398 research outputs found

    Dynamic Model Identification and Trajectory Correction for Virtual Process Planning in Multi-Axis Machine Tools

    Get PDF
    In today’s industry, the capability to effectively reduce production time and cost gives a manufacturer a vital advantage against its competitors. Specifically, in the machining industry, the ability to simulate the dynamic performance of machine tools, and the physics of cutting processes, is critical to taking corrective actions, achieving process and productivity improvements, thereby enhancing competitiveness. In this context, being able to estimate mathematical models which describe the dynamic response of machine tools to commanded tool trajectories and external disturbance forces plays a key role in establishing virtual and intelligent manufacturing capability. These models can also be used in virtual simulations for process improvement, such as compensating for dynamic positioning errors by making small corrections to the commanded trajectory. This, in turn, can facilitate further productivity improvement and part quality in multi-axis manufacturing operations, such as machining. This thesis presents new methods for identifying the positioning response and friction characteristics of machine tool servo drives in a nonintrusive manner, and an approach for enhancing dynamic positioning accuracy through commanded trajectory correction via Iterative Learning Control (ILC). As the first contribution, the linear transfer functions correlating the positioning response to the commanded trajectory and friction disturbance inputs are identified using a new pole search method in conjunction with least squares (LS) projection. It is validated that this approach can work with in-process collected data, and demonstrates superior convergence and numerical characteristics, and model prediction accuracy, compared to an earlier ‘rapid identification’ approach based on the application of classical Least Squares for the full model. Effectiveness of the new method is demonstrated in simulations, and in experimental case studies for planar motion on two different machine tools, a gear grinding machine and a 5-axis machining center. Compared to the earlier approach, which could predict servo errors with 10-68% closeness, the new method improves the prediction accuracy to 0.5-2%. In the simulation of feed drives used in multi-axis machines, high fidelity prediction of the nonlinear stick-slip friction plays an important role. Specifically, time-dependent (i.e., dynamic) friction models help to improve the accuracy of virtual predictions. While many elaborate models have been proposed for this purpose, such as the generalized Maxwell-slip (GMS) model, their parameters can be numerous and difficult to identify from limited field data. In this thesis, as the second contribution, a new and highly efficient method of parameterizing the pre-sliding (hysteretic) portion of the GMS friction model is presented. This approach drastically reduces the number of unknown variables to identify, by estimating only the affective breakaway force, breakaway displacement, and ‘shape factor’ describing the shape of the pre-sliding virgin curve. Reduction in the number of unknowns enables this ‘reduced parameter’ GMS model to be identified much more easily from in-process data, compared to the fully parameterized GMS model, and the time-dependent friction dynamics can still be simulated accurately. Having improved the positioning response transfer function estimation and friction modeling, as the third contribution of this thesis, these two elements are combined together in a 3-step process. First, the servo response is estimated considering simplified Coulomb friction dynamics. Then, the friction model is replaced and identified as a reduced parameter GMS model. In the third step, the transfer function poles and zeros, and the reduced parameter GMS model, are concurrently optimized to replicate the observed experimental response with even greater fidelity. This improvement has been quantified as 12-44% in RMS and 28-54% in MAX values. This approach is successful in servo systems with predominantly rigid body behavior. However, its extension to a servo system with vibratory dynamics did not produce an immediately observed improvement. This is attributed to the dominance of vibrations in response to the commanded trajectory, and further investigation is recommended for future research. Having an accurate model of a multi-axis machine’s feed drive response allows for the dynamic positioning errors, which can lead to workpiece inaccuracy or defects, to be predicted and corrected ahead of time. For this purpose, ILC has been investigated. It is shown that through ILC, 1-2 orders of magnitude reduction in the servo errors is possible. While ILC is already available in certain commercial CNC systems, its training cycle (which is performed during the operation of the machine tool) can lead to part defects and wasted productive machining time. The new idea proposed in this thesis is to perform ILC on a virtual model, which is continuously updated via real-time production data using the identification methods developed in this work. This would minimize the amount of trial and error correction needed on the actual machine. In the course of this thesis research, after validating the effectiveness of ILC in simulations, to reliably and safely migrate the virtual modeling and trajectory correction results into industry (such as on a gear grinding machine tool), the author initiated and led the design and fabrication of an industry-scale testing platform, comprising a Siemens 840D SolutionLine CNC with a multi-axis feed drive setup. Majority of this implementation has been completed, and in near future work, the dynamic accuracy and productivity improvements facilitated with ‘virtually’ tuned ILC are expected to be demonstrated experimentally and tested in industry

    Modeling and Contour Control of Multi-Axis Linear Driven Machine Tools

    Get PDF
    In modern manufacturing industries, many applications require precision motion control of multi-agent systems, like multi-joint robot arms and multi-axis machine tools. Cutter (end effector) should stay as close as possible to the reference trajectory to ensure the quality of the final products. In conventional computer numerical control (CNC), the control unit of each axis is independently designed to achieve the best individual tracking performance. However, this becomes less effective when dealing with multi-axis contour following tasks because of the lack of coordination among axes. This dissertation studies the control of multi-axis machine tools with focus on reducing the contour error. The proposed research explicitly addresses the minimization of contour error and treats the multi-axis machine tool as a multi-input-multi-output (MIMO) system instead of several decoupled single-input-single-output (SISO) systems. New control schemes are developed to achieve superior contour following performance even in the presence of disturbances. This study also extends the applications of the proposed control system from plane contours to regular contours in R3. The effectiveness of the developed control systems is experimentally verified on a micro milling machine

    Hierarchical control of complex manufacturing processes

    Get PDF
    The need for changing the control objective during the process has been reported in many systems in manufacturing, robotics, etc. However, not many works have been devoted to systematically investigating the proper strategies for these types of problems. In this dissertation, two approaches to such problems have been suggested for fast varying systems. The first approach, addresses problems where some of the objectives are statically related to the states of the systems. Hierarchical Optimal Control was proposed to simplify the nonlinearity caused by adding the statically related objectives into control problem. The proposed method was implemented for contour-position control of motion systems as well as force-position control of end milling processes. It was shown for a motion control system, when contour tracking is important, the controller can reduce the contour error even when the axial control signals are saturating. Also, for end milling processes it was shown that during machining sharp edges where, excessive cutting forces can cause tool breakage, by using the proposed controller, force can be bounded without sacrificing the position tracking performance. The second approach that was proposed (Hierarchical Model Predictive Control), addressed the problems where all the objectives are dynamically related. In this method neural network approximation methods were used to convert a nonlinear optimization problem into an explicit form which is feasible for real time implementation. This method was implemented for force-velocity control of ram based freeform extrusion fabrication of ceramics. Excellent extrusion results were achieved with the proposed method showing excellent performance for different changes in control objective during the process --Abstract, page iv

    Development of a modular control algorithm for high precision positioning systems

    Get PDF
    Ankara : The Department of Mechanical Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012.Thesis (Master's) -- Bilkent University, 2012.Includes bibliographical references.In the last decade, micro/nano-technology has been improved significantly. Micro/nano-technology related products started to be used in consumer market in addition to their applications in the science and technology world. These developments resulted in a growing interest for high precision positioning systems since precision positioning is crucial for micro/nano-technology related applications. With the rise of more complex and advanced applications requiring smaller parts and higher precision performance, demand for new control techniques that can meet these expectations is increased. The goal of this work is developing a new control technique that can meet increased expectations of precision positioning systems. For this purpose, control of a modular multi-axis positioning system is studied in this thesis. The multiaxis precision positioning system is constructed by assembling modular single-axis stages. Therefore, a single-axis stage can be used in several configurations. Model parameters of a single-axis stage change depending on which axis it is used for. For this purpose, an iterative learning controller is designed to improve tracking performance of a modular single-axis stage to help modular sliders adapting to repeated disturbances and nonlinearities of the axis they are used for. When modular single-axis stages are assembled to form multi-axis systems, the interaction between the axes should be considered to operate stages simultaneously. In order to compensate for these interactions, a multi input multi output (MIMO) controller can be used such as cross-coupled controller (CCC). Cross-coupled controller examines the effects between axes by controlling the contour error resulting in an improved contour tracking. In this thesis, a controller featuring cross-coupled control and iterative learning control schemes is presented to improve contour and tracking accuracy at the same time. Instead of using the standard contour estimation technique proposed with the variable gain cross-coupled control, presented control design incorporates a computationally efficient contour estimation technique. In addition to that, implemented contour estimation technique makes the presented control scheme more suitable for arbitrary nonlinear contours and multi-axis systems. Also, using the zero-phase filtering based iterative learning control results in a practical design and an increased applicability to modular systems. Stability and convergence of the proposed controller has been shown with the necessary theoretical analysis. Effectiveness of the control design is verified with simulations and experiments on two-axis and three-axis positioning systems. The resulting controller is shown to achieve nanometer level contouring and tracking performance.Ulu, Nurcan GeçerM.S

    Controlling Contour Errors in CNC Machines

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A review of dynamics design methods for high-speed and high-precision CNC machine tool feed systems

    Full text link
    With the development of CNC machine tools toward high speed and high precision, the traditional static design methods can hardly meet the demand. Hence, in this paper, the dynamics matching design methods of existing CNC machine tool feed systems were investigated and analyzed. Further, sub-system coupling mechanisms and optimization design studies were carried out for each sub-system. First, the required kinematic indexes must be achieved when designing the feed system dynamics of high-speed, high-precision CNC machine tools. Second, the CNC machine tool feed systems generally have four sub-systems: motion process, control system, motor, and mechanical structure. The coupling effect between the sub-systems should also be considered in the design. Based on the dynamics design, each sub-system should be optimized to maximize the system dynamic performance with minimum resource allocation. Finally, based on the review, future research directions within the field were detected

    Improving Contouring Accuracy in CNC Machines

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Accuracy Enhancement for High Precision Gantry Stage

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Motion control and synchronisation of multi-axis drive systems

    Get PDF
    Motion control and synchronisation of multi-axis drive system
    corecore