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ABSTRACT 

In modern manufacturing industries, many applications require precision motion control 

of multi-agent systems, like multi-joint robot arms and multi-axis machine tools.  Cutter (end 

effector) should stay as close as possible to the reference trajectory to ensure the quality of the 

final products.  In conventional computer numerical control (CNC), the control unit of each axis 

is independently designed to achieve the best individual tracking performance. However, this 

becomes less effective when dealing with multi-axis contour following tasks because of the lack 

of coordination among axes. This dissertation studies the control of multi-axis machine tools 

with focus on reducing the contour error. The proposed research explicitly addresses the 

minimization of contour error and treats the multi-axis machine tool as a multi-input-multi-

output (MIMO) system instead of several decoupled single-input-single-output (SISO) systems. 

New control schemes are developed to achieve superior contour following performance even in 

the presence of disturbances. This study also extends the applications of the proposed control 

system from plane contours to regular contours in   
. The effectiveness of the developed control 

systems is experimentally verified on a micro milling machine. 
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CHAPTER 1 INTRODUCTION  

More than two decades ago, the decline of manufacturing industries of the United State 

had concerned many researchers. They argued that the manufacturing productivities are critical 

to the country‟s competiveness and living standard. After the recent economic downturn, 

manufacturing industry has become a key part to revive the nation‟s economy and to bring jobs 

back to the U.S. In the author‟s opinion, machine tools play a critical role to improve the 

productivity and quality of manufacturing industries. The importance of machine tools lay in the 

fact that many fundamental manufacturing processes would require state-of-the-art machine tools. 

It is simply impossible to have word-class manufacturing without world-class tools.  

It has been reported that the positioning error of machine tool feed drives can contribute 

up to 90% of the geometry error of the final products [1] and therefore the demands for motion 

control system with ever higher performance never ceased. The significance of motion control 

goes beyond just the machining tools. In fact, many newly developed technologies, for example, 

atomic force microscope (AFM), fabrication of polymer-derived ceramics (PDC) [2] and μ-Rd 

deposition [3], are based off precision motion systems. 

 In modern industries, the machining of complex geometries and sculptured surfaces 

requires simultaneous control of multiple axes. In such applications, two major sources of 

performance degradations are 1) perturbations including modeling uncertainties as well as 

external disturbances 2) and lack of coordination among axes. And these problems became the 

motive of this research. In the following two sections, we first introduce several motion control 

technologies and researches previously developed. 
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1.1 Reference Trajectory Optimization 

 Jerk Limited Feedrate Profile and Spline Interpolation 1.1.1

Due to the computational limit, CNCs were only capable of constant velocity feedrate [4]. 

With the developments of micro-controller and digital signal processor (DSP), jerk limited 

interpolations have been developed for smoother acceleration and de-acceleration process [5] 

than constant velocity feedrate profile.  A comparison between trapezoidal feedrate profile and 

jerk limited feedrate profile is illustrated in Figure 1. Compared to the trapezoidal feedrate, the 

jerk limited feedrate profile contains less high frequency components than the trapezoidal 

feedrate profile does, which is beneficial to the tracking accuracy. 

Another important task is interpolation, which refers to the generation of the points 

constituting the reference trajectory [6]. Conventional CNC systems are mostly based on basic 

linear and circular interpolations [7, 8]. Linear interpolation connects two points using a linear 

toolpath while in the circular interpolation, the objective becomes moving the tool along a 

circular path connecting the control points. 
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Figure 1: Comparison between trapezoidal and jerk limited feedrate profile [9] 

The advances in aerospace and medical industries boost the needs for products of 

complex geometries. These products, for examples, man-made joints, require the machine to cut 

sculpture-like surfaces. Though a complex toolpath can be approximated by a series of linear and 

circular segments, the optimal results cannot be achieved. The bandwidth of machine tools is 

limited by factors like power of actuators, noise level of the encoder signal and delay in the 

feedback loop. Linear and circular interpolations cause discontinuities causing actuator 

saturation and excite unmolded structural dynamics. An optimized reference trajectory should be 

smooth and mainly consists of low frequency components [9]. Extensive studies have been 

reported on the trajectory optimizations, including using B-Spline [10] and quintic spline [7] to 
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generate smooth contours. Here we briefly introduce the quintic spline interpolation because part 

of the results will be used in the later part of the dissertation. Interested readers are referred to [6, 

9] for more information. For simplicity, we only introduce the results on plane quintic splines. 

The results can be easily extended to   . 

 Quintic Spline Interpolation 1.1.2

The quintic spline interpolation connects  +1 knots using   fifth order splines, see 

Figure 2. The resulted spline is to ensure that continuity up to the second order derivative is 

preserved along the overall composite curve. 

Pi

Pi+1

Pi-1

 

Figure 2: Quintic spline interpolation 

The quintic spline is parameterized using the chord length between two consecutive knots. 

The fitting procedure starts with calculating the first and second derivatives for the     knot     

by fitting a cubic polynomial 
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through                  . The parameter of the cubic polynomial can be uniquely determined 

using the coordinates of four consecutive points                  . Once the cubic fitting is 

obtained the first derivative (tangent vector)             
  and second derivative (normal vector) 

            
 for    can be computed. With the first and second derivatives of   , a quintic 

spline can be fit between two consecutive knots         

  (2) 

where ,  are spline coefficients and    is the spline parameters. The 

boundary conditions used to solve the spline parameters are 

  (3) 

where  is the chord length between        .  

1.2 Individual Axis Control 

The performance of multi-axis machine tools has been mostly improved by enhancing the 

tracking performance of individual axis. Related topics have been extensively studied over the 

past decades. For example, if the model of closed loop system is available, zero phase error 
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tracking algorithm (ZPETC) [11] had been proposed to increase the overall bandwidth and 

minimize the phase error. When the closed loop system is of minimum phase, the ZPETC 

utilized the inversion of the system model to achieve a unit gain transfer function. If the system 

has non-stable zeros, ZPETC is able to cancel the phase error. In addition, repetitive control (RC) 

[12, 13] and iterative learning control (ILC) [14, 15] also find applications when the reference 

trajectories or the disturbances are periodic. If the disturbance is not periodic, disturbance 

observer (DOB) had been proposed to enhance disturbance rejections [16]. In addition to the 

motion controller design, precision modeling of machine tool feed drives have drawn 

considerable attentions as well [1, 17-24]. In industry, the loop transmission technology is almost 

dominant. For other techniques of single axis tracking, interested readers are referred to [25, 26]. 

It should be noted that these researches are designed for single servomechanism and are normally 

referred to as decoupled controls because they are essentially local performance optimization and 

become less effective when multiple axes need to be controlled simultaneously [27]. This point 

can be further illustrated by Figure 3. 
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Figure 3: Decouple control for a bi-axial contour following 

Assume a two-axis machine tool is commanded to follow a circular toolpath of radius    

(big circle).  A small red circle of radius    (     ) is placed using the current reference point 

R as its center.  A, B, C and D are the four possible locations of the cutter. From the perspective 

of the decoupled controller, all four points have the same performances since the magnitudes of 

the tracking error are the same (  ). However, one can observe that A and B are far better than C 

and D as they are still on the desired curve while C and D deviate considerably. It is clear that, 

due to the lack of coordination, decoupled control is not capable of recognizing the performance 

of the overall system and as a result, the contour following performance cannot be guaranteed.  
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1.3 Contour Error and Contour Error Estimation 

Tracking error and contour error may be the most important two performance indices of 

machine tools, See Figure 4. Denote the actual position of the cutter as    and current 

commanded position as  , the tracking error is as 

 E D - Q  (4) 

In the decoupled design, each controller strives to reduce the magnitude of the tracking 

error vector   . However, contour error is more important than the individual tracking error on 

the accuracy of the multi-axis machining. 

 

Figure 4: Comparison between estimated contour error and actual contour error 
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The general definition of contour error is the shortest distance between the actual 

position Q and the desired curve R (solid dark blue line in Figure 4). For linear or circular 

contours, the contour error can be efficiently computed the using the linear cross coupling gains 

[28, 29]. 

 sin cosX YE E       (5) 

The parameter angle   is  

 sin ,cos
Y X

R R

V V

V V
      (6) 

where   ,    and    are desired velocity for X-axis, Y-axis and the synthesized velocity of the 

desired contour, respectively.    and    are the tracking error of the X-axis and Y-axis, 

respectively. For circular contours, the contour error is [28] 

       (sin ) (cos )
2 2

X Y
X Y

a a

E E
E E

R R
  (7) 

where    is the radius of the circular contour. Eqn (7) is actually a time-varying version of Eqn 

(5). It should be noted that Eqn (5) and (7) are exact contour error. However, the contour error in 

general lacks analytical expressions for complex curves and therefore can only be estimated. One 

approach is to approximate the contours with a series of linear and circular segments and use Eqn 

(5) and (7) to match the instantaneous segment [30].  Though works have been done on the 

optimization on the choice of the cross coupling gains [30, 31], the design and analysis of CCC 

is always a challenging and time-consuming task [32].   
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Here we give an example of how to calculate the actual contour error of complex curves. 

The reference curve is given by a plane quintic spline with the following parameters, the 

definition of these parameters can be found in Eqn (2). 

 

-0.0040146 0.031059

-0.0027863 -0.10998

0.00740748 0.152731
,  

0.05596339 0.146529

0.87860363 -0.57768

1.32000000
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xk yk
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D D

E E

F F

    
    
    
    
     
    
    
    
         

, [0.0268,1.0370]

-8.16000

u

 
 
 
 
  
 
 
 
  

 (8) 

Assume that the current reference position is 
T

D 1.938 8.454     and the cutter 

location is 
T

Q 1.831 -8.370    , see Figure 4. The actual contour error is determined by finding 

the minimum of the following function  

 
2 2( ) ( ( ) 1.831) ( ( ) 8.370)isD u x u y u      (9) 

on the interval [0.0268,1.0370]u  . The problem can be solved by finding the minimum of a 

tenth order polynomial on a fixed interval. The actual contour error is determined using the 

Matlab optimization toolbox and the result is 

   0.0468  (10) 

One can see that the computational loads associated with computing the actual contour 

error are too high for servo control system when the curves are complex. The sampling rate of 

modern system is getting ever higher and the algorithm‟s efficiency must be taken into 
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consideration. (The sampling rate of modern servo system can be as high as 250 Kilohertz [33-

35]).  

To circumvent this problem, a variety of contour error estimation methods have been 

studied [29, 36, 37]. Here we briefly introduce the tangent line estimation method and compare 

the estimated result to the actual contour error. Still use Figure 4, the estimated contour error is 

the distance between Q and the tangent line at point D. The estimated contour error, denoted by  , 

is 

 e 0.0517  (11) 

By comparing the results in Eqns (10), (11), the tangent line estimation clearly introduces 

an estimation error. However, tangent line approximation has been widely accepted in favor of 

its computational efficiency.   

1.4 Two Contour Control Configurations 

The basic idea of contour control is to introduce an extra control effort to reduce the 

contour error. Depending on how this concept is implemented, contour control can be in general 

categorized into feedforward type and feedback type. 

 Feedforward Type Contour Control 1.4.1

The feedforward type contour control has received extensive attentions after Koren 

proposing his famous cross coupling control (CCC) [8, 25, 28, 38]. The structure of basic CCC is 

illustrated in Figure 5. A feedback control stabilizing the open loop system is required in the 
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CCC design. As such, CCC is a feedforward type control and the system is of a dual-controller 

structure.  

 

Figure 5: Feedforwrd type contour control (CCC) 

The design of the CCC is based on contour error transfer function (CETF) [37, 39, 40] 

 
CETFe eoc g c   

where eoc and ec  is the contour error without and with CCC, respectively. CETF is designed to 

have a small low frequency gain so the contour error can be reduced when CCC is implemented. 

One problem associated with the dual-controller structure is that the two controllers potentially 

work against each other [41, 42]. CCC may reduce the contour error at a cost of increasing the 

tracking error and the tracking controller may resist it. As such, it is difficult to distinguish which 

controller dominates the overall dynamics. Besides, due to the dual controller structure, stability 

analysis of the CCC is often very complex, especially when multi-axis system is involved or 
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variable controller gains are needed [27]. As such, the potentials of feedforward type are limited. 

For example, Lo proposed a CCC for three dimensional contour tracking [43]. Yet the stability 

of the propose approach was not vigorously. 

 Feedback Type Contour Control 1.4.2

Compare to the feedforward type contour control, the feedback contour control is 

typically of much simpler structure. The idea of the feedback type control is to transform the 

contour error into system state variables and convert the contour following task into regulation 

problems [44]. Examples of feedback type contour control include synchronization control [45] 

and task frame based contour control [46-48], see Figure 6. 

 

Figure 6: Block diagram of feedback type contour control [47] 

1.5 Dissertation Outline 

In the second chapter, the experimental machine tool setup is introduced. Modeling 

works have been designed to obtain a precision model of the machine tool feed drives with focus 
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on low speed frictions. The force ripple was first modeled and compensated using feedforward 

control. Particle swarm optimization was used to identify the parameters of the Lugre model. The 

proposed method demonstrates excellent modeling accuracy and its effectiveness is 

experimentally verified in motion control tests. 

The third chapter proposes a robust contour control for bi-axial contour following 

applications. The discrete sliding mode control (DSMC) has been reformulated using the discrete 

local frame. The proposed control scheme inherits the merits of both contour control and DSMC. 

The proposed discrete sliding mode contour control (DSMCC) achieves very consistent contour 

following performances even in the presence of disturbances.   

The forth chapter extends the results of contour control to regular curves in   
  The key 

is to design and optimize the local moving frame. Most previous researches are limited to bi-

axial applications or plane curves. As such, the moving frame method has not been fully studied 

for regular curves in    
. An optimization method was proposed to solve this problem. The 

torsion of curves is taken into consideration to optimize the moving frame. Compared to the 

conventional moving frame (moving trihedrons), the optimized local frame has much smoother 

transition and therefore eliminates spikes and saturations in control efforts. In addition, an 

improved contour error estimation method and a chatter free robust inner loop have also been 

developed to further improve the contour following accuracy. 

Chapter 5 discusses our future work of using learning control to further improve the 

performances of the multi-axis machine tools in mass productions.  
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CHAPTER 2 MODELING OF MACHINE TOOLS FOR LOW SPEED 

MOTIONS 

2.1 Experimental Setup 

In this chapter, the dynamics of one feed drive of the experimental machine tool is 

identified. The focus of this chapter is to identify the rigid body dynamics as well as the 

disturbances mainly including force ripple and friction. The machine tool of consideration is a 3-

axis micro mill in our lab, see Figure 7. The application of the mill includes the fabrications of 

high temperature sensors of machinable polymer derived ceramics (PDC) [2] and machinability 

studies of metal matrix composite (MMC) [49]. All feed drives are equipped with optical 

encoders. The encoder period of X-axis and Y-axis are 4  ; for Z-axis, the encoder period is 

18  . Signal multipliers are employed to increase the resolutions to 0.02   for X-axis and Y-

axis, 0.09   for Z-axis. X-axis and Y-axis are powered by DRPANIE-015A servo drives from 

Advanced Motion Control; Z-axis is powered by a Soloist CP10 servo drive from Aerotech. All 

servo drives work in current mode and take standard         control signal from the main 

controller. 

The main controller is a PXIe-8133 from National Instrument (NI).  The PXIe controller 

is equipped with a data acquisition card (DAQ) PXI-7854R receiving quadrature incremental 

position signals from the signal multipliers. Control signals are sent to servo drives through the 

on board analog output of PXI-7854R. The block diagram of the control system is illustrated in 

Figure 8.  The identification in this chapter and control algorithms in the later chapters are 

implemented in Labview Realtime operating system.  
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Figure 7: 3-axis micro mill 

Position signal

Control signal

Current

Realtime 

controller
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Figure 8: Block diagram of experimental machine tools 

To enhance the machining accuracy, all feed drives of the micro-mill are linear-motor-

driven. Compared to the conventional lead screw transmission feed systems, linear motors 
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eliminate the transmission error and reverse backlash [15, 50], which therefore are more capable 

of precision motions. The significance of obtaining a comprehensive model is that the 

effectiveness of many control strategies depends on accuracy of plant model, especially those 

utilizing direct inversion of the system dynamics [11, 51, 52]. For example the performance of  

ZPETC heavily depends on the fidelity of the plant model [11, 53]. The modeling uncertainties 

also have direct influences on the stability and convergence of the iterative learning control (ILC) 

[54-60]. In addition, despite the surge of modern robust control, an accurate and analytical 

system model always facilitates the control system design. For example, the model of 

disturbance can be directly implemented as feedforward compensation to provide fast 

disturbance rejection [23, 61, 62].  

For machine tool systems, friction is always a major source of both tracking error and 

contour error due to its strong nonlinearity and discontinuity. Friction can also lead to many 

other undesired phenomena like limit cycle and stick-slip motion.  In multi-axis contour control, 

the error caused by friction is referred to as „quadrant glitch‟ and is illustrated in highlighted red 

circles in Figure 9. 
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Figure 9: Quadrant glitch caused by frictions [63] 

Several examples of friction models are static friction model [64], Gaussian model [65], 

and Lugre model [66] and general Maxwell model [67]. Simple friction models, such as static 

friction model, are easy to identify and implement yet cannot always provide satisfactory 

compensation results. The advanced friction models, for example, the Lugre model, are able to 

describe many complex behaviors of frictions. Yet the identification of advanced friction models 

are usually a challenging task [68]. A number of numerical identifications methods have been 

tested, like Simplex [69] and Monte Caro process [19, 70]. Yet these methods have the tendency 

to fall into local optimum. Besides, redundant experiments are needed to provide good initial 

parameter estimations [71] otherwise these algorithms may not work. 

Another factor affecting the accuracy of the friction modeling is the existence of other 

disturbances.  In linear feed drives, force ripples could cause enormous error of friction modeling 
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and thus must be firstly eliminated. Here we target at solving all the aforementioned problems 

and establishes a precision model of the feed drive system of the experimental mill. This chapter 

is organized as the following sections: in section 2, the overall model of the system is developed.  

In section 3, the model of force ripple is identified and experimentally verified. The force ripple 

is subdued using model based feedforward compensator.  In section 4, the servo gain is identified 

using a simplified fiction model. In section 5, the classic Lugre model is modified to model 

frictions of poor symmetry in different directions. However, the additional parameters make the 

parameter identification of Lugre model a more challenging task. A global numerical 

optimization method, particle swarm optimization (PSO) [72] is utilized to identify the 8 

parameters of the model.  In section6, the overall model is tested in both open loop and closed 

loop tests. The obtained models are analyzed in both time domain and frequency domain. The 

closed loop tracking experiment also demonstrates that the identified model can greatly enhance 

the tracking performance. Section 7 concludes the entire chapter. 

2.2 Dynamics of Experimental Setup 

Figure 10 is the dynamics of the feed-drive to be identified.    (        ) is the ratio 

between the control signal (    ) and armature current (   ). For the X-axis and Y-axis,    is 

0.            and            on the Z-axis.     (          ) represents the force 

constant,   denotes lumped disturbances;   denotes the inertia of the motor mover.  
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Figure 10: Block diagram of dynamics of direct drive 

The block diagram shown in Figure 10 causes identifability problem since the system 

inertia is unknown. Therefore the block diagram is modified as shown in Figure 11, where the 

disturbances act on the control signal u instead of on the motor mover. In addition, the drive 

constant   , motor constant    and the inertia m will be combined to form a new parameter 

named the „equivalent motor constant‟ (         ).  

 

Figure 11: Block diagram of modified dynamics of direct drive 

The disturbances d include both the force ripple and friction  

 * *
rippled f f   (12) 
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where        
  denotes the force ripple and    is friction. To coincide with Figure 11, the 

normalized disturbances are 

 

* 1

* 1

( )

( )

rippleripple d m

d m

f f k k

f f k k





 








 (13) 

The normalized model of the system is 
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Applying Laplace transform to Eqn (14) we have 

 
2

( ) ( ( ) ( ) ( ))d m
ripple

k k
x s u s f s f s

ms
    (15) 

2.3 Identification of Force Ripple 

Force ripple refers to the position-dependent periodic variation of the force constant 

  caused by imperfect commutation. The experiment consists of jogging the linear motor at a 

constant speed (     ) using a proportional-integral (PI) controller [73]. Different load forces 

are used to impose a tangential force to the linear motor so the influence of mean control signal 

can be determined. The experimental setup for force ripple test is illustrated in Figure 12. The 

variations of the control signal are used as a measurement of the force ripple. 
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Figure 12: Experiment setup for force ripple test 

In each experiment, control signal is sampled after the motion reaches steady state. The 

control signal is re-sampled in an equal-distance manner, which is similar to the method in [73]. 

Figure 13, Figure 14 and Figure 15 show different control signals and their mean values. The 

variations of the control signal clearly prove the existence of the force ripple since the variation 

of the friction and the load force during a constant speed motion is trivial. Figure 16 shows the 

spectrum of the control signal in Figure 15. 

 

Figure 13: Control signal showing force ripple #1 
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Figure 14: Control signal showing force ripple #2 

 

Figure 15: Control signal showing force ripple #3 
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Figure 16: Spectrum of force ripple 3 

After analyzing the spectrums of control signals obtained from different experiments, all 

force ripples are found including the same three major harmonics. The first order harmonic with 

a period of         is determined as a current independent disturbance, which remains almost 

unchanged in all experiments; the second order harmonic with a period around         as well 

as the sixth order harmonic with a period around        are current dependent as their 

magnitude changes with the imposed loads change. Since the force ripple can be modeled as the 

summation of individual harmonics, the following function is used to represent the force ripple 

 min
1,2,6

( , ) ( )sin( )n n no al n
n

nx
F x u g u q

p


   (16) 

where   is the period of the first order harmonica,    is the phase of each harmonics, 

             is the amplitude function of each harmonic and will be determined later, 

         is the nominal value of the control signal, which will also be explained in the following 
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sections. The nonlinear least square method is used to identify the parameters of    and   . 

Results are listed in. The applied payloads are not given here since the model of the force ripple 

does not depend on them. 

Table 1: Identification results of force ripples 

 
No load Load 1 Load 2 Load 3 Load 4 Load 6 

  31.93 31.89 32.00 31.99 31.96 31.94 

   0.105 0.1 0.11 0.1 0.102 0.96 

   2.9 2.92 2.96 2.93 2.97 2.91 

   0.01 0.027 0.036 0.045 0.051 0.066 

   3.69 3.69 3.79 3.71 3.7 3.63 

   0.002 0.01 0.015 0.018 0.02 0.029 

   4.59 4.08 4.35 4.34 4.36 4.23 

 

The final identification results of    and    are obtained by taking mean values of results 

from all experiments.          is the average of control signal over a range of integral multiples 

of   so the harmonic components of the force ripple is minimized.    is modeled as a linear 

function of           

 min( ) nn n no alng u bua   (17) 

where   ,    are 
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Figure 17 shows the identification results of    and   .  

 

Figure 17: Identification results of   and    

 

Figure 18: Comparison between actual force ripple and simulated force ripple 

Figure 18 is a comparison between the actual force ripple and the model output, which 

clearly shows a very accurate fit. Experiments described at the beginning of this section are 

repeated with the identified force ripple model implemented as a feed-forward compensator. 

Figure 19 shows the block diagram of the control system, where PI is the main feedback control 

and        is the feed-forward based on the identified model.  
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Figure 19: Feedforward control 

For comparison purpose, experiments are repeated with feed-forward compensator 

disabled and enabled, the results of which are shown in Figure 20 and Figure 21, respectively.  

 

Figure 20: Control signal of PI controller without feedforward compensation 
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Figure 21: (a) Signal of PI controller (b) Signal of feedforward compensator 

From Figure 20, with the feed-forward compensator disabled, the control signal of the PI 

controller fluctuates due to the force ripple. In Figure 21 (a), the control signal of the PI 

controller almost becomes much „flatter‟ with no apparent variation when the compensator is 

enabled. This clearly demonstrates that the force ripple is successfully modeled and suppressed 

by the feedforward compensator.  Other experiments with different load forces also show similar 

results, which are omitted for conciseness.   

2.4 Identification of Rigid Body Dynamics 

The force ripple is modeled and compensated in the previous section 

 0ripplef   (18) 

Therefore Eqn (3) can be further simplified to 
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2

2
( )d mk kd x
u f

mdt
   (19) 

and the parameter to be identified is the motor constant  

 thrust
m

f
k

I
  (20) 

where         is the thrust produced by the motor and   is the armature current. However, the 

motor constant in the manufacturer specifications may be inaccurate since it is measured at stall. 

In addition, the inertia of motor mover is also unknown. Therefore, instead of identifying all 

these parameters individually,        is identified as one parameter named as the „equivalent 

motor constant‟. To avoid the modeling error caused by the nonlinearities of low speed frictions 

[24], the experiments are conducted using a high speed single-direction motion and the excitation 

signal is shown in Figure 22. 

 

Figure 22: Excitation signal 

At high speed, friction can be modeled as [74] 
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 cou visf f vc   (21) 

where     is the viscous friction coefficient and   is the velocity. Substituting Eqn (10) into Eqn 

(8) 

 
( )d m cou visk k u f vcdv

dt m

 
  (22) 

The Eqn (11) in discrete time domain is 

    
  ( )

1 vd md cou vd md
d

k k f k k k u k
v k p v k

m m
     (23) 

where 
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
   (24) 

 
( / )s d m visT k k c m

dp e


  (25) 

 md d mk k k  (26) 

The velocity in the experiment is negative 

    1 ( )md vd vd md
d

k k k k
v k p v k c u k

m m
     (27) 

where   is the coulomb friction, rewrite Eqn (16) in vector form 

    
       

1  1 ( ) /

/

d

md vd

md vd
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v k v k u k k k c m

k k m

 
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 
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 (28) 

Applying least square method (LSM) we have 
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, and 

the identification results are in Table 2. 

Table 2: Identification results of rigid body dynamics 

   
         

 
        

 

0.998 0.211 0.684 

 

Figure 23 (a) shows the actual velocity response as well as the simulated response. Figure 

23 (b) is the velocity error. The identified equivalent motor constant is  

2 1342.24 ( )d mk k mm s V
m


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Figure 23: (a) Measured and simulated velocities (b) Error 

2.5  Identification of Frictions Using Lugre Model 

The Lugre friction model is 
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 (29) 

where   is the internal state of the friction,             are static parameters and       are 

dynamic parameters.  
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 Cost Functions 2.5.1

Since the static parameters and dynamics parameters are identified in two steps, two cost 

functions are defined, respectively. The four static parameters are identified by static speed-

friction mapping measured at various constant-speed motions. By setting   

 0
dz

dt
  (30) 

we can obtain the model of static friction  

      
2

0
0 1 2sgn sgn

v v
sf a v a e v a v


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 (31) 

The cost function for the optimization is  

   2
1

1

'
2 0, , , ( )

n

s
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static o sg a a a v f f


   (32) 

where   is the length of data;   
 is the friction estimated by (31) and    is the corresponding 

experimental data. 

Once the four static parameters are identified, the simulated response heavily depends on 

the two dynamic parameters, especially when the system is under small, slowly varying input 

signals. Thus the goal of optimization is to find the simulated response that matches the 

experimental measurements. The cost function for optimization of this part is  

  0
1

' 2
1, ( )dynamic i i

k

i

g x x 



   (33) 

where   is the data length,    is the simulated response and   
  is the experimental response.  
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 Particle Swarm Optimization (PSO) 2.5.2

In this section, the identification problems are boiled down to the minimization of the two 

cost functions.  The optimization of static parameters is relatively easy because the cost function 

is in analytical form which makes it solvable by many optimization methods. On the other hand, 

for the dynamic parameters optimization, the problem becomes much more difficult since it is 

almost impossible to find an analytical expression for the cost function of this part, let alone the 

gradient decedent or Hessian matrix. This renders many local search algorithms based on 

Hessian matrix or gradient decedent inapplicable.  

Alternative methods to solve this problem include the SIMPLEX and Monte Carlo 

method. Yet the effectiveness of this technique heavily relies on a good initial guess of the 

parameters to be identified. Also, the risk of falling into local optima is always a problem of 

direct search algorithms. 

Particle Swarm Optimization (PSO), first reported in [72] is a relatively new global 

search method inspired by the behaviors of bird flocks. Though the original PSO is designed to 

deal with the optimization of continuous nonlinear functions, PSO is now capable of a large 

varieties of optimization problems [75, 76]. The principle of PSO is similar to the genetic 

algorithm (GA) [77] except that PSO does not have any evolutionary operators like mutation and 

crosslink.  

PSO starts working with a group of random solutions with each solution called a particle. 

Every particle has a memory unit to store its personal best (pbest) and its corresponding fitness. 

The best value of the pbest of the entire particle swarm is called global best (gbest), which is 

shared among all the swarm. In this manner, each particle is aware of both the personal best and 
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the global best. Using this information, particles adapt velocities toward the possible best 

positions, which provide a mechanism of global convergence. Normally particles are only 

allowed to search within a predefined searching area. If a particle hits the boundary, it would be 

bounced back into the searching area. 

Using PSO with   particles to solve an N-dimensional optimization problem,   is 

denoted as the iteration number; the     particle in the swarm is represented by a N-dimensional 

vector 

 1 2[ ]k k k kNXX X X  (34) 

The velocity vector and updated equation are [78] 

          1 1 2 21k k k k ki w i c r i c r i     V V pbest X gbest X  (35) 

    1 1k k ki i   X X V  (36) 

where   represents inertia,    is cognitive acceleration constant;    is the social acceleration 

constant;    and    are two random numbers uniformly distributed between   and  . 

 Parameter Identification 2.5.3

To establish the static speed-friction mapping, constant speed experiments are conducted 

at 20 different speeds                     In order to take into count of the difference 

between the frictions in the negative direction and in the positive direction, Eqn (31) is modified 

to 
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where   

  
1,       0

0,    

if v
sign v

otherwise

 
 


  

and    is a dummy parameter representing the average of the difference between the 

bidirectional frictions. Optimization of static parameters becomes: 

 Minimization for  0 1 2 3 0, , , ,staticg a a a a v   

 Subject to: 1 2 30 0, , , , [0, ]a a a a v     

The swarm size is 20 and the max iteration number is 200, Figure 24 shows the cost 

function decreasing as the iteration number increases. Figure 25 is the comparison between the 

identified model and the friction data obtained experimentally. The identified parameters are 

listed in Table 3. 

 

Figure 24: Convergence of cost function of static parameters 
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Figure 25: Static speed-friction mapping and results of identification 

Table 3: Identification results of static parameters 

            

0.16 0.19 0.005 0.0066 

During the stick-slip motion with frequent zero velocity crossings, the simulated motion 

is sensitive to the variations of σ0 and σ1. In addition, it is also found that during such motion the 

response is even more sensitive to the differences between the frictions in the negative direction 

and in the positive direction. 

Due to the existence of the sign function, direct implementation of Eqn (37) occasionally 

causes unwanted chatters. Thus the Lugre model (29) is modified to 
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where 
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b b
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and   
  represents the average difference between the frictions in different directions and     is a 

parameter that can be freely chosen.  In this part of experiment,    is         . To induce 

maximum stick-slip motion, a small and slowly varying sinusoid as shown in Figure 26 is used 

as the excitation signal. 

 

Figure 26: Excitation signal for dynamic parameter identification 

The optimization of the dynamic parameters becomes 
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                         Minimization of   '
0 1 3, ,dynamicg a  , subject to: '

30 1, , [0, ]a      

The swarm size is 20 and Figure 27 shows the cost function decreasing as the iteration 

increases and the optimized parameters are listed in Table 4. 

Table 4: Identification results of dynamics parameters 

        
  

6.104 0.0592 0.0107 

 

Figure 27: Convergence of cost function of dynamic parameters 

Figure 28 is the comparison between the experimental data and simulated response, 

showing that the two responses are sufficiently close. It is clear that, the proposed method 

successfully capture the characterizations of frictions during low speed motions. 
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Figure 28: Experimental and simulated responses 

2.6 Experimental Validations 

In this section, the models identified in previous sections are tested experimentally. The 

first test utilizes the method proposed in [79] to test the closed loop responses of the model. The 

second experiment is aimed at improving the performance of a pole placement controller using 

the identified model. 

 Closed Loop Test 2.6.1

In this test, the models of friction and force ripple are implemented as feed-forward 

compensation. If both friction and force ripple perfectly canceled out, the transfer function of the 

compensated system is the double integrator 

  
2

342.238
g s

s
  (39) 

The magnitude frequency response of Eqn (36) is  
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  
2
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M 


  (40) 

A proportional controller is used to close the feedback loop 

 Epu P  (41) 

where   is the position error and   is the proportional gain. The closed loop transfer function 

under the proportional control becomes 

  p 2

342.238
g s

s 342.238

p

p




 (42) 

The closed loop transfer function has two pure imaginary poles at 0.5(342.238 )P j  and 

its steady state response to a step input is a constant oscillation. In this experiment, even a small 

modeling error will accumulate over time and soon cause large prediction error for the oscillation 

that will soon become either unstable if the prediction of model is larger than real system (energy 

is constantly added) or damped rapidly if the model prediction is insufficient (energy is 

continually consumed). Figure 29 shows the experimental results and the simulated responses 

with a step input of -4mm, which show a very good match between the two. 
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Figure 29: Closed loop step response 

 Tracking Test 2.6.2

This experiment is conducted to show the tracking performance improvement after 

implementing the identified model. A pole placement controller (PPC) is designed by placing a 

pair of dominant poles at 131.95 134.61j . The reference command is a       sinusoidal 

signal of a magnitude of 5mm. The frequency of reference signal is sufficiently lower than the 

bandwidth of the controller. To demonstrate the performance improvements, the feed-forward 

compensation is disabled in the first 25 seconds and is enabled in the second 25 seconds. Figure 

30 shows the tracking error, which is very large when the feed-forward compensation is disabled. 

The tracking error is significantly reduced after the feed-forward compensation is enabled, which 

clearly shows its effectiveness. 
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Figure 30: Tracking error comparison 

Figure 31 displays the control signal of the PPC. In the section without feed-forward 

compensation, the wavy control signal of PPC clearly shows the disturbances caused by the 

friction and force ripple. When the feed-forward compensation is enabled, the control signal 

becomes a zero mean noise-like signal, proving that both friction and force ripple are eliminated 

by the feed-forward compensation.  
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Figure 31: Control signal comparison 

2.7 Summary 

In this chapter, a systematic modeling method of the direct drive system is proposed. 

Friction and force ripple are decoupled and individually modeled. The effectiveness of the mode 

is implemented as a feed-forward compensator and its effectiveness is demonstrated 

experimentally.  The proposed modeling method can be readily applied to other DDFs for better 

performances. 
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CHAPTER 3 ROBUST CONTROL FOR PLANAR CONTOUR 

FOLLOWING 

A systematic modeling method has been developed in chapter 2, in this chapter we aim at 

a new control scheme that combines the robustness of discrete sliding mode control (DSMC) and 

the contour control using the tangent line approximation. The proposed system reformulates 

DSMC to achieve consistent the contour following performance even in the presence of 

disturbances.  

3.1 Discrete Sliding Mode Control (DSMC) 

In industrial environments, mechanical systems are always subject to a certain level of 

uncertainties or disturbances. These disturbances lead to performance degradation if not carefully 

addressed. One way to deal with this problem is to accurately model and compensate the 

disturbance like work done in chapter 2. However, comprehensive modeling could be time 

consuming and the model fidelity might be lost over time.  DSMC provides an alternative 

solution to deal with this problem. By driving the system trajectory onto a carefully selected 

hyper-plane, DSMC is able to achieve excellent performance despite of the uncertainties and 

disturbances. DSMC also features several unique advantages lacked in the well-established 

continuous SMC [80-82]. However, these researches are solely for performance improvement of 

single axis and are not optimized for multi-axis applications. We first briefly introduce the 

design of the conventional DSMC before proposing the robust contour controller.  

DSMC is based on the concept of discrete sliding surface. A widely used sliding surface 

is 
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 ( ) ( )s ss k C x k   (43) 

where    is the coefficient vector of proper dimensions and       is the state variable vector. 

Eqn (43) also represents the distance between the system trajectory and the ideal sliding surface. 

The essence of DSMC is to forces the system trajectory to approach and subsequently stay on the 

ideal sliding surface, i.e. 

 ( ) 0s k    (44) 

which is the well-known ideal quasi-sliding mode (IQSM) [83]. It should be noted that due to 

factors like disturbance, finite sampling rate, IQSM is practically impossible. A more practical 

goal is to design a controller confining the system trajectory within a narrow band around the 

IQSM, or the so called quasi sliding mode band (QSMB) 

 ( )s k      (45) 

where 2  is the width of the band. A more explicit guideline for the DSMC design is the 

reachability condition [84] 

 ( 1) ( )s k s k    (46) 

Among the various strategies satisfying the reachability condition, a very effective one is 

the reaching law [81]. The discrete-time domain reaching law is obtained by applying Euler‟s 

forward difference to the continuous version of reaching law, i.e.   

 
( 1) ( )

( ( )) ( )
s k s k

sign s k qs k


 
     (47) 

where   is a positive constant called switching gain and q is a constant satisfying      

     .   
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Remark 1: With a stable IQSM, DSMC system designed using the reaching law approach is 

always stable [81, 83].  

For |    |           , reaching law (47) satisfies the reachability condition (46). 

The switching boundary is  

 1( ) (1 )s k q      (48) 

where the system trajectory crosses the ideal sliding surface        at the next sampling time. 

After entering the switching boundary (48), the system trajectory will remain inside a smaller 

boundary layer 

 ( )
1

s k
q





  (49) 

Eqn (49) stands for the idea quasi-sliding mode band (QSMB) [83]. System robustness 

can be enhanced by increasing the switching gain. On the other hand, from Eqn (49) it is clear 

that larger switching gain results in a wider QSMB and hence poorer steady state accuracy. Plus 

the switching control may excite dynamics and even cause chatters. Since the unmolded 

dynamics is mostly of high frequency, the chatter problem can be alleviated by using a low pass 

filter to smooth out the switching control. 

3.2 Discrete Sliding Mode Contour Control (DSMCC) for Nominal System 

The dynamics for each feed drive, including the disturbances, can be written as  

 ( ) ( ) ( ) ( )i i i iq s g s u s d s    (50) 
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where the superscript       stands for X-axis and Y-axis, respectively.       is position,       

is control effort and       is the lumped disturbances including external disturbances and 

modeling uncertainties.       is the nominal model of the feed drive of the following double 

integrator structure 

 
2

( )
i

ig s
s


   (51) 

where    is the controller gain. Choosing position and velocity as the state variables, i.e, 

      [  
        

    ]
 
, we can obtain the second order approximation of system (51) in the 

discrete time domain (zero-order-hold equivalent) 

 
( 1) ( ) ( )

( ) ( )

i i i
i

i i

x k Ax k B u k

q k Cx k

  



  (52) 

where the state vector is    [
  
  

] and   is the sampling time,         and    [
     

  
]. 

Model (52) is preferred for its simplicity and the only unknown parameter    can be readily 

identified. We start our design using model (52) and address the disturbance problem later on. 

Denote the reference trajectory vector as       [  
        

    ]
 
and the tracking error vector as 

  
  [   

     
 ]

 
 

 (( ) ) ( )i i i
ex kk R x k    (53) 

Substituting Eqn (53) into Eqn (52) we have 

 (( 1) 1)( () )) (i i i i
e e

i iR kx k Ax k BA uR k k      (54) 
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Denote the desired acceleration as   
    , the second order approximation of the desired 

trajectory   
     is given by 

 

2( 1) ( ) ( ) 0.5 ( )
( 1) ( )

( )( 1) ( )

i i i i
i i p p v

ii
a

a
i

v v

R k R k R k R k
R k AR k

R kR k R k

 



     
      
    

  

  (55) 

Substituting Eqn (55) into Eqn (54) we can obtain 

 

20.5 (
(

)

( )
1) ( ) ( )i i i ia

e
a
ie

iR k

R k
x k Ax k B u k





 
  
 
 

     (56) 

The proposed DSMCC consists of a linear time varying (LTV) feedback control and a 

linear time invariant (LTI) feed-forward control, i.e., 

 

20.5 ( )

( )
( 1) ( ) ( ( ) ( ))

i

i
i i i i ia
e e FB FF

a

x k Ax k B u k u k
R k

R k





 
  
 

  

 

   (57) 

The feedforward control is designed as 

 
1 ( )( ) ( ) ii i

FF au k b R k    (58) 

Substituting Eqn (58) into Eqn (57) we have 

 
( 1) ( ) ( )

( ) ( )

i i i i
e e FB
i i

e

x k Ax k B u k

e k Cx k

   




  (59) 
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, which is the state space representation of the error dynamics. Next we proceed to design    , 

starting with the task coordinate in the discrete-time domain. If the desired contour is given in 

the form of quintic spline, then for the kth reference points    

 
( ) ( ) 0

( )
( ) ( ) 0

x y z

x y z

x k e y k e e
t k

x k e y k e e

  


  
  (60) 

Further define the normal unit vector  

 ( ) ( ) ( )n k kb k t    (61) 

where  ⃗              is the unit vector normal to the machining plane. The last elements of 

      and  ⃗     are both dropped since they are trivial for biaxial applications. A Cartesian local 

frame can be established using       and  ⃗     as basis vectors. The transformation between the 

machine frame    and the local frame    is  

 
1

( ) ( ) ( )k t k n k


 
 

T   (62) 

where          .      is unitary, i.e., 

 1 T( ) ( )k k T T
 

The tracking error referred to the task coordinate is 

 
( )( )

( ) ( )
( ) ( )

X
pet
Y

n pe

x kk
k k

k x k






  
   

   
    

T   (63) 

where       is the tangent error and       is the estimation of the contour error. Define the 

following state variables for the contour controller design 
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1

2
4 1

3

4

( )( )

( ) ( )
( ) ( )

( ) ( )
( )

( )

X
pe
Y
pe
X
ve
Y
ve

x kk

k x k
k k

k x k
k

x k












 
   
   
    
   
   
    

 

T   (64) 

and  ̅    is given by  

 
 

  
  2

2( )
(

0 (
)

0
 

)

k
k

k

T

T
T    

where    is a two by two zero matrix.  From the construction of ( )k , 2( )k  is the estimation of 

the contour error and 1( )k is the tangent error component. Using transformation (64) to 

reformulate Eqn (59)  

 
1( 1) ( 1) ( ) ( ) ( 1) FBk k A k k k Bu     T T T   (65) 

T
 X Y

FB FB FBu u u 
  

 ,  ̅ is the extension of the state transition matrix   

 2 2

2 20

I I
A

I

 
  
  

 ,  

 ̅ is  

 2

2

2B
B

B

 
  
  

  (66) 
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where     [ 
  
   

] and   ,    are the controller gains of X-axis and Y-axis, respectively. 

  is reversible from the controllability of the system. We further define the following 

transformation  

 12 1
4 1

2 1

( )
( ) ( )

( )
h

l

k
k k

k


 







 
 

  

F   (67) 

where    [
        
    

] . Using the state transformation (67), Eqn (65) becomes  

 1 1 1( 1) ( 1) ( ( )) ( ) ( 1) FBk k A k k k Bu       F T T F F T    

    ̅      and  ̅        commute, therefore 

 
1 1 1( 1) ( 1) ( ( )) ( ) ( 1) FBk k A k k k Bu       T F F T T F   (68) 

Eqn (68) can be further simplified to 

 ( 1) ( ) ( ) ( 1)w w FBk A k k k B u    T   (69) 

where   ̅      ̅  [
  

  
] and the state transition matrix ( )wA k  is given by 

 
 

  
  2

( ) ( )
( )

0 ( )w
k k

A k
k

T T

T
 (70) 

where  ̃                . Design the following sliding surface, 

 ( ) ( ) ( )s k k k C   (71) 

where  ̅         ,  ̅    can be divided into two sub-matrices 
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 1 2
 
 

C C I   (72) 

where    is a reversible constant matrix and    is   

 

1
2 1

1

( ) pk





I T C

C   (73) 

and             ,      and          ,          . We first demonstrate that the IQSM is stable. 

From Eqns (67), (69) and (70) we have  

 ( 1) ( ) ( )+ ( ) ( )h h lk k k k k     T T   (74) 

When ( ) 0s k  , the equation of the IQSM is 

 

1
2 1( ( ) )

( ) ( ) 0p
l h

k
k k 




 
I T C

  (75) 

Substituting Eqn (75) into (74) we have 

 1( 1) ( )h p hk k   C   (76) 

, showing that the IQSM is stable. The job to be done is to design a control law driving the 

system into the QSMB. For MIMO system the reaching law (47) is modified to 

 
( 1) ( )

( ( )) ( )
s k s k

sign s k qs k


 
    (77) 

where 
0

0

t

n






 
 
 
 

 and 
0

0

t

n

q
q

q

 
 
 
 

 are two gain matrices. Manipulating reaching law (77) 

yields 
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 ( 1) ( ( )) ( )s k sign s k Qs k      (78) 

where 
1 0

0 1

t

n

q
Q

q





 
 
 
 

 . Substituting Eqn (69) and (71) into Eqn (78) 

 2( ) ( 1) ( ) ( ( )) (I ) ( )w w FBCA k CT k B u k sign s k q C k           (79) 

Solving Eqn (79) yields the following expression of the feedback controller 

 
1( ) ( ( 1) ) (( ) ( ) ( ( )))FB w wu k CT k B CA QC k sign s k      (80) 

3.3 DSMCC for Robust Performance 

So far the DSMCC has been designed for the nominal system. Next we consider the 

disturbance in the controller design. The nominal plant model (65) is modified to include the 

disturbances.  

 ( 1) ( ) ( ) ( 1) ( ) ( )w w FB wk A k k T k B u k d k        (81) 

where           ̅          is the lumped disturbance. Substituting Eqn (80) into the 

disturbed system we can obtain the reaching law for the disturbed system 

  ( 1) ( ( )) ( )- ws k sign s k Qs k d kc    .  (82) 

It is clear that the disturbance changes the dynamics of the sliding mode. Though the 

disturbance is in general unmolded, it is reasonable to assume that it is bounded.   

 ( )l w uD Cd k D     
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where    and    are lower and upper boundaries of the lumped disturbances. An implementable 

robust DSMCC is given by  

 

1
2

1

( ) ( ( 1) ) (( ( ) ( ) ) ( ) + ( ( )))

( ( ))( )
        ( ( 1) ) ( )

2 2

FB w

u l u l

u k CT k B CA k I q C k sign s k

D D sign s k D D
CT k B

 



    

 
  

  (83) 

It should be noted the properties of the idea quasi sliding mode will be lost due to the 

disturbances [83]. Control law (83) is capable of driving the sliding surface into the QSMB and 

thus stabilizing the system. However, the width of the QSMB is wider than the undisturbed case 

and as a result the steady state error is increased. Therefore switching gain should be increased 

cautiously.  

3.4 Experimental Validations 

The X-axis and Y-axis of the micro mill are used in this experiment. Both axes are driven 

by DPRANIE-015A and the gains for X-axis and Y-axis are 

2 2200.2 / ( ),  341.7 / ( )x yb mm Vs b mm Vs   

The following control algorithms are compared: 

Proportional-Integral-Differential (PID) control. The controller gains for the X-axis are    

           and      ; for the Y-axis,               and      . The control 

parameters are chosen to achieve almost matched dynamics in the two axis with pairs of 

dominant poles of nature frequencies around 346rad/s and 369rad/s and damping ratios around 

0.72 and 0.74 for the X-axis and Y-axis, respectively.  
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DSMCC. The parameters are chosen as                  ,               , switching gain 

           . Notice that the normal direction is assigned with faster dynamics than the tangent 

direction. A first order low pass filter is used to alleviate the chatters caused by the switching.   

 Performance Index 3.4.1

The following indexes are used to evaluate the performance of the controllers. 

1. |    | - Maximum of the absolute value of the contour errors. 

2. |     | - The absolute value of the mean of the contour errors is used to measure the 

average contour following performance. 

3.      - Standard deviations of the contour errors are used to evaluate the smoothness of the 

motions.   

 Experiment 1 Guitar Contour 3.4.2

The “Cutaway guitar” contour is designed, see Figure 32. The lead-in and lead-out parts 

are not included. Both PID controller and DSMCC are tested. The actual contour errors are 

calculated offline. 



57 

 

 

Figure 32: Cutaway guitar contour 

Case A: Guitar contour at a feedrate of 20mm/s.  The results are shown in Figure 33. 

DSMCC clearly achieves much better performances than PID controller. The maximum contour 

error of the PID controller is 7.6    while for DSMCC, the maximum contour error is only 

1.60  . 

 

Figure 33: Contour error of guitar contour at 20mm/s 
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Case B: For comparison purpose, guitar contour tracking is repeated at a higher feedrate 

of 30mm/s. The results are shown in Figure 34. The statistics of the guitar contour following 

experiments are listed in Table 5. Compared to the same experiment conducted at 20mm/s, the 

maximum error of PID controller dramatically increases to         and the absolute mean 

contour error increase to 2.58   . Again DSMCC beat PID controller by considerable margin 

with a maximum error of        and a mean error of       .  By comparing the performance 

of DSMCC in both cases, it is clear that by introducing the discrete task coordinate, DSMCC 

achieves contour following performance almost independent to the contours‟ shape and changes 

in feedrate.  

Table 5: Guitar contour results 
 

 
 

 

Figure 34: Contour error of guitar contour at 30mm/s 

Guitar |    |      |     | 

Case A 
PID 7.6    1.44   1.95   

DSMCC 1.60   0.25   0.33   

Case B 
PID         2.70   2.58   

DSMCC        0.41   0.44   
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From the guitar contour experiment, it is safe to draw the following conclusions: 

1. DSMCC performs better than PID controller in terms of all performance indexes.  

2. Changes in the contour shapes and feedrate lead to significant performance variations 

in PID controller due to the lack of coordination between axes. On the other hand, 

DSMCC shows good consistency in all experiments. This merit makes DSMCC 

especially suitable for complex contour following applications.  

 Experiment 2 Dog Bone Contour 3.4.3

The „dog bone‟ contour is designed, see Figure 35. 

 

Figure 35: Dog bone contour 

Case A: Dog bone contour at a feedrate of 20mm/s.  The contour error comparisons are 

illustrated in Figure 36. The proposed DSMCC exhibits a superior contour following 

performance to the PID controller.  
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Figure 36: Contour error of dog bone contour at 20mm/s 

Case B: To test the influences of the feedrate on the contour performances, the dog bone 

contour following experiment is repeated at a higher feedrate of 30mm/s. The results are 

illustrated in Figure 37. The contour error of the PID controller increases considerably as the 

feedrate increases, while the DSMCC shows very little performance change. In addition, PID 

contour error shows a symmetric patterns in Figure 36 and Figure 37, which is resulted from the 

symmetry of the dog bone contour. This clearly shows that the both the shapes of the contours 

and feedrate influence the performances of the decoupled controller. On the other hand, those 

factors show little effects on the proposed DSMCC. The results of the dog bone contour 

following experiment are listed in Table 6. DSMCC performs better than PID controller in terms 

of all performance indexes.  
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Figure 37: Contour error of Dog bone contour at 30mm/s 

Table 6: Dog bone contour results 

Dog Bone |    |      |     | 

Case A 
PID 7.35    0.95    1.10    

DSMCC 1.46    0.26    0.36    

Case B 
PID         2.00    1.94    

DSMCC 2.35   0.40    0.33    

 

 Experiment 3 Performance with Perturbations and Uncertainties 3.4.4

Next we would like to test the robust performance of both controllers. Circular contour is 

chosen for this part of experiment. The advantages of using circular contours to test the contour 

following performances are elaborated in [85]. Circular contour is also preferred for its 

simplicity to calculate contour error  

 
2 2 0.5(( ) ( ) )n

c c c cR x x y x        (84) 
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where    is the radius;    and    define the center of the circular contour. The simplicity of Eqn 

(84) facilitates the performance analysis. The X-Y table is commanded to follow the circular 

contour described by  

 
( ) 2 sin(6 )

( ) 2 sin(6 ) 2

x t t

y t t





 
 

   

  (85) 

The desired feedrate is 37.69mm/s. The parameters of the circular contour are carefully 

chosen so the winding currents in the X-axis (X-axis is the lower axis of the table and has to 

overcome more inertia during motion than the Y-axis) does not exceed the rated continuous 

current. The following experiments are performed: 

Case A: To test the nominal contour following performance, the experiment is conducted 

with no disturbances or additional payloads. The results are illustrated in Figure 38. The 

maximum contour error (       ) of the PID controller is significantly larger than that of the 

contour DSMCC (      ). 

 

Figure 38: Circular contour following under nominal condition 
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Case B: The experiment was repeated with an additional 4 kg payload mounted on the Y-

axis. Figure 39 shows the results of the experiment. 

 

Figure 39: Circular contour following with a 4   payload 

For the PID controller, the payload causes the maximum value of the contour error to 

increase to       and the mean contour error to increase to       . On the other hand, the 

performance the DSMCC shows slight worse performance than the undisturbed case and beats 

the PID controller by considerable margin. 

Case C: A large step disturbance (a simulated disturbance equivalent to a winding current 

of 1.05A, which is about 50% of the motor‟s rated continuous current) is directly injected to the 

current loop of the X-axis at t1=0.083s and then removed at t2=0.75s. t1 and t2 are chosen such 

that the sudden changes of disturbance directly acts on the normal directions of the circle. The 

experimental results are shown in Figure 40. 
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 Figure 40: Circular contour following with large step disturbance 

The disadvantage of the PID controller can be clearly observed in Figure 40 at the time 

when the disturbance is applied. Due to the lack of coordination, the standard variation of 

contour error significantly increases to 3.38  , compared to        in the nominal case.  On 

the other hand, the disturbance does not affect the performance of DSMCC except for the 

transients when the sudden changes of the disturbances happen. It should be noted that the 

transients are inevitable since the step disturbance has frequency components beyond the Nyquist 

frequency of the control system.  

3.5 Summary 

In this chapter, a novel discrete sliding contour control has been developed. The proposed 

controller extends the traditional DSMC, which has been limited for single axis applications, to 

bi-axial contour following problems. Compared to the traditional controller, the proposed 

controller achieves consistent contour following performance regardless of the changes in 
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contour shapes and feedrate. In addition, the proposed controller inherits robustness from the 

DSMC and is immune to disturbances and uncertainties.  In the next chapter we will extend the 

bi-axial controller for contours in    following problems and test it in real machining 

applications.  
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CHAPTER 4 MOVING FRAME OPTIMIZATION OF REGULAR 

CURVES IN  3
 

4.1 Background Knowledge 

Theoretically, the shortest distance between a curve and the actual cutter location can be 

exactly calculated. However, it is difficult to implement such calculation in realtime especially 

for complex curves. Therefore the contour errors are typically obtained by estimations. As 

previously introduced, there are in general two approaches of estimating contour error. The first 

estimation is performed in the world frame [36, 82, 86] while the other one is established with 

respect to a moving frame attached to the desired contour. The global frames are mostly chosen 

to be stationary polar or curvilinear coordinates so the controller design can be simplified. 

Nerveless the global frame cannot guarantee orthogonality of the coordinates. As such, this 

method has been mostly tested used on bi-axial circular or elliptical contours [36, 87].  On the 

contrary, the moving frame is established based on the local properties of the desired contour. 

Since the contour error is typically based on the local property of the desired contours, moving 

frame can achieve much more accurate estimation than the global frame method. Therefore the 

local frame scheme is preferred in this study.  

Local frame estimations have found applications in both feedforward and feedback type 

of contour control. It should be noted that the local frame plays different roles in the two contour 

control schemes previously discussed. For the feedforward contour control, the purpose of the 

local frame is solely for the contour error estimation while for the feedback type contour control 

the dynamics of the local frame is trajectory dependent and appears in the resulted control 

system. Therefore, in case of the feedback type contour control, the local frame should be of 



67 

 

smooth dynamics to avoid spiky control efforts. For the research focusing on planar contours (bi-

axial contours or contours fixed on inclined planes), the choice of the local frame is unique and 

intuitive. However, it is not always true for regular contours in   . We will show that curve‟s 

torsion should be considered when designing the moving frame for    curves and an 

optimization method to smoothen the transitions of the local frames will be presented. In 

addition, the local frame method suffers a significant contour error due to the linear 

approximation (tangent vector approximation). For planar contours, the contour error can be 

better estimated by constructing a substitute curve using both direction and instantaneous 

curvature information of the actual curve (circular approximation). By the same token, a 

precision approximation of    contours should incorporate direction, curvature and torsion. 

However, it is not always desirable to do so because 1) a substitute curve satisfying the 

requirements may be difficult to obtain 2) the shortest distance between the substitute curve and 

the actual position may be difficult to calculate. To avoid the complicated estimation procedure, 

we propose a new substitute contour error that increases the contour following performance. The 

proposed method only needs the information of the local frame and command feedrate. 

 Based on the work previously presented, a two loop contour controller has been designed 

as well. The out loop is based on the optimized local frame to decouple the dynamics for 

tangential component and normal components of the error vector. The inner loop is designed 

based on integral sliding mode (ISMC) to achieve chatter free robustness. The effectiveness of 

the proposed method is examined by comparative experiments using our 3-axis micro mill. 

Notations: Denote   as the fixed machine coordinate,    and   is the non-optimized and 

optimized local frame, respectively. A vector has different representations with respect to these 

https://www.google.com/search?biw=1680&bih=964&q=instantaneous&spell=1&sa=X&ei=hphAUtzXO4Ta9AS3wIHgDA&ved=0CCoQvwUoAA
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three different frames. Thus the following convention is established to differentiate the three 

representations  

1. Non-primed capital case denotes the vector‟s representation with respect to   

2. primed low case denotes the vector‟s representation with respect to     

3. non-primed low case stands for the vector‟s representation with respect to  . 

4.2  Problem Formulation 

In this section, we first introduce the contour following problem in   
and the 

construction of local coordinate, before presenting the new optimization method.   

 Local Frame of Regular Contours in  3
 4.2.1

The desired contour in   
 is given by                          . For any commanded 

position   on  , the local frame    is defined using the moving trihedron [46, 47] 

  ( ) : t ( ) n ( ) b ( )t t t t   F   (86) 

where       is the tangent vector,       stands for the principal normal vector and        is the bi-

normal vector.  The plane spanned by the   (t) and   (t) is referred to as the osculating plane. The 

schematic diagram of the local frame is illustrated in Figure 41. The tracking error vector      is 

 E( ) D( ) - Q( )t t t   (87) 

where                           stands for the actual position vector. For simplicity,   is 

omitted thereafter. The representation of the error vector with respect to     is given by 
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     ： T
t n b[e e e ] = Ee T   (88) 

where  

 1( ) T F
 
 (89) 

is the transformation matrix between the vector representations with respect to different frames. 

        is unitary by definition.  

t 

n

b

Y

X

Z

O

R

Q

D

 

Figure 41: Local frame of three dimensional contours 

By construction,    
  and   

  are normal error components or the contour error.   
  is the 

tangent error component.  For conciseness, the following assumptions are adopted in this chapter.  

Assumption 1: 

1.   is parameterized by time and is at least    continuous. 

2.  ̇ and  ̈ are bounded. Taking the first derivatives of Eqn (88) yields 

 T Te ( ) E+( ) E   F F   (90) 
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which is the first order error dynamics [47, 87, 88]. From Eqn (90), it is clear that the dynamics 

of contour error depends on the not only the individual error dynamics  but also the dynamics of 

the moving trihedron (local frame). 

3. The tangential error   
     ,   is the instantaneous radius to of  . 

   Optimization of Local Frame 4.2.2

To the author‟s best knowledge, local frame (86) has been successfully applied to two 

cases. The first case is the well-studied bi-axial contour following problem while the other 

studies contour on certain fixed planes in   
. These two cases are essentially equivalent because 

they both study planar motions and the task frame (86) defined using the moving trihedron is not 

problematic. However,    is not always applicable for regular contours in   
. One difference 

between the planar contours and regular    contours is torsion, which describes how fast a curve 

twists out of the plane of curvature. Torsion   is defined as [89] 

 b - n    (91) 

  ̇  indicates how fast    rotates about the instantaneous tangent vector and clearly    rotates 

sharply when   is large. From Eqn (90), the dynamics of    is reflected in the resulted error 

dynamics and an overly fast-rotating    may cause spiky control or even saturations.    works 

flawlessly on planar contours because   is constantly zero for planar contour. However, in   
 

contours, torsion can be large even the contours are smooth.  

Unlike the planar contours, the choice of the local frame for regular   
 contours is not 

unique. This allows some freedom for optimizations. In practice the desired contours are 
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sampled at a certain sampling frequency and we next present the optimization method that leads 

to a series of local frames with smooth transition for the sampled contour        

                         
 , where      is the time index and    is the sampling time. For 

simplicity, sub index   is used to replace    , for instance          . For any commanded 

position   , the non-optimized task frame obtained by (86) is denoted as   
  and the 

corresponding optimized task frame is   .  

  : t n bk k k kF  (92) 

The numerical approximation of F  is given by  

 
(k+1)- (k) (k)

=
 

  
 

F F F
F  (93) 

and 

 

T

1

T T

1

T

1

 (t  -t ) E

( ) E  =  (n -n ) E    1

(b -b ) E   2

k k

k k

k k

Tangent direction

Normal direction

Normal direction













  
 

     
       

F  (94) 

It should be noted that though there are infinite choices for the local frame, the tangent 

vector is unique and solely determined by the velocity vector at   . As such, the tangent vector 

cannot be altered. Recall the following inequalities  

 

T

1 1

T

1 1

(n -n ) E (n -n ) E n E

(b -b ) E (b -b ) E b E

k k k k k

k k k k k

 

 

     

     
 (95) 



72 

 

From inequalities (95), one can see that to avoid drastic dynamic changes in the normal 

direction caused by the unnecessary rotation of the moving frame, the goal of the optimization is 

to obtain the minimum of the following cost function 

 
  

2 2
1 1n - n b - bk k k kg  (96) 

Recall that the tangent vector at any given reference position    is fixed and therefore   
  

and    in fact share the same tangent vector, which means    can be obtained by rotating    
  and 

the optimization problem becomes finding the optimized rotation angle   . We begin the 

optimization procedure with choosing      
  and rotating   

  to obtain the optimized frame    

    2 2 2 2 2 2t n bF F T   (97) 

where    [
    
             

            

]. 

Note that the tangent vector   
  remains unchanged in between the transformation, i.e., 

  
     . The schematic of the transformation is illustrated in Figure 42. 
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Figure 42: Schematic diagram of the local frame rotation 

To yield the smoothest transition between the two consecutive frames, the rotation angle 

   is optimized by minimizing the following quadratic cost function  

 
2 2

2 2 2 1 2 2 1( ) ( ) - ( ) -g n n b b      (98) 

After some mathematic manipulations,       can be simplified to 

 2 1 2 2 2( ) 4 2 sin( ) 2 cos( )g k k       (99) 

where         
    

     and         
    

    . Setting the first derivative of       to 

zero 

 2
1 2 2 2

2

( )
2 cos 2 sin 0

dg
k k

d


 


     (100) 

we have  
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 1 1
2

2
tan ( )

k

k
     (101) 

The solutions to Eqn (101) must also ensure 
       

   
    for the minimum of      .    

can be calculated by Eqn (97) using the optimized rotation angle. Once    is determined, the 

optimization can be repeated for the rest local frames. The dynamics of the error vector with 

respect to frame  , denoted as                is given by 

 
1 1E= e 2 e e  T TT TT   (102) 

where      . 

4.3 Contour Error Estimation of  3
 Contours in Local Frame 

Theoretically, the contour error can be exactly calculated for arbitrary curves. Yet it is 

difficult to implement in realtime unless the curve is simple.  Thus the desired contours are 

normally approximated using simple curves that have analytical expression of the contour error. 

The curves in   
 can be in general characterized by direction (tangent vector), curvature (rate of 

change of tangent vector) and torsion (rate of change of the principal normal vector). The task 

frame based method is a linear approximation that only uses the direction information of the 

desired curve, i.e., the tangent vector. Therefore it is poor for the linear approach to approximate 

curves with nonzero curvature [37]. By the same token, the circular approach that includes the 

direction and curvature information is only accurate for zero-torsion curves (plane curves).  
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From the previous discussions, a precision approximation of a regular curve in   
 should 

consider direction, curvature and torsion. However, this might be difficult because 1) a simple 

curve that satisfies all the requirements may not exist 2) even if such a simple curve is achievable, 

the shortest distance between the simple curve and the actual position may still be difficult to 

solve, which defeats the purpose of approximation. To circumvent this problem, we present a 

simple estimation method for regular curves in   
without computing too many geometric 

parameters. The proposed method is established with respect to the optimized task frame 

previously developed, see Figure 43. Plane     is normal to tangent vector   and passes the 

actual position  .  Both   and   intersect with     and the intersections are denoted as P and N, 

respectively. By comparing the construction of plane     to Eqn (102), we have 

   t b ne ,  e b,  e nND QN QN   (103) 

where  denotes the inner product of vectors. From Figure 43,   ⃗⃗⃗⃗⃗⃗  is the normal error obtained 

from the local frame.  
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Figure 43: Schematic diagram of equivalent contour error in  3
 

Since the control efforts along the 3 basis vectors are decoupled, the normal component 

of the control effort is always within the plane     and forces   toward  .   seldomly 

coincides with   and the weakness of the linear approximation is very clear. One can observe 

that, within the normal plane    , the actual position approaches the desired contour only if   

approaches   and the elimination of the contour error is equivalent to |  ⃗⃗⃗⃗  ⃗|   . From this 

perspective,   ⃗⃗⃗⃗  ⃗  can be deemed as an alternative measurement of the exact contour error. 

Therefore, instead of directly estimating the actual contour error, which can be difficult for 

curves in   
,    ⃗⃗⃗⃗  ⃗ is used as a substitute of the actual contour error.  One needs to know the 

coordinate of point   to determine   ⃗⃗⃗⃗  ⃗. Denote   with respect to the local frame   as   

  T
t n br( ): r ( ) r ( ) r[ (R( ) D)( )]t t tt t T   (104) 
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From the first equation of Eqn (103), the time parameter   that corresponds to   must 

satisfy 

 t tr ( ) et  (105) 

Eqn (105) may be difficult to solve unless the contour is simple. Thus       is 

approximated by its first order Taylor‟s expansion at   

 
  t tr ( ) r ( ) ( )D Dt t t t  (106) 

where    denotes the current time parameter corresponding to  . We are only interested in the 

geometric relationship and therefore   is considered as a stationary frame, i.e.,  

 r(t) R(t) T  (107) 

Here the first order Taylor‟s expansion (106) is used for in favor of its simplicity.  The 

estimation of  , denoted as  ̂, can be solved from Eqn (105), (106) and (107) if    is known.  The 

estimation of coordinate of point   is solved by substituting  ̂ into Eqn (104) and the estimation 

of   ⃗⃗⃗⃗  ⃗, denoted as    ̅̅̅̅ , can be obtained. The accuracy of   ̅̅̅̅  can be improved by introducing 

quadratic term into (106) (R is twice order differentiable from assumption 1).  Similar to Eqn 

(103), we can define 

        
   t n b t: e PQ n PQ b

TT
  (108) 

  is the vector of the substitute contour error.   and   are both defined with respect to   

and thus    is better than    because it reduces the overcut or undercut. Denote the corrections 

brought by    as 
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     T
n b: [0  ] = e   (109) 

Substituting  Eqn (109) into Eqn (102), we have 

      1 1+E 2          T TT TT  (110) 

Eqn (110) is the error dynamics represented by the substitute error dynamics.  

4.4  Controller Design  

The optimized task frame enables the controller designer to decouple the tangent and 

normal error dynamics and focus more on the normal direction. Looking at the right hand side of 

Eqn (110) we introduce a virtual control    denoting the desired control effort with respect to the 

task frame. The purpose of introducing    is to achieve the following time invariant dynamics of 

  

 0    PDK K   (111) 

where                     ,                      are positive definite diagonal 

matrices. Substituting Eqn (111) into the RHS of Eqn (110) and setting it to zero we can obtain 

the expression of the virtual control 

 cU         -1 -1
d p2TT TT K K   (112) 

where    ̈     ̇   ̇    ̈    denotes the extra dynamics brought by the substitute contour 

error. Next we transfer the virtual controller back into the real system. Consider the dynamics of 

a 3-axis micro mill  
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 Q Q U+C = B   (113) 

where                 ,                 . Multiplying both side of Eqn of (113) by T and 

noticing       we can obtain  

 E E U R RT +TC +TB =T +TC  (114) 

The proposed state feedback controller consist of two parts 

 1 1
c fU= ( U +U ) TB   (115) 

where          is the virtual control transferred back to the machine coordinate. Substituting 

Eqn (115) into Eqn (114) we have 

 fR R U0 E      DPK K C - - C B   (116) 

Solving Eqn (116) for     that yields the desired error dynamics for   we can obtain  

 fU - E R R  C C   (117) 

4.5  Robust Contour Control 

Robust controllers has been proposed and implemented in the position loop [88]. 

However, this is not advisable for system since the system dynamics are time varying (LTV) 

w.r.t the task coordinate, making the parameters tuning a time-consuming task.  
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Figure 44: Block diagram of the robust control 

An alternative is to augment the control system with a robust controller implemented in 

the velocity loop. The velocity loop is a disturbed linear time invariant (LTI) system w.r.t the 

machine coordinate and therefore the controller design is greatly simplified. The block diagram 

of the robust controller is shown in Figure 44, where      is the control signal of the state 

feedback (115);   stands for the error caused by lumped disturbances in the system;       is the 

nominal transfer function of the velocity loop corresponding to (113) 

 
( )n

b
p s

s c



 (118) 

The objective of the robust controller is to force the actual velocity loop to behave like 

the nominal model, i.e. to minimize the error.   

 ( ) ( ) ( ) ( ) ( )n rs p s u s p s u s    (119) 

The desired velocity response       is 

 
( ) ( ) ( )r nv s p s u s  (120) 

Substituting Eqn (118) into Eqn (120) we have 
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ru
b

v c
r
b

   (121) 

The actual velocity loop subjected to disturbance is  

 ra bu cv d    (122) 

where    ̇  is the actual acceleration and   is the lumped disturbances. System (122) is 

extended using the following state space representation [90] 

 

r

r

v a

ca bu d v





  


     (123)

 

Defining the following robust control 

 0 0

1
[( ) ( ) ]

t t
r n I Su u G c G Sdt G sign S dt

b
       (124) 

where         ̇.
 
 ,    and    are positive controller gains. 

Theorem 1: For the extended system (123), the proposed robust controller (124) guarantees 

       as    , under the following conditions: 

1. The first order derivative of the lumped disturbance is bounded, i.e., 

 supsup
d d

 (125)
 

where      is a positive scalar. 

2.  The controller gain satisfies 

 supSG d  (126) 
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Proof: Define the following Lyapunov candidate  

 21

2
V S  (127) 

Take the derivative of Eqn (127)         

 
( )( )

   ( )
r r

r r

V a G v a G v

S ca bu d G v

 



    

     
  (128) 

Substituting Eqn  (121) and (124) into Eqn (128) we can obtain 

   2

(- - ( ) )

     = -

I S

I S

V S G S sign S G d

G S S G Sd

 

   (129)
 

Substituting Eqn (126) into Eqn (129) we have 

 0V   (130) 

and  

 lim
t
a G r


   (131) 

Substituting Eqn (131) into Eqn (123) yield 

 G    (132) 

Therefore the system is asymptotically stable, i.e. 

 lim ( ( )) 0
t

t


   (133) 

QED 
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4.6 Experimental Validations 

 Contour Design 4.6.1

The desired contour is slightly modified from a plane dog bone contour by altering the z 

coordinate of each control point. The synthesized feedrate is        and the desired trajectory 

for each axis is illustrated in Figure 45. 

 

Figure 45: Reference trajectory for each feed drive 

The performance difference between the coordinate control and decoupled control has 

been demonstrated in chapter 3. Therefore we will only compare the proposed controller to the 

task frame based controller [47].  
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 Experiment 1 Contour Following for Curves of Large Torsion 4.6.2

The first experiment is designed to compare the performance differences between the 

optimized and non-optimized moving frame. Since this experiment is designed to demonstrate 

the effectiveness of the optimized moving frame. Linear contour error estimation is used in 

accord with [47]. Our earlier simulation indicated the possibility of actuator saturations. To 

protect the motion system, the controller bandwidth was turned lower than normal level and the 

inner loop is disabled as well. The controller gains are listed in Table 7. 

Table 7: Controller gains of contour control in  3
  

                        

10000 100 150000 500 150000 500 

 

Two series of frames were generated, the first series was generated using the moving 

trihedron [47] and the second one is obtained using the proposed optimization methods. The 

optimizing rotation angle   is calculated to minimize the cost function (99) and the results are 

shown in Figure 46. The cost functions before and after the optimizations are illustrated in Figure 

47. 
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Figure 46: Optimizing rotation angle   

By comparing Figure 46 and Figure 47, the original task frames were rotated by as much 

as 3 rad, indicating a non-smooth task frame for a smooth contour.  While after the optimization, 

the maximum of cost function was reduced from 6.5 to less than 4     . 

 

Figure 47: Cost functions of optimized and non-optimized move frames 
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The control signal based on the non-optimized moving frame is shown in Figure 48. 

Saturations happened in the control signal of all 3 axes (The control effort of X,Y-axis is within 

    , corresponding to a maximum of      winding current while the control effort of Z-axis 

corresponds to a     widing current. Compare the cost function in Figure 47 and the saturation in 

Figure 48, saturations clearly happened when the transition of the local frame becomes drastic. 

Take an example of the saturation happened at 0.4315 second, the local frame flipped almost 180 

degrees in just a couple of sampling intervals. As a result, the control system sensed a drastic 

change in the error signal and therefore generated an overtly large but unnecessary correction 

signal. It should be noted that the bandwidth of the 3 axe is lower than the normally level. A 

much more serious saturation is expected if the controller is at normal working condition.  

Saturations not only degrade the quality of the machined products but excess heat and high bus 

voltage punching the winding of the drive system. In addition, spikey control signals may cause 

high frequency structure dynamics, which are highly unwanted.  
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Figure 48: Control signal using non-optimized moving frame 

The same experiment was repeated using the optimized moving frame and the control 

signal is in Figure 49. Compare to the non-optimized results, the proposed moving frame has no 

spikes in the control efforts. The contour error comparison is illustrated in Figure 50. At the 

place where no saturation happens, two frames show similar performance, which are expected. 

However, the optimized frame completely eliminates saturation and hence beats the non-

optimized frame by considerable margins. Therefore the proposed frame is applicable to regular 

curve in   
 while the non-optimized frame will fail at curves with large torsion.  
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Figure 49: Control signal using optimized moving frame 

 

Figure 50: Performance comparison between the optimized and non-optimized frames 

 Experiment 2 Performance of Full Controller 4.6.3

The dog bone contour experiment was repeated using the proposed contour error 

estimation method and the robust inner loop. The contour error is illustrated in Figure 51. From 
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Figure 51, the improved contour error estimation and robust inner loop significantly improve the 

contour following performance. The maximum contour error decreased from about      to less 

than    . The major contribution to this improvement is believed from the inner loop increasing 

the disturbance rejection capability of the system.  

 

Figure 51: Contour error using robust inner loop and improved contour error model 

4.7 Summary 

An optimization method is proposed in this chapter for contour following problem of 

regular curves in   
. The optimization method eliminates the unnecessary rotation of the local 

frame previously developed and thus avoids controller saturation. The effectiveness of the 

proposed method has been experimentally demonstrated. In addition, an improved contour error 

estimation and the robust inner loop were introduced to further improve the contour following 

performance of the control system. The proposed scheme can be readily applied to regular curves 

in   
 even the torsion of the curve is significantly large for superior contour following 

performances. 
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CHAPTER 5 FUTURE WORK  

The first academic report of today‟s iterative learning control (ILC) can be dated back as 

early as 1978 [91]. Here the previous researches on ILC are briefly introduced. Unlike other 

learning controllers, like adaptive control changing the parameters of the controller, ILC only 

modifies the control signal. Repetitive control (RC) and ILC are based on similar principals 

except that RC is for continuous operations while ILC is suitable for discontinuous operations 

[92]. The major difference between RC and ILC can be explained by the setting of initial 

conditions. In RC, the new trial normally begins immediately after the previous trial ends and 

therefore the initial condition of RC is set to the ending condition of the previous trial. On the 

other hand, ILC typically starts with the same initial conditions. A simplified machining circle 

typically starts with the machine tools standing by until the workpiece to be cut is clamped. Then 

the machine tools start tracking the position commands from the position interpolator and returns 

to the initial position after completing the cutting process. The machine tools will rest at the 

same initial position until the machined workpiece is removed and the new workpiece is installed. 

From this description, the machining process is a discontinuous operation and ILC is the natural 

choice for performance improvement.  

ILC is entirely based on using information from the previous trials to improve the 

performance of current trial. Therefore ILC is typically viewed as a feedforward control in the 

time domain and a feedback control in the iteration domain. As a result, ILC is seldom used as a 

standalone controller; instead it is typically designed as an add-on controller to the existing 

feedback control system. Traditionally, the focus of ILC is on improving the performance of 

systems executing a single, repeated operation, such as machine tools, industrial robot and 
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autonomous vehicles. Based on the CCC structure, an iterative learning contour controller has 

been proposed to reduce the contour errors over iterations [93]. This study employs variable 

cross coupling gains to calculate the contour error and the control signal from the ILC is directly 

inject into the motion system to reduce the contour error. 

Nerveless, it should be noted that the performance and stability of ILC are still highly 

dependent of the non-repetitive disturbances and variations of system dynamics. Therefore, to 

achieve robustness and fast convergence, the stabilizing feedback controller should have the 

ability to compensate most non-repetitive disturbances. An 1 adaptive control based robust ILC 

has been proposed where the 1 adaptive control is designed as the inner feedback loop to 

compensate the low frequency, non-repetitive uncertainties [59, 60]. However, the research 

results are only demonstrated by computer simulations. Our future work will be focused on using 

the iterative learning control (ILC) [94] to improve the performance of multi-axis machine tools. 

This is of significant practical importance because in mass production industries, mechanical 

systems are often commanded to repeatedly perform the same tasks. For example, painter robot 

arms may paint the same spot of the same model for hundreds of times and the machine tools 

may keep cutting the same workwise day by day. The quality of the machined product can be 

further improved using the information obtained from the previous trials.  
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