21 research outputs found

    Second Workshop on Modelling of Objects, Components and Agents

    Get PDF
    This report contains the proceedings of the workshop Modelling of Objects, Components, and Agents (MOCA'02), August 26-27, 2002.The workshop is organized by the 'Coloured Petri Net' Group at the University of Aarhus, Denmark and the 'Theoretical Foundations of Computer Science' Group at the University of Hamburg, Germany. The homepage of the workshop is: http://www.daimi.au.dk/CPnets/workshop02

    Seventh Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 24-26, 2006

    Get PDF
    This booklet contains the proceedings of the Seventh Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 24-26, 2006. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0

    Executable system architecting using systems modeling language in conjunction with Colored Petri Nets - a demonstration using the GEOSS network centric system

    Get PDF
    Models and simulation furnish abstractions to manage complexities allowing engineers to visualize the proposed system and to analyze and validate system behavior before constructing it. Unified Modeling Language (UML) and its systems engineering extension, Systems Modeling Language (SysML), provide a rich set of diagrams for systems specification. However, the lack of executable semantics of such notations limits the capability of analyzing and verifying defined specifications. This research has developed an executable system architecting framework based on SysML-CPN transformation, which introduces dynamic model analysis into SysML modeling by mapping SysML notations to Colored Petri Net (CPN), a graphical language for system design, specification, simulation, and verification. A graphic user interface was also integrated into the CPN model to enhance the model-based simulation. A set of methodologies has been developed to achieve this framework. The aim is to investigate system wide properties of the proposed system, which in turn provides a basis for system reconfiguration --Abstract, page iii

    Third Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, August 29-31, 2001

    Get PDF
    This booklet contains the proceedings of the Third Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, August 29-31, 2001. The workshop is organised by the CPN group at Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop01

    Waiting Nets: State Classes and Taxonomy

    Full text link
    In time Petri nets (TPNs), time and control are tightly connected: time measurement for a transition starts only when all resources needed to fire it are available. Further, upper bounds on duration of enabledness can force transitions to fire (this is called urgency). For many systems, one wants to decouple control and time, i.e. start measuring time as soon as a part of the preset of a transition is filled, and fire it after some delay \underline{and} when all needed resources are available. This paper considers an extension of TPN called waiting nets that dissociates time measurement and control. Their semantics allows time measurement to start with incomplete presets, and can ignore urgency when upper bounds of intervals are reached but all resources needed to fire are not yet available. Firing of a transition is then allowed as soon as missing resources are available. It is known that extending bounded TPNs with stopwatches leads to undecidability. Our extension is weaker, and we show how to compute a finite state class graph for bounded waiting nets, yielding decidability of reachability and coverability. We then compare expressiveness of waiting nets with that of other models w.r.t. timed language equivalence, and show that they are strictly more expressive than TPNs

    Third Workshop on Modelling of Objects, Components, and Agents

    Get PDF
    This booklet contains the proceedings of the Third International Workshop on Modelling of Objects, Components, and Agents (MOCA'04), October 11-13, 2004. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark and the "Theoretical Foundations of Computer Science" group at the University of Hamburg. The home page of the workshop is: http://www.daimi.au.dk/CPnets/workshop0

    Animation-based validation of reactive software systems using behavioural models

    Get PDF
    Tese de doutoramento em InformáticaDuring the development of software systems, validation is a crucial activity to guarantee that the software system ful lls the users' needs and expectations. A key issue to have a successful validation consists in adopting a process where users and clients can actively discuss the requirements of the system under development. A reactive system is expected to continuously interact with its environment. Usually, the interaction of a reactive system with its environment is supported by a set of nonterminating processes that operate in parallel. During the interaction, the reactive system must answer to high-priority events, even when the system is executing something else. Due to above characteristics, the behaviour of reactive systems can be very complex. The approach suggested in this thesis assumes that the requirements of reactive software systems are partially described by use case diagrams, and each use case is detailed by a collection of scenario descriptions. Within this approach, one can obtain, from a set of behavioural scenarios of a given system, an executable behavioural model that can support, when complemented with animation- and domain-speci c elements, a graphical animation for reproducing that set of scenarios for validation purposes. Animating the scenarios using graphical elements from the application domain ensures an e ective involvement of the users in the system's validation. The Coloured Petri nets (CPNs) modelling language is used as the notation to obtain the behavioural models, due to its natural support for mechanisms like concurrency, synchronisation, and resource sharing and its tool support. The obtained CPN model is guaranteed to be (1) parametric, allowing an easy modi cation of the initial conditions of the scenarios, (2) environment-descriptive, meaning that it includes the state of the relevant elements of the environment, and (3) animation-separated, implying that the elements related to the animation are separated from the other ones. We validate our approach based on its application to three case studies of reactive systems.Durante o desenvolvimento de sistemas de software, a validação é uma actividade crucial para garantir que o sistema de software satisfaz as necessidades e expectativas do utilizador. O sucesso na validação consiste na utilização de um processo onde os utilizadores e os clientes possam discutir de uma forma activa os requisitos do sistema que está a ser desenvolvido. Um sistema reactivo está continuamente em interacção com o seu ambiente, que é geralmente suportada por um conjunto de processos intermináveis que operam em paralelo. Durante a interacção, o sistema reactivo dever a responder aos eventos com alta prioridade, mesmo quando o sistema está a executar algo diferente. Devido às características anteriores, o comportamento dos sistemas reactivos pode ser muito complexo. A abordagem sugerida nesta tese assume que os requisitos de sistemas reactivos são em parte descritos por diagramas de casos de uso e que cada caso de uso é detalhado por uma colecção de descrições de cenários. Nesta abordagem, é possível obter, a partir de um conjunto de cenários de um dado sistema, um modelo comportamental que seja executável e que suporte, quando complementado com elementos específicos, uma animação gráfica que reproduza aquele conjunto de cenários para fins de validação. A animação dos cenários utilizando elementos gráficos do domínio da aplicação garante um envolvimento efectivo dos utilizadores na validação do sistema. A linguagem de modelação redes de Petri coloridas (CPNs) é usada como a notação para obter os modelos comportamentais, devido ao seu suporte natural a mecanismos como a concorrência, sincronização e partilha de recursos, e às suas ferramentas de suporte. Se as recomendações da abordagem proposta foram seguidas, temos a garantia que o modelo CPN: (1) parametriza as condições iniciais dos cenários, (2) contém uma descrição do ambiente, incluindo o estado dos seus elementos, e (3) separa os elementos relacionados com a animação dos outros elementos do modelo. A validação da nossa abordagem tem por base a sua aplicação a três casos de estudo de sistemas reactivos.Fundação para a Ciência e a Tecnologia (FCT) SFRH/BD/19718/200

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    Process mining : conformance and extension

    Get PDF
    Today’s business processes are realized by a complex sequence of tasks that are performed throughout an organization, often involving people from different departments and multiple IT systems. For example, an insurance company has a process to handle insurance claims for their clients, and a hospital has processes to diagnose and treat patients. Because there are many activities performed by different people throughout the organization, there is a lack of transparency about how exactly these processes are executed. However, understanding the process reality (the "as is" process) is the first necessary step to save cost, increase quality, or ensure compliance. The field of process mining aims to assist in creating process transparency by automatically analyzing processes based on existing IT data. Most processes are supported by IT systems nowadays. For example, Enterprise Resource Planning (ERP) systems such as SAP log all transaction information, and Customer Relationship Management (CRM) systems are used to keep track of all interactions with customers. Process mining techniques use these low-level log data (so-called event logs) to automatically generate process maps that visualize the process reality from different perspectives. For example, it is possible to automatically create process models that describe the causal dependencies between activities in the process. So far, process mining research has mostly focused on the discovery aspect (i.e., the extraction of models from event logs). This dissertation broadens the field of process mining to include the aspect of conformance and extension. Conformance aims at the detection of deviations from documented procedures by comparing the real process (as recorded in the event log) with an existing model that describes the assumed or intended process. Conformance is relevant for two reasons: 1. Most organizations document their processes in some form. For example, process models are created manually to understand and improve the process, comply with regulations, or for certification purposes. In the presence of existing models, it is often more important to point out the deviations from these existing models than to discover completely new models. Discrepancies emerge because business processes change, or because the models did not accurately reflect the real process in the first place (due to the manual and subjective creation of these models). If the existing models do not correspond to the actual processes, then they have little value. 2. Automatically discovered process models typically do not completely "fit" the event logs from which they were created. These discrepancies are due to noise and/or limitations of the used discovery techniques. Furthermore, in the context of complex and diverse process environments the discovered models often need to be simplified to obtain useful insights. Therefore, it is crucial to be able to check how much a discovered process model actually represents the real process. Conformance techniques can be used to quantify the representativeness of a mined model before drawing further conclusions. They thus constitute an important quality measurement to effectively use process discovery techniques in a practical setting. Once one is confident in the quality of an existing or discovered model, extension aims at the enrichment of these models by the integration of additional characteristics such as time, cost, or resource utilization. By extracting aditional information from an event log and projecting it onto an existing model, bottlenecks can be highlighted and correlations with other process perspectives can be identified. Such an integrated view on the process is needed to understand root causes for potential problems and actually make process improvements. Furthermore, extension techniques can be used to create integrated simulation models from event logs that resemble the real process more closely than manually created simulation models. In Part II of this thesis, we provide a comprehensive framework for the conformance checking of process models. First, we identify the evaluation dimensions fitness, decision/generalization, and structure as the relevant conformance dimensions.We develop several Petri-net based approaches to measure conformance in these dimensions and describe five case studies in which we successfully applied these conformance checking techniques to real and artificial examples. Furthermore, we provide a detailed literature review of related conformance measurement approaches (Chapter 4). Then, we study existing model evaluation approaches from the field of data mining. We develop three data mining-inspired evaluation approaches for discovered process models, one based on Cross Validation (CV), one based on the Minimal Description Length (MDL) principle, and one using methods based on Hidden Markov Models (HMMs). We conclude that process model evaluation faces similar yet different challenges compared to traditional data mining. Additional challenges emerge from the sequential nature of the data and the higher-level process models, which include concurrent dynamic behavior (Chapter 5). Finally, we point out current shortcomings and identify general challenges for conformance checking techniques. These challenges relate to the applicability of the conformance metric, the metric quality, and the bridging of different process modeling languages. We develop a flexible, language-independent conformance checking approach that provides a starting point to effectively address these challenges (Chapter 6). In Part III, we develop a concrete extension approach, provide a general model for process extensions, and apply our approach for the creation of simulation models. First, we develop a Petri-net based decision mining approach that aims at the discovery of decision rules at process choice points based on data attributes in the event log. While we leverage classification techniques from the data mining domain to actually infer the rules, we identify the challenges that relate to the initial formulation of the learning problem from a process perspective. We develop a simple approach to partially overcome these challenges, and we apply it in a case study (Chapter 7). Then, we develop a general model for process extensions to create integrated models including process, data, time, and resource perspective.We develop a concrete representation based on Coloured Petri-nets (CPNs) to implement and deploy this model for simulation purposes (Chapter 8). Finally, we evaluate the quality of automatically discovered simulation models in two case studies and extend our approach to allow for operational decision making by incorporating the current process state as a non-empty starting point in the simulation (Chapter 9). Chapter 10 concludes this thesis with a detailed summary of the contributions and a list of limitations and future challenges. The work presented in this dissertation is supported and accompanied by concrete implementations, which have been integrated in the ProM and ProMimport frameworks. Appendix A provides a comprehensive overview about the functionality of the developed software. The results presented in this dissertation have been presented in more than twenty peer-reviewed scientific publications, including several high-quality journals
    corecore