialized hidden unit configuration.

The behavior changes significantly in the presence of stronger concept drifts:
The SCM remains unspecialized even for α Ñ 8 and, consequently, the achievable
generalization ability is relatively poor. Fig. 3.7 (left panel) displays the corresponding
learning curve for δ “ 0.03 as an example, together with the result of a single Monte
Carlo simulation.
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Figure 3.8: Regression under Concept Drift: Plateaus and Specialized States
Soft Committee Machine with Erf activation, regression in the presence of real target
drift, learning rate and model parameters as in Fig. 3.7. Left panel: The generalization
error vs. the drift parameter δ for weight decay strength γ “ 0, in the symmetric
plateau state with R11 “ R22 “ R12 “ R21 (dashed line) and in the α Ñ 8 stationary
state (solid). Right panel: The influence of weight decay: For a given drift with
δ “ 0.015, the α Ñ 8 asymptotic generalization error is displayed as a function of the
weight decay parameter γ. In addition, the dashed line marks ϵg in the unspecialized
plateau state.

Fig. 3.7 (right panel) shows the evolution of the overlap parameters Rimpαq

corresponding to the learning curves displayed in the left panel. While for δ “ 0.005

the student units still specialize, the unspecialized plateau state with Rim « R for all
i,m persists for δ “ 0.03.

In the left panel of Fig. 3.8, this is illustrated in terms of the (quasi-) stationary
values of ϵg : The system can benefit from the specialization in terms of a low α Ñ 8

asymptotic generalization error (solid line). For δ « 0, the achievable generalization
error increases linearly with the drift parameter: ϵ8

g pδq9δ. Note that ϵ8
g pδ “ 0q “ 0

in the perfectly learnable scenario with K “ M considered here. On the contrary, for
larger δ, the only stable fixed point of the system coincides with an unspecialized
configuration (dashed line). The generalization error of the latter also displays a
linear dependence on δ for slow drifts.

Weight decay can improve the performance slightly in the presence of weak
concept drifts. As displayed in Fig. 3.8 (right panel) for an example drift of δ “ 0.015,
the parameter γ in Eq. (3.3.3) can be tuned to decrease the achievable generalization
error in the unspecialized plateau (dashed line) and, more importantly, in the final
quasi-stationary tracking state (solid line). Specialization cannot be achieved if the
weight decay parameter is set too large.
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3.4.4 SCM regression under real concept drift: Erf vs. ReLU in case
of small learning rates

Here we present the results concerning the SCM student teacher scenario with
K “ M “ 2 under real concept drift, i.e. random displacements of the teacher vectors
as introduced in Sec. 3.3.2. We extend the analysis in the previous section significantly
and we focus specifically on the comparison of the Erf-SCM with the ReLU-SCM. For
the comparison of Erf-SCM and ReLU-SCM, in absence of concept drift, see Chapter 2
in which interesting distances between the two activation functions are revealed.
Unlike LVQ for classification, gradient descent based training of a regression system
is expected to be much more sensitive to the choice of the learning rate. Here, we
restricted the discussion to the well-defined limit of small learning rates, η Ñ 0 and
α Ñ 8 with rα “ ηα “ Op1q, see the discussion before Eq. (2.22) in Chapter 2.

ODE and Monte Carlo simulations

Here, we investigate and compare the learning dynamics of networks with Erf- and
ReLU-activation under concept drift and in the presence of weight decay. To this
end we study the models by numerical integration of the corresponding ODE and, in
addition, by Monte Carlo simulations.

Similar to the previous section, we study training processes in absence of prior
knowledge in the student. In the following we consider exemplary initial conditions
with

Rimp0q “ 0, Q11p0q “ Q22p0q “ 0.5, Q12p0q “ 0.49 (3.30)

which correspond to almost identical student weight vectors w1p0q and w2p0q, which
are both orthogonal to the teacher vectors. Note that the initial norm of the student
vectors and their mutual overlap Q12p0q can be set arbitrarily in practice.

For the networks with two hidden units we recall the definition of the quantity
Sipαq “ |Ri1pαq´Ri2pαq| as the specialization of student units i “ 1, 2. In the plateau
state, Sipαq « 0 for an extended amount of training time, while an increasing value
of Sipαq indicates the specialization of the unit. In practice, one expects that initially
Rimp0q « 0 for all i,m if no prior information is available about the target rule. Hence,
the student specialization Sip0q “ |Ri1p0q ´Ri2p0q| is also small, initially.

We noted in the previous section that the unspecialized plateau can dominate
the learning process and, consequently, its length is a quantity of significant interest.
Quite generally, the length is governed by the repulsive properties of the relevant
fixed point of the ODE system and depends logarithmically on the the magnitude
of the initial specialization Sip0q, see (Biehl et al. 1996) for a detailed discussion. In
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simulations for large N , a random initialization of student vectors would result in
overlapsRimp0q “ Op1{

?
Nq with the teacher vectors which also implies that Sip0q “

Op1{
?
Nq. The accurate extrapolation of simulation results forN Ñ 8 is complicated

by this interplay of finite size effects and initial specialization which governs the
escape from the plateau states (Biehl et al. 1996). Due to fluctuations in a finite
system, plateaus are typically left earlier than predicted by the theoretical prediction
for N Ñ 8. Here we focus on the performance achieved in the plateau states and
resort to a simpler strategy: The values of the order parameters observed at rα “ 0.05

in the Monte Carlo simulation are used as initial values for the numerical integration
of the ODE. This does not necessarily warrant a one-to-one correspondence of the
precise shape and length of the plateau states. However, the comparison shows
excellent qualitative agreement and allows for the quantitative comparison of the
performance in the quasi-stationary states.

We have studied the Erf-SCM and the ReLU-SCM under concept drift, Eq. (3.16),
and weight decay, Eq. (3.20), in the limit of small learning rates η Ñ 0. We resorted to
this simplifying limit as the term G

p2q

ik in Eq. 2.24 could not be obtained analytically
for the ReLU-SCM. However, non-trivial results can be achieved in terms of the
rescaled training time rα in the limit (2.22). Hence we integrate the ODE provided in
Eq. (2.23), combined with the drift and weight decay terms from Eqs. (3.19) and (3.21)
that also have to be scaled with η in this case: rδ “ ηδ, rγ “ ηγ. For completeness, the
full ODE then reads:

„

dRim
drα

ȷ

decay

“

„

dRim
drα

ȷ

stat

´ prδ ` rγqRim ,

„

dQik
drα

ȷ

decay

“

„

dQik
drα

ȷ

stat

´ 2 rγ Qik .

(3.31)

In addition to the numerical integration of the above ODE we have performed and
averaged over 10 independent runs of Monte Carlo simulations with system size
N “ 500 and small but finite learning rate η “ 0.05.

Learning curves under concept drift

Fig. 3.9 shows the learning curves ϵgprαq as results of the averaged Monte Carlo
simulations and the ODE integration for different strengths rδ of concept drift with
no weight decay (rγ “ 0). The left and right panel correspond to Erf- and ReLU-SCM,
respectively.

Apart from deviations in terms of the plateau lengths, simulations and the numer-
ical integration of the ODE show very good agreement. In particular, the generaliza-
tion error in the plateau and final states nearly coincides. As outlined in Sec. 3.4.3, the
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Figure 3.9: The learning performance under concept drift in terms of generalization
error as a function of the learning time rα. Dots correspond to the average over 10
runs of Monte Carlo simulations with N “ 500, η “ 0.05 with initial conditions as
in Eq. (3.30). Solid lines show ODE integrations. (a): Erf SCM. From bottom to top,
the curves correspond to the levels of target drift rδ “ t0, 0.01, 0.02, 0.05u. (b): ReLU
SCM. From bottom to top, the levels of target drift are: rδ “ t0, 0.05, 0.1, 0.3u.

actual length of plateaus in simulations depends on subtle details (Biehl et al. 1996)
which were not addressed here.

Note also that a direct, quantitative comparison of Erf- and ReLU-SCM in terms of
training times rα is not meaningful. For instance, it seems tempting to conclude that
the ReLU-SCM exhibit shorter plateau states for the same network size and training
conditions. However, one has to take into account that the activation functions
influence the complexity of the input output relation of the network in a non-trivial
way.

From the behavior of the learning curves for increasing strengths rδ as shown in
Fig. 3.9, several impeding effects of the drift can be identified: The generalization
errors in the unspecialized plateau and in the final state for large rα increase with
rδ. At the same time, the plateau lengths increase. These effects are observed for
both types of activation function. More specifically, the behavior for small rδ is close
to the stationary setting with rδ “ 0: A rapid initial decrease of the generalization
error is followed by the quasi-stationary plateau state that persists for a relatively
long training time. Eventually, the system escapes from the plateau and improved
generalization performance becomes possible. Despite the matching complexity of
student and teacher, perfect generalization cannot be achieved in the presence of
on-going concept drift. In the corresponding Monte Carlo simulations, cf. Figs. 3.9a
and 3.9b, we employed a reasonably small learning rate η “ 0.05 which yielded very
good agreement.

We note that the stronger the drift, the smaller is the difference between the
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Figure 3.10: Erf-SCM: Generalization error under concept drift in unspecialized
plateau states (dashed lines) and final states (solid) of the learning process. 3.10a:
Plateau- and final generalization error for an increasing strength rδ of the target drift.
Here, weight decay is not applied: rγ “ 0. For rδ ą rδc as marked by the vertical line,
the curves merge. 3.10b: The plateau- and final generalization error as a function of
the weight decay parameter rγ for a fixed level of real target drift, here: rδ “ 0.03. The
curves merge for rγ ą rγc, as marked by the vertical line. The lower panels show the
observed plateau lengths as a function of rδ for rγ “ 0 (5c) and as a function of rγ for
fixed rδ “ 0.03 (5d), respectively.

performance in the plateau and the final state. For very large values of rδ both
versions of the SCM cannot escape the plateau state anymore as it corresponds to a
stable fixed point of the ODE.

In the following we discuss for both activation functions the effect of concept
drift on the plateau- and final generalization error in greater detail. The influence of
weight decay on the dynamics is also presented.

Erf-SCM under drift and weight decay

Fig. 3.10a displays the effect of the drift strength rδ on the generalization error in
the unspecialized plateau state and in the final state for rα Ñ 8, denoted with ϵpgprδq
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and ϵ8
g prδq, respectively. As mentioned above, weak drifts still allow for student

specialization with improved performance in the final state for large rα. However,
increasing the drift strength results in a decrease of the difference |ϵ8

g prδq ´ ϵpgprδq|. We
have marked the value of rδ, above which the plateau becomes the stable final state
for rα Ñ 8 in the figure and refer to it as rδc.

Interestingly, in a small range of the drift parameter, 0.036 ă rδ ă 0.061, the
final performance is worse than in the plateau, i.e. ϵ8

g prδq ą ϵpgprδq. Since ϵg depends
explicitly also on the Qik, it is possible for an unspecialized state with Rim “ R to
generalize better than a slightly specialized configuration with unfavorable values of
the student norms and mutual overlaps.

Fig. 3.10c shows the effect of the drift on the plateau length. The start and end of
the plateau are defined as

rα0 “ mintrα | ϵpg ´ 10´4 ă ϵgprαq ă ϵpg ` 10´4u

rαP “ mintrα |Siprαq ě 0.2Siprα Ñ 8qu . (3.32)

Here, Siprα Ñ 8q represents the final specialization that is achieved by the system for
large training times. The value prαP ´ rα0q is used as a measure of the plateau length.

In the weak drift regime, the plateau length increases slowly with rδ as shown in
panel (c) for rγ “ 0. It eventually diverges as rδ approaches rδc from Fig. 3.10a.

The dependence of ϵpg and ϵ8
g on the weight decay parameter rγ is shown in

Fig. 3.10b. We observe improved performance for a small amount of weight decay
compared to absence of weight decay (rγ “ 0), similar to the result in Fig. 3.8 for larger
learning rate. However, the system is quite sensitive to the actual setting of rγ: Values
slightly larger than the optimum quickly deteriorate the ability for improvement
from the plateau generalization error. The value of rγ, above which the plateau- and
final generalization error coincide has been marked in the figure and we refer to it as
rγc.

Fig. 3.10d shows the effect of the weight decay on the plateau length in the same
setting as in Fig. 3.10b. Introducing a weight decay always extends the plateau length.
For small rγ the plateau length grows slowly and diverges as rγ approaches rγc from
Fig. 3.10b.

ReLU-SCM under drift and weight decay

For the ReLU-SCM, part of the results are similar and other results are significantly
different from the results of the Erf-SCM.

The effect of the strength of the drift on the generalization error in the unspe-
cialized plateau state and in the final state is shown in Fig. 3.11a. Here, the picture
is similar to the Erf-SCM: an increase in the drift strength causes an increase in the
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Figure 3.11: ReLU-SCM: Generalization error under concept drift in unspecialized
plateau states (dashed lines) and final states (solid), as a function of the drift strength
(6a) and weight decay (6b). In (6b), rδ “ 0.2. The drift strength rδc above which the
curves merge is marked in (6a) and similar for weight decay rγc in (6b). The lower
panels show the observed plateau lengths as a function of rδ for rγ “ 0 (6c) and as a
function of rγ for fixed rδ “ 0.2 (6d), respectively.

plateau- and final generalization error. We have marked in the figure the drift strength
rδc at which there is no further change in performance from the plateau. In contrast
to the Erf-SCM, there is no range of rδ for which the ReLU-SCM generalization error
increases after leaving the plateau.

Fig. 3.11c shows the effect of the strength of the drift on the plateau length. Here
too, a similar dependence is observed as for the Erf-SCM: For the range of weaker
drifts, the plateau length grows slowly and diverges for strong drifts up to the drift
strength rδc from Fig. 3.11a.

Fig. 3.11b shows the effect of the amount of weight decay on the plateau- and final
generalization error in a concept drift situation. A small amount of weight decay can
improve the generalization error compared to no weight decay (rγ “ 0). The effect
weight decay has on the ReLU-SCM shows a much greater robustness compared
to the Erf-SCM in terms of the ability to improve from the plateau value: For high
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amounts of weight decay, an escape from the plateau to better performance can still
be observed. The value rγc, above which the plateau- and final generalization error
coincide has been marked in the figure.

Fig. 3.11d shows the effect of the amount of weight decay on the plateau length
in the same concept drift situation as in Fig. 3.11b. In contrast to the result for the
Erf-SCM, it shows that for the ReLU-SCM the plateau is shortened significantly
in the smaller range of weight decay, the same range that also improves the final
generalization error as observed in Fig. 3.11b. The plateau length increases again for
very high levels of weight decay and diverges as rγ approaches the rγc from Fig. 3.11b.

3.4.5 Discussion: SCM regression under real drift

As was already discussed, the symmetric plateau corresponds to states where the
student units have all learned the same limited and general knowledge about the
teacher units, i.e. Rim « R and therefore the specialization of each student unit i
is small: Siprαq “ |Ri1prαq ´ Ri2prαq| « 0. Eventually, the symmetry is broken by the
start of specialization, when Siprαq increases for each student unit i. For stationary
learnable situations with K “ M , throughout learning the students units will acquire
a full overlap to the teacher units: Si “ 1 for all student units i. In this configuration,
the target rule has been fully learned which corresponds to perfect generalization
error. In our model of real concept drift, the teacher vectors are changing continuously.
This reduces the overlaps the student units can achieve with the teacher units, which
increases the generalization error in the plateau state and the final state.

Identifying the specific teacher vectors is more difficult than learning the general
structure of the teacher: Hence, increasing the drift causes the final generalization
error to deteriorate faster than the plateau generalization error. For very strong target
drift, the teacher vectors are changing too fast for specialization to be possible. We
have identified the strength of the drift above which any kind of specialization is
impossible for both SCM by studying the properties of the fixed point in the ODE. In
stationary situations, one eigenvalue of the matrix defining the linearized dynamics
near the fixed point is positive and causes the repulsion away from the fixed point
to specialization, as discussed for the ReLU-SCM in Chapter 2. We refer to this
positive eigenvalue as λs. We found that the eigenvalue decreases linearly with
the drift parameter rδ: For small rδ, the eigenvalue λs is still positive and and the
plateau can be escaped. However, the eigenvalue λs is negative for rδ ą rδc, so that the
symmetric fixed point is stable (attractor) and specialization becomes impossible. For
the Erf-SCM, rδc « 0.0615 and for the ReLU-SCM rδc « 0.225. The weaker repulsion
of the fixed point for stronger drift causes the plateau length to grow for rδ Ñ rδc. In
practice, this implies that higher training effort is necessary the stronger the concept
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drift is.
In the rα Ñ 8 final state, the student tracks the drifting target rule. For rδ ! rδc,

the student can achieve highly specialized states while tracking the teacher. The
closer the drift strength is to rδc, the weaker is the specialization that can be achieved
by the student while following the rapidly moving teacher vectors. For rδ ą rδc, the
unspecialized student can only track the rule in terms of a simple approximation.

In the results of the Erf-SCM, a range of drift strength 0.036 ă rδ ă rδc was observed
for which the final generalization error in the tracking state is worse than the plateau
generalization error. Upon further inspection, this is due to the large values of Q11

and Q22 of the student vectors in the specialized regime. Hence, the effect can be
prevented by introducing an appropriate weight decay.

Erf SCM vs. ReLU SCM: Weight decay in concept drift situations

Our results show that weight decay can improve the final generalization error in
the specialized tracking state for both SCM. The suppression of the contributions of
older and thus less representative data shows benefits in both systems.

However, from the result in Fig. 3.10b, we find that it is particularly important
to tune the weight decay parameter for the Erf-SCM, since the specialization ability
deteriorates quickly for values slightly off the optimum, as shown in the figure by
the rapid increase in ϵ8

g . This reflects a steep decrease of the largest eigenvalue λs
in the ODE for the Erf-SCM with increasing rγ, which also causes the increase of the
plateau length as observed in Fig. 3.10d. Already from rγc « 0.0255, the eigenvalue
λs becomes negative, and therefore the fixed point becomes an attractor.

We found a very different effect of weight decay on the performance of the ReLU-
SCM. Not only is it able to improve the final generalization error in the tracking state
as shown in Fig. 3.11b, it also significantly reduces the plateau length in the lower
range of weight decay. This reflects the increase of λs with increasing weight decay
in the fixed point of the ODE, which increases the repulsion from the unspecialized
fixed point towards specialization. Clearly, suppressing the contribution of older
data is beneficial for the specialization ability of the ReLU-SCM. For larger values of
rγ, the plateau length increases, reflecting a decrease of λs. However, specialization
remains possible up to a rather high value of weight decay: rγc « 1.125. The greater
robustness to weight decay with respect to specialization as shown in Fig. 3.11b
is likely related to our previous findings in (Straat and Biehl 2019) and Chapter 2,
which show that the ReLU student-teacher setup needs fewer examples to reach
specialization. We hypothesize that the simple linear nature of the function makes
it easier for the student to learn features of the target rule. Hence a relatively small
window of recent examples can already facilitate a degree of specialization.
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3.5 Conclusions

Here we conclude with a brief summary, provide an outlook on potential follow-up
studies and discuss challenges and open questions.

3.5.1 Brief Summary

In this contribution we presented a modelling framework which facilitates the sys-
tematic study and exact mathematical description of on-line learning in the presence
of concept drift. We exemplified the versatile framework in terms of models for
training of prototype-based classifiers (LVQ) and shallow neural networks for re-
gression, respectively. Virtual drift in terms of changing class priors was formulated
and studied for LVQ. Real drift, where the target classification or regression scheme
was subject to a randomized drift process, was studied for both LVQ and the soft
committee machine.

Most importantly, we demonstrated that the presented framework is suitable
for the mathematical analysis of a variety of learning and drift scenarios, including
weight decay as a possible mechanism of explicit forgetting.

3.5.2 LVQ for classification under drift and weight decay

In the real drift setting with a random displacement of cluster centers, we observed
that the simple LVQ1 prescription is indeed capable of tracking time-dependent
classification schemes in high-dimensional input space. Furthermore, we showed
that weight decay has the potential to improve the generalization behavior under
real drift in the quasi-stationary tracking state.

In the virtual drift setting, we observed that simple LVQ training can track the
time-varying class bias to a non-trivial extent: In the interpretation of these results in
terms of real drift, the class-conditional performance and the tracking error ϵtrackpαq

clearly reflect the time-dependence of the prior weights. In general, the reference
error ϵref pαq with respect to class-balanced test data, displays only little deterioration
due to the drift in the training data. In this case, the main effect of introducing weight
decay is a reduced overall sensitivity to bias in the training data: Figs. 3.4-3.6 display
a decreased difference between the class-wise errors ϵ1,2 for γ ą 0. Naı̈vely, one
might have expected an improved tracking of the drift due to the imposed forgetting,
resulting in, for instance, a more rapid reaction to the sudden change of bias in
Eq. (3.27). However, such an improvement cannot be confirmed. This finding is in
contrast to the results obtained for the real drift with the randomized displacement
of cluster centers, in which we observed increased performance by the use of weight
decay.
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The precise influence of weight decay clearly depends on the geometry and
relative position of the clusters. Its dominant effect, however, is the regularization
of the LVQ system by reducing the norms of the prototype vectors. Consequently,
the NPC classifier is less flexible to reflect class bias which would require significant
offset of the prototypes and decision boundary from the origin. This mildens the
influence of the bias and its time-dependence and it results in a more robust behavior
of the employed error measures.

3.5.3 SCM for regression under drift and weight decay

On-line gradient descent learning in the SCM has proven able to cope with drifting
concepts in regression: For weak drifts, the SCM still achieves significant special-
ization with respect to the drifting teacher vectors, although the required learning
time increases with the strength of the drift. In practice, this results in higher train-
ing effort to reach beneficial states in the network. The drift continuously reduces
the overlaps with the teacher vectors which deteriorates the generalization perfor-
mance. After reaching a specialized state, the network efficiently tracks the drifting
target. However, in the presence of very strong drift, both versions of the SCM (with
Erf- and ReLU-activation) lose their ability to specialize and as a consequence their
generalization behavior remains poor.

We showed that weight decay can improve the generalization performance in
the plateau and in the final tracking state. For the Erf-SCM, we found that there is a
small range of values of the weight decay parameter in which favorable performance
is achieved. Outside of this range, the network quickly loses the specialization ability.
Therefore, in practice a careful tuning of the weight decay parameter would be
required. The ReLU network shows greater robustness to the value of the weight
decay parameter and displays a stronger tendency to specialize. Most importantly,
weight decay reduces the plateau length significantly in the training of ReLU SCM.
Hence, weight decay could speed up the training of ReLU networks in practical
concept drift situations, achieving favorable weight configurations more quickly.
Furthermore, the network performs well with a larger range of values of the weight
decay parameter and does not require the careful tuning that is necessary in the case
of the Erf-SCM.

3.5.4 Future work

The presented modelling framework offers the possibility to extend the scope of
our studies in several relevant directions. For instance, the formalism facilitates the
consideration of more complex model scenarios. Greater values of K and M should
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be studied in, both, classification and regression. While we expect key results to carry
over from K “ M “ 2, the greater complexity of the systems should result in richer
dynamical behavior in detail. We will study if and how a mismatched number of
prototypes further impedes the ability of LVQ systems to react appropriately to the
presence of the virtual concept drift with changing class biases.

The training of an SCM with K ‰ M should be of considerable interest and will
also be addressed in forthcoming studies. One might speculate that concept drift
could enhance overfitting effects in over-sophisticated SCM with K ą M hidden
units. Ultimately, the characteristic robustness and benefits of the ReLU activation
function in the application of weight decay that was found should be studied in
practical situations. Qualitative results are likely to carry over to similarly shaped
activation functions, which will be verified in future work.

In a sense, the considered sigmoidal and ReLU activation functions are prototyp-
ical representatives of the most popular choices in machine learning practice. The
extension to various modifications or significantly different transfer functions (Eger
et al. 2018, Goodfellow et al. 2016) should provide additional valuable insights of
practical relevance. Exact solutions to the averages that are required for the formula-
tion of the learning dynamics in the thermodynamic limit may not be available for
all activation functions. In such cases we can resort to approximations, for instance
as covered in Chapter 2, and simulations.

The consideration of more complex input densities will also shed light on the
practical relevance of our theoretical investigations. Recent work (Goldt et al. 2020,
Loureiro et al. 2021) shows that the statistical physics based investigation of machine
learning processes can take into account realistic input densities, bridging the gap
between the theoretical models and practical applications.

Our modelling framework can also be applied in the analysis of other types of
drift or combinations thereof. Several virtual processes could readily be implemented
in the model of LVQ training: time-dependent characteristics of the input density
could include the variances of the clusters or their relative position in feature space.
A number of extensions is also possible in the regression model. For instance, teacher
networks with time-dependent complexity could be studied by varying the mutual
teacher overlaps Bm ¨ Bn in the course of training.

Alternative mechanisms of forgetting beyond weight decay should be considered,
which do not limit the flexibility of the trained systems as drastically. As one example
strategy we intend to investigate the accumulation of additive noise in the training
processes. We will also explore the parameter space of the model density in greater
depth and study the influence of the learning rate systematically.

One of the major challenges in the field is the reliable detection of concept drift in
a stream of data. Learning systems should be able to discriminate drift from static
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noise in the data and infer also the type of drift, e.g. virtual vs. real. Moreover,
the strength of the drift has to be estimated reliably in order to adjust the training
prescription accordingly. It could be highly beneficial to extend our framework
towards efficient drift detection and estimation procedures.

Other considerations for future work include:

• Alternative LVQ prescriptions, as studied in (Biehl et al. 2007, Biehl et al. 2005,
Ghosh et al. 2005, Ghosh et al. 2006) for stationary data, can be systematically
compared in terms of their potential to deal with concept drift.

• Similarly, modifications of the basic gradient descent scheme can be considered
under concept drift in the SCM student-teacher scenario, see for instance (Saad
1999, Vicente and Caticha 1997, Inoue et al. 2003).

• Deterministic concept drifts, similar to the processes studied in the context
of perceptron training in (Biehl and Schwarze 1992, Biehl and Schwarze 1993,
Kinouchi and Caticha 1993, Vicente and Caticha 1998), can be considered as well.
This way, learning from an adversary can be modelled, where the modification
of the target depends explicitly on the actual student configuration.

• A systematic comparison and discussion of the N -dependence in computer
experiments of LVQ under concept drift. For the SCM, the precise influence of
finite size effects on the shape and length of plateau in Monte Carlo simulations.

• For LVQ and SCM: The simultaneous optimization of learning rate and weight
decay tη, γu with respect to the success of training in the tracking state.

3.5.5 Perspectives and Challenges

We have demonstrated that the presented modelling framework bears the promise
to provide valuable insights into the effects of concept drift in a variety of learning
scenarios. Ultimately, a better understanding of relevant phenomena should facilitate
the development and optimization of robust, efficient training algorithms for lifelong
machine learning. Variational approaches as discussed in, for instance, (Engel and
van den Broeck 2001, Seung et al. 1992, Watkin et al. 1993, Biehl and Caticha 2003,
Kinouchi and Caticha 1993, Vicente and Caticha 1998, Vicente and Caticha 1997)
could play an important role in this context.

Recently suggested strategies for continual learning include so-called Dedicated
Memory Models and the appropriate combination of off-line and on-line learning
(Losing et al. 2018, Fischer et al. 2015, Fischer et al. 2016). Suitable rejection mech-
anisms for the mitigation of concept drift were recently considered in (Göpfert
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et al. 2018). Extensions of our modelling approach in these directions would be
highly desirable.
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Chapter 4

Off-line Learning in Layered Networks: ReLU
vs. Sigmoidal Activation

Abstract

We study layered neural networks of rectified linear units (ReLU) in a modelling frame-
work for stochastic training processes on datasets of a fixed training set size (off-line
learning). The comparison with sigmoidal activation functions is in the center of interest.
We compute typical learning curves for shallow networks with K hidden units in match-
ing student teacher scenarios. As confirmed qualitatively by Monte Carlo simulations,
the systems exhibit sudden changes of the generalization performance via the process of
hidden unit specialization at critical sizes of the training set. Surprisingly, our results
show that the training behavior of ReLU networks is qualitatively different from that of
networks with sigmoidal activations. In networks with K ě 3 sigmoidal hidden units,
the transition is discontinuous: Specialized network configurations co-exist and compete
with states of poor performance even for very large training sets. On the contrary, the
use of ReLU activations results in continuous transitions for all K. For large enough
training sets, two competing, differently specialized states display similar generalization
abilities, which coincide exactly for large networks in the limit K Ñ 8.

4.1 Introduction

The statistical physics of learning has been applied with great success in the context
of neural networks and machine learning in general, e.g. (Hertz et al. 1991, Seung
et al. 1992, Watkin et al. 1993, Kinzel 1998, Opper 1994, Biehl and Caticha 2003, Engel
and van den Broeck 2001) and the analyses in the previous chapters. The statistical
physics approach complements other theoretical frameworks in that it studies the
typical behavior of large learning systems in model scenarios.

Currently, the statistical physics of learning is being revisited extensively in order
to investigate relevant phenomena in deep neural networks and other learning
paradigms, see (Cocco et al. 2018, Kadmon and Sompolinsky 2016, Pankaj et al. 2014,
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Sohl-Dickstein et al. 2016, Caticha et al. 2016, Biehl et al. 2019, Baldassi et al. 2019,
Goldt et al. 2020) for recent examples and further references.

The aim of this chapter is to contribute to a better theoretical understanding of
how the use of ReLU activations influences and potentially improves the training
behavior of layered neural networks. In contrast to our previous analyses, here we
focus on the comparison of ReLU activation with traditional sigmoidal functions in
non-trivial model situations of off-line learning. A topic of particular interest for this
work is the analysis of phase transitions in learning processes, i.e. sudden changes
of the expected performance with the training set size or other control parameters,
see (Kinzel 1998, Opper 1994, Herschkowitz and Opper 2001, Kang et al. 1993, Biehl
et al. 2000, Biehl, Schlösser and Ahr 1998, Ahr et al. 1999, Saitta et al. 2011) for
examples and further references. We systematically study the training of layered
networks in student teacher settings similar to the settings in Chapter 2 and 3, see
also e.g. (Seung et al. 1992, Watkin et al. 1993, Opper 1994, Engel and van den
Broeck 2001). We consider idealized, yet non-trivial scenarios of matching student
and teacher complexity.

Our findings demonstrate that ReLU networks display training and generalization
behavior which differs significantly from their counterparts composed of sigmoidal
units. Both network types display sudden changes of their performance with the
number of available examples. In statistical physics terminology, the systems undergo
phase transitions at a critical training set size. The underlying process of hidden
unit specialization and the existence of saddle points in the objective function have
recently attracted attention also in the context of Deep Learning (Kadmon and
Sompolinsky 2016, Dauphin et al. 2014, Saxe et al. 2014).

Before analysing ReLU networks, we confirm earlier theoretical results which
indicate that the transition for large networks of sigmoidal units is discontinuous (first
order): For small training sets, a poorly generalizing state is observed, in which all
hidden units approximate the target to some extent and essentially perform the same
task. At a critical size of the training set, a favorable configuration with specialized
hidden units appears. However, a poorly performing state remains metastable and
the specialization required for successful learning can delay the training process
significantly (Kang et al. 1993, Biehl, Schlösser and Ahr 1998, Ahr et al. 1999, Biehl
et al. 2000).

In contrast we find that, surprisingly, the corresponding phase transition in ReLU
networks is always continuous (second order). At the transition, the unspecialized
state is replaced by two competing configurations with very similar generalization
ability. In large networks, their performance is nearly identical and it coincides
exactly in the limit K Ñ 8.

In the next section we detail the considered models and outline the theoretical
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approach. In Sec. 3.4 our results are presented and discussed. In addition, results of
supporting Monte Carlo simulations are presented. We conclude with a summary
and outlook on future extensions of this work.

4.2 Model and Analysis

Here we introduce the modelling framework, i.e. the considered student teacher
scenarios. Moreover, we outline their analysis by means of statistical physics methods
and discuss the simplifying assumption of training at high (formal) temperatures.

4.2.1 Network architecture and activation functions

We consider feed-forward neural networks where N input nodes represent feature
vectors ξ P RN . A single layer of K hidden units is connected to the input through
adaptive weights W “

␣

wk P RN
(K

k“1
. The total real-valued output reads

ypξq “
1

?
K

K
ÿ

k“1

g phkq with hk “
1

?
N

wk ¨ ξ. (4.1)

The quantity hk is referred to as the local potential of the hidden unit. The resulting
activation is specified by the function gpxq. In contrast to the definition used in
Chapters 2 and 3, the hidden to output weights are fixed to 1{

?
K instead of one.

This is done to make the variance of y independent from the number of hidden units
K, facilitating the analyses for large K in this chapter. Additionally, in this chapter it
is assumed that the weight vectors have a norm Op

?
Nq, which requires the scaling

of the inner products in Eq. (4.1) by
?
N . Figure 4.1 (left panel) illustrates the network

architecture together with indications of the key quantities.
This type of network has been termed the Soft Committee Machine (SCM) in the lit-

erature due to its vague similarity to the committee machine for binary classification,
e.g. (Engel and van den Broeck 2001, Watkin et al. 1993, Urbanczik 1997, Schwarze
and Hertz 1993, Opper 1994, Herschkowitz and Opper 2001, Baldassi et al. 2019).
There, the discrete output is determined by the majority of threshold units in the
hidden layer, while the SCM is suitable for regression tasks.

We will consider two popular types of transfer functions:

a) Sigmoidal activation

Frequently, S-shaped transfer functions gpxq have been employed, which in-
crease monotonically from zero at large negative arguments and saturate at
a finite maximum for x Ñ 8. Popular examples are based on tanhpxq or the
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ξ P RN

wk PRN

g
´

wk¨ξ
?
N

¯

y“ 1?
K

ÿ

k

g
´

wk¨ξ
?
N

¯

gpxq

x

Figure 4.1: Left panel: Illustration of the network architecture with an N -dim. input
layer, a set of adaptive weight vectors wk with k“1,. . .,K (represented by solid lines)
and total output y given by the sum of hidden unit activations with fixed weights
(dashed lines). Right panel: The considered activation functions: the sigmoidal
gpxq “

`

1 ` erfrx{
?
2s
˘

(solid line) and the ReLU activation gpxq “ maxt0, xu (dashed
line).

sigmoid p1 ` e´xq´1, often with an additional threshold θ as in gpx ´ θq, or a
steepness parameter controlling the magnitude of the derivative g1.

We study the particular choice

gpxq “

´

1 ` erf
”

x?
2

ı¯

“ 2
x
ş

´8

dz e
´z2{2
?
2π

(4.2)

with 0 ď gpxq ď 2, which is displayed in the right panel of Fig. 4.1. The relation
to an integrated Gaussian facilitates significant mathematical ease, which has
been exploited in numerous studies of machine learning models, e.g. (Biehl
and Schwarze 1995, Saad and Solla 1995a, Saad and Solla 1995b). Here, the
function (4.2) serves as a generic example of a sigmoidal and its specific form is
not expected to influence our findings crucially. As we argue below, the choice
of limiting values 0 and 2 for small and large arguments, respectively, is also
arbitrary and irrelevant for the qualitative results of our analyses.

b) Rectified Linear Unit (ReLU) activation

This particularly simple, piece-wise linear transfer function has attracted con-
siderable attention in the context of multi-layered neural networks. It is given
by

gpxq “ max t0, xu “

"

0 for x ď 0

x for x ą 0
(4.3)



4.2. Model and Analysis 79

which is illustrated in Fig. 4.1 (right panel). In contrast to sigmoidal activations,
the response of the unit is unbounded for x Ñ 8. The function (2.3) is obviously
not differentiable in x “ 0, as was already discussed in Chapter 2. Note that our
theoretical investigation in Sec. 4.2.4 does not relate to a particular realization
of gradient-based training.

It is important to realize that replacing the above functions by

gpxq “ γ
´

1 ` erfrx{
?
2s

¯

or by gpxq “ maxt0, γ xu “ γ maxt0, xu (4.4)

where γ ą 0 is an arbitrary factor, would be equivalent to setting the hidden unit to
output weights to γ{

?
K in Eq. (4.1). Alternatively, we could incorporate the factor

γ in the effective temperature parameter α of the theoretical analysis in Sec. 4.2.4.
Apart from this trivial re-scaling, our results would not be affected qualitatively.

4.2.2 Student and teacher scenario

We investigate the training and generalization behavior of the layered networks
introduced above in a setup that models the learning of a regression scheme from
example data. Assume that a given training set

D “ tξµ, τµu
P
µ“1 (4.5)

comprises P input output pairs which reflect the target task. In order to facilitate
successful learning, P should be proportional to the number of adaptive weights in
the trained system. Similar to the previous chapter, in our specific model scenario
the labels τµ “ τpξµq are thought to be provided by a teacher SCM, representing the
target input output relation

τpξq “
1

?
M

M
ÿ

m“1

g pbmq with bm “
1

?
N

Bm ¨ ξ . (4.6)

The response is specified in terms of the set of teacher weight vectors

B “
␣

Bm P RN
(M

m“1
(4.7)

and defines the correct target output for every possible feature vector ξ. For simplicity,
we will focus on settings with orthonormal teacher weight vectors and restrict the
adaptive student configuration to normalized weights:

Bm ¨ Bn{N “ δmn and |wj |
2 “ N (4.8)

with the Kronecker-Delta δmn “ 0 if m ‰ n and δmm “ 1.
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Throughout the following, the evaluation of the student network will be based
on a simple quadratic error measure that compares student output and target value.
Accordingly, the selection of student weights W in the training process is guided by
a cost or loss function which is given by the corresponding sum over all available
data in the training set D:

E “

P
ÿ

µ“1

ϵpξµq with ϵpξq “
1

2

ˆ

ypξq ´ τpξq

˙2

. (4.9)

By choosing the parameters K and M , a variety of situations can be modelled, as we
discussed and studied in the modelling of on-line learning in Chapter 2. There, we
studied the learning of unrealizable rules (K ă M ) and training of over-sophisticated
students with K ą M . In the current chapter that analyses off-line learning, we
restrict ourselves to the idealized, yet non-trivial case of perfectly matching student
and teacher complexity, i.e. K “ M , which makes it possible to achieve ϵpξq “ 0 for
all input vectors.

4.2.3 Generalization error and order parameters

Here we briefly give the definitions of the data distribution, the order parameters of
the SCM and the generalization error, which are similar to the definitions as given
in Chapter 2 besides different scalings and the applicability to the off-line learning
setting. We also introduce the assumption of site symmetry and give the equations of
the generalization error for Erf-SCM and ReLU-SCM under this assumption.

Throughout the following we consider feature vectors ξµ in the training set with
uncorrelated i.i.d. random components of zero mean and unit variance. Likewise,
arbitrary input vectors ξ R D are assumed to follow the same statistics:

@

ξµj
D

“ 0,
@

ξµj ξ
ν
k

D

“ δj,kδµ,ν , xξjy “ 0 and xξjξky “ δj,k .

As a consequence of this assumption, the Central Limit Theorem applies to the local
potentials

hj “ wj ¨ ξ{
?
N , bm “ Bm ¨ ξ{

?
N , for 1 ď j,m ď K

which become correlated Gaussian random variables of order Op1q. It is straightfor-
ward to work out the characteristic averages x. . .y and (co-)variances:

xhky “ xbky “ 0, xhjhky “ wj ¨ wk{N ” Qjk,

xbjbky “ Bj ¨ Bk{N “ δjk and xhjbky “ wj ¨ Bk{N ” Rjk,
(4.10)



4.2. Model and Analysis 81

which fully specify the joint density P pthi, biuq. The so-called order parameters
Rij and Qij for pi, j “ 1, 2, . . .Kq serve as macroscopic characteristics of the student
configuration. The normsQii “ 1 are fixed according to Eq. (4.8), while the symmetric
Qij “ Qji quantify the KpK ´ 1q{2 pairwise alignments of student weight vectors.
The similarity of the student weights to their counterparts in the teacher network are
measured in terms of the K2 quantities Rij . Due to the assumed normalizations, the
relations 1́ďQij , Rij ď1 are obviously satisfied.

Now we can work out the generalization error, i.e. the expected deviation of
student and teacher output for a random input vector, given specific weight con-
figurations W and B. Note that SCMs with gpxq “ erfrx{

?
2s have been treated in

(Saad and Solla 1995a, Saad and Solla 1995b) for general K,M. Here, we resort to the
special case of matching network sizes, K “ M, with

ϵg “
1

2K

C

ˆ K
ÿ

i“1

gphiq ´

K
ÿ

j“1

gpbjq

˙2
G

. (4.11)

We note here that matching additive constants in the student and teacher activations
would leave ϵg unaltered. As detailed in the thesis’ Appendix, all averages in
Eq. (4.11) can be computed analytically for both choices of the activation function
gpxq in student and teacher network. Eventually, the generalization error is expressed
in terms of very few macroscopic order parameters, instead of explicitly taking
into account KN individual weights. The concept is characteristic for the statistical
physics approach to systems with many degrees of freedom.

Site-symmetry assumption

In the following, we restrict the analysis to student configurations which are site-
symmetric with respect to the hidden units:

Rij “

"

R for i “ j

S otherwise ,
Qij “

"

1 for i “ j

C otherwise
. (4.12)

Obviously, the system is invariant under permutations, so we can restrict ourselves
to one specific case with matching indices i “ j in Eq. (4.12). While this assumption
reflects the symmetries of the student teacher scenario, it allows for the specialization
of hidden units: For R “ S all student units display the same overlap with all teacher
units. In specialized configurations with R ‰ S, however, each student weight vector
has achieved a distinct overlap with exactly one of the teacher units. Our analysis
shows that states with both positive (R ą S) and negative specialization (R ă S) can
play a significant role in the training process.
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Under the above assumption of site-symmetry (4.12) and applying the normaliza-
tion (4.8), the generalization error (4.11), see also Eqs. (A.3) and (A.5), becomes

a) for gpxq “
`

1`erf
“

x{
?
2
‰˘

in student and teacher (Saad and Solla 1995a):

ϵg“ 1
K

␣

1
3 `K 1́

π

“

sin´1
`

C
2

˘

´2 sin´1
`

S
2

˘‰

´ 2
π sin´1

`

R
2

˘(

, (4.13)

Note that additional pre-factors in the sigmoidal activation function (4.2), for
instance as to achieve 0 ă gpxq ă 1, would only yield a factor in ϵg and could
be compensated for by re-scaling the number of examples, accordingly, see
Section 4.2.4.

b) for ReLU gpxq “ maxt0, xu:

ϵg “ 1
2K

!

K`
KpK´1q

2π ´2K
´

R
4 `

?
1´R2

2π `
R sin´1

pRq

2π

¯

`KpK ´ 1q

´

C
4 `

?
1´C2

2π `
C sin´1

pCq

2π

¯

´ 2KpK ´ 1q

´

S
4 `

?
1´S2

2π `
S sin´1

pSq

2π

¯)

. (4.14)

In both settings, perfect agreement of student and teacher with ϵg “ 0 is achieved
for C“S“0 and R“1. The scaling of outputs with hidden to output weights 1{

?
K

in Eq. (4.1) results in a generalization error which is not explicitly K-dependent for
uncorrelated random students: A configuration with R “ C “ S “ 0 yields ϵg “ 1{3

in the case of sigmoidal activations (a), whereas ϵg “ 1
2 ´ 1

2π « 0.341 for ReLU student
and teacher.

4.2.4 Thermal equilibrium and the high-temperature limit

In order to analyse the expected outcome of training from a set of examples D, we
follow the well-established statistical physics approach and analyse an ensemble
of networks in a formal thermal equilibrium situation. In this framework, the cost
function E is interpreted as the energy of the system and the density of observed
network states is given by the so-called Gibbs-Boltzmann density

expr´βEs

Z
with Z “

ż

dµpW q expr´βEs, (4.15)

where the measure dµpW q incorporates potential restrictions of the integration over
all possible configurations of W “ twiu

K
i“1 , for instance the normalization w2

k “ N

for all k. This equilibrium density would, for example, result from a Langevin type
of training dynamics

BW

Bt
“ ´∇W EpW q ` η,



4.2. Model and Analysis 83

where ∇W denotes the gradient with respect to all KN degrees of freedom in the
student network. Here, the minimization of E is performed in the presence of a
δ-correlated, zero mean noise term ηptq P RKN with

xηiptqy “ 0 and xηiptqηjp t
1qy “

2

β
δijδpt´ t1q ,

where δp. . .q denotes the Dirac delta-function. The parameter β “ 1{T controls the
strength of the thermal noise in the gradient-based minimization of E.

According to the, by now, standard statistical physics approach to off-line learning
(Hertz et al. 1991, Engel and van den Broeck 2001, Watkin et al. 1993, Seung et al. 1992)
typical properties of the system are governed by the so-called quenched free energy

f “ ´
1

N
x lnZyD {β (4.16)

where x. . .yD denotes the average over the random realization of the training set. In
general, the evaluation of the quenched average xlnZyD is technically involved and
requires, for instance, the application of the replica trick (Hertz et al. 1991, Engel
and van den Broeck 2001, Watkin et al. 1993). Here, we resort to the simplifying
limit of training at high temperature T Ñ 8, β Ñ 0, which has proven useful in
the qualitative investigation of various learning scenarios (Seung et al. 1992). In the
limit β Ñ 0 the so-called annealed approximation (Seung et al. 1992, Watkin et al.
1993, Engel and van den Broeck 2001) xlnZyD « ln xZyD becomes exact. Moreover,
we have

xZyD “

B
ż

dµpW qe´βE

F

D
«

ż

dµpW qe´βxEyID . (4.17)

Here, P is the number of statistically independent examples in D and xEyD “

P xϵpξqyξ “ Pϵg. As the exponent grows linearly with P9N , the integral is domi-
nated by the maximum of the integrand. By means of a saddle-point integration for
N Ñ 8 we obtain

´
1

N
ln xZyD “ βfptRij , Qijuq «

βP

N
ϵg ´ s. (4.18)

Here, the right hand side has to be minimized with respect to the arguments, i.e. the
order parameters tRij , Qiju . In Eq. (4.18) we have introduced the entropy term

s“ 1
N ln

ş

dµpW q
ś

i,jrδpNRij´wi ¨ BjqδpNQij´wi ¨wjqs . (4.19)

The quantity eNs corresponds to the volume in weight space that is consistent with a
given configuration of order parameters. Independent of the activation functions or
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other details of the learning problem, one obtains for large N (Biehl, Schlösser and
Ahr 1998, Ahr et al. 1999)

sptRij , Qijuq “
1

2
ln det pCq ` const . (4.20)

where C is the p2K ˆ 2Kq-dimensional matrix of all pair-wise and self-overlaps
of the vectors twi,Biu

K
i“1, i.e. the matrix of all tRij , Qij , Tiju , see also Eq. (A.1)

in the Appendix. The constant term is independent of the order parameters and,
hence, irrelevant for the minimization of Eq. (4.18). A compact derivation of (4.20) is
provided in, e.g., (Ahr et al. 1999).

Omitting additive constants and assuming the normalization (4.8) and site-
symmetry (4.12), the entropy term reads (Biehl, Schlösser and Ahr 1998, Ahr et al.
1999)

s “
1

2
ln
”

1`pK´1qC´ppR´Sq`KSq
2
ı

`K 1́
2 ln

“

1´C´pR´Sq2
‰

. (4.21)

In order to facilitate the successful adaptation of KN weights in the student network
we have to assume that the number of examples also scales like P “ rαK N. Training
at high temperature additionally requires that α “ rαβ “ Op1q for rα Ñ 8, β Ñ 0,

which yields a free energy of the form

β fpR,S,Cq “ αK ϵgpR,S,Cq ´ spR,S,Cq . (4.22)

The quantity α “ βP {pKNq can be interpreted as an effective temperature parameter
or, likewise, as the properly scaled training set size. The high temperature has to
be compensated by a very large number of training examples in order to facilitate
non-trivial outcome. As a consequence, the energy of the system is proportional to
ϵg, which implies that training and generalization error are effectively identical in
the simplifying limit.

4.3 Results and Discussion

In the following, we present and discuss our findings for the considered student
teacher scenarios and activation functions.

In order to obtain the equilibrium states of the model for given values of α and K,
we have minimized the scaled free energy (4.22) with respect to the site-symmetric
order parameters. Potential (local) minima satisfy the necessary conditions

Bpβfq

BR
“

Bpβfq

BC
“

Bpβfq

BS
“ 0 . (4.23)



4.3. Results and Discussion 85

In addition, the corresponding Hesse matrix H of second derivatives w.r.t. R,S, and
C has to be positive definite. This constitutes a sufficient condition for the presence
of a local minimum in the site-symmetric order parameter space. Furthermore, we
have confirmed the stability of the local minima against potential deviations from
site-symmetry by inspecting the full matrix of second derivatives involving the
pK2`KpK´1q{2q individual quantities tRij , Qij “ Qjiu .

4.3.1 Sigmoidal units re-visited

The investigation of SCMs with sigmoidal gpxq “ erfrx{
?
2s with ´1 ă gpxq ă 1

along the lines of the previous section has already been presented in (Biehl, Schlösser
and Ahr 1998). A corresponding model with discrete binary weights was studied in
(Kang et al. 1993).

As argued above, for gpxq “ p1 ` erfrx{
?
2sq, the mathematical form of the

generalization error, Eqs. (4.13, A.3), and the free energy pβfq are the same as for the
activation erfrx{

?
2s. Hence, the results of (Biehl, Schlösser and Ahr 1998) carry over

without modification. The following summarizes the key findings of the previous
study, which we reproduce here for comparison.

For K “ 2 we observe that R “ S in thermal equilibrium for small α, see the
upper row of graphs in Fig. 4.2. Both hidden units perform essentially the same task
and acquire equal overlap with both teacher vectors, when trained from relatively
small data sets. At a critical value αcp2q « 23.7, the system undergoes a transition to
a specialized state with R ą S or R ă S in which each hidden unit aligns with one
specific teacher unit. Both configurations are fully equivalent due to the invariance of
the student output under exchange of the student weights w1 and w2 for K “ 2. The
specialization process is continuous with the quantity |R´S| increasing proportional
to pα´ αcpKqq1{2 near the transition. This results in a kink in the continuous learning
curve ϵgpαq at αc, as displayed in the upper right panel of Fig. 4.2.

Interestingly, a different behavior is found for all K ě 3. The following regimes
can be distinguished:

(a) 0 ď α ă αspKq: For small α, the only minimum of βf corresponds to unspe-
cialized networks with R “ S. Within this subspace, a rapid initial decrease of
ϵg with α is achieved.

(b) αspKqďαăαcpKq: In αspKq, a specialized configuration with R ą S appears
as a local minimum of the free energy. The R “ S configuration corresponds to
the global minimum up to αcpKq. At this K-dependent critical value, the free
energies of the competing minima coincide.
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R,S

α

R‰S

R“S
ϵg

K “ 2

α

R,S

α

R“S

RąS

RăS
ϵg

α

K “ 5

RąS

R“S RăS

Figure 4.2: Sigmoidal activation: Learning curves of perfectly matching student
teacher scenarios. The upper row of graphs shows the results for K “ 2: The upper
left panel displays the order parameters R and S as functions of α “ βP {pKNq. At
the critical value αcp2q « 23.7, a continuous phase transition occurs with |R ´ S| ą 0

for greater values of α. The upper right panel shows the corresponding learning curve
ϵgpαq which displays a kink at the transition. In the lower row the corresponding
results are shown for K“5. Order parameters are displayed in the lower left panel as
functions of α. The transition is discontinuous with αsp5q « 44.3 (vertical dotted line)
and αcp5q « 46.6 (vertical dashed line). In addition, the local minimum of the free
energy with R “ S is replaced by a configuration with R ă S in αdp5q « 62.8. The
lower right panel displays the corresponding ϵgpαq. Here, the solid line represents
the specialized state and the transition from the unspecialized configuration (dashed
curve) to the state with R ă S (dotted curve) is marked by the short line in αd. The
dashed vertical line marks the critical αc, where the specialized pR ą Sq solution
becomes the global minimum of pβfq.

(c) α ą αcpKq: Above αc, the configuration with R ą S constitutes the global
minimum of the free energy and, thus, the thermodynamically stable state of
the system. Note that the transition from the unspecialized to the specialized
configuration is associated with a discontinuous change of ϵg , cf. Fig. 4.2 (lower
right panel). The pR ą Sq specialized state facilitates perfect generalization in
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the limit α Ñ 8.

(d) αě αdpKq: In addition, at another characteristic value αd, the pR“ Sq local
minimum disappears and is replaced by a negatively specialized state with
R ă S. Note that the existence of this local minimum of the free energy was not
reported in (Biehl, Schlösser and Ahr 1998). The observed specialization pS´Rq

increases linearly with pα ´ αdq for α « αd. This smooth transition does not
yield a kink in ϵgpαq. A careful analysis of the associated Hesse matrix shows
that the R ă S state of poor generalization persists for all α ą αd, indeed.

The limit K Ñ 8 with K ! N has also been considered in (Biehl, Schlösser and
Ahr 1998): The discontinuous transition is found to occur at αspK Ñ 8q « 60.99

and αcpK Ñ 8q « 69.09. Interestingly, the characteristic value αd diverges as
αdpKq “ 4πK for large K (Biehl, Schlösser and Ahr 1998). Hence, the additional
transition from R“ S to Ră S cannot be observed for data sets of size P9KN{β.
On this scale, the unspecialized configuration persists for α Ñ 8. It displays site-
symmetric order parameters R “ S “ Op1{Kq with R,S ą 0 and C “ Op1{K2q, see
(Biehl, Schlösser and Ahr 1998) for details. Asymptotically, for α Ñ 8, they approach
the values R “ S “ 1{K and C “ 0 which yields the non-zero generalization
error ϵgpα Ñ 8q “ 1{3 ´ 1{π « 0.0150. On the contrary, the R ą S specialized
configuration achieves ϵg Ñ 0, i.e. perfect generalization, asymptotically.

The presence of a discontinuous specialization process for sigmoidal activations
with K ě 3 suggests that – in practical training situations – the network will very
likely be trapped in an unfavorable configuration unless prior knowledge about
the target is available. The escape from the poorly generalizing metastable state
with R “ S or R ă S requires considerable effort in high-dimensional weight space.
Therefore, the success of training will be delayed significantly.

4.3.2 Rectified linear units

In comparison with the previously studied case of sigmoidal activations, we find a
surprisingly different behavior in ReLU networks with K ě 3.

For K“2, our findings parallel the results for networks with sigmoidal units: The
network configuration is characterized by R“S for α ă αcpKq and specialization
increases like

|R ´ S|9pα ´ αcpKqq1{2 (4.24)

near the transition. This results in a kink in the learning curve ϵgpαq at α “ αcpKq as
displayed in Fig. 4.3 (upper row) for K “ 2 with αcp2q « 6.1.
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R,S

α

R‰S

R“S

K “ 2

ϵg

α

R,S

α

R ą S

R“S

R ă S

ϵg

α

K “ 10

R “ S

R ą S

R ă S

Figure 4.3: ReLU activation: Learning curves of perfectly matching student teacher
scenarios. The upper row of graphs shows the results for K “ 2. The upper left panel
displays the order parameters R and S as a function of α “ βP {pKNq. A continuous
transition occurs at αcp2q « 6.1, the right panel shows the resulting ϵgpαq. The lower
row corresponds to the ReLU network with K“10. The transition is also continuous
and occurs at αcp10q « 6.2. The specialized solution with R ą S is represented by
the solid pRq and the dashed line pSq in the lower left panel. The dotted line pSq and
the chain line pRq represent the local minimum of βf with R ă S. The corresponding
generalization errors is displayed in the lower right panel, where the dotted line
represents the suboptimal configuration with R ă S.

However, in ReLU networks the transition is also continuous for K ě 3. Figure
4.3 (lower row of graphs) displays the results for the example case K “ 10 with
αcp10q « 6.2 (lower row).

The student output is invariant under exchange of the hidden unit weight vectors,
consistent with an R “ S unspecialized state for small α. At a critical value αcpKq

the unspecialized pR “ Sq configuration is replaced by two minima of βf : in the
global minimum we have R ą S, while the competing local minimum corresponds
to configurations with R ă S. The former facilitates perfect generalization with R Ñ

1, S Ñ 0 in the limit α Ñ 8. In both competing minima the emerging specialization
follows Eq. (4.24) with critical exponent 1{2.
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R,S

α

R ą 0

R“S

R ă 0

S « 0
ϵg

α

R “ S
K Ñ 8

|R| ą 0, S « 0

Figure 4.4: ReLU activation: Learning curves of the perfectly matching student
teacher scenario forK Ñ 8. In this limit, the continuous transition occurs at αc “ 2π.

In the left panel, the solid line represents the specialized solution with Rpαq ą 0,
while the chain line marks the solution with Rpαq ă 0. In the former, S Ñ 0 for large
α, while in the latter, S remains positive with S “ Op1{Kq for large K. The learning
curves ϵgpαq for the competing minima of βf coincide for K Ñ 8 as displayed in
the right panel. It approaches perfect generalization, i.e. ϵg Ñ 0 for α Ñ 8

In contrast to the case of sigmoidal activation, both competing configurations of
the ReLU system display very similar generalization behavior. While, in general,
only states with R ą 0 can perfectly reproduce the teacher output, the student
configurations with S ą 0 and R ă 0 also achieve relatively low generalization error
for large α, see Fig. 4.3 (lower row) for an example.

The limiting case of large networks with KÑ8 can be considered explicitly. We
find for large ReLU networks that the continuous specialization transition occurs at

αcpKÑ8q “ 2π « 6.28 .

The generalization error decreases very rapidly (instantaneously on α-scale) from the
initial value of ϵgp0q « 0.341 with R“S“C“0 to a constant plateau-like state with

ϵgpαq“ 1
4 ´ 1

2π « 0.091 for 0 ă α ă 2π

where R “ S “ 1{K and C “ Op1{K2q. For α ą αc, the order parameter R either
increases or decreases with α, approaching the values R Ñ˘1 asymptotically, while
Spαq “ 0 in both branches for K Ñ 8.

Surprisingly, both solutions display the exact same generalization error, see
Fig. 4.4 (right panel). Consequently, the free energies βf of the competing minima also
coincide in the limitK Ñ 8 since the entropy (4.19) satisfies Sp´R, 0, 0q “ SpR, 0, 0q.

In the configuration with R ă 0 the order parameters display the scaling behavior

S “ O p1{Kq and C “ O
`

1{K2
˘

(4.25)
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for large K. In Appendix 4.5.2 we show how a single teacher ReLU with activation
maxp0, biq can be approximated by pK ´ 1q weakly aligned units in combination with
one anti-correlated student node. While the former effectively approximates a linear
response of the form const. ` bi, the unit with R “ ´1 implements maxp0,´biq.
Since maxp0, biq “ maxp0,´biq ` bi the student can approximate the teacher output
very well, see also the appendix for details. In the limit K Ñ 8, the correspondence
becomes exact and facilitates perfect generalization for α Ñ 8.

Note that a similar argument does not hold for student teacher scenarios with
sigmoidal activation functions which do not display the partial linearity of the ReLU.

4.3.3 Student-student overlaps

It is also instructive to inspect the behavior of the order parameter C which quantifies
the mutual overlap of student weight vectors. In the ReLU system with large finite
K, we observe Cpαq “ Op1{K2q ą 0 before the transition. It reaches a maximum
value at the phase transition and decreases with increasing α ą αc. In the positively
specialized configuration it approaches the limiting value Cpα Ñ 8q “ 0 from above,
while it assumes negative values on the order Op1{K2q in the configuration with
R ă S.

This is in contrast to networks of sigmoidal units, where C ă 0 before the
discontinuous transition and in the specialized pR ą Sq state, see (Biehl, Schlösser
and Ahr 1998, Ahr et al. 1999) for details. Interestingly, the characteristic value αd
coincides with the point where C becomes positive in the suboptimal local minimum
of βf.

Figure 4.5 displays Cpαq for sigmoidal (left panel) and ReLU activation (right
panel) for K “ 5 as an example. Apparently the ReLU system tends to favor
correlated hidden units in most of the training process.

4.3.4 Monte Carlo simulations

In order to demonstrate the qualitative validity of our theoretical results also in
finite systems and beyond the high-temperature limit, we performed Monte Carlo
simulations of the training processes.

We have implemented the student teacher scenarios in relatively small systems
with N “ 50 and K “ 4 hidden units. The systems were trained according to
a Metropolis-like scheme with continuous changes of the student weights. In an
individual Monte Carlo step (MCS), all adaptive weights in the student network
were subject to independent, zero mean additive Gaussian noise with subsequent
normalization to maintain w2

j “ N for all j. The associated change ∆E of the training
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C

α

R ă S

R “ S
R ą S

C
R ą S

R ă S

α

Figure 4.5: Student cross overlap C in a perfectly matching student teacher scenario.
Left panel: For sigmoidal activations, here K “ 5, the order parameter C is negative
in the pR ą Sq specialized and in the unspecialized configurations with R “ S. The
values αs, αc, αd are marked as in Fig. 4.2 (lower left panel). It remains negative in
theR ą S specialized state (solid line) for all α, while it becomes positive in αd where
the configuration with R “ S (dashed line) is replaced by a state with R ă S (dotted
line). For better visibility of the behavior near αc, only a small range of α is shown.
Right panel: In the ReLU system with, e.g., K “ 10, C becomes positive before the
continuous transition occurs, it reaches a maximum in αc and approaches zero from
above for α Ñ 8 in the specialized configuration with R ą S (solid line). In the local
minimum of βf with R ă S, C becomes negative for large α as marked by the dotted
line.

energy E, Eq. (4.9), was computed and the randomized modification was accepted
with probability mint1, e´β∆Eu. A constant variance of the Gaussian noise was
selected as to maintain acceptance rates in the vicinity of 0.5 in each setting.

All simulations were performed with β “ 1,which corresponds to a relatively low
training temperature, and with training set sizes P “ rαKN that could be handled
with moderate computational effort.

In principle, all stable and metastable states, i.e. local and global minima of
the associated free energy, would be visited from random initializations by the
finite system, eventually. However, this would require very large equilibration and
observation times. Therefore we followed an alternative strategy by preparing initial
states which slightly favored one of the competing configurations and observed the
quasi-stationary behavior of the system at intermediate training times. In all training
processes, quasistationary states could be observed after Op104q elementary MCS.
Averages and standard deviations were determined over the last 1000 MCS in 20
independent runs for each considered setting.

Fig. 4.6 shows example learning curves in the ReLU system withK “ 4 for rα “ 24.

The last 1000 MCS are marked by solid lines in the upper panel. The simulations
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ϵg

Monte Carlo step

Rim Rim

Figure 4.6: Monte Carlo simulations of the ReLU system. Upper panel: the general-
ization error as observed with N “ 50, β “ 1,K “ 4 for rα “ 24 on average over 20
independent runs, error bars represent the standard deviations in a subsets of time
steps. Lower panels: histograms of the relative frequency of values Rim observed
over the last 1000 elementary Monte Carlo steps as marked by the solid lines at the
end of the curves in the upper panel. Colors: The grey curve and histogram corre-
spond to initializations of the systems in slightly anti-specialized states. For the blue
curve and histogram the systems were initialized with a weak positive specialization,
see Sec. 4.3.4.

confirm the existence of two competing quasistationary states. Histograms of the
observed order parameters Rim show that they correspond to a specialized state with
few, large positive student teacher overlaps (lower right panel). The anti-specialized
state is characterized by a considerable fraction of values Rim ă 0, see the lower left
panel of Fig. 4.6. We also obtained results for the system with sigmoidal activation,
confirming the competition of a specialized state with unspecialized configurations,
which are not displayed here. Similar findings, including histograms of the observed
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ϵg

rα

ϵg

rα

Figure 4.7: Monte Carlo simulations of the student teacher scenarios. The gener-
alization error as observed for systems with N “ 50, β “ 1,K “ 4 as a function of
rα; discrete points are connected for clarity. Averages and standard deviations (20
independent simulation runs) of ϵg were determined over the last 1000 Monte Carlo
steps. Left panel: networks with sigmoidal activation in unspecialized (grey curve)
and specialized configurations (blue curve). Right panel: systems with ReLU hidden
layer in anti-specialized (grey curve) and specialized (blue curve) quasistationary
states.

Rim had been published in (Biehl, Schlösser and Ahr 1998) for sigmoidal units only.
There, the authors also present simulation results for K “ 2.

We determined the average generalization error from the order parameter values
as observed in the competing quasistationary states of training in the last 1000
MCS. Figure 4.7 displays the corresponding generalization error as a function of
rα for sigmoidal activation in the left panel and for a ReLU hidden layer in the
right panel. The observed behavior is consistent with the predicted first order and
continuous phase transition, respectively. In particular we note that the competing
configurations in the ReLU system (right panel) display very similar generalization
errors. In contrast, the difference between specialized and unspecialized sigmoidal
networks is much more pronounced, see the left panel of Fig. 4.7.

While the simulations were performed in fairly small systems with β “ 1, the
results are in very good qualitative agreement with the theoretical predictions ob-
tained in the limits N Ñ 8 and β Ñ 0. Note that at low temperature, training and
generalization error are not identical. As expected E{P is found to be systematically
lower than ϵg. However, we observed that generalization and training error evolve
in parallel with the training time (MCS) and display analogous dependencies on the
training set size rα.
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4.3.5 Practical relevance

It is important to realize that a quantitative comparison of the two scenarios, for
instance w.r.t. the critical values αc, is not sensible. The complexities of sigmoidal and
ReLU networks with K units do not necessarily correspond to each other. Moreover,
the actual α-scale is trivially related to a potential scaling of the activation functions.

However, our results provide valuable qualitative insight: The continuous nature
of the transition suggests that ReLU systems should display favorable training be-
havior in comparison to systems of sigmoidal units. In particular, the suboptimal
competing state displays very good performance, comparable to that of the prop-
erly specialized configuration. Their generalization abilities even coincide in large
networks of many hidden units.

On the contrary, the achievement of good generalization in networks of sigmoidal
units will be delayed significantly due to the discontinuous specialization transition
which involves a poorly generalizing metastable state.

4.4 Conclusion and Outlook

We have investigated the training of shallow, layered neural networks in student
teacher scenarios of matching complexity. Large, adaptive networks have been
studied by employing modelling concepts and analytical tools borrowed from the
statistical physics of learning. Specifically, stochastic training processes at high formal
temperature were studied and learning curves were obtained for two popular types of
hidden unit activation.

To the best of our knowledge, this work constitutes the first theoretical, model-
based comparison of sigmoidal hidden unit activations and rectified linear units in
feed-forward neural networks.

Our results confirm that networks with K ě 3 sigmoidal hidden units undergo
a discontinuous transition: A critical training set size is required to facilitate the
differentiation, i.e. specialization of hidden units. However, a poorly performing state
of the network persists as a locally stable configuration for all sizes of the training set.
The presence of such an unfavorable local minimum will delay successful learning
in practice, unless prior knowledge of the target rule allows for non-zero initial
specialization.

On the contrary, the specialization transition is always continuous in ReLU net-
works. We show that above a weakly K-dependent critical value of the re-scaled
training set size α, two competing specialized configurations can be assumed. Only
one of them displays positive specialization R ą S and facilitates perfect generaliza-
tion from large training sets for finite K. However, the competing configuration with
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negative specialization R ă 0, S ą 0 realizes similar performance which is nearly
identical for networks with many hidden units and coincides exactly in the limit
K Ñ 8.

As a consequence, the problem of retarded learning associated with the existence of
metastable configurations is expected to be much less pronounced in ReLU networks
than in their counterparts with sigmoidal activation.

Clearly, our approach is subject to several limitations which will be addressed in
future studies.

Probably the most straightforward, relevant extension of our work would be
the consideration of further activation functions, for instance modifications of the
ReLU such as the leaky or noisy ReLU or alternatives like swish and max-out (Eger
et al. 2018, Ramachandran et al. 2017).

Within the site-symmetric space of configurations, cf. Eq. (4.12), only the spe-
cialization of single units with respect to one of the teacher units can be considered.
In large networks, one would expect partially specialized states, where subsets of
hidden units achieve different alignment with specific teacher units. Their study
requires the extension of the analysis beyond the assumption of site-symmetry.

Training at low formal temperatures can be studied along the lines of (Ahr et al.
1999) where the replica formalism was already applied to networks with sigmoidal
activation. Alternatively, the simpler annealed approximation could be used (Engel
and van den Broeck 2001, Seung et al. 1992, Watkin et al. 1993). Both approaches allow
to vary the control parameter β of the training process and the scaled example set
size rα “ P {pKNq independently, as it is the case in more realistic settings. Note that
the findings reported in (Ahr et al. 1999) for sigmoidal activation displayed excellent
qualitative agreement with the results of the much simpler high-temperature analysis
in (Biehl, Schlösser and Ahr 1998).

The dynamics of non-equilibrium on-line training by gradient descent has been
studied extensively for soft-committee-machines with sigmoidal activation, e.g. (Saad
and Solla 1995a, Saad and Solla 1995b, Biehl et al. 1996, Vicente and Caticha 1997) and
with ReLU activation in Chapters 2 and 3. There, quasi-stationary plateau states in the
learning dynamics are the counterparts of the phase transitions observed in thermal
equilibrium situations. The results for ReLU networks discussed in the previous
chapters should be extended in order to identify and understand the influence of the
activation function on the training dynamics in greater detail.

Model scenarios with mismatched student and teacher complexity will provide
further insight into the role of the activation function for the learnability of a given
task. It should be interesting to investigate specialization transitions in practically
relevant settings of off-line learning in which either the task is unlearnable pK ă Mq

or the student architecture is over-sophisticated for the problem at hand (K ą M ). In
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addition, student and teacher systems with mismatched activation functions should
constitute interesting model systems.

The complexity of the considered networks can be increased in various directions.
If the simple shallow architecture of Eq. (4.1) is extended by local thresholds and
hidden to output weights that are both adaptive, it parameterizes a universal approxi-
mator, see e.g. (Cybenko 1989, Hornik 1991, Hanin 2017). Decoupling the selection
of these few additional parameters from the training of the input to hidden weights
should be possible following the ideas presented in (Endres and Riegler 1999).

Ultimately, deep layered architectures should be investigated along the same lines.
As a starting point, simplifying tree-like architectures could be considered as in e.g.
(Herschkowitz and Opper 2001, Baldassi et al. 2019).

Our modelling approach and theoretical analysis goes beyond the empirical
investigation of data set specific performance. The suggested extensions bear the
promise to contribute to a better, fundamental understanding of layered neural
networks and their training behavior.
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4.5 Chapter Appendix

4.5.1 Single unit student and teacher

In the simple case K “ 1 with a single unit as student and teacher network, we have
to consider only one order parameterR “ w¨B{N.Assuming w¨w{N “ B¨B{N “ 1,
we obtain the free energy pβfq “ α ϵg ´ s with

s “
1

2
lnr1 ´R2s ` const. (4.26)

ϵg “
1

3
´

2

π
sin´1

“

R
L

2
‰

(sigmoidal) (4.27)

ϵg “
2´R

4
´

?
1´R2`R sin´1

rRs

2π
(ReLU). (4.28)

The necessary condition Bpβfq{BR“0 becomes

α “
πR

?
4 ´R2

2p1 ´R2q
(sigmoidal) (4.29)

α “
4πR

p1 ´R2qpπ ` 2 sin´1
rRsq

(ReLU) . (4.30)

In both cases, the student teacher overlap increases smoothly from zero to R “ 1. A
Taylor expansion of 1{α for R « 1 yields the asymptotic behavior

Rpαq “ 1 ´
const.

α
and ϵgpαq “

1

2α
for α Ñ 8

for both types of activation. This basic large-α behavior with ϵg9α´1 carries over
to student teacher scenarios with general K “ M in configurations with positive
specialization.

4.5.2 Weak and negative alignment

Here we consider a particular teacher unit which realizes a ReLU response

maxp0, bq with b “
B ¨ ξ
?
N

.

A set of K hidden units in the student network can obviously reproduce the response
by aligning one of the units perfectly with, e.g., R“w1 ¨B{N“1 and S“wj ¨B{N“0

for j ą 1. Similarly, we obtain for R “ ´1 that h1 “ ´w˚ ¨ ξ and maxp0, h1q “

maxp0,´bq.
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Now consider the mean response of a student unit with small positive overlap
S “ wj ¨ B{N , given the teacher unit response b. It corresponds to the average
xmaxp0, hjqyb over the conditional density P phj |bq “ P phj , bq{P pbq. One obtains

xmaxp0, hjqyb “
1

?
2π

`
b

2
S ` OpS2q

by means of a Taylor expansion for S « 0. As a special case, the mean response of an
orthogonal unit with S “ 0 is 1{

?
2π, independent of b.

It is straightforward to work out the conditional average of the total student
response for a particular order parameter configuration with R “ ´1 and S “

2{pK ´ 1q. Apart from the prefactor 1{
?
K it is given by

maxp´b, 0q ` b` K´1?
2π

“ maxp0, bq ` K´1?
2π
,

where the right hand side coincides with the expected output for R “ 1 and S “ 0.
Hence, the average response agrees with the teacher output for large K. Moreover,
the correspondence becomes exact in the limit K Ñ 8, which facilitates perfect
generalization in the negatively specialized state with S ą 0, R ă 0 discussed in
Sec. 4.3.
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Chapter 5

An Industry 4.0 case study: real-time quality
control for steel-based mass production using
Machine Learning on non-invasive sensor data

Abstract

Insufficient steel quality in mass production can cause extremely costly damage to the
production tooling, production downtimes and low quality products. Automatic, fast
and cheap strategies to estimate essential material properties for quality control, risk
mitigation and the prediction of faults are highly desirable. In this work we analyse a high
throughput production line of steel-based products. Currently, the material quality in
the line is checked using manual destructive testing, which is slow, wasteful and covers
only a tiny fraction of the material. To achieve complete testing coverage our industrial
collaborator developed a contactless, non-invasive, electromagnetic sensor to measure all
material during production in real-time. Our contribution is three-fold: 1) We show in
a controlled experiment that the sensor can distinguish steel with deliberately altered
properties. 2) During several months of production 48 steel coils were fully measured
non-invasively and additional destructive tests were conducted on samples taken from
them to serve as ground truth. A linear model is fitted to predict from the non-invasive
measurements two key material properties (yield strength and tensile strength) that
normally have to be obtained by destructive tests. The performance is evaluated in leave-
one-coil-out cross-validation. 3) The resulting model is used to analyse real production
data of approximately 108 km of processed material measured with the non-invasive
sensor and the relationship with recorded product faults. The model achieves an excellent
performance (F3-score of 0.95) predicting material running out of specifications for the
tensile strength. In a second controlled experiment one coil suspected of material faults
was sampled 18 times over its full length and repeated non-invasive as well as destructive
testing was performed to analyse the relationship between both measurement types in
a situation where also product faults and problems during production are expected to
occur. On this coil the model predictions demonstrate that material properties are indeed
out of specification near the point for which the products made from the neighboring coil
exhibited faults during production. The combination of model predictions and logged
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product faults shows that if a significant percentage (ą 30%) of estimated yield stress
measurements is out of specification, the risk of product faults is high. Our analysis
demonstrates promising directions for real-time quality control, risk monitoring and fault
detection.

5.1 Introduction

The terms “Smart Industry”, “Industry 4.0”, or “Fourth Industrial Revolution”
(Schwab 2017) have been coined to describe a vision that includes a wide range
of emerging technologies that, when used collaboratively, have the potential to con-
tribute to highly optimized production processes (Lasi et al. 2014, Vaidya et al. 2018).
Several of these fields that are of central importance in the development of the so-
called smart factory are sensor technology, Cyber Physical Systems, the Internet of
Things, advanced communication technology, big data analytics, Machine Learn-
ing (ML), Artificial Intelligence (AI) and cloud computing (Chen et al. 2017, Castelo-
Branco et al. 2019). Various examples exist in which the successful implementation
of a combination of these technologies results in higher production efficiency, better
human decision making and less waste (Vaidya et al. 2018). Realizing the large
potential of Smart Industry has been recognized as a key factor by governments
and industries for ensuring economic competitiveness and sustainability in the next
decades.

In this chapter we develop a typical Industry 4.0 solution: A real-time quality
control and fault detection system for a high-throughput production line of products
made from strip steel. The main machinery in the production line under study is a
high-speed stamping press operating on the strip steel at frequencies of up to 180
strokes per minute. In general, if the material quality of the steel is insufficient, it may
have a variety of serious consequences, such as poor quality of the final products,
expensive damage to the production machinery and resulting production downtime.

More specifically, the manufacturer frequently encounters a specific fault in the
production process that causes production downtimes and potentially expensive
damage to the machinery if the production is not stopped immediately. During such
an event, a crack arises in the product in the stamping process. It is hypothesized
that insufficient material quality may be one of the causes of the fault. Hence, it is
crucial that all strip steel that enters the production process is of sufficient quality in
order to prevent this type of fault.

The current material quality requirements specify the upper limit of stress [MPa]
for the properties yield strength and tensile strength, which is known as the Upper
Specification Limit (USL). Currently, destructive tests on samples of the steel are
performed to check whether the material conforms to the specifications. By means
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of a tensile test on the sample, the yield stress and tensile strength of the sample are
determined, together with several other material properties not considered in this
work. Although the material properties of the sampled steel can be measured reliably
using these methods, the process is manual, therefore slow and it produces material
waste. For these reasons, it is only feasible to test a tiny fraction of the material in the
production line. If the test results indicate insufficient material quality, a potentially
large batch of products that were already produced may not be of sufficient quality
and must be thrown away, which increases the waste. On the other hand, if the
test shows sufficient material quality, it can still be the case that undetected material
changes have occurred, resulting in lower quality products. Hence, tensile testing
cannot be a solution for continuous quality control and material quality guarantees.
A continuous quality control solution should be able to achieve full test coverage of
the production material, detect highly local material faults and sudden changes in
material properties.

In implementations of so-called soft sensors, easily obtainable process variables
are measured inline in real-time. These measurements are simultaneously converted
using a statistical or machine learning model to quantities that otherwise have to
be measured in expensive, time-consuming lab tests (Jiang et al. 2021). An impor-
tant component of soft sensing in smart industry is Nondestructive Testing (NDT)
(Sophian 2020). In the steel-based manufacturing industry, NDT sensors perform
contactless and non-destructive measurements on the steel in real-time and can
therefore be used in a high-throughput production line to measure all strip steel that
enters the process (Garcı́a-Martı́n et al. 2011). By combining the real-time stream of
measurements with appropriate machine learning models, advanced online fault
detection and quality control systems can be developed.

Previously, Long Short-Term Memory and Gaussian Processes were used in
industrial settings where temporal patterns are relevant (Malhotra et al. 2015, Berns
et al. 2020). Although these techniques are able to represent complex temporal
relationships, they are computationally expensive and have large data requirements.
Latent variable models such as supervised factor analysis and Partial Least Squares
have also been used in industrial settings (Ge 2016, Rosipal and Krämer 2005), which
generally require less computational effort. A successful implementation of a real-
time quality control system leads to fewer defects in products, improved quality, less
production downtime and less material waste. Furthermore, the real-time model
estimation of material quality from the inline measurements can be used in the active
control of production parameters, which aims to adjust the machinery settings in real-
time towards optimal parameter values with respect to the specifics of the measured
material (Heingärtner et al. 2010, Ge 2016, Jiang et al. 2021).

Our industrial collaborator developed a soft sensor based on Eddy Currents
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(Garcı́a-Martı́n et al. 2011). The sensor is located at the start of the production line
and it measures the strip steel exactly at the locations where the press operates
further in the line. Our main contribution is the development of a real-time quality
control and fault detection solution for the steel in the production line based on the
sensor measurements. Our contributions that are necessary to realize the system are
three-fold: 1) A model is developed for estimating material properties in real-time
from the inline contactless sensor measurements. We use the ground truth material
properties of several production coils to fit the model. 2) The model is used for
the early detection of insufficient material quality. Specifically, the model is used
for predicting the material properties of a steel coil which comes from a batch of
coils that had caused product faults earlier. For this case the model estimation of
the material properties is able to detect material of insufficient quality and thereby
prevent product faults. 3) We study the model estimations on 108 km of processed
strip steel in the line and we link the model estimations to reported product faults
during production. It is demonstrated that the model estimations can be used to
assess the risk of the occurrence of product faults.

The paper is organized as follows: In Sec. 5.2 the relevant details of the new
industrial datasets are introduced. Subsequently, in Sec. 5.3 the methods used for the
analysis of the data and for the estimation of material properties are discussed. In
Sec. 5.4 we present the results of our experiments and discuss them in Sec. 5.5. Lastly,
the work is summarized in Sec. 5.6 and an outlook for future work is provided.

5.2 Data description and analysis

The production coils of small strip steel have an associated Heat number, which
identifies the specific elements used in the steel production batch. The NDT sensor
measurements based on Eddy current testing (Garcı́a-Martı́n et al. 2011) are per-
formed at 10 test frequencies. We denote the measurements with xi P R20. The first
half of the components of x are the amplitude gains and the second half the phase
shifts of each frequency. Hence, for measurement number i, the amplitude gain and
phase shift of test frequency j are stored in xri, js and xri, j ` 10s, respectively. In
some parts of the text and figures, we will use the shorthand name SV i to denote the
sensor variables.

5.2.1 Controlled experiment: measuring modified steel samples

In order to study the sensitivity of the sensor and to establish an expected lower and
upper bound for each sensor variable, steel modified to extreme material properties
was measured with the contactless sensor and compared to the reference steel. A



5.2. Data description and analysis 105

selection of nine steel strips was divided into three groups of three steel strips. One
group was left unmodified and serves as reference material. For the other two groups,
one group was modified to be “harder” and the other group to be “softer”: Although
the properties of the resulting steel were not measured, after the modification the
harder steel should have yield- and tensile strength properties much larger than
the reference material and these properties for the resulting softer steel should be
much smaller than the reference. Subsequently, each metal strip was measured with
the sensor at the start, middle and end of the strip. At each location 100 sensor
measurements were made.

We transformed the original sensor measurements xi P R20 as follows:

xi :“
xi ´ PH

10%

P S
90% ´ PH

10%

, (5.1)

where PH
10% P R20 are the 10th percentiles of the variables only considering the

measurements of the Hard group and P S
90% P R20 are the 90th percentiles of the

variables only taking into account the measurements of the Soft group. Note that
since PH

10%rjs ă P S
90%rjs for j “ r1, ..., 20s, the applied transformation in Eq. (5.1) is

effectively min-max normalization, with the percentiles being estimates of the min
and max. After the transformation of Eq. (5.1), the resulting values were shifted
according to

xi :“ xi ´ µR , (5.2)

where µR P R20 are the means of the variables computed over the Reference group
after the transformation of Eq. (5.1). The shift effectively moves the values for the
reference material close to zero.

We denote a measurement at a location on a strip in one of the categories using
its category letter [S, R, H], a digit in [1, 2, 3] to denote the strip and another digit in
[1, 2, 3] to denote the measurement location on the strip. For instance, ”H31” denotes
the sensor measurements of strip number 3 in category ”H” at location ”1”.

Additionally, two weeks after the measurements, the same locations were mea-
sured a second time. We denote the time of the first measurements by t1, the time of
the second measurements by t2 and t2 ´ t1 « 14 days.

In Fig. 5.1 the left- and right figure shows for the two measurement times, the ob-
tained distributions of measurements taken at the locations S12 and H13, respectively,
for SV 17. Clearly, the sample means at the two measurement times for location S12
were different. In contrast, the sample means for location H13 were approximately
equal.

We performed two-tailed dependent samples t-tests for all measurement locations
comparing for each individual sensor variable the samples measured at time t1 to the
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Figure 5.1: Distribution of the approximately 100 sensor measurements at the loca-
tions S12 (left) and H13 (right). t1 is the time of the first set of measurements and t2
the time of the second set of measurements, with t2 ´ t1 « 14 days.

samples measured at time t2. The null-hypothesis H0 was that the two distributions
have equal population means. For each comparison the p-value that is computed
from the resulting t-statistic is shown in Fig. 5.2. For a large part, the p-values were
below a value of 0.05. Hence, using a significance value of p “ 0.05, for these cases
the null hypothesis of equal population means could be rejected. The null hypothesis
could frequently not be rejected for the steel strips in the Hard category, especially
for the 10 sensor variables corresponding to the phases. Not surprisingly, for the S12
samples shown in Fig. 5.1, the p-value was small whereas for the H13 samples the
p-value was large.

Fig. 5.3a shows a visualization of the Pearson correlation coefficients between the
sensor variables. In general the sensor variables are strongly correlated. The variables
SV 4 and SV 11 each have small correlation values with all other variables. In the
figure SV 17 is plotted against the SV 11 where the lack of a clear correlation can be
seen. Although the variable svar1 has low discriminatory power in separating the
classes in this experiment, it can still be an important variable that holds information
about the quality of the steel. For instance, in this case it separates in the ”H” class
two groups of measurements from the other six groups. This could indicate that
the corresponding two locations have differing material properties than the other
groups.

From the plot of SV 17 against SV 18, the almost perfect correlation can be
observed. In this case, the Soft, Reference and Hard classes of steel can clearly be
distinguished by the value of both variables. A group of measurements of the hard
material had similar values to the measurements from the reference and soft material.
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Figure 5.2: Heatmap of p-values obtained from paired t-tests of the sensor measure-
ments taken on the same steel samples at times t1 and t2. Sensor variables are on the
x-axis and measurement locations on the y-axis. The S, R or H in the location iden-
tifier denotes steel with the Soft, Reference or Hard material property, respectively.
The next digit denotes the number of the strip in the category and the last digit the
measurement location on the strip. The p-value is only shown if it is greater than the
significance value of 0.05.
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Figure 5.3: Left: Pearson correlation coefficient between pairs of sensor variables
computed over all measurements in the modified steel experiment. Right: SV 17
plotted against SV 1 (top) and SV 18 (bottom), colored by the category of the steel
property. Note that we only plotted the data measured at time t1 here.

For further investigation, the corresponding strip which is from the location H23
was subjected to a tensile test. The tensile test showed that the material had material
properties that were similar to the reference material. Hence, it is likely that the steel
modification failed at this location and the obtained sensor measurements should be
regarded as the reference group.

Fig. 5.4 shows the sensor variable loadings on the first two principal components
computed on the data which was z-score standardized for the purpose of performing
the PCA. Due to the large mutual positive correlations between the variables, the
majority of the variables has a large loading on the first principal component (PC
1). PC 1 explains already 86% of the variance in the data. Together with the second
principal component (PC 2), which has large loadings for SV 11 and SV 4, 96% of
the total variance is explained. Fig. 5.5 shows the projection of all data points on
the first two principal components. In general, it can be seen that the groups of
measurements have characteristic scores on the first principal component. That is,
the different material properties can be distinguished clearly by the scores on the
first principal component. The scores on the second principal component separate
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Figure 5.4: Sensor variable loadings on the first two Principal Component Anal-
ysis (PCA) components computed on the standardized hard, soft and reference
measurements. Only outlier variables are labeled.
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Figure 5.5: Sensor measurements on steel with different material properties projected
on the the first two PCA components of the standardized data. 15% of the total
number of measurements is shown, uniform randomly chosen.

the soft and hard groups from the reference group.

5.2.2 Production setting: continuous measurements in the line

In this section we discuss the dataset that was obtained to investigate the relationship
of the non-invasive 20 dimensional sensor measurements to material properties
confirmed by destructive testing.

Sensor data during production

The sensor was installed at the start of the production line to continuously measure
the steel coils that were used for production. This produced a stream of sensor
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Figure 5.6: Blue points: Sensor variable 17 measurements taken on the testcoil. Solid
orange line: Moving average over 50 measurements. Dashed black lines: Locations of
the destructive test samples.

measurements xi P R20 together with timestamp metadata and the current steel coil
identification. From each coil a variable number of products is made; the range of
measurements varies from a few hundred to tens of thousands of final products. In
some instances a production stop caused the sensor to produce physically impossible
values (e.g. negative values) or no values at all. These faulty records were removed
from the dataset.

Destructive Tensile tests

From 47 selected coils a sample at the start of the coil was taken to measure material
properties using a tensile test. Three tensile tests were performed on the sample to
measure yield strength and tensile strength. In the following, the tensile strength and
yield strength are denoted by “t1” and “t2”, respectively. During the period of the
experiment, one production coil resulted in many instances of products with cracks,
hypothesized to be caused by insufficient steel quality. Hence, it was decided that a
related coil from the same heat should be rejected for production and instead be fully
measured by the non-invasive sensor as well as frequently sampled for tensile testing.
At each of nine locations distributed over the full length of the coil two samples were
taken for tensile testing. We label this particular coil as “Testcoil” to distinguish it
from the rest of the 47 production coils.

Fig. 5.6 shows the value of sensor variable 17 as measured over the full length of
the coil, along with the nine locations at which two tensile test samples were taken.
The signal is characterized by a band of values around the moving average and
exhibits a large transition in the middle of the coil. Because of high redundancy of
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Figure 5.7: The fraction of the standard deviation with respect to the transition
difference, as an estimation of the measurement noise.

the variables we made a ranking of the quality of the variables by estimating the
measurement noise. The standard deviation of the signal between sample number
2000 and 4000 was computed and divided by the total transition difference of the
signal, i.e. for each sensor variable the difference between the first and last value
of the moving average from Fig. 5.6. In other words, the standard deviation of the
band around the moving average of the signal is expressed as a fraction of the total
transition difference. For each sensor variable, the value of this fraction is shown in
Fig. 5.7. Sensor variable 17 has one of the lowest estimated noise values. It is also
clear that SV 3 and 11 have high estimated noise values.

Logs of production faults

Instances of cracks appearing in products were logged during the months of the
experiment. Since the fault has to be detected and handled by an operator, logging
the faults is a manual process which was done at two levels of detail.

At the highest level of detail, the faulty product code was logged together with
the identification code of the sensor measurement made on the corresponding steel.
Hence, the sensor measurement of the steel is available that was used for a product
which had a fault later on in the line. Due to the fast production process and the
current system facilities, it is highly complex to couple the product code to the
correct corresponding sensor measurement identification. Therefore, only 17 of these
instances are available in the logs.

At the lowest detail level, fault instances were written down in a logbook. These
entries specify the hour during which the product fault occurred and they do not
contain the product code itself. In the dataset there are 25 of these entries that span
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Figure 5.8: The distribution of sensor variable SV 17 (sP7) for each production coil in
the dataset. Measurements outside of the 0.5 and 99.5 percentiles are not shown.

six production coils.
We normalized the sensor measurements using Eq. (5.1), so that values close to

zero indicate measurements similar to the reference material of the experiment in
Sec. 5.2.1. Furthermore, negative values are closer to the measurements of the hard
material while positive values are closer to the measurements of the soft material.

We standardized both material properties t1 and t2 that were obtained by the
tensile tests on the 48 coils. To relate the tensile tests to the sensor measurements,
the mean and standard deviation were computed from the first 200 NDT sensor
measurements performed on the 47 production coils. Coils with less than 200 mea-
surements were dropped from the data. This left 42 production coils in the dataset.
Fig. 5.8 shows the distribution of the NDT sensor variable SV 17 for each of these
42 coils used in the production process. For the 18 tensile test samples taken over
the full length of the testcoil, we computed the mean and standard deviation of
the five NDT sensor measurements that were closest to the center of the sample.
Fig. 5.9 exemplifies the resulting values of the tensile tested material properties
against non-invasive sensor variable 17 for the 43 coils (42 production coils + testcoil).
The current USL for the respective material properties is marked in both figures. As
can be seen, several points measured using tensile tests on the testcoil had material
properties far exceeding both USL. The corresponding values for SV 17 were also
very different from the rest. The material properties of some production coils were
slightly exceeding the USL as well. We observe a negative, approximately linear
correlation between material properties and sensor measurements. In general, coils
from the same heat exhibit similar material properties and sensor measurements.



5.2. Data description and analysis 113

0

1

2

t1

Heat 1
Heat 2
Heat 3
Heat 4
Testcoil

−0.2 −0.1 0.0 0.1
SV 17

0

1

2

t2

Material- vs. sensor measurement

Figure 5.9: Material properties t1 and t2 against sensor variable SV 17 for the 42
production coils and the testcoil. Values for t1 and t2 represent the mean of three
tensile tests. Values of SV 17 represent the mean of the first 200 NDT sensor measure-
ments for the production coils and for the testcoil the mean around the 18 samples.
Standard deviations are on average about two times the size of the markers. The
dashed red line denotes the USL of the respective material properties.
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Figure 5.10: Sensor variable loadings on the first two PCA components computed
on the standardized production coil and test coil dataset. Only outlier variables are
labeled.

For this dataset, Fig. 5.10 shows the sensor variable loadings on the first two
principal components obtained by a PCA on the full 20-dimensional sensor measure-
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Figure 5.11: The production coil and testcoil dataset: Material property t2 against the
scores on the first two principal components computed by a PCA on the standardized
NDT sensor measurements.

ments. In general, the variable loadings and the variations explained by the principal
components were similar to those of the controlled experiment of Fig. 5.4. Fig. 5.11
shows the measured material property t2 against the projections of the sensor dat-
apoints on the first two principal components. Note that the points with outlier t2
measurements are only separated from the rest of the sensor measurements by the
scores on the first principal component. The highly different material properties of
the datapoints are not expressed in the scores on the second principal component.
However, the different heats have characteristic scores on this component. Table 5.1
contains the Pearson correlation for this dataset computed with and without consid-
ering the testcoil points. Excluding the test points, the correlation with the principal
components is much smaller, but still significant.

5.3 Methods

The change in material properties is not considered to result from periodic time
variations, but rather local fluctuations in the production of the steel. The analysis in
previous sections demonstrates linear correlations and relationships in our datasets
and hence a linear model is considered for estimating the material properties and
fault detection.
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Table 5.1: Correlation matrix: Principal Components and material properties without
(left) and including testcoil points (right)

t1 t2
PC1 0.31 0.42
PC2 0.45 0.04

t1 1.00 0.38

t1 t2
PC1 0.97 0.97
PC2 0.03 -0.01

t1 1.00 0.99

The model that we employ is a Partial Least Squares (PLS) regression model. For
PLS regression it is assumed that the data is generated by a smaller number of latent
variables than the number of observed variables. Let n be the number of data points,
m the number of observed variables and o the number of target variables. Then for
the predictor matrix X P Rnˆm, target matrix Y P Rnˆo and selecting k number of
latent variables, the PLS assumption can be written as follows:

X “ TP T ` E ,

Y “ UQT ` F ,
(5.3)

where T P Rnˆk and U P Rnˆk are the score matrices containing the scores on
the k latent variables for each datapoint’s input and target, respectively. The matrix
P P Rmˆk contains the original input variable loadings on the k latent input variables
and the matrix Q P Roˆk contains the original target variable loadings on the k latent
target variables. Lastly, E P Rnˆm and F P Rnˆo are the residuals.

The optimization procedure finds the k latent variables in X and Y that have max-
imal covariance. For an overview of the different variants of PLS and optimization
procedures, see (Rosipal and Krämer 2005).

Here, we used the PLSRegression implementation of (Pedregosa et al. 2011)
using the NIPALS algorithm with default optimization parameters. The sensor
measurements xi P R20 were used as inputs and the material properties yi P R2 as
targets. Note that the number of latent variables is restricted to minpn,mq in this
implementation.

We used cross-validation to determine the optimal number of latent variables
k with respect to average validation set Root-Mean-Square Error (RMSE) between
model predictions ŷi P R2 and targets yi P R2. In each fold of the cross-validation,
the model was fitted on the measurements of all coils except one. The left out coil
was used for validating the model. Hence, in each fold there was one measurement
in the validation set (Leave One Out cross-validation), except for the fold in which
the testcoil served as validation, which had 18 measurements.
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Furthermore, we evaluated the accuracy of a binary classifier that was based on
the estimated material properties. Depending on the importance of the material
properties to the prevention of faults, it is possible to reject material based on the
material properties individually or on a combination of the material properties. We
distinguished three types of rules for the classification of measurement i: According
to the first rule, the material was rejected if the estimation of t1 was above its USL,
i.e. ŷi1 ą USLpt1q. Similarly, in the second rule the material was rejected if the
estimation of t2 was above the USL,i.e. ŷi2 ą USLpt2q. According to the last rule,
the material was rejected if either of t1 or t2 was above their respective USL, i.e.
pŷi1 ą USLpt1qq | pŷi2 ą USLpt2qq. The target labels were obtained by applying the
same rules on the ground truth material properties y that were measured with the
tensile tests. Based on the number of true positives, false positives, false negatives
and true negatives we computed the precision and recall. We also computed F1 and
F3 scores. The F3 score assigns three times more importance to recall over precision,
which is more appropriate for our case: A missed material fault means that material
that is out of specification goes into the production process, which may then cause
extremely costly damage to the machinery or final products of lower quality. In
contrast, a false alarm results in minor cost in the form of wasted material that would
have been suitable for production and potentially minor production delays when the
material is removed from the coil. It should be understood that the precise assessment
and adjustment of the classifier should be based on a thorough cost analysis of the
classifiers’ decisions in practice. Our choice for the F3 score is a first estimation of the
importance of recall with respect to precision.

5.4 Results

5.4.1 Dataset/Production coils

Fig. 5.12 shows the average RMSE for both material properties obtained by the PLS
model in the one-coil-out cross-validation for increasing number of latent variables k.
Upon further inspection we note that excluding the testcoil points from the training
set results in by far the highest RMSE, which represents an outlier that is not shown in
Fig. 5.12. Thus, one needs to ensure that the full range of variation that is potentially
seen in production is included in model fitting, which might require deliberate
creation of undesirable material. Furthermore, it can be seen that the RMSE does
not decrease significantly by introducing more than one component. Hence, PLS
determined one component of the sensor measurements X and one component of the
material properties Y which, due to significant covariance, could be exploited in the
regression. Extracting more than one latent variable did not increase the performance
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Figure 5.12: RMSE computed as the mean of the RMSE obtained on the validation
sets in leave-one-coil-out cross-validation vs. the number of components/latent
variables in PLS.
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Figure 5.13: Loadings on the component extracted by PLS of the sensor variables in
X (Left) and the destructively tested material properties in Y (Right).

considerably.
Fig. 5.13 shows the loadings of the variables on the first PLS component, for

both the sensor variables X and the material properties Y . These loadings were
obtained by a PLS fit on the entire dataset (42+18 datapoints). As can be seen,
the sensor variables 5 to 10 and 12 to 20 had nearly identical loadings on the first
component. Upon further inspection we found that these loadings were nearly
identical to the first principal component from the PCA of Sec. 5.2. The component
extracted from Y had equal loadings for both material properties. Since the non-
invasive sensor measurements are strongly correlated and one PLS component is
sufficient for the regression task, the question arises if similar performance can be
achieved by regression on individual sensor variables.

Fig. 5.14 shows the cross-validation RMSE for linear regressions on the individual
sensor variables as predictor along with the RMSE obtained by PLS. Linear regres-
sions using one of the higher loaded variables from Fig. 5.13 had similar performance
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Figure 5.14: Left: Cross-validation RMSE of OLS linear regression for each sensor
variable as predictor of the material properties t1 and t2. Right: Cross-validation
RMSE of PLS with number of components k “ 1. Outliers are not shown.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
Target

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

M
od

el
 p

re
di

ct
io

n

Material property t1: Model vs. target

USL
Prediction = Target
Prediction = target + 0:5¾
Prediction = target - 0:5¾

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
Target

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

M
od

el
 p

re
di

ct
io

n

Material property t2: Model vs. target

USL
Prediction = Target
Prediction = target + 0:5¾
Prediction = target - 0:5¾

Figure 5.15: One-coil-out cross-validation prediction results of material properties
t1 (left panel) and t2 (right panel) using the PLS model with number of components
k “ 1.

as the PLS model. Although differences were small, the predictions of material
property t2 were most accurate when based on SV 10 and the predictions of material
property t1 were most accurate when based on SV 17. This can be explained by
the fact that these sensor variables had low estimated measurement noise, as was
discussed in Sec. 5.2 in combination with Fig. 5.7.

We continued with the PLS model, as the latent variable is more robust against
sudden changes of the noise pattern in the variables. The coils vary largely in their
material properties and the predictions are negatively affected if the full range is
not observed. Fig. 5.15 shows for both material properties t1 (left) and t2 (right) the
PLS predictions made in the one-coil-out cross-validation. Hence, all predictions
shown in the figures are from the folds in which the data point was in the validation
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Table 5.2: Fault classification results based on the cross-validation predictions of the
PLS model

TP FN FP TN Precision Recall F1-score F3-score
Based on t1 10 7 13 30 0.43 0.59 0.50 0.57
Based on t2 9 0 5 46 0.64 1.00 0.78 0.95

t1 and t2 10 7 13 30 0.43 0.59 0.50 0.57

set. The predictions are mostly within 0.5σ of the target. The testcoil predictions are
poor, resulting from a lack of data points in the training set in the range of similar
material properties. However, the indicated USL on both axes divides the space
into quadrants that are still mostly correctly predicted despite the extreme setting:
The bottom-left quadrant corresponds to true negative-, the bottom-right to false
negative-, top-right to true positive- and top-left to false positive material out-of-
specification classifications. For the three variants of material fault classifications
explained in Sec. 5.3, the number of true-positives, false-negatives, false-positives
and true-negatives based on the predictions in cross-validation is shown in Table 5.2,
along with the corresponding precision, recall, F1-score and F3-score. The fault
classification based on t2 achieved a perfect recall of 1.00 and a precision of 0.64.
Indeed, as can be seen in the right panel of Fig. 5.15, the fault classifier did not
miss any material faults and it classified some samples that were close to the USL
as faults, being extra careful. The corresponding F3 score was excellent: 0.95. The
recall of the fault classification based on t1 and the combination of t1 and t2 was only
0.59 and the precision 0.43. The corresponding F3-score was 0.57. The results for
these cases were identical because all predictions and measurements that were out
of specification with respect to t2 were also out of specification with respect to t1,
but not vice versa. Hence, the classifications and target labels based on only t1 and
the combined case were equal. Based on the predictions and measurements, it can
furthermore be hypothesized that the USL on material property t1 is tighter than the
USL on material property t2.

Fig. 5.16 shows the training fit of the PLS model when all data was included in
the training set; this was the same fit of which the variable loadings are shown in
Fig. 5.13. This linear model fitted the testcoil data points much more accurately than
the fits where these data points were not included in the training set, as is shown
by comparing Fig. 5.16 to Fig. 5.15. Hence, these outlier data points had a large
influence in the model fitting, which can be explained by the sensitivity of least
squares optimization to outliers. The out-of-specification classifications were largely
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Figure 5.16: Training fit (model vs. target) of PLS with number of PLS components
k “ 1 on all production samples. Left: Model vs. target for material property t1. Right:
Model vs. target for material property t2.

the same for this model. The only difference was a slight increase in precision and
recall for the classifications based on t1 and the combination of t1 and t2: 0.65 and
0.48 respectively, with a corresponding F3 score of 0.62.

The weaker linear relationship observed when excluding the testcoil points was
likely related to the fact that these points were only in a small range of material
properties and had additional noise caused by the distance between the tensile test
and the sensor measurement. We assumed in the rest of the discussion that the linear
relationship as observed for the entire dataset generalizes, see Sec. 5.5. Hence, in
the rest of the discussion we used the PLS model as fitted on all available data to
estimate material properties in production in real-time.

5.4.2 Relation of material properties to known production faults

Besides predicting if the material is out of specification bounds based on non-invasive
sensor measurements we are interested whether such measures can be directly related
to the occurrence of faulty products recorded during production. The PLS model
fitted on all available data points was used to estimate material properties from the
sensor measurements that were made in production. The estimations were compared
to the logged production faults. As an example of a problematic case of what could
be encountered in production, we first show the result of the model predictions made
on the entire suspicious testcoil and then consider the other product faults that were
logged in the rest of the production.
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Figure 5.17: Estimation of the material properties t1 (left) and t2 (right) based on the
sensor measurements taken on the testcoil. Solid orange line: Moving average over
50 values. Solid black line: Marks the point at which the related production coil was
removed from the production line.

Testcoil results

In Fig. 5.17 the model estimations of the two material properties are shown for the
testcoil. Halfway the coil, the estimated material properties drifted out of their
respective specifications. The point at which production with the related production
coil was stopped due to cracks that occurred in the products while in the press is
marked in the figure. As can be seen, this was shortly after the material properties
exceeded the USL. The area to the left of the solid black line, which is enclosed by
that line as well as the the moving average line and the USL line, is slightly larger in
the left panel. Hence, t1 went out of specification at an earlier stage than t2, which
corresponds to the observation made in Sec. 5.4.1 that the specification on t1 is tighter.

Production data

We got 17 logged measurement identifiers of strip steel locations that were linked to
product faults later in production and we obtained 25 instances of product faults of
which the hour of occurrence was logged, see Sec. 5.2.

Fig. 5.18 shows the model estimations of the material properties for the 17 logged
measurement identifiers that were linked to product faults. From the 17 sensor
measurements, only one had estimated material properties that were within the
specifications. Twelve resulted in estimated material properties that exceeded the
USL for both t1 and t2. The remaining four measurements had estimated material
properties that exceeded the USL with respect to t1 only. Fig. 5.19 shows the model
predictions of property t1 for two full production days. Although the result from
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Figure 5.18: Model estimation of material properties for the sensor measurements on
the locations of the material that were linked to product faults.

Figure 5.19: Model estimation of material property t1 for two full production days.
Black stars indicate the model predictions made using the sensor measurements that
were linked to product faults. Solid orange line: moving average over 50 values.

Fig. 5.18 suggests that a large fraction of the sensor measurements that were linked
to product faults had estimated material properties that were out of specification,
it is also the case that a large fraction of the estimated material properties in these
coils were out of specification but not labeled as faults in production. Therefore the
question arises whether the sensor measurements corresponding to predicted faulty
material that was not connected to reported product faults can be distinguished from
those related to product faults. If this was true a classifier that works on small sample
sizes should distinguish those cases. In order to test this hypothesis we trained
a supervised model, Generalized Matrix Learning Vector Quantization (GMLVQ)
(Schneider et al. 2009), using the implementation from (van Veen et al. 2021). We



5.4. Results 123

Reported faults No reported faults

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

ou
t o

f s
pe

ci
fic

at
io

n t1

Reported faults No reported faults

t2

Figure 5.20: Fraction of out of specification model estimations of the material proper-
ties t1 and t2 for coils with reported faults and without reported faults.

selected as the positive class the 16 labeled sensor measurements that were linked to
product faults and had estimated material properties that were out of specification.
As negative class, 16 randomly chosen sensor measurements were selected with
estimated out of specification material properties but not linked to product faults.
Out of 100 random cross-validation splits with 8 samples validation set size and
training with early stopping, the mean validation area under the ROC curve was
0.58, which is barely above random indicating that the classes could not be well
distinguished. This suggests that the prediction of undesirable material properties
does not necessarily cause a fault every time, but rather increases the risk of a
production fault.

As indication of the risk for a product fault we computed the fraction of estimated
material properties that were out of specification for each of the production coils with
at least 2000 sensor measurements (40 coils). Fig. 5.20 shows that for the six coils
with reported faults, the fraction of estimated out of specification material properties
was significantly larger than for coils without reported faults. For t1, all coils with
reported product faults had a substantial fraction of estimations that exceeded the
USL. In the group of 34 coils without reported product faults, this fraction was much
lower in general with only a few outliers that had large fractions. Due to the tighter
USL of t1, the fractions computed for t1 were always larger than those computed for
t2. For this reason, there were some coils with reported faults that exhibited a low
fraction for t2 and a high fraction for t1. The results suggest that the occurrence of a
high fraction of model estimations for t1 that exceed the USL indicates an increased
risk for product faults.
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5.5 Discussion

From the cross-validated PLS performance, we found evidence that the relevant
information concerning the material properties is mainly contained in the higher fre-
quency sensor variables. This was also initially indicated by the PCA on the modified
steel samples, where the different material properties could be well distinguished by
the first principal component which mainly consisted of the high frequency compo-
nents. The latent variables of the sensor measurements and the targets are linearly
correlated. We demonstrated that the sensor variables have different levels of mea-
surement noise and that using linear regression with one of the least noisy variables
of the higher test frequencies yielded similar estimation performance as the PLS
model. Hence, the results are robust with a comparably wide range of higher test
frequencies of the sensor.

The model fitting was heavily influenced by the suspicious testcoil measurements
which covered a larger variety of material properties than the other coils. Coils with
material properties close to the USL also conformed to the linear relationship between
sensor measurements and material properties. Given that the material properties
of the production coils were in a small normal range of material properties, it is
important that these measurements were done as accurately as possible. The distance
between the tensile test and the sensor measurement caused small deviations in the
sensor measurement. We confirmed this by studying the signal and in a number of
cases the sensor measurements showed a large variation, which added uncertainty to
the true value of the sensor measurement at the location of the tensile test. Moreover,
the administration of new coils was not always exact, such that in a few cases the
closest sensor measurements to the location of the tensile test could not be determined
and the averaging was done over a suboptimal sample. The accuracy of the current
PLS model could be further verified by taking additional tensile test samples from
the coils in production and comparing the model estimation with the result from the
tensile test. By doing this over a large time span, this would include more material
that is out of specification and that results in better estimates of the recall and the
precision of the material fault detector.

In the cross-validation the estimations of material property t2 were slightly better
than the estimations of t1. Likewise, the material fault classification based on thresh-
olding with respect to the USL had a much better recall for t2 than for t1, which is a
crucial performance indicator in mass production settings. However, when relating
the material specification predictions to actual reported faults during production, t2
appears very conservative associating a high risk with a lot of the material, while t1
exhibits a better proportion between risk and actual fault. For coils with reported
faults, this fraction for property t1 was always large. For the large group of coils
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without reported faults, only relatively few coils also had a large fraction of t1 pre-
dictions that were out of the specification and the majority had a low fraction. Since
logging was manually done by different operators, it could be that faults were not
always reported. However, these first results already indicate that a large fraction
of out of specification material property estimations is associated with an increased
risk of product faults. In scenarios with a clear drift in material properties, such as
the one of the test coil, the estimation of material properties from the inline sensor
measurements can prevent material that is far out of specification from entering the
production line in the future. In these situations the insufficient material quality is
most likely the culprit for production faults. For more subtle scenarios, where the
estimated material properties slightly exceed the USL, the production of the great
majority of products did not result in reported faults. Hence, in order to prevent
faults in these situations, it may be crucial to estimate a risk value for faults given the
sensor measurements and raise an alert or adjust the parameters of the production
machinery suitable for the encountered material.

5.6 Conclusion and Outlook

This contribution discusses an exemplary industry 4.0 case: The real-time fault
detection and quality control in a mass production line. Material measurements
gathered by an NDT soft sensor were analysed in three scenarios:

Firstly, we analysed sensor measurements made on deliberately altered material
and we showed that the sensor was able to detect these modifications.

Secondly, a PLS model was fitted on a dataset that included sensor measurements
and tensile tests results of steel from two settings: Steel from production and steel
from a selected coil, called testcoil, that contained insufficient material quality. The
testcoil was closely related to a coil that had to be removed from production because
the products made from it contained faults. This model was initially used to estimate
the rest of the material properties of the testcoil. The results obtained in these
experiments showed the potential of the strategy for achieving full real-time test
coverage and for the early detection of insufficient material quality, preventing it
from entering the production line. Hence, in the future, the detection and prevention
of material faults in production could save extremely high costs due to less damage
to the production machinery and fewer thrown away products.

Lastly, the model was employed for an analysis of 108 km of strip steel coil
encountered during the full run of the experiment. We demonstrated evidence in
preventing the more subtle faults, by revealing the relationship between large fraction
of out of specification estimations and reported faults. Furthermore, the material
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specification may not always directly lead to faults, but could have a direct influence
on the durability of tooling.

A future direction is to combine the model estimations and risk determination
with machine parameters, to identify optimal settings for the specific properties of
the material, which has the potential to widen the specification limits of the material.
In addition, a cost analysis should be made in order to adjust the sensitivity of the
material fault classifier to optimize with respect to the ratio of the costs of false
positives to false negatives. One could start with a sensitive setting (decreasing
the USL) and gradually decrease the sensitivity while monitoring the number of
product faults. This would optimize the USL with respect to the cost of faults. Our
findings on the sensor’s consistency on material with different properties are further
investigated by the company. Other future investigations will incorporate process
knowledge, the physics of the sensor, other inline measurements and the interplay of
the tooling with certain material properties for the prevention of faults.
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Chapter 6

Prototypes and Matrix Relevance Learning in
Complex Coefficient Space

Abstract

We consider the classification of time-series and similar functional data which can be rep-
resented in complex Fourier- and wavelet coefficient space. We apply versions of Learning
Vector Quantization (LVQ) which are suitable for complex-valued data, based on the
so-called Wirtinger calculus. It makes possible the formulation of gradient based update
rules in the framework of cost-function based Generalized Matrix Learning Vector Quan-
tization (GMLVQ). Alternatively, we consider the concatenation of real and imaginary
parts of Fourier coefficients in a real-valued feature vector and the classification of time
domain representations by means of conventional GMLVQ. In addition, we consider the
application of the method in combination with wavelet-space features to the classification
of heartbeats in electrocardiogram (ECG) data. Besides the interpretation of the LVQ
classifier in the domain of the transform, time-domain interpretability is retained by trans-
forming the prototypes and relevance matrix using inverse transformations appropriately.
With feature relevance information and prototypes in both the time and the transform
domain, our approach provides rich insight into the classification problem.

6.1 Introduction

Time series constitute an important example of functional data (Ramsay and Silverman
2006): Their time-domain discretized vector representations comprise components
which reflect the temporal order and are often highly-correlated over characteristic
times. This is in contrast to more general datasets, where the feature vectors are
concatenations of more or less independent quantities and without any meaningful
interpretation of their order.
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The machine learning analysis of time series data, e.g. for the purpose of classifi-
cation, should take into account their functional nature. Recently, prototype-based
systems have been put forward, which employ the representation of data and proto-
types in terms of suitable basis functions (Melchert et al. 2016a, Melchert et al. 2016b).
In addition, corresponding adaptive distance measures can be defined and trained
in the space of expansion coefficients (Kästner et al. 2011, Biehl et al. 2014, Biehl
et al. 2016). Hence, the functional nature of data is taken advantage of, explicitly.
At the same time, it is possible to compress high-dimensional data by functional
approximations, thus reducing computational effort and - potentially - the risk of
over-fitting. Examples of the basic approach include the application of wavelet
representations of mass spectra (Schneider, Biehl, Schleif and Hammer 2007) or hy-
perspectral images (Mendenhall and Merenyi 2006), and also polynomial expansions
of smooth functional data (Melchert et al. 2016a, Melchert et al. 2016b).

In the context of signal processing, the Discrete Fourier Transform (DFT) to the
frequency domain is a popular tool which can be applied to time series or more
general, sequential data. In the following the discussion is presented mostly in terms
of actual time series, but it is understood that methods and results would carry over
to suitable sequential data from other contexts. The standard formulation of the DFT
resorts to the determination of complex coefficients, conveniently. Hence, we suggest
and study the combination of DFT functional representations with the extension of
Generalized Matrix Learning Vector Quantization (GMLVQ) (Schneider, Biehl and
Hammer 2007), (Schneider et al. 2009) to complex feature space (Gay et al. 2016).
We present furthermore the formalism to back-transform the resulting prototypes
and relevance matrix to the time domain, thus retaining the intuitive interpretability
of the LVQ approach. With the prototypes and relevance matrix in both the time
domain and the transform domain, the methodology provides a multi-perspective
insight into the classification problem. We apply the suggested framework to a
number of benchmark datasets (Chen et al. 2015) and study, among other aspects,
the dependence of the performance on the approximation quality, i.e. the number
of coefficients considered. In addition, we compare performance with an approach
that resorts to the concatenation of the imaginary and real parts of coefficients in a
real-valued feature vector. The application of conventional GMLVQ classification
in the time domain serves as an important and intuitive baseline for comparison of
performances and for the interpretation of the obtained relevance matrices.

The Discrete Wavelet Transform (DWT) is another frequently used tool for signal
analysis (Mallat 2008). In contrast to the standard DFT, the DWT also captures time
information in addition to frequency information. Additionally, the more recently
proposed Dual-Tree Complex Wavelet Transform (DTCWT) provides approximate
shift invariance and directionally selective filters (Kingsbury 2001, Selesnick et al.
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2005). We describe the combination of complex wavelet representations with the
extension of GMLVQ to complex feature space and discuss the interpretation of the
classifiers in wavelet space and in the time domain after a signal reconstruction of
the prototypes. As an application example, the methodology is used for the purpose
of classifying heartbeats in electrocardiogram (ECG) data from the MIT-BIH dataset
(Moody and Mark 2001). We consider a general classifier and a patient-specific
classifier. The classification performance is assessed for full wavelet representations
and compressed representations.

6.2 The mathematical framework

In this section we present the mathematical framework of our methodology. After
a short description of the DFT and the DTCWT, we discuss the adaptation of the
GMLVQ machine learning algorithm that is necessary for correct functioning on
complex-valued data. Lastly, the back-transformation of the prototypes and relevance
matrix to the original time domain of the data is discussed for both transforms.

6.2.1 Discrete Fourier Transform

The uniform sampling of a continuous process fptq with a sampling interval of ∆T
seconds results in a potentially high-dimensional feature vector x P RN containing
the values of fptq at the sampling times:

xrps “ fpp∆T q , p “ 0, 1, 2, ..., N ´ 1 , (6.1)

covering ∆T pN ´ 1q seconds of the continuous process. The time domain vector
x P RN can also be represented as a linear combination of N sampled complex
sinusoids:

xrps “

N´1
ÿ

k“0

x
pfq

k gkrps , p “ 0, 1, 2, ..., N ´ 1 , (6.2)

where

gkrps “ e´i2πpk{N “ cos

ˆ

2πk

N
p

˙

´ i sin

ˆ

2πk

N
p

˙

(6.3)

is the complex sinusoid of radial frequency 2πk{N and the coefficients xpfq

k P C are
the DFT coefficients (Brigham 1974):

x
pfq

k “

N´1
ÿ

p“0

xrpsgkrps , k “ 0, 1, 2, ..., N ´ 1 . (6.4)
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As in Eq. (6.2) and Eq. (6.4), for the rest of the discussion the superscript pfq is used to
denote a vector of complex-valued Fourier coefficients or a matrix of complex-valued
feature relevance values. It should be noted that the coefficients of xpfq P CN are
conjugate symmetric for real-valued signals, so that the non-redundant information
is contained in the first tN{2u ` 1 coefficients: xpfq

k , k “ 0, 1, ..., tN{2u. By truncating
the vector further to a number n ă tN{2u ` 1 of lower frequency coefficients, the
resulting vector x̂pfq P Cn represents a smooth low-pass approximation x̂ P RN of
the original vector x P RN , obtained by Eq. (6.2) for the truncated vector. Note that
in some classification problems, the classes in the dataset can be differentiated by the
values of the higher frequency coefficients. In such cases, classification performance
may decrease when those frequencies are omitted from the signals.

As the Fourier coefficients are defined as dot products between the time domain
signal x and the corresponding sampled complex sinusoids according to Eq. (6.4), it
is possible to write the full transformation as a matrix equation:

xpfq “ Fx , (6.5)

where F P CNˆN is the transformation matrix containing the complex sinusoids in
the rows of the matrix. The multiplication with F in Eq. (6.5) has a computational
cost of OpN2q. It is usually efficiently computed using the Fast Fourier Transform
that reduces the computational cost to OpN logNq.

6.2.2 Dual-Tree Complex Wavelet Transform

A shortcoming of the standard formulation of the DFT is the lack of time localization
of the frequency content, i.e., there is no mapping between time and the prevalence
of the frequencies. An advantage of the wavelet transform is that it provides time
localization of the activity of the basis functions.

The one-dimensional Continuous Wavelet Transform (CWT) (Mertins and Mertins
1999) is defined as:

W pτ, sqψx “
1

a

|s|

ż 8

´8

xptqψ˚

ˆ

t´ τ

s

˙

dt . (6.6)

In the above definition, ψp¨q is the mother-wavelet that characterizes the shape of
the wavelet, s P R` is the scale of the wavelet, τ P R is the translation of the wavelet.
In other words, the mother-wavelet ψp¨q is the main function shape from which the
specific scaled and translated wavelets ψppt´ τq{sq are derived (Mallat 2008).

The more compressed wavelets that are obtained for larger values of s results
provide more time resolution than the more dilated functions corresponding to
smaller values of s.
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The discrete version of the CWT, the DWT, is efficiently implemented as a re-
peated filtering process referred to as sub-band coding (Akansu and Haddad 1992):
A high- and low-pass filter h and l are repeatedly applied to the discrete signal x in
each level of the decomposition upto the highest level j. For each level 1 ď i ď j,
detail coefficients di and approximation coefficients ai are obtained from the high-
and low-pass filter, respectively:

dirks “
ÿ

p

xrps ¨ hr2k ´ ps . (6.7)

For i “ 1, we obtain d1 following Equation 6.7 and a1 by an application of the
low-pass filter l:

airks “
ÿ

p

xrps ¨ lr2k ´ ps , (6.8)

for i “ 1. In the next level i “ 2, h and l are applied on a1, reducing the analyzed
frequency window by a factor two in each step. The output of the DWT is the
concatenation of all detail coefficients tdiu for 1 ď i ď j and the approximation
coefficients of the last level aj :

xpwq “ rtdiu,ajs P RN , 1 ď i ď j . (6.9)

As in (6.9), in the rest of the discussion the subscript w is used to denote a vector of
wavelet coefficients or a matrix of relevance values of the wavelet coefficients.

The original DWT is not shift-invariant. In (Kingsbury 2001), a version of the
discrete wavelet transform was proposed which attains approximate shift-invariance:
The Dual-Tree Complex Wavelet Transform (DTCWT). This transform uses an ad-
ditional filter tree: One tree produces the real parts and the other tree produces the
imaginary parts of the coefficients of the DTCWT. Therefore the application of the
DTCWT up to level j yields vectors

xpwq “ rtdiu,ajs P CN , 1 ď i ď j . (6.10)

6.2.3 Formulation of GMLVQ using Wirtinger calculus

For the purpose of classifying complex-valued feature vectors, we consider an ap-
propriate adaptation of the GMLVQ algorithm similar to (Gay et al. 2016, Bunte
et al. 2012). Following the general prescription outlined in (Biehl et al. 2016), we
consider a dataset of complex-valued feature vectors and corresponding class labels:

D “ txi, yiu
P
i“1 , xi P CN , yi P r1, 2, ..., Cs , (6.11)
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where C is the number of classes in the dataset, P is the number of data points in the
dataset and N is the number of complex-valued features of the data points. In the
GMLVQ algorithm, K prototypes are defined with corresponding class labels:

W “ twi, ciu
K
i“1 , wi P CN , ci P r1, 2, ..., Cs . (6.12)

As each of the C classes must have at least one prototype representing it, the number
of prototypes must satisfy K ě C.

The similarity between a given data point i and prototype j is computed with a
quadratic distance measure:

dΩrxi,wjs “ pxi ´ wjq
HΩHΩpxi ´ wjq P R , 1 ď i ď P , 1 ď j ď K , (6.13)

in which matrix Ω P CNˆN represents a linear transform and the superscript H
denotes the Hermitian transpose of complex-valued vectors and matrices. In the
GMLVQ system, a data point xi with unknown label is classified according to the
class label cj of the closest prototype:

cj “ argmin
j

dΩrxi,wjs . (6.14)

Learning amounts to the adaptation of the prototypes W and the linear map
Ω guided by the dataset D of labeled data points, to the best-possible expected
classification performance of new data points. Usually, the training is performed on
subset of PT number of data points from D and the remaining PV number of data
points are used for monitoring the classification performance on data points that the
system does not used for learning. In the generalized versions of LVQ, learning is
guided by a cost function (Sato and Yamada 1995):

E “

PT
ÿ

i“1

Φpeiq , ei “
dΩrxi,wJ s ´ dΩrxi,wKs

dΩrxi,wJ s ` dΩrxi,wKs
P r´1, 1s , (6.15)

where wJ is the closest prototype with a matching label yi “ cJ and wK is the closest
prototype with a different label yi ‰ cK :

J “ argmin
j

dΩrxi,wjs such that cj “ yi ,

K “ argmin
k

dΩrxi,wks such that ck ‰ yi .

In Eq. (6.15), E is the total cost associated with the GMLVQ configuration and ei is
the cost of data point xi. The modulation function Φ : R Ñ R determines learning
behavior in gradient-based learning. Here we use Φpxq “ x. To minimize the total
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cost E with respect to the prototypes W and matrix Ω, gradient descent is used.
For the computation of the gradients, we use the formalism of Wirtinger calculus
(Wirtinger 1927) for taking derivatives and gradients of functions with respect to
complex-valued variables, as proposed in (Gay et al. 2016) for GMLVQ. The required
complex-valued derivatives are then given as follows:

BdΩrxi,wjs

Bw˚
j

“ ´ΩHΩpxi ´ wjq , (6.16)

BdΩrxi,wjs

BΩ˚
“ Ωpxi ´ wjqpxi ´ wjq

H . (6.17)

Then for a data point xi, the gradient of the data point’s cost ei with respect to
prototypes wJ , wK and transformation matrix Ω is:

Bei
BwJ

“ ´2
dpxi,wKq

rdpxi,wJq ` dpxi,wKqs2
ΩHΩpxi ´ wJq ,

Bei
BwK

“ 2
dpxi,wJq

rdpxi,wJq ` dpxi,wKqs2
ΩHΩpxi ´ wKq ,

Bei
BΩ

“ 2
dpxi,wKq

rdpxi,wJq ` dpxi,wKqs2
Ωpxi ´ wJqpxi ´ wJqH

´ 2
dpxi,wJq

rdpxi,wJq ` dpxi,wKqs2
Ωpxi ´ wKqpxi ´ wKqH .

(6.18)

A comparison of the above gradients for complex-valued data with the gradients for
real-valued data, found for instance in (Schneider, Biehl and Hammer 2007, Schneider
et al. 2009), that the two equations are highly similar in form. To obtain the true
gradient of E with respect to the prototypes W and transformation matrix Ω, the
gradients in (6.18) over all PT training examples should be accumulated before
applying the gradient descent update. These are steepest descent updates of the cost
function E. Alternatively, one could accumulate gradients over smaller subsets of the
training set, which amounts to stochastic gradient descent. In case the gradient of only
one randomly selected data point is used, the update for each randomly selected
data point xi is:

wJ :“ wJ ´ α
Bei

BwJ
,

wK :“ wK ´ α
Bei

BwK
,

Ω :“ Ω ´ β
Bei
BΩ

,

where α and β are the learning rates for the prototypes and transformation matrix,
respectively.
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The effect of the gradient-based minimization of the cost function E is increasing
the number of correct classifications in the classification scheme (Eq. (6.14)) and
the classification margins to improve the differentiation of the classifications. The
transformation matrix Ω is adapted to achieve better discrimination of the classi-
fications in the transformed space. Simultaneously, in the transformed space the
prototypes are adapted in order to be closer to data points of matching class label,
while moving further from data points with a different class label. The symmetric
matrix Λ “ ΩHΩ P CNˆN is called the relevance matrix. The diagonal elements
Λii P R are the squared norms ||Ωi||

2 of the column vectors of the transformation
matrix, and therefore represent the learned importance of the corresponding features
in the classification problem. The off-diagonal elements Λij P C for i ‰ j respresent

After an update step, the transformation matrix Ω is normalized so that for the
relevance matrix Λ it holds that trpΛq “ 1:

Ω :“
Ω

b

řN
i“1 Ωi ¨ Ωi

. (6.19)

6.2.4 Back-transformation

Using the adaptation of GMLVQ as described in the previous section it is possible to
train a GMLVQ classifier on complex-valued data, as obtained from the DFT or the
DTCWT for instance. The GMLVQ algorithm that operates on the data in the space
of the transform learns prototypes in complex-valued coefficient space and a matrix
of feature relevance values of the coefficients. The classifier is therefore interpretable
in the space of the transform. In this section, we discuss back-transformations to the
time domain in order to also obtain a time domain interpretation of the classifier.

Fourier space

The K prototypes tw
pfq

j , cju
K
j“1 as obtained from training in Fourier space can be

interpreted as class-typical Fourier space representations, i.e., the class-typical con-
tributions of the sinusoidal components. The diagonal diagpΛpfqq of the relevance
matrix indicates the importance of each of the sinusoidal components in differentiat-
ing between the classes.

The Fourier space prototypes can be transformed to the time-domain using the
Inverse Discrete Fourier Transform (IDFT):

wjrps “
1

N

N´1
ÿ

k“0

w
pfq

jk e
i2πpk{N , p “ 0, 1, 2, ..., N ´ 1 , j “ 1, 2, ...,K . (6.20)
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As it is possible to write the complex-valued data points and prototypes as time-
domain vectors transformed with the Fourier transformation matrix F , the distance
measure can be written as:

drx
pfq

i , w
pfq

j s “ px
pfq

i ´ w
pfq

j qHΛpfqpx
pfq

i ´ w
pfq

j q

“ pxi ´ wjq
TFHΛpfqF pxi ´ wjq

“ pxi ´ wjq
TΛpxi ´ wjq ,

(6.21)

where xi P RN and wj P RN are the time-domain representations. Eq. (6.21)
shows that the matrix Λ “ FHΛpfqF P RNˆN are the coefficients for the quadratic
distance measure in the time-domain, which can be interpreted as time domain
feature relevance values.

GMLVQ could also be used directly on the data in the time-domain. Besides the
potential of improving classification accuracy, we must note that our approach also
has the ability to reduce the number of parameters in GMLVQ (n ă N ) and at the
same time keep the time-domain intuitiveness. Since the number of parameters in
GMLVQ scales quadratically with the number of dimensions, the computational
effort in the training process is considerably reduced.

Wavelet space

After training in the space of complex-valued wavelet coefficients, each prototype
pw

pwq

j , cjq can be interpreted as a class-typical wavelet space representation for class
cj . In our example application the prototypes are the typical wavelet representations
of various classes of heartbeats. The real-valued diagonal diagpΛpwqq P RN of the
relevance matrix will reflect the importance of the wavelet coefficients of the different
scales of wavelets. The in general complex-valued off-diagonal elements reflect the
relevance of correlations between wavelet space coefficients.

It is also possible to interpret the wavelet space prototypes in the original time
domain, by using the inverse wavelet transform to back-transform the prototypes
to the time domain. The inverse transform starts at the detail- and approximation
coefficients at the highest level j and works backwards by repeatedly applying an
up-sampling and an application of the reconstruction high-pass and low-pass filters
on the analysis coefficients until the time domain signal after the lowest level is
obtained. The reconstruction filters are simply the reverse of the analysis filters used
in the forward transform (Mertins and Mertins 1999).

The back-transformation of the relevance matrix could be performed in a similar
way: Working its way backwards by repeated up-sampling and application of the
reconstruction filters starting from the highest level. After the first level, we obtain a
matrix of relevance values in the time-domain. However, we will not back-transform
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the relevance matrix obtained from learning in wavelet space, as the time localization
of the wavelet transform already provides time domain interpretability.

6.3 Experiments: learning in Fourier space

In this section we describe the set-up of the experiments for studying the usefulness
of the method in combination with Fourier space representations.

6.3.1 Workflows

For our investigation into the usefulness and performance of the proposed method,
we compare and study the results for the following scenarios:

1. Train a GMLVQ system using the feature vectors x P RN in the original time
domain and evaluate the system on the test data. This serves as the baseline
performance.

2. Transform the feature vectors xi P RN to complex Fourier space and truncate
n “ r6, 11, ..., 51s number of Fourier coefficients, obtaining vectors xpfq P Cn

for each truncation level. On each of these representations a GMLVQ system
is trained. The training results in a classifier defined by prototypes wpfq P Cn

and complex relevance matrix Λpfq P Cnˆn. The classification accuracy of the
classifiers is evaluated on validation sets, see Sec. 6.3.3.

3. Similar to the previous scenario 2, transform the feature vectors xi P RN to
complex Fourier space and truncate at n “ r6, 11, ..., 51s coefficients obtaining
vectors xpfq P Cn, but here the complex-valued coefficients are represented by
the concatenation of the real and imaginary parts into a real-valued feature
vector: xpfq :“

“

ℜpxpfqq ℑpxpfqq
‰T

P R2n. We train a GMLVQ system on
each of these representations resulting in classifiers defined by prototypes
wpfq P R2n and a real-valued relevance matrix Λpfq P R2nˆ2n. The classification
accuracy of the classifiers is evaluated on corresponding validation sets, see
Sec. 6.3.3.

4. Transform the feature vectors xi P RN to Fourier space for the same numbers
n “ r6, 11, ..., 51s of coefficients as in scenarios 2 and 3. The Fourier space
representations xpfq

i P Cn are then back-transformed to the time domain using
the IDFT (Eq. (6.20). The obtained time domain vectors x̂i P RN are low-
pass smoothed versions of the original time domain vectors xi P RN . The
GMLVQ systems are now trained and evaluated on the smoothed time domain
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feature vectors x̂i. Observing the correlation and differences of the obtained
results with the results in scenario 2 and 3 helps to explain how much of the
performance changes in Fourier space can be attributed to the elimination of the
high frequency signals and how much can be attributed to training in Fourier
space.

6.3.2 Training settings and parameter values

Prior to training, the training data were transformed such that all dimensions have
zero mean and unit variance. The test data were transformed correspondingly
using the mean and standard deviation of the features in the training set. This
normalization is useful for the intuitive interpretation of the relevance matrix, since
in this case the relevance matrix does not compensate for the different scales of the
features. The relevance values will therefore be directly comparable. All systems
used one prototype per class, which was initialized to a small random deviation
from the corresponding class conditional mean. The relevance matrix was initialized
proportional to the identity matrix. Furthermore, a batch gradient descent along
the lines of (Papari et al. 2011) was applied as the optimization procedure using the
default parameters from (Biehl 2018). All classification results were obtained from the
model as it was trained after 300 batch training steps. Please note that the goal of the
experiments is to gain insights into the properties and highlight potential advantages
of the proposed method. The presented classification accuracies may be further
improved through the implementation of early-stopping strategies or regularization
methods.

6.3.3 Example Datasets

The suggested approach and the workflows as given in Sec. 6.3.1 were applied to
four time series datasets from the UCR repository (Chen et al. 2015). The names
of the datasets and their properties are in Table 6.1. The four datasets all contain
time series with more or less periodic behavior. The repository does not provide any
further details nor annotations about the origin and interpretation of the datasets.
As an illustration Figure 6.1 shows a few data points per class for each dataset and
provides an idea about their properties and and complexity.

Note that it is required that tN{2u ` 1 ě nmax, where nmax “ 51, the maximum
number of coefficients we consider in the experiments (see scenario 2). As mentioned
in Section 6.2.1, all information is contained in tN{2u`1 coefficients which is therefore
the upper-bound for the number of approximation coefficients n. As can be seen in
Table 6.1 all the considered datasets satisfy tN{2u ` 1 ě 51.
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(a) PLANE, N “ 144 (b) FACESUCR, N “ 131

(c) SYMBOLS, N “ 398 (d) MALLAT, N “ 1024

Figure 6.1: Example time series of each dataset. For the Plane, Symbols and MALLAT
datasets, one example is shown from the first three classes in the dataset. For the
FacesUCR dataset, one example is shown for the first two classes in the dataset.

Table 6.1: Time series datasets

Dataset name classes sampling points samples
training validation

PLANE 7 144 105 105
MALLAT 8 1024 55 2345
SYMBOLS 6 398 25 995
FACESUCR 14 131 200 2050

6.3.4 Performance evaluation

The performance for the different scenarios was evaluated by the classification ac-
curacy, i.e. the fraction of correctly classified feature vectors of the validation set as
indicated in Table 6.1. For scenario 1 this was one baseline validation classification
accuracy. For the functional Fourier approximation scenarios, 2, 3 and 4, a validation
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(a) PLANE, N “ 144 (b) FACESUCR, N “ 131

(c) SYMBOLS, N “ 398 (d) MALLAT, N “ 1024

Figure 6.2: Percentage of correctly classified vectors in the test sets for each dataset.
The solid line represents the classification result in the original time domain of
the data. Filled circles show the classification accuracy in the n-coefficient complex
Fourier space of the data. Empty squares show the classification accuracy in the n-
coefficient Fourier space where the real and imaginary parts of the complex features
are concatenated yielding real feature vectors. Crosses show the classification accuracy
on the smooth data in the original space that was obtained by an inverse transform
of the Fourier representation. For each dataset the number of dimensions N of the
original feature vectors is indicated.

classification accuracy was obtained for each level of approximation with number of
Fourier coefficients n. The results will be compared with each other and discussed.

6.4 Results and Discussion

The results displayed in Figure 6.2 suggest that, in general, the classification results
of functional data using a Fourier representation are comparable to or better than the
baseline performance in the original time domain of the data.
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The results on the PLANE dataset in Figure 6.2a show that for all numbers of
complex Fourier coefficients n ą 5 the classification accuracy is at least as good as
the accuracy in the original 144-dimensional feature space. The obtained accuracies
are robust with respect to n, as there are no large fluctuations in performance. For
this particular dataset, a functional approximation with 15 or 20 complex Fourier
coefficients already seems sufficient to accurately distinguish between the classes.
The representation with concatenated Fourier coefficients of Scenario 3 achieves a
similar accuracy as the complex representation. The performance for scenario 4, the
smoothed time domain signals is highly similar to the performance obtained for the
functional Fourier representations. The classification can already be done to high
accuracy for a few Fourier coefficients. Hence, the functional approximations provide
a highly effective dimensionality reduction for this classification problem.

In the results obtained for the FACESUCR dataset as shown in Figure 6.2b, the
best performance is achieved for 20 Fourier coefficients. The performance in Fourier
space is better than the performance in original space for n “ r15, 20, 25s. For small
number of coefficients, the performance quickly deteriorates due to the elimination of
relevant frequency information. For a large number of coefficients, the performance
decreases slowly, likely because the higher frequency information does not provide
additional relevance for the classification and contains noise. The accuracy obtained
for the smoothed time domain signals in scenario 4 is largely correlated and similar
to the accuracy achieved for the functional Fourier approximation. This indicates
that the increase in performance can mainly be attributed to the elimination of
non-informative higher frequencies.

On the SYMBOLS dataset the functional Fourier representations always achieve a
better performance than the baseline performance in the original 398-dimensional
space, even with a number of coefficients as low as n “ 15. The accuracies of the
complex representation and the concatenated real representation of scenarios 2 and 3
are similar. In contrast to the results obtained for the other datasets, the accuracies
achieved on the smoothed time series of Scenario 4 are systematically lower than
the accuracies of the Fourier space representations and never exceed the accuracy of
scenario 1. Hence, the performance increase observed for learning in Fourier space
cannot be attributed to the smoothening of the time series. Instead, performing the
training in Fourier space seems beneficial for the type of data in this classification
problem.

For the further investigation of the performance of the method for even higher
dimensional time series data, the dataset MALLAT is considered consisting of feature
vectors with dimensionsN “ 1024. Figure 6.2d shows that the results in complex and
concatenated Fourier space do not deviate significantly from the achieved accuracy in
the original space. A functional Fourier approximation with 20 coefficients provides
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Figure 6.3: In Figure 6.3a, the resulting class prototypes of the PLANE dataset are
shown for training in the original 144-dimensional space. For clarity, only three
of the seven prototypes are shown. The corresponding feature relevance values,
which are the diagonal elements of the resulting relevance matrix for the PLANE
dataset, are shown in Figure 6.3c. In Figure 6.3b the back-transformed prototypes
obtained from training in 20-coefficient Fourier space are shown. Figure 6.3d shows
the corresponding feature relevances, obtained from back-transforming the complex
relevance matrix using the method discussed in Section 6.2.4.

similar classification accuracy as the accuracy obtained in the original space. Despite
the result on this dataset showing no improvement in accuracy, the dimensionality in
the classification problem was reduced by 98% without loss of classification accuracy,
yielding a large computational advantage in the training- and classification stage.
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Figure 6.4: Training and validation error for the MALLAT dataset in the course of
training. The dashed line is the evolution of the error in 20-coefficient complex Fourier
space. The solid line shows the error development in the original space of the data.
The dotted line shows the error development in 20-coefficient concatenated Fourier
space.

The prototypes that arise in the training process in complex Fourier coefficient
space can be interpreted as class-specific contributions of the complex sinusoidal
components of different frequencies in the corresponding classes. In Figure 6.3b, the
back-transformation of the prototypes to the time domain as discussed in Sec. 6.2.4
was applied to the resulting complex-valued prototypes of the PLANE dataset in 21-
coefficient Fourier space. A comparison with the prototypes resulting from training in
the original time domain (Figure 6.3a) reveals that the back-transformed prototypes
are smoother, but resemble the prototypes from training in the full original space
closely. Correspondingly, Figure 6.3d shows the back-transformed relevance values.
A comparison with the relevance values obtained in the original time domain shown
in Figure 6.3c reveals that the two relevance profiles indicate similar regions of high
relevance.

Figure 6.4 shows the error development computed on the training- and validation
set of the MALLAT classification task in the original time domain(scenario 1) and in
the 20-coefficient Fourier space for the representations of scenarios 2 and 3. The three
methods all achieve zero training error before 50 training epochs. After 50 epochs the
increased validation set error in the original space indicates an overfitting effect. Both
Fourier representations, complex and concatenated real- and imaginary parts, are
less affected by overfitting, as the error on the validation set for these representations
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Table 6.2: Relations between absolute training time (in seconds) and dimensionality
reduction.

Dataset Original space 20-coefficient Fourier

MALLAT 2535 55
SYMBOLS 96 28

does not increase significantly. This confirms the conjecture that training in reduced
Fourier coefficient space can help to alleviate overfitting effects. On this dataset, the
complex Fourier representation seems to be affected the least by overfitting.

For all datasets that were considered, the difference in classification accuracy
between the complex-valued Fourier representation and the concatenated Fourier
representation was small. However, we believe that learning on complex-valued
data directly, made possible by the adaptation of GMLVQ using Wirtinger calculus,
is mathematically more sound since it treats a complex variable as one feature in the
learning algorithm. Hence, it should be preferred over the concatenation of real- and
imaginary parts.

Note that the number of adaptive parameters in GMLVQ scales as OpN2q, where
N is the number of features. Hence, the dimensionality reductions obtained here
considerably reduce the computational effort in the training procedure. Table 6.2 con-
tains the training times for the MALLAT and SYMBOLS classification tasks obtained
by training the systems using a typical desktop computer on 20 Fourier coefficients
and on the original data. Twenty Fourier coefficients is a dimension reduction of
approx. 98% and 95% for the MALLAT and SYMBOLS datasets, respectively. The
training times were reduced by approx. a factor 50 and 3.4, respectively.

6.5 Experiments: Learning in wavelet-space

In this part, we study the usefulness of the complex-valued extension of GMLVQ in
combination with wavelet-space representations, by considering a heartbeat classifi-
cation task from ECG data. The next sections describe the dataset, data preparation,
feature extraction and the general training settings for the experiments.

6.5.1 Dataset and training set-up

We perform our experiments on the MIT-BIH Arrhythmia dataset (Moody and
Mark 2001). The data was obtained from 4000 long-term Holter recordings (Moody
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and Mark 2001). In total, 48 recordings selected from this set are available in the MIT-
BIH database. Twenty-five recordings were selected based on a variety of anomalies
and rare phenomena occurring in the heart rhythm and 23 recordings were chosen
randomly from the total set. The signals were band-pass filtered using a passband
from 0.1 to 100 Hz and then digitized with a sampling rate of 360 Hz. For each
record, slightly over 30 minutes of ECG signal is selected. In principal, two leads are
available for each recording. Usually the main lead is MLII, which is a modified limb
lead that is obtained by the placement of the electrodes on the chest (Moody and
Mark 2001).

A variety of works concerning the automatic classification of heartbeats exist in
the literature. For instance, classification accuracies of 98% were achieved using a
feed forward neural network and DTCWT features. However, in these settings the
classifier is not validated on the data of new patients that were not in the training set.
It is common to learn patient-specific classifiers, as was in (Ince* et al. 2009).

In contrast to the aforementioned studies, we did not include temporal features
in the classification. Although these features are guided by expert knowledge and
have great potential to improve classification accuracy, our aim is not to achieve
top classification performance. In future research, the wavelet features should be
combined with expert features to increase classification accuracy further.

Annotations

After the records had been selected and digitized, a simple QRS complex detector
was applied on the signals (Moody and Mark 2001): The R-point is the central peak
of the signal during a heartbeat, the Q-point is the dip that precedes the R-peak
and the S-point the usually slightly larger dip after the R-peak. After the simple
QRS complex detector was applied, two cardiologists independently annotated
the detected heartbeats, indicating the heartbeat class for each beat. Additionally,
annotations indicating heart rhythm, signal quality and additional comments are
also available. The heart beat labels are denoted by symbols. The mapping from
symbols to specific types of heart beats is found in (Moody and Mark 2001).

6.5.2 Data preparation and feature extraction

Using the heartbeat annotations, we extracted the heartbeats from the recorded ECG:
For each annotated R-peak sample, a 128 length segment was extracted preceding
the R-peak and a 127 length segment was extracted following the R-peak. Including
the R-peak sample, this gives segments of 256 “ 28 samples in length. This length
always segments the entire QRS complex including the preceding P wave and the
succeeding T wave. A power of two was chosen for direct compatibility with the



6.6. Classification tasks 145

DTCWT transform. The extracted segments are approximately 1{360 ˚ 256 « 0.711

seconds. Hence, for above average heart rates, segments may overlap.
From the segmented time domain heart beat vectors x P R256, we extracted

wavelet features using the DTCWT up to level j “ 5. For the first level, this gives
28´1 “ 27 complex-valued detail coefficients, representing higher frequency wavelet
correlations in the signal. The second level reduces the frequency window by a factor
two and yields 26 complex-valued detail coefficients. This continues up to the highest
level j, which yields 23 complex-valued detail coefficients and 23 complex-valued
approximation coefficients. The approximation coefficients were obtained from the
application of the low-pass filter at the highest level and therefore correspond to the
lower frequencies in the signal. In summary, the transformation of the time domain
signal x P R256 to wavelet-space produces feature vectors with 27 ` 26 ` 25 ` 24 `

23 ` 23 “ 256 complex-valued coefficients, xpwq P C256.

6.5.3 Training settings and parameter values

In each experiment, the wavelet space feature vectors xpwq P C256 obtained from a
5-level DTCWT as described in the previous section were considered. Additionally,
we used truncated versions of the wavelet space feature vectors: x̂pwq P Cn, where
n ă 256.

The wavelet space feature vectors were standardized using the z-score transfor-
mation and on the resulting vectors we applied the adapted complex-valued version
of GMLVQ as explained in Sec. 6.2.3. In all training settings, one prototype per
heartbeat class was used. The wavelet space prototypes wpwq

i P Cn were initialized
to small random deviations from the class-conditional means. The relevance matrix
Λpwq P Cnˆn was initialized proportionally to the identity matrix. We used batch gra-
dient descent along the lines of (Papari et al. 2011) in order to minimize the GMLVQ
cost function from Equation 6.15, using the default parameters from (Biehl 2018).

6.6 Classification tasks

This section describes the specific experiment scenarios for studying the usefulness of
the extension of GMLVQ in combination with wavelet representations for classifying
heart beats.

6.6.1 General heartbeat classification

In this experiment we studied the classification performance of a classifier for rec-
ognizing heartbeats of multiple patients. The heartbeats for this experiment were



146 6. Prototypes and Matrix Relevance Learning in Complex Coefficient Space

segmented from all available MIT-BIH records, hence spanning multiple patients.
We considered the following classes of heartbeats for the classification: Normal
beat (N), left bundle branch block beat (L), right bundle branch block beat (R), pre-
mature ventricular contraction (V) and paced beat (/). We performed the 5-level
DTCWT on the labeled time domain beats and obtained wavelet space feature vectors
px

pwq

i P C256, yiq, where yi is a label from the set C “ tN,L,R, V, {u. Subsequently,
we randomly selected 100 examples from each class to be used as training data for
the GMLVQ classifier. For validation, we randomly selected 150 other examples from
each class. Sufficient training epochs were performed in order to let the GMLVQ cost
function converge to the best performance obtained on the validation set.

The training on truncated wavelet space vectors xpwq P C32 with 4th- and 5th
level decomposition coefficients was performed and its validation performance was
compared to the validation performance achieved on the full wavelet space repre-
sentation. Note that as the number of parameters in GMLVQ increases quadratically
with the number of input features, the GMLVQ model trained on only the 4th- and
5th-level coefficients has considerably less adaptive parameters. The training- and
validation sets consisted of the same data points as were selected for the experiment
on full wavelet space feature vectors.

6.6.2 Patient-specific heartbeat classification

In the second experiment, we considered patient-specific classification. We followed
a similar approach as in (Das and Ari 2014): A common training set from the MIT-BIH
records 100 till 124 was selected and the patient-specific classification was performed
on records 200 till 234. For each record in the latter group, the first 5 minutes of
the record served as additional training data to the common heartbeats and the
heartbeats occurring in the remaining 25 minutes, which the classifier had not seen
during learning, was used for assessing the performance of the classifier.

We trained on the full wavelet space vectors xpwq P C256 obtained from the 5-level
DTCWT. Additionally, training was performed in the patient-specific experiment
using vectors containing only the 4th- and the 5th-level wavelet coefficients, xpwq P

C32.

6.7 Results and Discussion

In this section, the results obtained from the experiments for general heartbeat classi-
fication and patient-specific heartbeat classification using the proposed methodology
are shown and discussed.
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Figure 6.5: Wavelet space complex-valued GMLVQ training results for general heart-
beat classification: training curves and classification error, relevance values and
time-domain prototypes as back-transformed from wavelet-space.

6.7.1 General heartbeat classification

The results obtained from the first experiment are shown in Figure 6.5. Figure 6.5a
and Figure 6.5b show the performance of the classifier throughout the learning
process. In Figure 6.5a, the value of the cost function computed on the training data
and computed on the validation data is shown for each learning step. The training
set cost shows a stable converge towards a value of approximately ´0.87. At the
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same time, the increase of the cost computed on the validation set shows signs of
over-fitting, after its initial decrease. The lowest validation cost was approximately
´0.62 and it was achieved at training epoch 38. After training epoch 300, the value of
the validation cost increased to approximately ´0.57. As expected, the classification
error curves in Figure 6.5b are quite correlated with the cost-function curves. The
classification error on the training set converged to approx. 0.004 (0.4%). The lowest
achieved validation set classification error was approx. 0.089 (8.9%) in batch step 38,
corresponding to the batch step of lowest validation cost. Due to the over-fitting,
the validation set classification error increased after batch step 38. At batch step 300,
the classification error was approx. 0.117 (11.7%). Finally, Figure 6.5c and Figure
6.5d show the interpretation of the classifier after 300 batch steps in terms of feature
relevance values and back-transformed prototypes, respectively.

The feature relevance values that are shown in Figure 6.5c represent the impor-
tance of each wavelet coefficient in the classification problem. The highest values
correspond to the most distinctive coefficients while low values correspond to fea-
tures with which the classifier can not adequately differentiate between the classes.
The dashed vertical lines mark the transition between different scales of the wavelet
decomposition. Hence, the first dashed line appears at feature 128, indicating the
border between the first level detail-coefficients of the higher frequencies and the
second level detail-coefficients of the frequencies below. Inside each wavelet scale
window, the horizontal axis indicates the translation τ of the wavelet. Due to the
time-localization of the wavelets, relevance values are interpretable both in fre-
quency/scale and time. For relevance in time, it can be seen that for most scales the
highest relevance was found around the center of the segment in the region of the
QRS-complex. For relevance in scale, wavelet coefficients of the second, fourth and
fifth level of the decomposition were found to be highly discriminative.

In Figure 6.5d, the back-transformed time domain prototype is shown for the
Normal, Left Bundle Branch Block and Premature Ventricular Contraction class.
This allows the time domain interpretation of what the classifier learned as typical
examples of the different beats in the classification problem.

Figure 6.6 shows the results of GMLVQ training on the truncated wavelet space
feature vectors. From the training set and validation set cost curves as shown in
Figure 6.6a, it can be seen that in this case there was no over-fitting effect. The final
validation set cost was (´0.66), which is lower than the minimum cost achieved for
GMLVQ learning on the full wavelet space vectors shown in Figure 6.5.

In Figure 6.6b, the relevance of the 4th- and 5th-level wavelet space coefficients is
shown. The first window shows the 16 4th-level detail coefficients, the second win-
dow the eight 5th-level detail coefficients and the third window the eight 5th-level
approximation coefficients. The most discriminative coefficient is an approximation
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Figure 6.6: Wavelet space complex-valued GMLVQ results of general heartbeat
classification where only the wavelet decomposition coefficients of the 4th- and 5th
levels were used: training curves and relevance values.

Table 6.3: The class-wise validation set accuracy for GMLVQ trained on the truncated
and full wavelet coefficient vectors in the general heartbeat classification task.

Truncated Full

Normal beat (N) 97.3% 85.0%
Left bundle branch block beat (L) 96.7% 95.9%
Right bundle branch block beat (R) 98.7% 94.9%
Premature ventricular contraction (V) 60.5% 68.8%
Paced beat (/) 97.0% 96.2%

coefficient of the fifth level. Higher values are obtained for wavelets with an activa-
tion corresponding to the center of the signal: A peak occurs around the center of the
4th- and 5th level detail coefficients, indicating a relevance of the wavelets active in
the QRS-complex region on the two scales.

Table 6.3 shows that GMLVQ training on the truncated wavelet space vectors
achieved a higher validation set accuracy than training on the full wavelet space
vectors for all heartbeat classes except Premature ventricular contraction (V). As the
classification of normal heartbeats was much less accurate in full wavelet space, this
caused quite a substantial number of false positive anomalous heart beat detections
in this case.
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Although the GMLVQ classifier trained on the full wavelet space feature vectors
has the advantage of full wavelet space interpretation and time domain prototype
interpretation, only considering the 4th- and 5th level wavelet coefficients already
seems to provide enough information to adequately discriminate between the classes
and is substantially cheaper to train. On the other hand, provided with all wavelet
coefficients, given enough training data and an appropriate training strategy includ-
ing early stopping and regularization, the GMLVQ algorithm should be able to learn
the most relevant features by adapting the relevance matrix. When such training is
successful, the performance should be at least as good as the truncated versions. This
can also be used to learn the most relevant features as a pre-processing step and then
use GMLVQ classification trained on the most relevant wavelet coefficients.

6.7.2 Patient-specific heartbeat classification

Patient-specific learning was applied for the last 25 records in the database as ex-
plained in Sec. 6.6.2. In Figure 6.7a, the average validation cost over the 25 patient-
specific learning curves is shown for GMLVQ learning on both the full wavelet space
vectors and the truncated vectors. Similar to the general heartbeat classification task,
learning on the full wavelet space vectors was more prone to over-fitting, whereas
over-fitting did not occur when using the truncated wavelet space vectors. The cost
after batch step 100 was approx. -0.83 for learning on the truncated vectors; Perhaps
not surprisingly, patient-specific classifiers were on average more accurate than the
general heartbeat classifiers. The average validation set classification error for each
batch step is shown in Figure 6.7b. In both scenarios, training quickly resulted in
a validation error below 5%. In the classification scenario using truncated wavelet
coefficients, the final error was approximately 3.6% whereas for the full wavelet space
scenario, the final error was 3.7%.

Figure 6.7c and Figure 6.7d show the interpretation of the resulting patient-specific
classifier for record 217. This record belongs to a patient that experienced premature
ventricular contractions and paced beats, besides the great majority of normal beats.
The relevance profile in Figure 6.7c shows highly pronounced peaks around the
center of each scale, the coefficients of the wavelets that were active in this area
were much more informative for the classification than wavelets in other areas of the
segment. The relative difference between these relevance values was significantly
larger than the relevance values of the general heartbeat classifier, shown in Figure
6.5c. One potential reason for this is that this patient-specific classification problem
has fewer classes. In the general heartbeat classification, the distinction between the
classes was made using additional relevant features, so that the relevance values
became more spread out. Figure 6.7d shows the time domain representation of the
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Figure 6.7: Wavelet space complex-valued GMLVQ results for the patient-specific
classification task: training curves, classification error, relevance values and time-
domain prototypes as back-transformed from wavelet-space.

back-transformed prototypes which were learned in wavelet space for the three
heartbeat types that occur in this record.

In Table 6.4, the average class-wise validation set classification accuracy among
the 25 patient-specific classifiers is shown for the two scenarios. The classification
accuracies for patient-specific classifiers were better than the accuracies obtained for
the general heartbeat classifier. Most notably, the normal beat classification accuracy
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Table 6.4: Average class-wise validation accuracy in patient-specific learning on MIT-
BIH records 200 till 234 for both truncated and the full wavelet coefficient vectors.

Truncated Full

Normal beat (N) 98.7% 98.6%
Left bundle branch block beat (L) 98.3% 95.9%
Right bundle branch block beat (R) 99.6% 97.0%
Premature ventricular contraction (V) 75.4% 79.1%
Paced beat (/) 99.8% 99.6%

of the classifier that used the full wavelet representation was much better than the
accuracy obtained with the general classifier, which reduces the false positive rate.
Both the truncated and full wavelet space patient-specific classifiers achieved a
significantly better classification accuracy for premature ventricular contractions.

6.8 Summary and Outlook

In this contribution we first discussed two popular tools in signal processing, the DFT
and DWT, that provide a more natural and powerful representation of signals with
periodicities and certain shape characteristics. Using these representations would be
useful for improving the accuracy in classification tasks of these functional data. The
standard formulations of the DFT and the DTCWT yields vectors of complex-valued
coefficients. Although there are obvious ways of representing the complex-valued
dimensions with real dimensions, such as treating the imaginary parts as separate
real dimensions or using the amplitude and phase representation of a complex
number, we discussed a version of GMLVQ that naturally handles the data in the
complex-valued domain. We then used this version of GMLVQ with the combination
of the DFT and DTCWT for several classification tasks of functional data.

In the experiments where the data was transformed using the DFT, the classifica-
tion performance for a reasonably small number of coefficients (n “ 20) was similar
or better than the classification accuracy on the dataset in the original time domain,
for all considered classification tasks. In these cases, our methodology provided a
powerful dimensionality reduction: For the MALLAT classification task, the number
of dimensions was reduced by 98%, while retaining similar classification accuracy. A
robust increase in classification accuracy in the Fourier domain was observed for the
SYMBOLS classification task. In this case, the classification based on the data in the
Fourier domain was significantly and consistently better than the classification based
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on the equivalent smoothed data in the time domain. Although in our classification
tasks, the representation that treats the imaginary parts as additional real dimensions
showed highly similar performance as the complex-valued representation, we believe
that the more natural complex-valued GMLVQ should be preferred, due to the ex-
plicit treatment of complex-valued dimensions and complex-valued relevance values.
It is a future topic of investigation to understand under which type of conditions
the complex version, with its complex-valued matrix of relevance values, performs
better than the real-valued workarounds. An additional benefit of the methodology
is that the classifier trained in the space of the transform is relatively easily back-
transformed to the time domain. Hence, the interpretability of the classification task
is increased significantly, because the method provides prototypes and relevance
information from both the time domain and the transformation perspective, while
still keeping the benefits of training in reduced coefficient space.

Similar observations were made for heartbeat classification using wavelet features.
For the general heartbeat classifier we obtained a better classification performance
when training on only the 4th- and 5th level coefficients than when training on the
full wavelet space representation. Especially the number of false positives, which is
the incorrect classification of a normal beat as one of the anomalous beats, was signifi-
cantly reduced by training on the truncated feature vectors. For all wavelet scales, the
diagonal of the relevance matrix had the largest values at the center of the segment.
The classification performance was better in the patient-specific classification tasks,
most notably the classification performance of premature ventricular contractions
was improved significantly. It is likely that there is a patient-specific component to the
premature ventricular contractions and the other heartbeat types that could explain
the need for patient-specific classification. There could also be several characteristic
shapes associated with each heartbeat class, which could be addressed by using more
than one prototype per class in GMLVQ. However, it should be noted that obtaining
the best classification performance was beyond the scope of this work. For future
work it should be investigated whether the combination of complex-valued wavelet
coefficients and in combination with additional features guided by expert knowledge,
as well as hyperparameter tuning in GMLVQ, can improve the classification results
in both the general and patient-specific classification. These results should then also
be compared with results in the literature.

The optimal number of coefficients is dependent on the properties of the dataset
and the classification problem. For future study, an automatic method could be
devised that suggests a number of coefficients based on the available training and
validation data according to a criterion of optimality, which seeks the best balance
between accuracy and the number of coefficients.

In conclusion, our work demonstrates that the combination of appropriate data
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transforms with GMLVQ constitutes a versatile framework which offers the potential
to improve significantly the performance, computational workload and interpretabil-
ity of prototype-based relevance learning.



Chapter 7

Conclusions and Future Work

In this thesis we considered model scenarios of machine learning in Part I and we
addressed applications in smart industry and relevant methodology concerning time
series classification in Part II.

To contribute to the need of an increased theoretical understanding of the use
of Rectified Linear Unit (ReLU) activation in artificial neural networks, in our theo-
retical investigations the central aim was to reveal learning characteristics of neural
networks with ReLU activation function. In particular, we aimed at a comparison
with the learning characteristics of traditional sigmoidal activation in a variety of
highly relevant model scenarios of machine learning. In order to address this aim,
techniques from statistical physics were employed to obtain exact results that describe
the typical learning behaviour in three main learning scenarios: on-line learning from
a stream of independently generated examples (Chapter 2), learning under concept
drift (Chapter 3) and off-line learning from a fixed set of examples (Chapter 4). In
the analysis of learning under concept drift, our additional aim was to characterize
the learning behaviour of the Learning Vector Quantization (LVQ) model in such
situations.

We established a generic on-line learning modelling framework in Chapter 2
suitable for the formulation of on-line learning for a variety of learning rules and
models in student-teacher settings. The formulation consists of a system of differen-
tial equations that describes the exact evolution of high-level order parameters of the
model in the limit of the number of input dimensions to infinity. Using the frame-
work, we formulated the system of differential equations describing typical gradient
descent learning dynamics of two-layer neural networks with ReLU activation in the
hidden units in three learning settings: matching student and teacher complexity,
overparameterized student networks and unlearnable target rules. Numerically
integrating the obtained system of differential equations and also the equations for
gradient descent learning in sigmoidal networks obtained from the literature yielded
the typical results for both cases. This allowed a comparison of ReLU and sigmoidal
networks with regards to their typical learning behaviour. For the overparameterized
setting, it was shown that the learning algorithm can combine ReLU units in order to
limit the number of effective parameters, which is possible due to the activation’s
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piecewise linearity. In contrast, in overparameterized sigmoidal student networks
the number of effective parameters is mainly reduced by removing units from the
network through convergence of the weight vectors of superfluous units to zero.

In Chapter 3 we introduced concept drift to the modelling framework. In the
neural network settings, we studied real drift by including a random drift of the
teacher vectors. In addition, we also modelled the effect of weight decay. Significant
differences between ReLU- and sigmoidal networks were found concerning their
sensitivity to the drift and the effectiveness of weight decay in these situations. For
both ReLU and sigmoidal networks the characteristic plateau state is prolonged by
the introduction of the drift, delaying the onset of hidden unit specialization. The
analysis of sigmoidal networks showed that weight decay can improve the general-
ization performance under concept drift. However, the network is highly sensitive to
the setting of the weight decay parameter. Values slightly different from the optimal
deteriorate the network’s capacity for hidden unit specialization. In contrast, for
ReLU networks, besides also showing improvement in generalization error by intro-
ducing weight decay, the analysis showed that the network is robust to the setting of
the weight decay parameter; hidden unit specialization is possible for a wide range
of values. Moreover, the analysis of the properties of the unspecialized plateau state
indicated that introducing weight decay accelerates hidden unit specialization for
ReLU networks for a wide range of parameter values. In contrast, for sigmoidal net-
works the introduction of weight decay delays the onset of specialization. Hence, we
observed that for ReLU networks the length of the plateau is shortened significantly
by introducing weight decay while the plateau is prolonged in case of sigmoidal
networks.

Chapter 3 also addressed the LVQ machine learning model which was studied
in the modelling framework for two concept drift situations: a random drift of
cluster centres of the input density and a drift of class biases in the input stream.
Our analyses showed that LVQ learning is able to deal with the considered drifts to
some extent by default. It was demonstrated that the drift of cluster centres impedes
the learning process and the dependence of the lowest achievable generalization
error with respect to the learning rate was shown to be non-trivial. Furthermore,
we demonstrated that in this setting weight decay can improve the generalization
performance significantly. In contrast, in the case of drifting class biases, weight
decay is not suitable. In this case, the restrictive effect of weight decay on the norms
of the prototypes limits the flexibility of the system and hence decreases its ability to
react appropriately to changing class biases.

In Chapter 4 we analysed and compared off-line learning in ReLU- and sigmoidal
neural networks. The model considers a canonical ensemble of networks in formal
thermal equilibrium. Here the density of states is given by the Gibbs distribution
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which is characterized by the formal temperature. The quenched free energy, that
involves an additional average over datasets of fixed size, determines typical prop-
erties of a stochastic optimization process for the energy of the system. Since the
data average is technically involved, we considered the simplifying limit of high
temperature, which had already been exploited in previous works for obtaining
useful qualitative insights into learning scenarios. In this case the free energy is a
combination of the generalization error and the system’s entropy. For increasing
dataset size, minimization of the free energies corresponding to ReLU and sigmoidal
networks revealed highly interesting differences: most importantly, in case of net-
works with a number of hidden units K ą 2, the phase transition associated with
hidden unit specialization in ReLU networks is second order. In contrast, previous
research found a first order transition in case of sigmoidal networks. After the con-
tinuous phase transition in ReLU networks, two minima of the free energy arise
that have very similar generalization performance. For the number of hidden units
K Ñ 8, we showed that the generalization performance corresponding to these
minima is identical. In contrast, for sigmoidal networks the competing state after
the first order phase transition has significantly worse performance compared to the
specialized state.

The second part of this thesis addressed computational intelligence applications
in smart industry. In Chapter 5 we addressed the need for continuous quality control
in steel-based manufacturing by performing a typical Industry 4.0 case study on a
particular mass production line in collaboration with industry. This high-throughput
production line contains a stamping press as the main machinery that produces the
steel-based products. The aim was to develop a real-time material property identifi-
cation and quality control system based on sensor measurements of Eddy Current.
Secondly, we studied whether such a system could be helpful in the prevention
of production faults. The dataset consisted of sensor measurements of previously
measured strip steel that was used for production and the results of corresponding
destructive tensile tests. Various analyses of the data using Principal Component
Analysis showed that the variation of the material properties was included in the
sensor data and further exploratory data analysis revealed linear correlations be-
tween the sensor measurements and the material properties. Furthermore, the Eddy
Current input variables were mutually highly correlated. Hence, we fitted a Partial
Least Squares model to the data and showed that the model estimations of the mate-
rial properties can prevent material that does not conform to the specifications from
entering the press in real production scenarios. Furthermore, using Eddy Current
sensor data measured on previous production days in combination with logs of
product faults, we demonstrated that the model estimations provide a risk value of
the occurrence of product faults.
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The frequently arising problem of time series classification was addressed in
Chapter 6. Here, we proposed the idea of using complex-valued representations
of time series as obtained by the complex-valued Fourier or wavelet transform in
combination with the interpretable Generalized Matrix Learning Vector Quantization
(GMLVQ) machine learning model. This approach adapts relevance values and
prototypes in the space of the transform, which can be highly beneficial for functional
time series data, especially when the data exhibits properties that are appropriate
for the considered transform. In addition, a back-transformation of the relevance
matrix was formulated, which yields time domain feature relevance values besides
the transform-domain feature relevance values, broadening the interpretability of
the classifier. Due to the appropriateness of the representations of the considered
time series datasets, the approach always showed better classification performance
compared to classification in the time domain. Moreover, large dimensionality
reductions could be achieved in the classification problems which mitigated over-
fitting and improved training efficiency. In a larger experiment, we considered
the classification of heart beats from ECG data by using complex-valued wavelet
coefficients. In this case, it was shown that the dimensionality could be reduced
significantly while maintaining classification performance. In summary, for a variety
of situations we demonstrated that the method is highly efficient as a dimensionality
reduction technique, maintains good classification performance and yields a broad
interpretation of the classifier.

7.1 Future works

Here we emphasize a few of the possible directions for future research.
The learning behaviour of other activation functions could be studied using the

promising tools from the statistical physics of learning. In the analysis of off-line
learning, recent work investigated several activation functions and the correspond-
ing networks’ type of phase transition to specialized hidden units (Oostwal 2020):
networks with leaky ReLU activation exhibit a continuous phase transition while
networks with Piecewise Linear Unit activation have a first order phase transition.
Moreover, in our recent initial investigations of the GELU type of activation, we
found that the phase transition remains continuous for all arguments γ of Eq. (2.46).
The GELU function is highly similar to the Swish function, which has seen a rise
in popularity recently due to empirical success in applications. We provide the
derivation of the generalization error for GELU activation in Eq. (A.8). Furthermore,
it is still an open question which properties of the activation function determine the
type of phase transition to specialized hidden units.
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In the on-line learning setting, the effect of the GELU and other activation func-
tions could be studied in concept drift situations together with methods such as
weight decay. It should be noted that the statistical physics of learning approaches
can also be used to design new activation functions with favourable properties, such
as a combination of a second order phase transition towards specialized hidden units
as we showed for the ReLU, fast escape from the plateau states in on-line learning
and a favourable interplay with concept drift and weight decay. In the concept
drift scenarios, we studied neural network student teacher settings of matching
complexity. In future works, a particularly interesting research direction is the study
of concept drift situations in settings with an overparameterized student.

Regarding the comparison of activation functions, a limitation of the approach is
that the results are not directly quantitatively comparable. Quantitative comparisons
between activation functions such as plateau lengths or the location of phase transi-
tions cannot be readily made, because the teacher differs non-trivially in complexity
in both cases. A possible idea to allow quantitative comparisons is to define student
teacher scenarios with mismatched activation between student and teacher. One
could then compare two activation functions that learn a target rule defined by a
teacher that uses a third activation function. More extensive overparameterized
settings possibly in combination with the idea of mismatched activations should pro-
vide additional highly relevant modelling scenarios. The extension of the methods to
more hidden layers is another relevant direction for future research. Our initial work
has focused on tree-like structures. First results indicate a first order phase transition
towards specialized hidden layers, but further investigation is necessary.

For the material fault detection, a next step is to validate the model on more data
from coils that exhibit diverse material properties. This may require the deliberate
modification of material to desired properties in order to increase the confidence in
the relationship between the material properties and sensor measurements. Secondly,
the current specification limits of the material properties could be re-evaluated guided
by a cost analysis to efficiently adjust the fault classification. Lastly, the incorporation
of production parameters, machine settings and product quality measurements in
the model could be used for the optimization of the production settings with respect
to the specifics of the material in order to obtain the highest quality products and the
least number of production faults.

In the evaluation of time series classification using complex-valued coefficients,
we studied the benefits of the method in terms of its interpretability, dimensionality
reduction and classification performance. In future work, one possible interesting
research direction is to include expert features in the coefficient vectors and compare
the resulting classification performance to the results found in the literature. For
instance, the wavelet features of the heart beats should be complemented by expert
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features. Cross-validation can then be applied to find optimal hyper parameters for
GMLVQ, and the top results should then be compared to the performance found in
the literature for other automatic classification approaches.
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Appendix

A.1 Covariance matrix and order parameters for the
SCM

In this section we provide the full covariance matrix for the student-teacher settings
of the SCM, which are studied in Chapters 2, 3 and 4. In particular, it is applicable to
the mathematical analysis of the on-line training dynamics in Sec. 2.2.4, the student
teacher scenario given in Sec. 4.2 and the definition of the entropy in Sec. 4.2.4,
Eq. (4.19). The covariance matrix is defined in terms of the order parameters, which
are also defined here.

For the SCM, the pK`MqˆpK`Mq-dim. matrix of order parameters reads

C “

„

T R

RJ Q

ȷ

with submatrices

$

&

%

T P RMˆM

R P RKˆM

Q P RKˆK

(A.1)

that consist of the elements

Tij “xbibjy“Bi ¨ Bj , Rij“xhibjy“wi ¨ Bj , Qij “xhihjy“wi ¨ wj .

Note that an additional pre-factor of 1{N is applied in the definitions of the order
parameters in Chapter 4.

Furthermore, note that Eqs. (4.20) and (4.21) correspond to the special case of
K “ M and exploit site-symmetry (4.12) and normalization (4.8).

A.2 Derivation of the generalization error of the SCM

Here we give a derivation of the generalization error in terms of the order parameters
for sigmoidal, ReLU and GELU student and teacher. The equation for the generaliza-
tion error in Eq. (2.28) and Eq. (4.11) is first used in the on-line learning analysis in
Chapter 2 to obtain the learning curves of the generalization error by substitution of
the solutions of the order parameters obtained by solving the ODE (2.23) numerically.
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It is also used in the analysis of concept drift in Chapter 3. In the analysis of off-line
learning in the high temperature limit in Chapter 4, the first term of the free energy
function (4.22) contains the generalization error.

For general K and M we start by completing the square in the definition (2.28),
obtaining:

ϵg “
1

2

˜

K
ÿ

i,j“1

xgphiqgphjqy ´ 2
K
ÿ

i“1

M
ÿ

j“1

xgphiqgpbjqy `

M
ÿ

i,j“1

xgpbiqgpbjqy

¸

. (A.2)

The above form reduces to Eq. (4.11) for K “ M , where an additional pre-factor of
1{K is applied due to the scaling of the student and teacher by 1{

?
K in that model.

To obtain ϵg for a particular choice of activation function g, expectation values of the
form xgpxqgpyqy have to be evaluated over the joint Gaussian density of the hidden
unit local potentials x and y, i.e. P px, yq “ N p0, pCq with the appropriate submatrix pC
of C, cf. Eq. (A.1):

pC “

„
@

y2
D

xxyy

xxyy
@

x2
D

ȷ

.

In the resulting equations for the generalization error (A.3), (A.5) and (A.8) for the
Erf, ReLU and GELU activation functions respectively, the additional pre-factor 1{K

has to be applied to obtained the generalization error for the student teacher setting
in the off-line analysis of Chapter 4.

A.2.1 Sigmoidal

For student and teacher with sigmoidal activation functions gpxq “ erf
“

x{
?
2
‰

or the
shifted version gpxq “

`

1 ` erfrx{
?
2s
˘

that is used in Chapter 4, the generalization
error has been derived in (Saad and Solla 1995b) and is given by:

ϵg “
1

π

#

K
ÿ

i,j“1

sin´1 Qij
?
1 `Qii

a

1 `Qjj
`

M
ÿ

n,m“1

sin´1 Tnm
?
1 ` Tnn

?
1 ` Tmm

´ 2
K
ÿ

i“1

M
ÿ

j“1

sin´1 Rij
?
1 `Qii

a

1 ` Tjj

+

.

(A.3)

A.2.2 ReLU

For student and teacher with ReLU activations gpxq “ maxt0, xu, applying the
elegant formulation used in (Yoshida et al. 2017) gives an analytic expression for the
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two-dimensional integrals:

I2 “ xgpxqgpyqy “ xmaxt0, xumaxt0, yuy “

8
ż

0

8
ż

0

xyN p0, pCqdxdy

“
pC12
4

`

b

pC11 pC22 ´ pC2
12

2π
`

pC12
2π

sin´1

¨

˝

pC12
b

pC11 pC22

˛

‚ .

(A.4)

Substituting the result from Eq. (A.4) in Eq. (A.2) for the corresponding covariance
matrices gives the analytic expression for the generalization error in terms of the
order parameters:

ϵg“
1

2

K
ÿ
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˚

˚
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Qij
4
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. (A.5)

A.2.3 GELU

For student and teacher with GELU activation, and using potentially different scale
factors γ and κ in the sigmoidal component of student and teacher respectively, we
derive the two-dimensional integrals:

I2 “ xgpxqgpyqy “

B

1

4
xy

ˆ

1 ` erf

ˆ

γx
?
2

˙˙ˆ
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ˆ
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?
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˚
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0
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(A.6)
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The integrands of the last two terms are anti-symmetric and therefore evaluate to
zero. We continue with the integration of the remaining two terms:

1

4
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xxyy ` xxy erf
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(A.7)

The last integration can for instance be performed by integrating with respect to x
using Eq. (A.14). The final integrand is of the form (A.17). After standard re-writings,
simplifications and substitution in Eq. A.7 above, we obtain the solution:

I2 “
pC12
4

`
pC12
2π

sin´1

¨

˝

γκpC12
b

1 ` γ2 pC11
b

1 ` κ2 pC22

˛

‚

`

γ3κ3 pC11
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pC11 pC22 ´ pC2
12

¯

pC22 ` γκ
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γ2 pC22 pC2
11 ` κ2 pC2

22
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12

¯

2π
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γ2 pC11 ` 1
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κ2 pC22 ` 1
¯

c

γ2κ2
´

pC11 pC22 ´ pC2
12

¯

` γ2 pC11 ` κ2 pC22 ` 1

.

(A.8)

Note that the GELU for the scaling factor in the sigmoidal γ Ñ 8 is the ReLU as
shown in Eq. (2.46). The above solution in the limits γ Ñ 8 and κ Ñ 8 reads:

lim
γ,κÑ8

I2 “
pC12
4

`

b

pC11 pC22 ´ pC2
12

2π
`

pC12
2π

sin´1

¨

˝

pC12
b

pC11 pC22

˛

‚ , (A.9)

which is indeed equal to the solution found for I2 in case of ReLU activation in
Eq. (A.4).

A.3 Table of integrals

This section contains a table of integrals of frequently occurring forms in Gaussian
integration. Some of these forms were used in the derivation of the integrals in
Sec. A.2. The forms are also provided for future reference. In all integrations it is
assumed that the real-valued coefficient a ą 0.
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Samenvatting

In het eerste gedeelte van dit proefschrift beschouwden we modelscenario’s van
machine learning en in het tweede gedeelte behandelden we toepassingen in smart
industry en relevante methodes omtrent de classificatie van tijdreeksen.

Om bij te dragen aan de behoefte om het theoretische begrip te verbeteren omtrent
het gebruik van de Rectified Linear Unit (ReLU) activatiefunctie in kunstmatige
neurale netwerken, was de hoofddoelstelling in onze theoretische onderzoeken om
karakteristieken te onthullen van het gebruik van de ReLU activatiefunctie en deze te
vergelijken met karakteristieken van sigmoı̈de activatiefuncties in diverse relevante
modelscenario’s van machine learning. Om dit doel te realiseren gebruikten we
technieken uit de statistische natuurkunde om exacte resultaten te krijgen die het
typerende leergedrag beschrijven in drie leerscenario’s: on-line leren van een stroom
van onafhankelijk gegenereerde voorbeelden (Hoofdstuk 2), leren in de aanwezigheid
van een veranderende taak (Hoofdstuk 3) en off-line leren van een vaste dataset
van voorbeelden (Hoofdstuk 4). Bij de analyse van het leren van een veranderende
taak was een bijkomend doel het karakteriseren van het leergedrag van het Learning
Vector Quantization (LVQ) model.

In hoofdstuk 2 ontwikkelden we een generiek modelraamwerk voor de formu-
lering van on-line leerprocessen in student-leraar modelopstellingen voor verschei-
dene leerregels en modellen. De formulering bestaat uit een systeem van differ-
entiaalvergelijkingen die de exacte evolutie beschrijven van order parameters van
het model in het limiet van het aantal dimensies naar oneindig. Gebruikmakend
van dit raamwerk formuleerden we voor drie verschillende leeropstellingen een
systeem van differentiaalvergelijkingen dat de typerende leerdynamica beschrijft
van gradiëntafdaling in een tweelaags neuraal netwerk met ReLU activatie in zijn
verborgen neuronen: overeenkomende complexiteit van het student en het leraar
model, een complexer studentmodel ten opzichte van het leraarmodel en taken
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die het studentmodel niet leren kan. Het numeriek integreren van deze differenti-
aalvergelijkingen leverde de typerende resultaten op. Dit deden we ook voor de
vergelijkingen die we vonden in de literatuur voor neurale netwerken met sigmoı̈de
activatie. We vergeleken vervolgens de resultaten van ReLU netwerken met die
van sigmoı̈de neurale netwerken. Uit deze vergelijking bleek dat het leeralgoritme
de ReLU neuronen kan combineren om zo het aantal effectieve parameters van het
model te beperken, wat mogelijk is door de stuksgewijs lineaire eigenschap van de
functie. Daarentegen werd bij overgeparameteriseerde sigmoı̈de neurale netwerken
het aantal effectieve parameters beperkt door het verwijderen van neuronen uit het
netwerk. Dit laatste gebeurt middels convergentie van de gewichtsvectoren van de
overbodige neuronen naar de nulvector.

In hoofdstuk 3 introduceerden we een veranderende taak en inputdistributie
in het modelraamwerk. In de opstellingen met neurale netwerken modelleerden
we een veranderende taak door de leraarvectoren willekeurig te veranderen. We
introduceerden ook het effect van gewichtsverval in het model. Significante ver-
schillen tussen ReLU- en sigmoı̈de neurale netwerken werden gevonden wat betreft
hun gevoeligheid voor veranderende taken en de effectiviteit van gewichtsverval
in dit soort situaties. In zowel ReLU- als sigmoı̈de neurale netwerken wordt de
karakteristieke plateaufase verlengd door de veranderende taak, wat de aanvang van
specialisatie vertraagt. De analyse van sigmoı̈de netwerken toonde dat gewichtsver-
val het generalisatievermogen kan verbeteren bij een veranderende taak. Het netwerk
is echter zeer gevoelig voor de instelling van de sterkte van het gewichtsverval. Een
kleine afwijking van de optimale waarde kan er al toe leiden dat het netwerk zich
niet meer kan specialiseren. Daarentegen liet de analyse van ReLU netwerken zien
dat het netwerk ongevoeliger is voor de instelling van de gewichtsverval parameter;
specialisatie van de neuronen is mogelijk voor een groot bereik van waardes. Boven-
dien toonden we aan middels een analyse van de eigenschappen van de nog niet
gespecialiseerde plateautoestand dat gewichtsverval de specialisatie van neuronen
versnelt in een aanzienlijk bereik van waardes. Daarentegen stelt gewichtsverval in
sigmoı̈de netwerken de aanvang van specialisatie uit. Dit verklaart de observatie dat
gewichtsverval het plateau aanzienlijk verkort bij ReLU netwerken en verlengt in het
geval van sigmoı̈de netwerken.

Hoofdstuk 3 behandelde ook het LVQ machine learning model dat werd bestudeerd
in twee veranderende leersituaties: een willekeurige verandering van de cluster cen-
tra van de inputdistributie en een verandering van de proporties van de klassen in de
datastroom. Onze analyses toonden dat het standaard LVQ leerproces tot op zekere
hoogte in staat is om met deze soorten veranderingen om te gaan. We observeerden
dat de verandering van de cluster centra het leerproces belemmert. Bovendien blijkt
er een complex verband tussen de laagst haalbare generalisatiefout en de leersnelheid.
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We lieten zien dat in deze situatie gewichtsverval het generalisatievermogen van het
model sterk kan verbeteren. Gewichtsverval biedt echter geen verbetering bij veran-
derende proporties van klassen. Dit komt doordat gewichtsverval de normen van
de LVQ prototype vectoren beperkt, waardoor het systeem minder flexibel wordt en
hierdoor niet adequaat kan reageren op de veranderende proporties van de klassen.

In hoofdstuk 4 analyseerden we off-line leren en vergeleken we leerprocessen
van ReLU- met sigmoı̈de neurale netwerken in deze situatie. Hiervoor gebruikten
we een modellering die een canoniek ensemble van netwerken in een formele ther-
mische evenwichtstoestand beschouwt. In de evenwichtssituatie is de verdeling
van toestanden gegeven door de Gibbs functie die gekarakteriseerd wordt door de
formele temperatuur. De gedoofde vrije energie bevat nog een gemiddelde over
datasets van een vaste grootte en bepaalt typerende eigenschappen van stochastische
optimalisatieprocessen voor de energie van het systeem. Omdat het berekenen van
het gemiddelde over de data zeer complex is, namen we het vergemakkelijkende
limiet van een hoge temperatuur. Dit was al gedaan in voorgaande werken voor het
verkrijgen van bruikbare kwalitatieve inzichten in off-line leerprocessen. De vrije
energie is een combinatie van de generalisatiefout en de entropie van het systeem.
Voor verschillende dataset groottes minimaliseerden we de vrije energie van ReLU-
en sigmoı̈de netwerken. De resultaten lieten zeer significante verschillen tussen
beide netwerken zien: voor tweelaagsnetwerken met ReLU activatie die meer dan
twee verborgen neuronen hebben is de faseovergang naar gespecialiseerde neuronen
van tweede orde. Daarentegen is deze faseovergang bij sigmoı̈de netwerken van
eerste orde. Na de continue faseovergang in ReLU netwerken ontstaan twee minima
van de vrije energie die een vergelijkbaar generalisatievermogen hebben. In het
limiet van een oneindig aantal verborgen neuronen toonden we aan dat de gener-
alisatievermogens van deze minima identiek zijn. Bij sigmoı̈de neurale netwerken
heeft daarentegen de concurrerende toestand na de eerste orde faseovergang een
aanzienlijk slechtere prestatie vergeleken bij de gespecialiseerde toestand.

Het tweede gedeelte van dit proefschrift behandelde intelligente systemen in
industriële toepassingen. In hoofdstuk 5 bespraken we de behoefte aan continue
kwaliteitscontrole in op staal gebaseerde productielijnen. Vervolgens voerden we
in samenwerking met de industrie een typische Industry 4.0 casestudy uit van een
massaproductielijn. Deze productielijn bevat een pers die de producten uit het
staal produceert. Het doel was om op basis van metingen gemaakt met een Eddy
Current sensor een systeem te ontwikkelen voor de real-time kwaliteitscontrole
en identificatie van materiaaleigenschappen. Ten tweede onderzochten we of dit
systeem zou kunnen helpen bij het voorkomen van productiefouten. De dataset
bestond uit sensormetingen die waren gemaakt op staal dat was gebruikt voor
de productie. Op gedeelten van dit staal waren ook trektesten gedaan en deze
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meetgegevens waren ook beschikbaar. Diverse analyses van de data met principale
componentenanalyse lieten zien dat de variatie van de materiaaleigenschappen ook
in de sensormetingen aanwezig was. Verdere verkennende analyse toonde lineaire
correlaties aan tussen de sensormetingen en de materiaaleigenschappen. Tevens
waren de Eddy Current variabelen onderling sterk gecorreleerd. Om deze redenen
fitten we een Partial Least Squares model op de data. Vervolgens demonstreerden we
dat de voorspellingen van het model kunnen voorkomen dat materiaal waarmee niet
geproduceerd zou moeten worden toch het productieproces in gaat. Met behulp van
sensordata gemeten op voorgaande productiedagen in combinatie met logboeken van
productiefouten ontdekten we dat de voorspellingen van het model een risicowaarde
geven voor het optreden van productiefouten.

Het veelvoorkomende probleem van het classificeren van tijdreeksen werd be-
handeld in hoofdstuk 6. In dit hoofdstuk stelden we voor om representaties van
time series die bestaan uit complexe waarden, zoals verkregen uit de Fourier- of
wavelet transformatie, te gebruiken in combinatie met het interpreteerbare General-
ized Matrix Learning Vector Quantization machine learning model. Deze methode
past relevantiewaarden en prototypes aan in de ruimte van de betreffende transfor-
matie. Dit is gunstig voor bepaalde classificatieproblemen waarin de data geschikt is
voor de transformatie. Verder formuleerden we een vergelijking voor de omzetting
van de matrix die relevantiewaarden van de variabelen in de transformatieruimte
geeft naar een matrix die relevantiewaarden van de variabelen in het tijdsdomein
geeft. Dit levert dus naast de relevantiewaarden in de transformatieruimte tevens
relevantiewaarden in het originele domein. Hierdoor verbreedt de interpretatie van
de classificatiemethode. De voorgestelde methode liet altijd betere classificatiere-
sultaten zien dan de classificatie in het tijdsdomein. Bovendien konden we sterke
reducties van het aantal dimensies bewerkstelligen met minder over-fitting en verbe-
terde efficiëntie tijdens het trainen tot gevolg. In een groter experiment behandelden
we de classificatie van hartslagen uit ECG data gebruikmakend van een wavelet
transformatie die complexe waarden geeft. Voor dit geval lieten we zien dat het
aantal dimensies sterk gereduceerd kon worden, zonder dat de classificatieresul-
taten hieronder leden. Samenvattend demonstreerden we dat de methode in diverse
situaties zeer efficiënt kan zijn voor het reduceren van het aantal dimensies, goede
prestaties heeft en een brede interpretatie van de classificatie geeft.
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