
Óscar Rafael da Silva Ferreira Ribeiro

Novembro de 2009

U
M

in
ho

|2
00

9

Animation-based Validation of
Reactive Software Systems
using Behavioural Models

A
n

im
a

ti
o

n
-b

a
se

d
 V

a
li

d
a

ti
o

n
 o

f
R

e
a

ct
iv

e

S
o

ft
w

a
re

 S
ys

te
m

s
u

si
n

g
 B

e
h

a
vi

o
u

ra
l

M
o

d
e

ls
Ó

sc
ar

 R
af

ae
l d

a
Si

lv
a

Fe
rr

ei
ra

 R
ib

ei
ro

Universidade do Minho
Escola de Engenharia

Doutoramento em Informática

Óscar Rafael da Silva Ferreira Ribeiro

Novembro de 2009

Animation-based Validation of
Reactive Software Systems
using Behavioural Models

Universidade do Minho
Escola de Engenharia

Trabalho efectuado sob a orientação do
Doutor João Miguel Lobo Fernandes

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS PARA

EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO

INTERESSADO, QUE A TAL SE COMPROMETE;

Universidade do Minho, / /

Assinatura:

Abstract

During the development of software systems, validation is a crucial activity
to guarantee that the software system fulfills the users’ needs and expec-
tations. A key issue to have a successful validation consists in adopting a
process where users and clients can actively discuss the requirements of the
system under development.

A reactive system is expected to continuously interact with its environ-
ment. Usually, the interaction of a reactive system with its environment
is supported by a set of nonterminating processes that operate in parallel.
During the interaction, the reactive system must answer to high-priority
events, even when the system is executing something else. Due to above
characteristics, the behaviour of reactive systems can be very complex.

The approach suggested in this thesis assumes that the requirements of
reactive software systems are partially described by use case diagrams, and
each use case is detailed by a collection of scenario descriptions. Within
this approach, one can obtain, from a set of behavioural scenarios of a given
system, an executable behavioural model that can support, when comple-
mented with animation- and domain-specific elements, a graphical anima-
tion for reproducing that set of scenarios for validation purposes. Animating
the scenarios using graphical elements from the application domain ensures
an effective involvement of the users in the system’s validation.

The Coloured Petri nets (CPNs) modelling language is used as the nota-
tion to obtain the behavioural models, due to its natural support for mech-
anisms like concurrency, synchronisation, and resource sharing and its tool
support. The obtained CPN model is guaranteed to be (1) parametric, al-
lowing an easy modification of the initial conditions of the scenarios, (2)
environment-descriptive, meaning that it includes the state of the relevant
elements of the environment, and (3) animation-separated, implying that
the elements related to the animation are separated from the other ones.

We validate our approach based on its application to three case studies
of reactive systems.

i

Resumo

Durante o desenvolvimento de sistemas de software, a validação é uma activi-
dade crucial para garantir que o sistema de software satisfaz as necessidades
e expectativas do utilizador. O sucesso na validação consiste na utilização
de um processo onde os utilizadores e os clientes possam discutir de uma
forma activa os requisitos do sistema que está a ser desenvolvido.

Um sistema reactivo está continuamente em interacção com o seu am-
biente, que é geralmente suportada por um conjunto de processos inter-
mináveis que operam em paralelo. Durante a interacção, o sistema reactivo
deverá responder aos eventos com alta prioridade, mesmo quando o sistema
está a executar algo diferente. Devido às caracteŕısticas anteriores, o com-
portamento dos sistemas reactivos pode ser muito complexo.

A abordagem sugerida nesta tese assume que os requisitos de sistemas
reactivos são em parte descritos por diagramas de casos de uso e que cada
caso de uso é detalhado por uma colecção de descrições de cenários. Nesta
abordagem, é posśıvel obter, a partir de um conjunto de cenários de um
dado sistema, um modelo comportamental que seja executável e que su-
porte, quando complementado com elementos espećıficos, uma animação
gráfica que reproduza aquele conjunto de cenários para fins de validação. A
animação dos cenários utilizando elementos gráficos do domı́nio da aplicação
garante um envolvimento efectivo dos utilizadores na validação do sistema.

A linguagem de modelação redes de Petri coloridas (CPNs) é usada
como a notação para obter os modelos comportamentais, devido ao seu
suporte natural a mecanismos como a concorrência, sincronização e par-
tilha de recursos, e às suas ferramentas de suporte. Se as recomendações da
abordagem proposta foram seguidas, temos a garantia que o modelo CPN:
(1) parametriza as condições iniciais dos cenários, (2) contém uma descrição
do ambiente, incluindo o estado dos seus elementos, e (3) separa os elementos
relacionados com a animação dos outros elementos do modelo.

A validação da nossa abordagem tem por base a sua aplicação a três
casos de estudo de sistemas reactivos.

iii

Acknowledgments

First of all, I would like to thank my supervisor, João Miguel Fernandes, for
creating the stimulating environment for doing the research for this disser-
tation. He encouraged and guided me to explore the directions for research.
Afterwards, he helped me to shape the research presented in this thesis.

This work was supported by Fundação para a Ciência e Tecnologia
(FCT), under the grant with reference SFRH/BD/19718/2004.

I wish to express my gratitude to my parents and my brother for their
understanding, love and continuous support throughout these years.

Finally, I would like to thank my wife, Natália for her continuous encour-
agement, support, patience and love during the many months that I needed
to finish this thesis.

v

Contents

Abstract i

Resumo iii

Acknowledgments v

List of Figures xi

I Background 1

1 Introduction 3

1.1 Reactive Software Systems . 4

1.2 Motivation . 6

1.3 Problem Statement . 7

1.4 Aims . 8

1.5 Approach Taken . 9

1.6 Contribution . 11

1.7 Overview . 12

2 Behavioural Models 15

2.1 Use cases . 16

2.2 Interactions . 17

2.2.1 Introduction to interactions 17

2.2.2 Sequence diagrams . 18

2.2.3 Metamodel for UML2 sequence diagrams 20

2.3 Coloured Petri Nets . 25

vii

CONTENTS

2.3.1 Basic concepts . 26

2.3.2 Creating a CPN model 29

2.3.3 Tool support . 35

3 Software Requirements 37

3.1 Introduction . 38

3.2 Requirements Engineering Process 41

3.3 Requirements Elicitation and Analysis 43

3.3.1 General considerations 43

3.3.2 Techniques and approaches for elicitation 46

3.4 Requirements Validation . 50

II Contribution 57

4 Transforming Sequence Diagrams into a CPN Model 59

4.1 Plain Sequence Diagrams . 60

4.2 Sequence Diagrams with High-level Operators 62

4.2.1 Alternative choice . 62

4.2.2 Optional . 63

4.2.3 Parallel composition 63

4.2.4 Weak sequencing . 65

4.2.5 Looping . 66

4.3 Tool Support . 67

4.3.1 Description of the involved metamodels 68

4.3.2 Details of the transformation 72

5 Enriching CPN models for Animation 77

5.1 Introduction . 78

5.2 Mapping sequence diagrams into a CPN model 78

5.3 Data representation for the environment 81

5.4 Animation of messages in the sequence diagrams 83

5.5 Initial conditions for scenario execution 84

5.6 Building an animation . 86

5.6.1 Initial considerations 86

5.6.2 Static part of the animation 88

viii

CONTENTS

5.6.3 Dynamic part of the animation 88

5.6.4 Scripting language . 90

6 Case Studies 93

6.1 Reactor System . 94

6.1.1 General description . 94

6.1.2 A shobi-PN based CPN model 95

6.1.3 A scenario-based CPN model 101

6.1.4 Building an animation 105

6.1.5 A SIP-net approach to model the reactor 106

6.2 Elevator Controller System 125

6.2.1 General description . 125

6.2.2 Use cases descriptions 127

6.2.3 Expressing scenarios by a CPN model 134

6.2.4 Building an animation 135

6.3 Check-in System . 141

6.3.1 General description . 141

6.3.2 Expressing scenarios by a CPN model 144

6.3.3 Building an animation 152

6.4 Discussion . 153

7 Related Work 155

7.1 Formalization of Use Case Descriptions 156

7.2 Generation of State-based Models from Scenarios 157

7.3 Synthesis of Petri Net Models from Scenarios 159

7.4 Animating Formal Specifications of Requirements 166

8 Conclusions and Future Work 169

8.1 Contributions . 170

8.2 Future Work . 171

Bibliography 173

ix

List of Figures

1.1 Process for the approach. 10

2.1 An example of a use case diagram. 17

2.2 An example of a sequence diagram. 19

2.3 Part of UML2 metamodel for Interactions. 21

2.4 Part of UML2 metamodel for Lifelines. 22

2.5 Part of UML2 metamodel for Messages. 23

2.6 Part of UML2 metamodel for Occurrence Specifications. . . . 24

2.7 Part of UML2 metamodel for Combined Fragments. 25

2.8 A small CPN model. 26

2.9 CPN-ML code used in the example of CPN model 27

2.10 Sketch of the options that passengers at each floor have to
call an elevator car. 30

2.11 CPN model that for the example, that uses only the colour
set UNIT. 31

2.12 Example of CPN model for the example. 32

2.13 CPN-ML code used in the CPN model in Figure 2.12. 33

2.14 Example of CPN model. 34

2.15 CPN-ML code used in the CPN model in Figure 2.14. 34

3.1 The topics for the software requirements. 40

3.2 Spiral model for requirements engineering process. 42

4.1 Transforming a sequence diagram with only one message. . . 60

4.2 Example of transform a sequence diagram without high-level
operators . 61

4.3 Example with the alternative choice operator (alt) 63

xi

LIST OF FIGURES

4.4 The option operator (opt) expressed by an alternative choice. 64

4.5 Example with the parallel composition operator (par) 64

4.6 Example with the weak sequencing operator (seq) 65

4.7 Another example with the weak sequencing operator (seq) . . 66

4.8 Example with the looping operator (loop). 67

4.9 An example of UML2 sequence diagram. 68

4.10 The elements of a sequence diagram. 69

4.11 XMI code. 70

4.12 Metamodel of CPN modelling language. 71

4.13 The XMI code representation of a CPN model 72

4.14 An overview of the transformation. 73

4.15 The ATL transformation rule to be applied to a message oc-
currence specification. 73

4.16 The ATL transformation rule to be applied to a message. . . 74

4.17 The ATL transformation rule to be applied to a lifeline. . . . 75

4.18 The ATL transformation rule to be applied to an interaction. 76

5.1 Sequence Diagram describing the “Service Floor” use case. . . 79

5.2 CPN model representing a sequence diagram for UC2 “Service
Floor”. 80

5.3 CPN model for the execution of the message lightDirInd. . . . 84

5.4 Subpage of CPN model to capture events from the SceneBeans
animation. 85

5.5 CPN module to initialise the environment values and the
SceneBeans animation. 86

5.6 Three representations for the light direction indicator. 89

6.1 The environment of industrial reactor system. 94

6.2 A CPN model for reactor system. 98

6.3 CPN-ML code for colour set StorageVessel 99

6.4 A CPN module for toggle switch. 99

6.5 CPN-ML code for colour set Switch. 99

6.6 A CPN module for filling a measuring vessel. 100

6.7 A CPN module for emptying measuring vessel. 100

6.8 A sequence diagram describing some scenarios of using the
reactor system . 101

xii

LIST OF FIGURES

6.9 A sequence diagram describing the behaviour of vessels. . . . 102

6.10 A sequence diagram describing the preparation of car. 102

6.11 CPN from the sequence diagram presented in Figure 6.8. . . . 103

6.12 CPN to represent the behaviour of vessels (see Figure 6.9) . . 104

6.13 A screenshot of the animation of the reactor system 105

6.14 Design flow of the approach. 108

6.15 An example of an SIP-net model. 114

6.16 Definitions and declarations in PROMELA. 115

6.17 PROMELA process for specifying the SIP-net model example. 116

6.18 Definition of the enabled conditions. 118

6.19 Truth values of guards. 119

6.20 Haskell data types to represent SIP-net models. 121

6.21 Haskell specification of the SIP-net model example. 122

6.22 Context diagram for the elevator controller. 126

6.23 Use case diagram for the elevator controller system. 128

6.24 Sequence Diagram describing the “Service Floor” use case. . . 129

6.25 Sequence Diagram describing the main scenario of the use
case UC2 “Service Floor”, and some of its variations. 132

6.26 Sequence Diagram describing the main scenario of the use
case UC1 “Travel to Floor”. 133

6.27 CPN model representing a sequence diagram for UC1. 134

6.28 CPN model representing a sequence diagram for UC1. 135

6.29 Diagram that associates graphical representations to some of
the entities of the environment of the elevator controller. . . . 137

6.30 A screenshot of an animation for the elevator controller system.138

6.31 Sequence diagram for the main scenario of the “check-in pas-
senger” business use case. 143

6.32 Sequence diagram with alternative scenarios of and excep-
tions to the “check-in passenger” business use case. 145

6.33 CPN module to represent the main scenario of the “check-in
passenger” business use case. 146

6.34 CPN module to express an alternative of and an exception to
the main scenario of the “check-in passenger” business use case.148

6.35 The altenativesFF CPN module. 149

6.36 The check passport CPN module. 149

xiii

LIST OF FIGURES

6.37 The passenger behaviour CPN module. 149

6.38 The top-most CPN module. 150

6.39 Declaration of the colour sets. 151

6.40 The top-most CPN module, with an additional use case. . . . 152

6.41 A screenshot of an animation for the check-in system. 153

xiv

Part I

Background

1

Chapter 1

Introduction

Summary

This chapter presents the main topics covered in this thesis: re-
active software systems, validation of behavioural models, and
more precisely the usage of animation to validate the require-
ments of a system. It also describes the problem being addressed
in this thesis, identifies the aims of the thesis, enumerates the
main research contributions given by this work, and presents
the outline of this dissertation document.

Contents

1.1 Reactive Software Systems 4

1.2 Motivation . 6

1.3 Problem Statement 7

1.4 Aims . 8

1.5 Approach Taken 9

1.6 Contribution . 11

1.7 Overview . 12

3

Chapter 1. Introduction

1.1 Reactive Software Systems

Reactive software systems constitute a very wide class of systems. Reactive
systems engage in stimulus-response behaviour to produce desirable effects
in their environment [Wieringa 2003]. In contrast, there are the transfor-
mational systems, that exist to compute the output from an input and then
terminate. In this section we introduce the main characteristics and termi-
nology used in the class of reactive software systems that is considered in
this work.

A reactive system continuously interacts with its environment, using
inputs and outputs that are either continuous or discrete in time. Usually,
the interaction of a reactive system with its environment is supported by a
set of nonterminating processes that operate in parallel. It is expected that
during the interaction the system must answer to high-priority events, even
when the system is executing something else. Due to above characteristics
the behaviour of reactive systems can be very complex [Manna and Pnueli
1992].

A transformational system interacts with its environment only to acquire
the sufficient information to produce its output. When the system produces
the output it must terminate, otherwise a failure is detected.

Real-time systems have usually reactive characteristics and the response
given by a real-time system consists of a production of an output at a partic-
ular time. Thus, the correctness of a response depends on the time at which
it is produced. Safety-critical systems are systems whose failure or malfunc-
tion may result in serious injury to people, or severe damage to equipment.
Many of the real-time systems are also safety-critical. For example, a heart-
monitoring system is a safety-critical real-time system, because the too late
production of an output may cause harm to its environment. There is real-
time software that is embedded in hardware systems, such as, the software
that is included in telephones, or in elevator controllers. A control system is
a system that enforces desirable behaviour on its environment, and in some
cases it directs human actions. Examples of control systems are a manu-
facturing controller system, and a course managment system, that directs
the actions of humans. Other examples of reactive systems are workflow
management systems, enterprise resource planning systems, systems for e-
commerce, and operating systems.

The examples enumerated above differ in their complexity along the di-
mensions of data, behaviour, and communication, and they have common
characteristics that make them to be classified as reactive systems. Real-
time, embedded, and control systems are reactive systems because, when

4

1.1. Reactive Software Systems

they are switched on, they enforce a certain desirable behaviour on their en-
vironment; and workflow management systems, enterprise resource planning
systems systems, e-commerce systems, are reactive too because they provide
desired information and enabled communication and collaboration between
people or organizations in their environment. In this way we can complete
the definition given above saying that “a reactive system is a system that,
when switched on, is able to create desired effects in its environment by en-
abling, enforcing, or preventing events in the environment” [Wieringa 2003].

To design reactive systems it is crucial to consider models of their envi-
ronment, where one represents the entities and the behaviour present of the
environment, and the communication of the system with the environment.
One can look to the system under development as a part of a network with
a set of entities, with which the reactive system is interacting. The network
includes devices, operators, maintenance personnel, users, software systems,
and other kinds of entities. Although one can imagine that the network
includes the whole world, in practice only a few entities in its immediate
environment are relevant for the execution of the reactive system.

To identify the part of the world that are relevant as environment of
the system it is assumed that the system and its environment exchange
messages. Notice that these messages are not the messages passed between
objects in an object-oriented software system. A message can be sent from
the system to an entity in the environment, or it can be sent from an entity in
the environment to the system. There are three aspects that characterize a
message: the subject domain, the communication channel, and the function
for the environment.

The subject domain defines what the message is about, that is, the entity
in the environment about which the message gives some information. An
entity of the environment can be a physical entity, when it has a weight and
a size; a conceptual entity, when it is invisible and weightless; or a lexical
item, when it is a physical entity with a meaning.

The communication channel is the path through which the message goes
from the sender to the receiver, and it can introduce delays or some assump-
tions about the expected performance, but in this work we abstract from
the physical realization of the messages.

Each message as some function for the environment. The purpose of
the message can be to inform or direct the environment, or to manipulate
lexical items in the system. The function of messages entering or leaving
a reactive system can be used to classify a reactive system according to
the function of its messages. A reactive system is said to be: informative
when it answers questions, produces reports, or provides information about

5

Chapter 1. Introduction

the subject domain; directive when it controls, guides, or directs its subject
domain; or manipulative when it creates, changes, or manipulates lexical
items in the subject domain.

1.2 Motivation

Requirements engineering aims to document the user requirements, which
must be an exact, unambiguous and complete description of the expectations
and needs of the users. The problems resulting from a misunderstanding of
the user requirements are the most expensive to correct, thus there is a need
to validate the requirements early in the development process.

Validation consists on checking if a model or a system satisfies the users’
expectations, assuring that their requirements are correctly captured. We
differenciate validation from verification task, as the former concerns to
building the right system, while the latter concerns to building the system
right [Boehm 1984].

During the development of software systems, validation is a crucial ac-
tivity to allow developers to be confident that they are building the correct
system. One of the key issues to have a successful validation is to adopt
a process where users can actively discuss the requirements of the system
under development. A way to allow software designers to explain the system
being developed is to permit the visualization of the design models. Two
possible visualization techniques are simulation and animation. Simulation
consists on showing the execution of a model, and animation is based on the
visualization of a simulation in some graphical mode. The animation is usu-
ally used to convince the client that the symbolic model has some meaning
in the problem domain, given a possibility to have an increasing correctness,
and also completeness, of the validation task.

Models are essential for communicating and reasoning about systems and
must adapt to the people and the properties of interest [Denaro and Pezzè
2004]. They are used for communicating design decisions among different
stakeholders.

Behavioural models play a key role in the engineering of software-based
systems. They are the basis for systematic approaches to requirements elic-
itation, specification, architecture design, testing, simulation, code genera-
tion, and maintenance.

A range of notations, techniques, and tools supporting behaviour mod-
elling for these development tasks have been suggested. Underlying these
notations, techniques, and tools, two complementary approaches to mod-

6

1.3. Problem Statement

elling behaviour can be identified interaction-based and state-based mod-
elling [Uchitel et al. 2005].

Interaction-based modelling focuses on the interactions (e.g. changing of
messages in object-oriented systems) among the actors and the components
of a system. Consequently, communication between such entities is viewed as
the principal modelling construct. Interaction modelling, commonly realized
using scenario and use case diagrams, provides an overall view of a system,
which is particularly suited for supporting communication between project
stakeholders.

To model software-based systems, the Unified Modelling Language (UML)
[Fowler 2004] is the standard notation used nowadays in industry. In this
work, we adopt two UML diagrams: use case diagrams and sequence dia-
grams. Use cases specify the set of functionalities presented by a system,
and permit, due their simplicity, the dialogue between clients and develop-
ers. A sequence diagram is used to capture a behavioural scenario of a given
system, which can be seen as a sequence of steps describing interactions
between the actors and that system. In this work we consider that each use
case is described by a non-empty set of sequence diagrams.

When developing a reactive system, which typically has an intensive
behaviour and a rich set of interactions with its environment, requirements
validation, before any design and implementation decisions are taken, is an
important task.

The artifacts constructed in the requirements analysis are typically doc-
uments to be analysed by the stakeholders of the project. In this thesis we
are tackling the problem of providing effective artifacts to allow the stake-
holders to use them during the system’s development, in order to facilitate
the validation, in an early stage of the functional requirements being defined
for the system, namely through the usage of a graphical animation.

1.3 Problem Statement

The focus of our work is in the transformation of models of behavioural
scenarios into a state-based model, with the aim of facilitating the validation
of the requirements of reactive systems. We assume that the requirements
document includes a set of use case diagrams and the textual descriptions
of the use cases. If these artefacts are not explicitly available, we consider
that the document has sufficient information to obtain them. As part of our
approach, the behaviour of each use case must be detailed by a collection
of scenario descriptions, which can be represented by sequence diagrams.

7

Chapter 1. Introduction

Recently, the version 2.0 of the UML has been launched to substitute the
previous versions. Sequence diagrams in UML 2.0 have many new high-
level operators. Due to their simplicity, we believe that sequence diagrams
of UML1.x are more adequate to capture the system’s behavioural scenarios
at a first stage of analysis. Thus, in the beginning we do not use all the
features available in UML 2.0 (namely the high-level operators), but later in
the development process, these diagrams can be aggregated into UML 2.0
sequence diagrams with all their advanced features.

Most of the works on the transformation of scenario-based models into
state-based models concentrate only on the modelling of the controller part,
and do not take into account the environment [Dano et al. 1997; Elkoutbi
and Keller 1998], which is an important part, especially when considering
reactive systems. Additionally, the obtained model usually is not paramet-
ric, i.e., it does not permit the simulation of different, but similar, scenarios
obtained by just changing some initial conditions of the original scenario.

We want to explore the capabilities of the CPN modelling language in
order to have a state-based and executable model of the behaviour expressed
by a set of scenarios. The CPN model is constructed in such a way that it
insures the following characteristics:

• Parametric: it allows an easy modification of the initial conditions of
the scenario,

• Environment-descriptive: it includes the state of the relevant ele-
ments of the environment, and

• Animation-separated: the elements related to animation are clearly
separated from the other elements in the model.

1.4 Aims

The main goal of this work is to provide a novel method into the software
development process to create a graphical animation of the problem domain
from a set of scenario descriptions. In particular, we aim to study for a given
system how to translate a set of scenarios into a unique state-based model
that represents the behaviour. The resulting model, which in this work we
propose to be written in the CPN modelling language is used to coordinate
an animation of the problem domain, in order to facilitate the validation
activity. It is important to notice that the resulting CPN model is supposed
to contain only the behaviours described in the source models,i.e., that is

8

1.5. Approach Taken

there are no extra behaviours inferred from the scenarios, and consequently
there are no explicit synthesized behaviours in the resulting model.

1.5 Approach Taken

The research approach taken in this work had started with the study of the
state of the art, in order to clearly describe the research problem. After
that, we had verified the hypothesis in the thesis finding solutions for the
problem. To validate the obtained solutions we had explored three case
studies already described in the literature. During the exploration of the
case studies some improvements to the solution had been considered. This
research approach has been presented and discussed in a doctoral symposium
[Ribeiro and Fernandes 2007b]. The ideas has been also constantly discussed
with our colleagues, in particular at the internal annual meeting of our
department, called “Simpósio do Departamento de Informática”, where each
Ph.D. student has the opportunity to present the work being developed.

Our work is based on the translation of models of behavioural scenar-
ios into a CPN model. CPNs constitute a graphical modelling language
appropriate to describe the behaviour of systems with characteristics like
concurrency, resource sharing, and synchronization. The CPN Tools [CPN
Tools 2009; Jensen et al. 2007] is a well established tool supporting the
CPN modelling language and allowing the execution of animations in accor-
dance with the CPN model. To animate a CPN model, the BRITNeY Suite
Animation Tool [Westergaard and Lassen 2006] permits the creation of an
animation on top of CPN Tools, using the animation plug-in based on the
SceneBeans framework [Magee et al. 2000].

Figure 1.1 sketches the general software process proposed to be followed
in our approach, where rectangles represent artefacts and arrows represent
activities. Please notice that the notation used in this picture is informal
in its nature and is used just to give an overall view of the process. In
particular, for example, the input artefacts connected to an arrow may not
represent the complete information required to accomplish the corresponding
activity. The same applies for the output artefacts.

The idea is that from the requirements document a set of scenario-based
models can be obtained, and can be subsequently transformed into a CPN
model. This CPN model, when used in conjunction with an animation spec-
ification, drives an executable animation that permits the users to perceive
how the system behaves and to validate that behaviour with respect to their
requirements and expectations.

9

Chapter 1. Introduction

Scenario-based

models

CPN model

Requirements

document

modelling

transformation

Animation

specification

animation

creation

animation

and validation

requirements

elicitation

Code

code

generation

Animation

Feedback

Figure 1.1: Process for the approach.

The creation of an animation is an activity that defines how each element
in the problem domain is represented in the animation, namely how it is
graphically depicted, the movements associated to it, the messages and the
commands it sends and receives. This activity strongly depends on the
requirements document, which is explicitly shown in Figure 1.1, but also,
among other examples, on the creativity of the software engineer in making
the animation easy to understand to the stakeholders. During this activity,
it may be necessary to introduce some changes into the CPN model in order
to obtain the expected animations when executing the CPN model together
with the animation specification.

When inspecting the execution of the animation specification, the user
usually gives valuable feedback that must be taken into account when re-
viewing the requirements document.

The CPN model can also be used as a formal support in the next steps
of the development process. In particular, we foresee the possibility of gen-
erating implementation code from it.

Our work concentrates on two activities of the approach: transforma-
tion and animation creation (see Figure 1.1). It aims to discover how the

10

1.6. Contribution

transformation of a set of scenario-based models into a CPN model can be
automated, and which mechanisms must be used to clearly separate the
CPN model and the animation specification.

In order to increase the flexibility of the animation, we aim to permit
that one can change the initial conditions of the scenario being animated,
to obtain a variation of the scenario. The obtained CPN model must also
permit when possible the concurrent execution of various scenarios.

The approach was validated through the exploration of three examples
of reactive systems. During the exploration of these systems, a conceptual
tool was developed to support other applications for different examples and
to be used as a formalization of the transformation.

1.6 Contribution

This section describes the contribution given by this thesis, that is the result
of the execution of the approach described above (Section 1.5) in order
to solve the identified problem (Section 1.3). It also presents the list of
publications that has resulted from the development of this work.

The contribution of this thesis is an approach to validate, through ani-
mation, a reactive system that is described by a set of behavioural scenarios.
The method transforms these scenarios into a state-based model that also
includes the behaviour of elements from the environment. Tool support
for the transformation is partially supported in order to illustrate that the
transformation can be automated with state-of-the-art technologies.

The following papers were written based on the results obtained during
this work, and they were published and presented in workshops and confer-
ences, after being approved by a peer-review process. The papers are listed
in reverse chronological order of their publication date.

1. Óscar R. Ribeiro and João M. Fernandes. Validation of Scenario-based
Business Requirements with Coloured Petri Nets. In Fourth Interna-
tional Conference on Software Engineering Advances (ICSEA 2009),
pages 250-255, Porto, Portugal, September 2009. IEEE Computer So-
ciety Press.
DOI 10.1109/ICSEA.2009.45

2. Óscar R. Ribeiro and João M. Fernandes. On the Use of Coloured
Petri Nets for Visual Animation. In Eighth Workshop and Tutorial
on Practical Use of Coloured Petri Nets and the CPN Tools (CPN
2007), pages 223–241, Århus, Denmark, October 2007.

11

http://dx.doi.org/10.1109/ICSEA.2009.45

Chapter 1. Introduction

URL http://www.daimi.au.dk/CPnets/workshop07/cpn/papers/

(This paper has been cited by 1 work from other authors)

3. Óscar R. Ribeiro and João M. Fernandes. Validation of Reactive Soft-
ware from Scenario-based Models. In Second Software Engineering
Doctoral Consortium (SEDES 2007) at QUATIC 2007 pages 213–217,
Lisbon, Portugal, September 2007. IEEE Computer Society Press.
DOI 10.1109/QUATIC.2007.33

4. Óscar R. Ribeiro and João M. Fernandes. Translating Synchronous
Petri Nets into PROMELA for Verification of Behavioural Properties.
In Second IEEE International Symposium on Industrial Embedded
Systems (SIES 2007), pages 266–273, Lisbon, Portugal, July 2007.
IEEE Computer Society Press.
DOI 10.1109/SIES.2007.4297344
(This paper has been cited by 3 works from other authors)

5. João M. Fernandes, Simon Tjell, Jens B. Jørgensen, and Óscar R.
Ribeiro. Designing Tool Support for Translating Use Cases and UML
2.0 Sequence Diagrams into a Coloured Petri Net. In Sixth Interna-
tional Workshop on Scenarios and State Machines (SCESM 2007) at
ICSE 2007, Washington, DC, USA, May 2007. IEEE Computer Soci-
ety Press.
DOI 10.1109/SCESM.2007.1
(This paper has been cited by 6 works from other authors)

6. Óscar R. Ribeiro and João M. Fernandes. Some Rules to Transform
Sequence Diagrams into Coloured Petri Nets. In Seventh Workshop
and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools (CPN 2006), pages 237–256, Århus, Denmark, October 2006.
URL http://www.daimi.au.dk/CPnets/workshop06/cpn/papers/

(This paper has been cited by 5 works from other authors)

1.7 Overview

This section gives an overview about how this dissertation document is or-
ganized. The structure of the document is described, and for each chapter
a brief description is given.

This dissertation document is divided into two distinct parts:

Part I includes chapters 1 to 4 and presents the background of this
thesis;

12

http://www.daimi.au.dk/CPnets/workshop07/cpn/papers/
http://dx.doi.org/10.1109/QUATIC.2007.33
http://dx.doi.org/10.1109/SIES.2007.4297344
http://dx.doi.org/10.1109/SCESM.2007.1
http://www.daimi.au.dk/CPnets/workshop06/cpn/papers/

1.7. Overview

Part II includes the chapters 4 to 8 and presents the contribution of
this thesis.

The chapters in this thesis are organized as follows.

Chapter 2 introduces three distinct types of models to represent the
behaviour of a reactive software system. Firstly, we present the use
case model, part of the UML notation, that is used to capture the ac-
tions produced by the system as they appear to its users. Secondly, the
interaction models of the UML, in particular the sequence diagrams,
are described in detail namely by discussing their metamodel in the
UML 2.0. Thirdly, the CPN modelling language is presented. CPN
is a formal modelling language, suitable for describing the behaviour
of systems with characteristics like concurrency, resource sharing, and
synchronization. The tool support for this modelling language is also
introduced.

Chapter 3 introduces the requirements engineering area. The funda-
mental process followed in a requirements engineering project is de-
tailed, including the description of models and actors involved in the
process, and how it fits in the overall software engineering process.
Afterwards, we briefly describe some approaches for requirements elic-
itation, which is concerned in defining where software requirements
come from and how the software engineer can collect them. The chap-
ter ends with a description of approaches for requirements validation,
including some graphical animation techniques.

Chapter 4 introduces a set of rules to transform a set of sequence di-
agrams of UML 2.0 into a CPN model. It is detailed how to transform
plain sequence diagrams, which define the messages in the sequence
diagrams and the order between them, in terms of constructs of the
CPN modelling language. Afterwards, one defines how some of the
high-level operators of the sequence diagrams are transformed into
elements of the CPN model.Additionally, are shown the results of ap-
plying these ideas to some illustrative examples. The tool support
available for the rules to transform sequence diagrams into a CPN
model is described.

Chapter 5 describes some guidelines that we suggest to be taken into
account when enriching a CPN model for animation purposes. These
guidelines aim to ensure that the obtained CPN model: (1) allows the
easy modification of the initial conditions of scenarios; (2) includes

13

Chapter 1. Introduction

a description of the state of the relevant entities in the environment;
and (3) implies that the elements related to the animation are clearly
separated from the other ones.

Chapter 6 presents the case studies that were considered in this the-
sis: (a) the reactor system; (b) the elevator controller system; and
(c) the check-in system in an international airport. These are different
examples of reactive systems. The reactor system does not interact
with human actors. In the elevator system there are human actors
that interact with the system through the interface elements. Human
actors are an important part of check-in system, thus it is crucial to
consider their behaviour. The rules and the guidelines introduced in
previous chapters are discussed and are exemplified in the context to
the three case studies.

Chapter 7 presents the state-of-the-art of the research fields consid-
ered in this work. The chapter starts with the analysis of some efforts
on turning the use case descriptions into a more formal representa-
tions. After that, we consider some methods to directly generate a
state-based model from a scenario-based descriptions, where there are
no explicit reference to states of the system. The use of Petri nets as
a medium to a synthesise scenarios describing a system behaviour is
analysed. This chapter ends with the description of some efforts that
have been presented to improve the way that formal specifications are
presented to the users, in particular when these specifications represent
software requirements.

Chapter 8 presents a summary of the contributions resulting from the
work described in this dissertation document, and points out several
ideas for future work.

14

Chapter 2

Behavioural Models

Summary

This chapter introduces three distinct types of models to rep-
resent the behaviour of a reactive software system. Firstly, we
present the use case model, part of the UML notation, that
is used to capture the actions produced by the system as they
appear to its users. Secondly, the interaction models of the
UML, in particular the sequence diagrams, are described in
detail namely by discussing their metamodel in the UML 2.0.
Thirdly, the CPN modelling language is presented. CPN is a
formal modelling language, suitable for describing the behaviour
of systems with characteristics like concurrency, resource shar-
ing, and synchronization. The tool support for this modelling
language is also introduced.

Contents

2.1 Use cases . 16

2.2 Interactions . 17

2.3 Coloured Petri Nets 25

15

Chapter 2. Behavioural Models

2.1 Use cases

Use cases capture a set of actions produced by a system as they appear to
users outside the system. Each use case is intended to provide a unit of
coherent behaviour without revealing the internal structure of the system.
The behaviour present in a use case is specified by defining the interactions of
the actors with the system. An actor is an idealized user of the system, which
includes not only the humans, but also computer systems and processes. The
overall functionality of a system is partitioned over a set of use cases, each
one representing a meaningful piece of functionality for the involved actors.
An interaction with actors is described as a sequence of messages between
the system and one or more actors, and it includes the normal behaviour,
as well as some possible variants of the normal sequence, such as alternate
sequences, exceptional behaviour, and error handling. The goal is to put
a piece of coherent functionality in all use case’s variations (including the
error conditions).

The behaviour of a use case is sometimes described by a piece of informal
text. It can also be specified in other ways: by an activity specification, by
an attached state machine, by an interaction describing legal sequences, or
by pre- and post-conditions. An execution of a use case is called a use
case instance. A use case describes potential behaviour, thus “behaviour
can be illustrated, but not formally specified, by a set of scenarios” [Object
Management Group 2007]. Usually, at an early stage of the development
process, this is sufficient.

In this way, use cases capture who (actor) does what (interaction) with
the system, without detailing the system’s internals. A complete set of use
cases specifies all the different ways to use the system, and therefore defines
the behaviour of the system, bounding its scope.

The subject of a use case is the system under consideration, that may
include a physical part and any other elements, such as a component, a
subsystem, or a class that may have an impact on the system’s behaviour.
Each use case specifies a specific way for users to interact with the system,
and it constitutes a unit of useful functionality that is provided to its users.
This functionality is usually initiated by an actor, and when it is completed
the use case is also completed.

A use case diagram shows the relationships among actors and use cases
within a system. A use case diagram includes a set of actors, a set of use cases
enclosed by a subject boundary (a rectangle), associations between the ac-
tors and the use cases, relationships among the use cases, and generalizations
among the actors. In Figure 2.1 we have an example of a sequence diagram

16

2.2. Interactions

of the “telephone catalog” system. The diagram is decorated with textual
labels identifying the elements of the UML 2.0 metamodel The textual labels
are in italic, and their connection with use case diagram’s elements is done
by an arrow.

Figure 2.1: An example of a use case diagram.

A use case is shown as an ellipse with its name inside (or below) the
ellipse. The system boundary is represented by a rectangle containing the
use cases. The actors are placed outside the rectangle to show that they
are external. The connection of actors with the use cases they participate
is represented by a line.

2.2 Interactions

2.2.1 Introduction to interactions

Interactions are a mechanism for describing systems that can be understood
and produced, at varying levels of detail, by both professionals of computer
systems design, as well as potential end users and stakeholders of the system
under development. They can be used at different stages of the development

17

Chapter 2. Behavioural Models

process and they are used to improve the understanding of an interaction
situation. Interactions are also used during the more detailed design phase,
where the precise inter-process communication must be described according
to formal protocols. When testing is performed, the traces of the system
can be described as interactions and compared with those iterations of the
earlier phases.

The behaviour in an interaction is represented by the exchanging of
messages among the participating objects, and by the ordered sequence of
the events (such as the sending and the receipt of a message). Interactions
are centred in a set of cooperating objects; this focus is complementary to
the description of behaviour in state machines that is centred on individual
objects.

A message represents a flow of control, possibly with information, from a
sender to a receiver, that is, it constitutes a one-way communication between
two objects. Values can be carried from the sender to the receiver through
arguments in messages. There are two kinds of messages:

• a signal - an explicit, named, asynchronous interobject communication;
or

• a call - the synchronous or asynchronous invocation of an operation
with a mechanism for later returning control to the sender of a syn-
chronous call.

An event is something that happens during the execution of a system,
and that is important to model. It has a location in time and space, and it
occurs instantaneously (no duration). Both messages and events are used
in various UML behavioural diagrams, such as activity diagrams, sequence
diagrams and state machine diagrams.

Diagrams provide a visual notation for the UML modelling concepts.
There exist two kinds of diagrams to express the sequential order of the
messages and the events:

• the sequence diagram, that focuses on the time sequences of the mes-
sages;

• the communication diagram, that focuses on the relationships among
the objects that exchange the messages.

2.2.2 Sequence diagrams

This section describes how an interaction can be represented by a sequence
diagram. Figure 2.2 presents an example of a sequence diagram, which

18

2.2. Interactions

is decorated with textual labels identifying the elements of the UML 2.0
metamodel. The textual labels are in italic, and their connections to the
sequence diagram’s elements are done by an arrow.

Figure 2.2: An example of a sequence diagram.

An interaction is displayed in a sequence diagram as a two-dimensional
chart. The vertical dimension is the time axis. The horizontal dimension
shows the roles that represent individual objects and actors in the collab-
oration. Each role is represented by a vertical column containing a head
symbol and a vertical line, called a lifeline, which is displayed as a dashed
line.

In Figure 2.2 there are two lifelines corresponding to roles A and B.
Between the lifelines of an interaction there are messages that come from a
sender to a receiver. A message is shown as a line with an open arrowhead
which indicates its direction. In the figure we have three messages, that are
called msg1, msg2 and msg3. Message msg1 goes from A to B, and it occurs
before the message msg2 that goes in the opposite direction (i.e., from B to
A).

As the name indicates, a sequence diagram shows the flow of control as a
sequence of messages. To show more complex flows of control it is necessary
to use high-level interaction fragments, called combined fragments. Each

19

Chapter 2. Behavioural Models

combined fragment has a keyword associated with it, and some subfrag-
ments, which are called interaction operands. The keyword in a combined
fragment defines the interpretation of the control flow in each operand, and
the number of operands to be considered. There is also a mechanism, called
interaction use, to introduce in a sequence diagram a reference to another
interaction. Roughly, we can say that this mechanism is similar to the con-
cept of subroutine in programming languages. In Figure 2.2 we can find
a combined fragment with the keyword alt, that represents an alternative
between the two operands in the example. The second operand of the alt

combined fragment uses the interaction use mechanism to refer to another
interaction called otherInteraction.

2.2.3 Metamodel for UML2 sequence diagrams

In this subsection we present the metamodel of the interactions, described
in the “UML Superstructure Specification” (version 2.1.2) [Object Manage-
ment Group 2007]. The sending and the reception of a message, called
message occurrence specifications, represent events occurring in the interac-
tion and constitute a particular kind of event occurrences. A sequence of
event occurrences is a called a trace. A semantic of an interaction is given
by defining the set of valid traces, and possibly also by identifying the set
of invalid traces.

In this thesis we are considering that the messages in the sequence dia-
grams are synchronous, thus there exists a unique event associated with the
execution of a message.

To show more complex flows of control, it is necessary to use high-level
interaction fragments, called combined fragments. Each combined fragment
has a keyword associated with it, and some subfragments, which are called
interaction operands. The keyword in a combined fragment defines the
interpretation of the control flow in each operand, and also the number of
operands to be considered.

A combined fragment is shown as an outline rectangle, and inside a
pentagon in the upper left corner of the rectangle there is the corresponding
keyword.

The metamodel for the interactions is depicted in [Object Management
Group 2007, Section 14.2], where the abstract syntax for interactions is
divided along six diagrams, each one showing different aspects of an inter-
action.

The Interaction element is the main element when considering the
modelling of an interaction (see Figure 2.3). Each Interaction is associated

20

2.2. Interactions

with: a set of InteractionFragments, a set of Lifelines, and a set of
Messages.

Figure 2.3: Part of UML2 metamodel for Interactions [Object Management
Group 2007, p. 460].

An Interaction is a subclass of InteractionFragment. In this way,
it is possible to have many Interactions associated with an Interaction,
and these Interactions can have different kinds as detailed below. An
interaction fragment is a piece of an interaction, because it is an ab-
stract notion of the most general interaction unit.

A Lifeline represents an individual participant of an Interaction, and
it is covered by an ordered set of InteractionFragments (see Figure 2.4).
The connection of Lifeline with a set of InteractionFragments is rede-
fined by two other connections: one with an ordered set of OccurrenceSpeci-
fication and another with a set of StateInvariants, where both are spe-
cializations of InteractionFragment.

A Message flows among a kind of OccurrenceSpecification, called
MessageOccurrenceSpecification (see Figure 2.5).

The basic semantic units in interactions are the OccurrenceSpecificati-
ons, which are ordered along a lifeline. The meaning of interactions is given
by the sequences of occurrences specified by the OccurrenceSpecification
(see Figure 2.6). StateInvariants are runtime constraints on the partici-
pants of the interaction; this work does not consider the possibility of having
StateInvariants in the lifelines.

21

Chapter 2. Behavioural Models

Figure 2.4: Part of UML2 metamodel for Lifelines [Object Management
Group 2007, p. 461].

One of the kinds of Interaction is the CombinedFragment, which con-
sists of an InteractionOperator and a set of InteractionOperands (see
Figure 2.7).

Each InteractionOperand can be a plain Interaction or again a Combi-
nedFragment. In this way, a CombinedFragment defines an expression con-
taining InteractionFragments. CombinedFragments allow the user to de-
scribe a number of traces in a compact and concise way.

The number of operands embedded in a CombinedFragment and its se-
mantic depend on the InteractionOperator, which is defined by one of the
following keywords:

sd is used to indicate the principal frame of the sequence diagram. Usually,
it is followed by the name of the diagram;

ref is used to indicate a reference to another fragment of interaction;

opt specifies one operand with a guard condition associated with it. If the
guard evaluates to true the subfragment is executed; otherwise it is
not executed;

break specifies one operand with a guard condition associated with it. The

22

2.2. Interactions

Figure 2.5: Part of UML2 metamodel for Messages [Object Management
Group 2007, p. 462].

behaviour of the operand is executed if the guard is true, and in this
case the remainder of the fragment is not executed. Otherwise, the
execution continues normally;

alt specifies that the fragment represents a choice between multiple operands.
There is a guard associated with each operand (the absence of the
guard is interpreted as true), whose evaluation defines which operand
is executed. If more than one of the guards are evaluated to true, the
choice may be non-deterministic;

par indicates that the fragment represents a parallel merge between the
behaviours of the operands. The events from the parallel subfragments
can interleave in any possible order;

23

Chapter 2. Behavioural Models

Figure 2.6: Part of UML2 metamodel for Occurrence Specifications [Object
Management Group 2007, p. 463].

loop indicates an interaction fragment that shall be repeated a given num-
ber of times. It has a guard associated with it, and also a minimum
and a maximum counters. The interaction fragment is executed (at
least the minimum count and no more than the maximum count) until
the guard evaluates to false;

seq indicates the weak sequencing of the operands in the fragment, which
is selected by default. The weak sequencing maintains the order in-
side each operand, and the events on different operands and different
lifelines may occur in any order;

strict specifies that messages in the fragment are fully ordered.

There are some other keywords that are not covered in this work such as
neg, assert , consider, and ignore.

24

2.3. Coloured Petri Nets

Figure 2.7: Part of UML2 metamodel for Combined Fragments [Object
Management Group 2007, p. 464].

2.3 Coloured Petri Nets

This section presents the CPN modelling language. The section starts by
an informal introduction of CPN modelling language. After that it is shown
how to create a CPN model to represent a pratical problem. Then, a formal
definition of the CPN modelling language is presented. Finally, the main
features of CPN tools is introduced.

Petri Nets (PNs) [Reisig 1985] constitute a suitable model of computation
for expressing concurrent systems, due to their extensive body of results,
both theoretical and practical. PNs have shown to be a powerful technique
to specify and model the behaviour of systems, where concurrency, resource
sharing, and synchronisation are important issues to take into account.

CPN is a variant of Petri nets, suitable for describing the behaviour

25

Chapter 2. Behavioural Models

of complex systems. The CPN language is supported by CPN Tools that
facilitate construction, editing, execution, and analysis of the CPN models.

CPN models are typically used to represent problems of distributed al-
gorithms [Reisig 1998], embedded systems [Adamski et al. 2005; Yakovlev
et al. 2000], communication protocols [Billington et al. 2004] and data net-
works [Billington et al. 1999]. There are some other applications of CPNs
to more generic systems, such as business process and workflow modelling
[van der Aalst and van Hee 2004], and manufacturing systems [Desrochers
and Al-Jaar 1994]. Industrial applications of CPNs are detailed in [Jensen
and Kristensen 2009, chap. 14].

2.3.1 Basic concepts

The CPN language provides an explicit description of both states and ac-
tions, and gives a modelling convenience corresponding to a high-level pro-
gramming language with support for data types, modules, and hierarchical
decomposition.

A CPN model is a graphical structure, composed of places, transitions,
arcs, tokens, and inscriptions, supplemented with declarations of data types,
variables, and functions. An example of a CPN model is shown in Figure 2.8.

(a,a+1)

(b,c)

a

a+ca

T2

T1

P3

No

P2

1`(0,3)

NoxNo

P1

No

if (a>10)
then a-1
else a+1

1`1++
1`5

1

1`(0,3)

2

1`1++
1`5

Figure 2.8: A small CPN model.

The tokens may have complex data values. In CPNs the data values are
called as colours, and data types are called colour sets. The use of functions
and expressions to handle data values permits the complexity of a model to

26

2.3. Coloured Petri Nets

be divided among graphics, inscriptions, and declarations.
The inscriptions and declarations are defined using the functional pro-

gramming language CPN-ML which is based on Standard ML [Standard ML
2006; Ullman 1998]. The CPN model in Figure 2.8 uses the CPN-ML code
in Figure 2.9.

1 colset UNIT = unit;
2 colset INT = int;
3 colset BOOL = bool;
4 colset STRING = string;
5 colset No = int;
6 colset NoxNo = product No*No;
7 var a, b, c : No;

Figure 2.9: CPN-ML code used in the CPN model presented in Figure 2.8.

In CPN tools, colour sets are defined using the CPN-ML keyword colset.
In the example the colour set No is defined to be equal to the integer type
int (line 5). The colour set NoxNo is defined to be the product of the type
No with itself (line 6). There are also variables containing elements of the
defined colour sets, for example variables a, b and c are defined to have the
colour set No (line 7).

Places are drawn as ellipses and hold multisets (bags) of tokens. A place
models a local state, given by its tokens. The global state of a model is the
union of all local states. Each place has an associated colour set, indicated
by an inscription near the place, that specifies the kind of tokens that it may
contain. For example, the places P1 and P3 in Figure 2.8 can both contain
tokens of the type No. The place P1 has two tokens, indicated by the circled
“2”, and the place P3 has no tokens.

A multiset (or bag) is a generalization of a set, where each element can
appear more than once. A place of a CPN model contains a multiset whose
elements have the token colour defined for the place. The construction of a
multi-set are supported by two operators ++ and .̀ The operator ++ takes
two multisets as arguments and returns their union (sum). The operator `
takes an integer (non-negative) as left argument specifying the number of
occurrences of the element represented by the right argument. The absence
of an inscription specifying the initial marking means that the place initially
contains no tokens. This is the case for place P3.

There is an inscription written above the place that sets the initial mark-
ing of the place. For example, the inscription 1̀ 1 + +1̀ 5 at the upper right

27

Chapter 2. Behavioural Models

side of place P1 specifies that the initial marking of this place consists of
two tokens representing two integer numbers, where one token has the colour
(value) 1, and the other has the colour 5.

This means that in the CPN language the pattern of behaviour is ex-
pressed only once by the structure of the CPN module, and multiple in-
stances operating concurrently are modelled by tokens with individual iden-
tification.

Transitions model behaviour and are drawn as boxes. A transition is
connected to input places and output places by arcs. Each transition has a
name that has no formal meaning, but is very important for the readability
of the model. When a transition fires, it removes tokens from its input
places (those places that take an arc going to the transition) and it adds
tokens to its output places (those places that have an arc coming from the
transition). The colours of the tokens that are removed from input places
and added to output places when a transition occurs are determined the
textual inscriptions positioned next to the individual arcs.

The guards are associated to transitions and, by default, are located near
the top left corner of the rectangle representing the corresponding transition.

In the CPN model of Figure 2.8 there are two transitions, T1 and T2.
The T1 transition has places P1 and P2 as its input places and place P3 as
its output place. When T1 fires, one token is removed from each of its input
places and a new token is added to its output place. A transition is said to
be enabled (i.e., ready to fire), when it is possible to consume a collection
of tokens from its input places that complies with the restrictions expressed
by the inscriptions on the arcs connecting these places to the transition.

The T1 transition is enabled when:

• there is at least one token in the P1 place, and

• there is at least one token in the P2 place.

Thus, the enabling of transition T1 does not depend on the values of the
tokens in its input places, and the value of the token to be added to the
output place P3 is the sum of variables a (token in place P1) and c (the
second component of token in place P2).

A CPN model can be organised as a set of hierarchically related mod-
ules, in a similar way as programs are constructed from modules. Substi-
tution transitions (of which there are none in Figure 2.8) constitute the
basic mechanism for hierarchically structuring a CPN model. A substitu-
tion transition, graphically represented by a doubled-edged box (see, e.g.,
Figure 6.38) is a transition that stands for a whole module of the CPN

28

2.3. Coloured Petri Nets

structure. A substitution transition in a super-module is connected to its
sub-module via places in the two modules, which are conceptually linked
together. Substitution transitions serve the same role in CPN models with
respect to the structuring of models as superstates do in statecharts.

The CPN modelling language has a mathematical definition of its syn-
tax and semantics. In this way, one can say that the CPN models are
formal. This means that they can be used to verify system properties, i.e.,
to prove that certain desired properties are fulfilled or that certain undesired
properties are guaranteed to be absent. Verification of system properties is
supported by a set of state space methods [Jensen and Kristensen 2009,
Chapter 8].

The practical application of CPN modelling and analysis relies heavily
on the existence of computer tools supporting the creation and manipulation
of models.

2.3.2 Creating a CPN model

In this subsection, we illustrate how to create a CPN model that captures
the behaviour given by an example described below. Different CPN models
are created for the same example to show different approaches of modelling.
The system to be considered here comes from the analysis of the actions that
can be taken by a person who is at the hall of an elevator car at a given floor
of the building and wants to travel to another floor. To simplify the example
used in this subsection only a part of this system is considered. Firstly, we
consider only two floors, and at each floor there is only one person who can
find buttons to select the possible travel direction (in the first floor it is
obviously only possible to travel in the up direction, and in the second floor
we assume that it is possible to travel in the up direction). An overview of
this example is depicted in Figure 2.10. In the first floor (floor 1) there is
a person, called Bob, who can only press the button to go up, and in the
second floor (floor 2) there is also a person, called Jim, who can press either
the button to travel down or the button to travel up.

Due to the simplicity of this system, it is easy to detail its behaviour,
enumerating all the six accessible states:

1. None of the persons have pressed a button;

2. Bob has pressed the button (to travel up), and:

(a) Jim has not pressed any button;

(b) Jim has pressed the button to travel up;

29

Chapter 2. Behavioural Models

Figure 2.10: Sketch of the options that passengers at each floor have to call
an elevator car.

(c) Jim has pressed the button to travel down;

3. Jim has pressed the button to travel up, and Bob has not pressed any
button;

4. Jim has pressed the button to travel down, and Bob has not pressed
any button;

In a CPN model the union of all places represent the global state of the
model. Inside each transition and place we can find a label that may be
used to describe its role in the model. Figure 2.11 presents a CPN model for
the system depicted in Figure 2.10, where we can identify two independent
parts, each one related to one of the passengers. On the left hand side we
have the model related with actions of Bob, who has only the button to go
up to press. The transition Bob presses Up at 1st Floor represents the
action of Bob, which has as input place Bob is at 1st Floor, whose token
represents the fact that Bob is at the first floor, and this place initially has
one token in it. The colour being used in this CPN model uses only the colour
set UNIT, that represents the data type with only one element, represented
by the symbol ().

On the right hand side there is the part of the model related with actions
of Jim, who has the possibility to press one of the two buttons in the hall.

30

2.3. Coloured Petri Nets

()()

()

()

UNITUNIT

1`()

UNIT

UNIT

1`()

UNIT

() ()

Bob presses Up
at 1st Floor

Bob is
at 1st Floor

Jim called a car
at 2nd Floor
to go Down

Bob called a car
at 1st Floor

Jim called a car
at 2nd Floor

to go Up

Jim is
at 2nd Floor

Jim presses Down
at 2nd Floor

Jim presses Up
at 2nd Floor

Figure 2.11: CPN model that for the example, that uses only the colour set
UNIT.

The transition Jim presses Down at 2nd Floor represents the pressing of
the button to travel down by Jim, and the transition Jim presses Up at

2nd Floor represents the pressing of the button to travel up by Jim. The
place Jim is at 2nd Floor represents the fact that Jim is at second floor
and it is an input place for both transitions. The existence of distinct output
places to those two transitions to capture the fact that Jim is supposed to
only press one of the two buttons. In this CPN model, the complexity
of the model is reflected in the number of nodes, which implies that the
colour sets being used are the most simple ones. One can see that the
UNIT colour set gives to tokens the same expressive power as the one used
in other models of Petri nets, such as place/transitions Petri nets [Reisig
1985]. Introducing more complexity on the colour sets, and subsequently
increasing the complexity of the arc’s inscriptions, results on a CPN model
for the same example with a lower number of transitions and places, due
to the more abstract role in the CPN model of some transitions and places.
Figure 2.12 presents a CPN model with the same purposes as the one in
Figure 2.11, using some colour sets that are more complex than UNIT colour
set.

The main change introduced in this version is the usage of the same
transition to be executed for different floors. In this case we are considering
that each token in the place Passengers at Floor contains the data about

31

Chapter 2. Behavioural Models

(flr,psg)

[flr > 1]

FLRxPSGxDRT

1`(1,"Bob") ++
1`(2,"Jim")

FLRxPSG

Passenger presses
Down Button

Passenger presses
Up Button

Passengers
at Floor

Passengers
that called a car

at Floor

(flr,psg,DRT_UP)(flr,psg,DRT_DOWN)

(flr,psg)

Figure 2.12: Example of CPN model for the example.

one floor and data about the passenger in that floor. The transitions are
used to represent the actions of a passenger, in a given floor, to press the
button to go up, or the button to go down. The first floor has only a
button to call a car to go up; this property is introduced in the model
using the guard [flr > 1], that is the transition Passenger presses Down

Button is not enabled for the first floor. Each token in the place Passengers
that called a car at Floor has the data about the considered floor, the
respective passenger, and the direction selected by the passenger.

To declare colour sets to be used in the places and variables, in the
transition’s guards and in the arc’s inscription, it is necessary to consider
some additional code in the CPN-ML programming language. The CPN
model in Figure 2.12 considers the CPN-ML code in Figure 2.13. In line 1,
the FLOOR NUMBER colour set (using the keyword colset) is defined as an
integer. In line 2, the PASSENGER colour set is defined as a string. In lines 3
and 4, the DIRECTION colour set is defined as a colour set that has two
elements: the DRT UP to identify the up direction, and the DRT DOWN to
identify the down direction. In lines 5 and 6, the FLRxPSG is defined as
the product of FLOOR NUMBER and PASSENGER colour sets, whose elements
are pairs of a number of a floor, and the string identifying the passenger
in that floor. In lines 7-9, the FLRxPSGxDRT is defined as the product of

32

2.3. Coloured Petri Nets

1 colset FLOOR_NUMBER = INT;
2 colset PASSENGER = STRING;
3 colset DIRECTION = with DRT_UP
4 | DRT_DOWN;
5 colset FLRxPSG = product FLOOR_NUMBER
6 * PASSENGER;
7 colset FLRxPSGxDRT = product FLOOR_NUMBER
8 * PASSENGER
9 * DIRECTION;

10 var flr : FLOOR_NUMBER;
11 var psg : PASSENGER;

Figure 2.13: CPN-ML code used in the CPN model in Figure 2.12.

FLOOR NUMBER, PASSENGER and DIRECTION colour set. In lines 10 and 11,
there are the declaration, using the keyword var, of variables flr as a
FLOOR NUMBER colour set, and psg as a PASSENGER colour set.

The initial marking is introduced in the place Passengers at Floor

using the following multi-set 1`(1,′ Bob′) + +1`(2,′ Jim′) that indicates that
Bob is at floor 1 and Jim is at floor 2.

When considering this initial marking the transition Passenger presses

Down Button occurs with the token of the data related with the Jim, and
the transition Passenger presses Up Button occurs either with the token
for Jim, or the token for Bob.

This model can easily scale up with respect to the considered number of
floors (each one is identified by an unique integer) introducing more tokens
in the place Passengers at Floor to represent passengers that can possibly
be present in the existing floors. When adding a new floor it is necessary
to express which buttons are present in the hall, and this may be achieved
in the CPN model by using the guards in the transitions, which are used
to restrict the buttons that are present at each floor. When interpreting
this CPN, it is not explicit which buttons are present in each floor. One
only becomes aware of that by inspecting the expressions in the guards.
Next we present a CPN model with the same purpose using less graphical
elements to illustrate the capability of the CPN-ML expressions. Figure 2.14
presents a CPN model that is intended to capture the same behaviour as
the CPN models presented above. The main change introduced here is the
consideration of only one transition called Passenger presses a Button

to capture the action of pressing a button by a passenger, that includes

33

Chapter 2. Behavioural Models

either pressing the button to go up or pressing the button to go down.

Passenger presses
a Button

[validDirection(drt,bts)]

FLRxPSGxDRT

1`(1,"Bob",BT_UP) ++
1`(2,"Jim", BTS_UPDOWN)

FLRxPSGxBTS

Passengers
at Floor has

the Hall Buttons

Passengers
that called a car

at Floor

(flr,psg,drt)

(flr,psg,bts)

Figure 2.14: Example of CPN model.

Figure 2.15 presents the CPN-ML code used in the CPN model in Fig-
ure 2.14. In line 1, the HALLBUTTON colour set is defined using the keyword

1 colset HALLBUTTON = with BTS_UPDOWN | BT_UP | BT_DOWN;
2 colset FLRxPSGxBTS = product FLOOR_NUMBER *
3 PASSENGER *
4 HALLBUTTON ;
5 var bts : HALLBUTTON;
6 var drt : DIRECTION;
7 fun validDirection(UP,BTDOWN)= false
8 | validDirection(DOWN,BTUP)= false
9 | validDirection(_,_) = true;

Figure 2.15: CPN-ML code used in the CPN model in Figure 2.14.

with meaning that a value of this colour set can have one of the three indi-
cated values. This colour set represents the three possibilities for the config-
uration of the buttons in the hall. In lines 2-4, the FLRxPSGxBTS is defined
as the product of the FLOOR NUMBER, the PASSENGER, and the HALLBUTTON

colour sets. This colour set is used in the places of the CPN model, allow-
ing one to identify the passenger in it, and the indication of the available

34

2.3. Coloured Petri Nets

buttons at the floor. The predicate validDirection (lines 7-9) is used to
evaluate if a direction to travel is valid in a given floor.

2.3.3 Tool support

CPN Tools constitutes the computer tool support for the pratical application
of the CPN modelling language, allowing the creation and manipulation of
models [CPN Tools 2009; Jensen et al. 2007]. In particular, the tool allows
the editing, the simulation, the state space analysis, and the performance
analysis of CPN models. It includes mechanisms to directly work on the
graphical representation of the elements present in the CPN model.

CPN Tools includes a visualisation package called The BRITNeY Suite
Animation Tool that facilitates the usage of application domain graphics on
top of CPN models [Westergaard and Lassen 2006]. The tool is implemented
in Java allowing to use the animation plug-in based on the SceneBeans
framework [Pryce and Magee 2007].

The functionalities of CPN Tools are divided in two main components:
an editor and a simulator. BRITNeY is integrated with CPN Tools, through
a communication with the simulator using a standard remote procedure call
protocol. The visualization in BRITNeY is updated when a transition oc-
curs in the simulation of the CPN model. The correspondence between the
transition in the CPN model and the change to introduce in the visualiza-
tion, is done by calling a command available in the visualization in special
transition inscriptions called code segments. A code segment is executed
when the transitions that it belongs to occurs. Code segments are allowed
by CPN Tools, and they consist of input, output, and action parts. The
input and output parts make it possible to receive input from the model
and to send feedback to the model, respectively. This allows a command to
be invoked with values parametrized by tokens and to generate new tokens
from the result of executing a command on the visualization.

BRITNeY has already been used in different contexts, such as to animate
a network protocol [Kristensen et al. 2005], or to animate a workflow pro-
cesses with the purpose of requirements engineering [Jørgensen and Lassen
2006; Machado et al. 2005].

35

Chapter 2. Behavioural Models

36

Chapter 3

Software Requirements

Summary

This chapter introduces the requirements engineering area. The
fundamental process followed in a requirements engineering
project is detailed, including the description of models and ac-
tors involved in the process, and how it fits in the overall soft-
ware engineering process. Afterwards, we briefly describe some
approaches for requirements elicitation, which is concerned in
defining where software requirements come from and how the
software engineer can collect them. The chapter ends with a
description of approaches for requirements validation, includ-
ing some graphical animation techniques.

Contents

3.1 Introduction . 38

3.2 Requirements Engineering Process 41

3.3 Requirements Elicitation and Analysis 43

3.4 Requirements Validation 50

37

Chapter 3. Software Requirements

3.1 Introduction

Requirements engineering is “the process by which the requirements for soft-
ware systems are gathered, analyzed, documented, and managed throughout
their complete lifecycle” [Aurum and Wohlin 2005]. Requirements engineer-
ing activities traditionally focus on the functional and non-functional aspects
of the system to be developed, assuming that the organizational needs and
context are outside from their competences.

The requirements for a system express the needs of the customers for
a system that contribute to the solution of the real-world problem, thus in
more general terms, a requirement is something the product to be delivered
to the customer must do or a quality it should have. Software requirements
are used to mean requirements for systems that are dealing with problems
to be addressed by software artifacts. Software requirements are often either
classified as functional or non-functional requirements:

• Functional requirements are things that the product should do,
and they are constituted by statements of actions that the product
must provide to the users, detailing how the system should react to
particular inputs and how the system should behave for some situa-
tions. These requirements may also explicitly state what should not
do.

• Non-functional requirements are properties (or qualities) that the
product should have, and they are constituted by constraints on the
actions offered by the system. Examples of constraints are timing con-
straints on the response of the system, and constraints on development
process and standards.

The distinction between these two different types of requirements is not
so clear, because there are examples of requirements that could be classified
as both type of requirements, depending on the perspective. Sommerville
[2006] suggests the existence of a third group called domain requirements,
which are given by the application domain of the system and express char-
acteristics of that domain, using either functional or non-functional require-
ments. Ideally, the specification of the functional requirements of a system
should be both complete and consistent. Completeness means that all ser-
vices required by the user should be defined. Consistency means that re-
quirements should not have contradictory definitions. In practice, for large,
complex systems, it is practically impossible to have consistent and complete
requirements.

38

3.1. Introduction

Notice that the term “requirement” is used in different situations. There
are cases where it is simply a high-level, abstract statement of a service that
the system should provide or a constraint on the system. In other cases, it
is used to refer to a detailed, formal definition of a system function. These
two levels of detail of description are called as user requirements and system
requirements, respectively. User requirements and system requirements are
defined as follows [Sommerville 2006]:

• User requirements are constituted by high-level abstract require-
ments, and they are constituted by statements, in a natural language,
complemented with diagrams, of what services the system is expected
to provide and the constrains under which it must operate.

• System requirements are constituted by detailed descriptions of
what the system should do, and they set out the system’s functions,
services and operational constraints in detail. The system require-
ments document should be precise, and should define exactly what is
to be implemented. It can be used as a part of the contract between
the system buyer and the software developers.

The not so clear separation between these different levels of description
could create some problems during the requirements engineering process.
For example, Abran et al. [2004, chap. 2] adopt the term system requirements
to refer to the requirements for the system as a whole, that are the user
requirements as described above.

The usage of different levels of system specification is useful because it
facilitates the communication of information about the system being de-
veloped to different types of readers, who use them in different ways. For
example, it is normal that a reader of the user requirements does not care
about how the system is implemented. Examples of typical readers of user
requirements include client managers, system end-users, client engineers,
contractor managers, and system architects. The readers of the system re-
quirements need to know more precisely what the system will do because
they are concerned with how it will support the business processes or because
they are involved in the system implementation. Examples of typical read-
ers of systems requirements are system end-users, client engineers, system
architects, and software developers.

Imprecision or ambiguity in the requirements specification are among
the major causes of problems in software project. It is likely that software
developers incorrectly handle an ambiguous requirement. However, this is

39

Chapter 3. Software Requirements

not what the customer wants. Consequently, when the mismatch is de-
tected, the ambiguous requirements needs to be rewritten and changes must
be introduced into the system. Obviously, this situation delays system de-
livery and increases development costs. For large and complex systems, it
is easier to obtain a requirements specification that is imprecise, inconsis-
tent or incomplete. One reason is that different system stakeholders may
have different, and often conflicting, needs. These conflicting needs often
give origin to inconsistent requirements that may not be simple to detect
when the requirements are first specified. The problem may only emerge
after deeper analysis or, sometimes, after development is complete and the
system is delivered to the customer.

This chapter aims to introduce some of the topics on software require-
ments knowledge area as described in [Abran et al. 2004, chap. 2] (see Fig-
ure 3.1).

Figure 3.1: The topics for the software requirements (from [Abran et al.
2004]).

Software Requirements fundamentals are covered above in this section.

40

3.2. Requirements Engineering Process

Section 3.2 presents the requirements process. Section 3.3 presents the re-
quirements elicitation and the requirements analysis. Section 3.4 presents
the requirements validation.

3.2 Requirements Engineering Process

A requirements engineering process aims to create and maintain a system
requirements document. Roughly, there are three main activities inside a
requirements engineering process:

1. In the elicitation and analysis activity, requirements are discovered
through the observation of existing systems and the discussions with
clients and potential users.

2. The specification activity converts the information gathered during
the elicitation and analysis phase into a document that defines a set
of requirements using an agreed format.

3. During validation, one checks if the requirements are precise, consis-
tent, and complete. This activity tries to guarantee that the require-
ments actually define the system that the customer wants.

Inevitably, during the execution of these activities, some errors in the
requirements document are detected. Consequently, the document must be
changed in order to correct the errors. The requirements engineering process
is concerned with the way the activities (elicitation and analysis, specifica-
tion, and validation) are configured for different types of contexts. This
process also includes activities that create artifacts that are needed during
the requirements process, such as marketing and feasibility studies [Som-
merville 2006].

One can observe that in almost all systems the requirements are subject
to changes along the development process. Examples of factors that can
impose changes to requirements are [Robertson and Robertson 2006]:

• The problem that the system is supposed to solve changes (economic
or political reasons);

• The users change their minds about what they want the system to do,
as they understand their needs better;

• The system environment changes;

41

Chapter 3. Software Requirements

• The new system is developed and released leading users to discover
new requirements.

To cope with change, the requirements engineering activities should be
organized as an iterative model, following for example the well-known spiral
model [Boehm 1988]. One proposal that follows this idea is illustrated in
Figure 3.2, which presents a process for the requirements engineering phase
divided in the aforementioned three activities.

System requirements

specification and

modelling

System requirements

elicitation

User requirements

specification

User requirements

elicitation

Business requirements

specification

Prototyping

Feasibility

study

Reviews

System requirements

document

Specification

Validation
Elicitation and

Analysis

Figure 3.2: Spiral model for requirements engineering process (adapted
from [Sommerville 2006, Chap. 7]).

The type of system under development and the stage of the overall pro-
cess determine the time and the effort necessary to complete an iteration
of each activity. When the process is in its initial stages the effort must
be devoted on understanding high-level business, non-functional and user
requirements. When the process is approaching the final stages the effort is
spent on the system requirements engineering and system modelling.

The process of requirements engineering involves typically a group of
people whose elements have different roles in the process. The term “stake-
holder” is used, in requirements engineering, to refer to everyone who may
influence or be influenced by the system. Thus, a stakeholder can be either a

42

3.3. Requirements Elicitation and Analysis

client, a customer, an end-user, a project manager, an analyst, a developer,
a senior manager or a member of the quality assurance staff. Each of these
types of stakeholders have the following characterization based on what they
expect from or gives to the software project being developed:

• The client is the one who pays the development of the product.

• The customer is the one who buys the software product, thus she
aims to obtain the necessary functionalities at a lower price.

• The end-user is the one who ultimately interacts with the system,
and she is interested in the introduction of useful functionalities that
facilitate her work.

• The project manager wants to successfully complete the project with
the given resources. She has knowledge about project management,
software development and delivery process.

• The system analyst must correctly specify the requirements accord-
ing to the stakeholders expections and needs. She knows about re-
quirements methods and tools.

• The system developer aims to create on time and within budget
a working software system. She knows about design methods, and
programming environments and languages.

• The quality expert is responsible for ensuring that the software so-
lution is compliant with quality standards.

Due to the diverse expectations and interests of stakeholders there are
situations where it is necessary to negociate the requirements to let the
collected requirement converge on a set of requirements that are mutually
satisfactory for the stakeholders [Boehm et al. 2001].

3.3 Requirements Elicitation and Analysis

3.3.1 General considerations

In the activity of requirements elicitation, the requirements engineers work
with customers and end-users to find out the application domain, the ser-
vices the system should provide, the required performance of the system,
the hardware constraints and so on. Requirements elicitation is considered
to be among the most difficult, most critical, most error-prone, and most

43

Chapter 3. Software Requirements

communication-intensive aspects of software development [Wiegers 2003;
Zowghi and Coulin 2005].

Eliciting and understanding stakeholder requirements is difficult for sev-
eral reasons [Zowghi and Coulin 2005]. Often the stakeholders only describe
in general terms what they expect from the software system, and they find
difficult to describe in detail what they want from the system, and are not
capable to evaluate the cost of their request and then they make unreal-
istic demands. The requirements engineers need to acquire experience in
the domain of the customer, to understand the requirements given by the
stakeholders who naturally tend to use the terms of their domain to express
their requirements. Each stakeholder express the requirements in different
ways. The situation implies that the requirements engineering must ana-
lyze requirement to discover commonalities and conflicts. Political factors
may influence the requirements of the system. For example, managers may
demand specific system requirements that will empower them within the
organization. The economic and business environment in which the analysis
takes place is dynamic. It inevitably changes during the analysis process.
Hence, the importance of a particular requirement may change, and new
requirements may emerge from stakeholders who were not originally con-
sulted.

The elicitation and analysis activity is generally considered to include
the following four tasks [Sommerville 2006]:

1. During the requirements discovery task, the requirement engineer
interacts with stakeholders to collect their requirements;

2. The activity of requirements classification and organization takes
the unstructured collection of requirements, groups related require-
ments and organizes them into coherent clusters;

3. Inevitably, whenever multiple stakeholders are involved, requirements
will most probably conflict. The requirements prioritisation and
negotiation task is concerned with prioritizing requirements, and
finding and resolving requirements conflicts through negotiation;

4. The requirements documentation task is concerned with the pro-
duction of a document where all requirement are specified, either for-
mally or informally.

As an example, let us detail the requirements discover task that typically
includes steps that can be classified into five fundamental types, as described
below:

44

3.3. Requirements Elicitation and Analysis

1.a Analyzing the Stakeholders: One of the steps in requirements elici-
tation is to involve and to analyse all the relevant stakeholders, because
they are the persons who have an interest in the system or are affected
in some way by the development of the system.

1.b Understanding the application domain: The application domain
[Zave and Jackson 1997] is the “real world” in which the system to be
developed will ultimately reside. When the requirements elicitation
starts, it is important to examine in detail the current environment of
the application domain, in order to identify and describe the problems
to be solved by the system according to the key business goals and
issues.

1.c Identifying the Sources of Requirements: Stakeholders are the
most obvious source of requirements for the system, and users and
subject matter experts are asked to supply detailed information about
the problems and user needs. When a project involves replacing a
current or legacy system, the existing systems, including their docu-
mentation, and processes constitutes another source for eliciting re-
quirements. It is important to identify the sources of requirements
because requirements may be spread across many sources, in a variety
of formats.

1.d Selecting the techniques, approaches, and tools to use: A criti-
cal factor in the success of the elicitation process is the correct choice
of techniques or approaches to be employed in the specific context of
the system to be developed [Nuseibeh and Easterbrook 2000], and also
the tools to support it. It is generally agreed that there is no single
elicitation technique or approach that is suitable for all projects.

1.e Eliciting the Requirements from Stakeholders and other Sources:
After the identification of the requirements and the stakeholders, the
requirements elicitation can start using the selected techniques, ap-
proaches, and tools.

The success of the requirements elicitation activity depends on the com-
mitment and cooperation of the system stakeholders and on the communica-
tion skills of the requirements engineers. Thus, requirements elicitation can
be seen as a multifaceted and iterative activity. The lack of agreement about
the requirements of a system to be developed and the communication barri-
ers among the stakeholders are two important problems that often occur in

45

Chapter 3. Software Requirements

software projects. This happens because it is typical to identify in a software
development project different communities of participants, which imply that
concepts clearly defined to one community could be entirely obscure for the
members of another community.

3.3.2 Techniques and approaches for elicitation

In this subsection, some techniques and approaches for requirements elic-
itation are briefly introduced. In reality, there exist literally hundreds of
techniques and approaches that can be employed for elicitation. Although
not exhaustive, we consider our selection as representative of the most pop-
ular and applied techniques in industry. For a more detailed description of
the techniques, please refer to [Zowghi and Coulin 2005].

Interviews [Holtzblatt and Beyer 1995] are essentially human-based
social activities, and they are probably the most traditional and commonly
used technique for requirements elicitation. The interviews are usually clas-
sified as structured, unstructured and semi-structured. Due the social nature
of interviews, the quality of interaction between the participants determines
the success of the activity, and the usefulness of the gathered information
depends on the skill of the interviewers [Goguen and Linde 1993].

Questionnaires [Foddy 1993] consist in a list of questions using terms,
concepts and boundaries of the domain previously established and under-
stood by the participants. The questionnaires are mainly used during the
early stages of requirements elicitation.

Task analysis [Richardson et al. 1998] constructs a hierarchy of the
tasks performed by the users and the system, employing a top-down ap-
proach where high-level tasks are decomposed into subtasks and eventually
detailed sequences until all actions and events are described.

Domain Analysis permits the analyst to gather early requirements
and to understand and capture domain knowledge, by examining the ex-
isting and related documentation (e.g., forms and files used in the current
business processes, and design documents and user manuals for existing sys-
tems) and also other applications. From these examined documents, some
reusable concepts and components may be identified. Analogies and ab-
stractions of existing problem domains can be used as baselines to acquire
specific and detailed information, identify and describe possible solution sys-
tems, and assist in creating a common understanding between the analysts
and the stakeholders. Domain knowledge in the form of detailed descrip-
tions and examples plays an important part in the process of requirements
elicitation, because it can be combined with other elicitation techniques.

46

3.3. Requirements Elicitation and Analysis

These approaches also provide the opportunity to reuse specifications and
to validate new requirements against other domain instances [Sutcliffe and
Maiden 1998]. Problem Frames [Jackson 2000] permit one to detail the
examination of problems allowing the identification of patterns that could
constitute links to potential solutions.

Introspection [Goguen and Linde 1993] consists on developing require-
ments based on what the analyst believes the users and other stakeholders
want and need from the system. This technique is applied when the analyst
has a strong knowledge about the application domain and is aware of the
goals of the system. In any case, it should be only seen as a starting point
for using other requirements elicitation techniques

Repertory Grids [Jankowicz 2003] aim to identify and represent the
differences and similarities between the different domain entities. They con-
sist on building a matrix with the categories of the system, based on asking
stakeholders to develop attributes and assign values to a set of domain en-
tities. The level of abstraction present in the matrix is not familiar to most
users, so it is usual to select this technique when eliciting requirements from
domain experts. This technique is somewhat limited in its ability to express
specific characteristics of complex systems.

When using Card Sorting, the stakeholders distribute a set of cards
with the name of domain entities by groups, according to their own un-
derstanding, explaining the rationale for the way in which the cards are
grouped. For effective card sorting, all entities must be included in the
process. This is only possible when the domain is sufficiently understood
by both the analyst and the participants. The information obtained using
this technique is limited in its detail, due to the high level of abstraction
represented by the entities.

Laddering [Fransella 2004] requires the stakeholders to answer short
prompting questions, known as probes, which must be arranged into an
organized structure. To be effective, the stakeholders must be able to express
their understanding of the domain and then arrange it in a logical way.
Like card sorting, laddering is mainly used as a way to clarify requirements
and categorize domain entities. The resulting knowledge, which is typically
displayed using a tree diagram, is reviewed and iteratively modified as more
information is added.

Group Work is one of the most used techniques in industry for require-
ments elicitation. Groups are particularly effective because they involve and
commit the stakeholders directly and promote cooperation. Due to the num-
ber of different stakeholders that may be involved in a given project, these
sessions can be difficult to organise. The success of group work depend on

47

Chapter 3. Software Requirements

the participants and the cohesion within the group. Group work is less effec-
tive in highly political situations, because stakeholders must feel comfortable
and confident in speaking.

Brainstorming is based in an informal discussion avoiding exploring or
criticising ideas in great detail, to rapidly generate as many ideas as possible.
Typically, brainstorming is used to find the preliminary mission statement
for the project and target system. This technique allows the discovery of
new and innovative solutions to existing problems.

Joint Application Development (JAD) [Wood and Silver 1995] in-
vestigates through a general discussion amongst all the available stakehold-
ers both the problems to be solved, and the available solutions to those
problems. It is usual that the main goals of the system have already been
established before the stakeholders participate. The focus of this type of
meeting tends often to be on the needs and desires of the business and users
rather than technical issues. Requirements Workshops [Gottesdiener
2002] constitute a similar concept and are basically a group meeting, where
the emphasis is on developing and discovering requirements for a software
systems.

Ethnography [Ball and Ormerod 2000; Jirotka and Goguen 1994] is
an elicitation technique that suggests the involvement of the analysts in
the normal activities of the users over a significant period of time. This
situation permits the analyst to collect information about the operations
being executed, which is especially useful when dealing with usability fac-
tors, or studying interactions between human stakeholders. A special type
of ethnography is Observation, where the analyst, as the designation sug-
gests, observes (without direct interference) the execution of the existing
processes by the users. This technique is commonly used in conjunction
with interviews and task analysis.

In Protocol Analysis [Goguen and Linde 1993] the participants talk
through an activity or task, describing the actions being conducted and the
process behind them. Often, some minor steps performed frequently and
repetitively are taken for granted by the users, and may not be explained
and subsequently recorded as part of the process.

Apprenticing [Robertson and Robertson 2006] considers that an expe-
rienced user guides the analyst actually learning and performing the current
tasks, thus the analyst becomes actively involved in the real life activities of
the business.

Prototyping [Gomaa and Scott 1981] consists on building a prototype
(i.e., a rudimentary version of the final system) based on the, usually pre-
liminary, release of the requirements document, or the existing examples of

48

3.3. Requirements Elicitation and Analysis

similar systems. By playing with the prototype, the stakeholders can get a
feel of the system, which can be used to support the investigation of possible
solutions to gather detailed information and relevant feedback [Sommerville
2006]. This technique is helpful when developing new systems for entirely
new applications, and the prototypes encourage stakeholders to participate
in elicitation of the requirements. In many cases, prototypes are expensive
to produce in terms of time and cost. Prototypes are normally used in
conjunction with other elicitation techniques, such as interviews and JAD.

Goal-based approaches consider that high-level goals representing the
objectives for the system are decomposed and elaborated into sub-goals.
This decomposition approach can be conducted until the individual (low-
level) requirements are elicited. As the result of this process, one obtains a
detailed relationship between the objectives of the system, the requirements
and the domain entities. The decomposition of objectives of the system is
usually done using AND and OR relationships, and the elaboration is usu-
ally done using two kinds questions, one about reason why it is done, and
another about how it will be done. The possibility to introduce errors when
defining the high-level goals of the system constitute one of the main risks
when using goal based approaches, because it can have a major and dam-
aging effects in the future phases of the development, and the changing of
goals during the development are difficult to manage. Significant effort has
been devoted to developing these types of approaches for requirements elici-
tation such as the F 3 project [Bubenko and Wangler 1993], the KAOS meta
model [Dardenne et al. 1993] and the i* framework [Yu 1997]. The use of
goals in conjunction with scenarios to elicit requirements has also attracted
considerable attention [Haumer et al. 1998; Potts et al. 1994; Rolland et al.
1998]. In practice, all these goal-based approaches have been applied in
contexts where only the high-level needs for the system are well-known, and
there exists a general lack of understanding about the specific details of the
problem to be solved and its possible solutions.

Scenarios are basically descriptions of actions and interactions between
the users and the system. The descriptions in the scenarios capture exam-
ples and illustrations, thus it helps stakeholders in reasoning about complex
systems [Potts et al. 1994].

Scenarios are widely used in requirements elicitation and are narrative
and specific descriptions of current and future processes, including actions
and interactions between the users and the system. Like use cases, sce-
narios do not typically consider the internal structure of the system, and
require an incremental and interactive approach to their development. Nat-
urally, it is important when using scenarios to collect all the potential ex-

49

Chapter 3. Software Requirements

ceptions for each step. A substantial amount of work from both the research
and practice communities has been dedicated to developing structured and
rigorous approaches to requirements elicitation using scenarios, including
CREWS (Cooperative Requirements Engineering With Scenarios) [Maiden
1998], The Inquiry Cycle [Potts et al. 1994], SBRE [Kaufman et al. 1989],
and Scenario Plus [Scenario Plus 2008]. Scenarios are additionally very
useful for understanding and validating requirements, as well as test case
development.

Scenarios can be used to describe possible instantiations of a given use
case. Each scenario describes a specific sequence of actions and interactions
between the users and the system. Among other alternatives, scenarios
can be expressed either as a list of steps written in natural language, or
by a UML interaction diagrams. It is important to notice that scenarios
only provide restricted requirements descriptions, because they deal with
examples and illustrations. Therefore, the scenarios must be generalised to
obtain the complete requirements.

Viewpoint approaches allow the modelling from different perspectives
of the domain in order to develop a complete and consistent description of
the system. For example, a system can be described in terms of its operation,
implementation and interfaces. In the same way systems can be modelled
from the standpoints of different users or from the position of related sys-
tems. These types of approaches are particularly effective for projects where
the system entities have detailed and complicated relationships with each
other. Viewpoints are also useful as a way of supporting the organization
and prioritization of requirements. However, they are usually criticised due
to the fact that they do not enable non-functional requirements to be rep-
resented easily, and are expensive to use in terms of the effort required.
Some viewpoint approaches [Nuseibeh et al. 1996; Sommerville et al. 1998]
provide a flexible multi-perspective model for systems, using different view-
points to elicit and arrange requirements from a number of sources. Using
these approaches analysts and stakeholders are able to organize the pro-
cess and derive detailed requirements for a complete system from multiple
project specific viewpoints.

3.4 Requirements Validation

This section discusses issues related with the requirements validation activ-
ity, which occurs during the requirements engineering process. Requirements
validation is based on the elaboration of a demonstration that the gathered

50

3.4. Requirements Validation

requirements define the system that the customer really wants. It is impor-
tant to clarify the distinction between validation and verification of a model,
since in some contexts these two terms are used interchangeably. Valida-
tion is the process of determining the degree to which a model is an accurate
representation of the real-world from the perspective of the intended uses.
Verification is the process of determining that a computer model accu-
rately represents the developer’s conceptual description and specification.
These terms have a different interpretation, for example, in the simulation
area [Law and Kelton 2000], where verification consists on ensuring that the
model behaves as its creators intended, while validation consists on ensuring
that the model has a similar behaviour to the real system.

The importance of the requirements validation activity is related to the
higher cost of fixing an error at the design or implementation phases of
a project when compared with the correction at the requirements phase.
Similarly to the requirements analysis, the requirements validation activity is
focused on finding problems, omissions, and mismatches at the requirements.
To accomplish this purpose, the validation activity includes different types
of checks to the requirements document [Sommerville 2006]:

• Validity aims to check if the system provides the functions which
best support the customer’s needs. Typically, in the beginning of the
process the user thinks that a system is needed to provide certain
functions. However, along the process with more thought and analysis
of the needs one may identify additional or different functions that
are required to be available in the final product. As we said before,
a system have different types of stakeholders who have distinct needs.
In this way, any set of requirements is inevitably a compromise among
the different opinions and expectations of the various stakeholders.

• Consistency aims to identify if there are any conflicts among the
requirements. It is expected that the requirements expressed in the
document have no conflicts, that is, there should be no contradictory
constraints or descriptions of the same system function.

• Completeness aims to check if all functions required by the customer
are included. The requirements document must include the require-
ments, which define all the functions and all the constraints expressed
by the system user.

• Realism aims to verify if the requirements can be implemented given
the available budget and technologies. The requirements should be

51

Chapter 3. Software Requirements

checked to ensure that they could be implemented using the compe-
tences and skills on the existing technologies, and taking into account
the budget and schedule available for the system development.

• Checkability aims to answer to the question “Can the requirements
be checked?”. Typically, there is a potential dispute between the cus-
tomers and client that can be reduced by assuring that the system
requirements are all described in such a way that they can be checked.
This must allow the specification of a set of tests to ensure that the
delivered system meets each specified requirement.

There exist several techniques for requirements validation. Some of them
can be used in conjunction in some situations. Those techniques can be
classified in the following three main types:

1. The requirements reviews is based on the systematic and manual
analysis of the requirements document by a team of reviewers.

2. The prototyping creates an rudimentary version of the system under
development to be used to demonstrate concepts and try out design
options.

3. The test-case generation develops tests to check the requirements,
from data, logical relationships or other requirements information. A
common practice of eXtreme Programming (XP) is to develop tests
from the user requirements before writing any code.

A requirements review is a manual task to check the requirements doc-
ument for anomalies and omissions, which whenever possible should involve
a number of stakeholders with different backgrounds. A possible form of re-
quirements review consists on the development team driving the client over
the system requirements, explaining the impact of each one. The review
team should check each requirement for consistency, as well as checking the
set of requirements as a whole for completeness.

All detected conflicts, contradictions, errors and omissions in the require-
ments should be pointed out by the reviewers and formally recorded in the
review report. This report is an useful artefact for the stakeholders, when
they have to participate in the (re)negotiation of the requirements.

It is surprising how often communication between system developers and
stakeholders ends after the elicitation activities. Often, there is no confirma-
tion that the documented requirements reflect what the stakeholders really
said (or at least thought) about what they want the system to provide. In

52

3.4. Requirements Validation

many cases, problems can be detected simply by talking about the system
with the stakeholders.

There are many distinct situations in software development projects
where is may be useful to apply the prototyping technique. One example
is when the prototype constitutes an experimental (rudimentary) system,
specifically developed to elicit the requirements. Therefore, it is common to
start with requirements that are poorly understood, and progressively en-
rich and improve the prototype, along the requirements engineering process,
as requirements are better verbalised and documented. Another example is
when the project involves multiple teams working on different places. In
this situation, it is important to deliver a prototype to the end-users, i.e., a
working system created based on the currently available set of requirements,
to validate the agreed and negotiated requirements. When the requirements
are validated, in some contexts, the prototype is thrown away and the de-
sign and implementation activities can begin, using different approaches and
technologies (than those adopted for the prototype).

Agreeing on the requirements for a given system is not at all easy or
simple, since it includes many problems. Among those problems we can
identify difficulties, for example, on the communication amongst the stake-
holders and on the combination of several different opinions and perspectives
when multiple stakeholders are involved. Therefore, it is generally accepted
that it is difficult to show that a set of requirements meet the needs of the
users, so efforts must be done in order to allow them to form a mental picture
of the system and imagine how that system fits into their work [Sommerville
2006]. If the prototype is an executable model, it can be used to validate re-
quirements by executing it, so that end-users and customers can appreciate
the intended behaviour of the system.

To make effective the validation activity, the execution or simulation of
the considered model must be easily followed by the end-users. Simula-
tion refers to a large set of methods that intend to mimic the behaviour of
real systems, facilities, and processes, usually on a computer with adequate
software [Law and Kelton 2000]. Simulation is one of the most widely used
operations-research and management-science techniques, with numerous and
diverse application areas.

Typically, the model being simulated follows a specific formal modeling
language, in which end-users and customers are not experts. Thus, it is
highly desirable to provide a visualization of the simulation of the model
(and consequently of the system), using representations of the elements of
the application domain. Since end-users and customers are familiar with
the application domain and its elements, it is expected that they will not

53

Chapter 3. Software Requirements

have major cognitive problems in understanding the visualisation, if the
representations are sufficiently intuitive.

In this thesis, we propose to use animations as a form of visualising the
execution/simulation of a model of the system under consideration. Ani-
mation is the rapid display of a sequence of images of two-dimensional or
three-dimensional artwork or model positions, in order to create an illusion
of movement. The most common method of presenting animation is as a
motion picture or video program, although several other forms of present-
ing animation also exist. An animation can be used to visualise the model
behaviour using graphics from the application domain. An emblematic ex-
ample of a tool that allows the animation of models is the ARENA tool
[Kelton et al. 2004].

An animation represents the key elements of system on the screen by
icons that dynamically change their appearance (colour and shape) and
their position as the simulation model evolves through time. Some of the
usages of an animation are:

• To communicate the essence of a simulation to a manager or to other
people who may not be aware of (or care about) the technical details
of the model;

• To debug the simulation models;

• To show that a simulation model is not valid;

• To suggest improved operational procedures for a system, because in
many situations some phenomena may not be apparent just by looking
at the simulation’s numerical results;

• To prepare or to train the people who will use the future system;

• To improve the communication among the project team.

There are two main types of executing an animation. In the first one,
called concurrent animation, the animation is being displayed at the same
time that the simulation is running. One must be aware that in these cases
the animation may significantly slow down the execution of the simulation.
In the second type, designated post-processed animation (also called play-
back), the state changes in the simulation are recorded and used to drive
the graphics, after the simulation is over.

An animation is primarily a communications method, so it should be
possible to create high-resolution icons and to save them for later reuse. A

54

3.4. Requirements Validation

library with standard icons should be available in the animation tool, and
it must allow a smooth movement of icons. It is desirable if animation uses
vector-based graphics (pictures are drawn with lines, arcs and fills) rather
than pixel-based graphics (pictures are drawn by turning individual pixels
on or off). The former type of graphics allows rotation of an object (e.g., a
helicopter rotor). The animation tool must also offer a set of commands to
control the animation, such as speeding up or slowing down the animation,
zooming in or zooming out parts of the system, and panning to see parts of
the system that are too large to fit in the screen. Some software products
have named animation views, so that one can construct a menu of views
corresponding to different parts of the simulated system.

55

Chapter 3. Software Requirements

56

Part II

Contribution

57

Chapter 4

Transforming Sequence
Diagrams into a CPN Model

Summary

This chapter introduces a set of rules to transform a set of
sequence diagrams of UML 2.0 into a CPN model. It is de-
tailed how to transform plain sequence diagrams, which de-
fine the messages in the sequence diagrams and the order be-
tween them, in terms of constructs of the CPN modelling lan-
guage. Afterwards, one defines how some of the high-level op-
erators of the sequence diagrams are transformed into elements
of the CPN model.Additionally, are shown the results of apply-
ing these ideas to some illustrative examples. The tool support
available for the rules to transform sequence diagrams into a
CPN model is described.

Contents

4.1 Plain Sequence Diagrams 60

4.2 Sequence Diagrams with High-level Operators . 62

4.3 Tool Support . 67

59

Chapter 4. Transforming Sequence Diagrams into a CPN Model

4.1 Plain Sequence Diagrams

This section illustrates how to transform plain sequence diagrams into a
CPN model. Plain sequence diagrams refers to UML 2.0 sequence diagrams
that have no high-level operators. To accomplish this, we describe how the
transformation is achieved, depending on the semantics of the operators, and
additionally we show the result of applying these ideas to some illustrative
examples. The material presented in this chapter was published in [Ribeiro
and Fernandes 2006].

We consider a semantic for sequence diagram with a order relation be-
tween messages such that the emission of a given message requires the recep-
tion of the preceding one, if it exists. Notice that we are assuming sequence
diagrams with synchronous messages.

Firstly, let us consider the case of a sequence diagram with only one
message. Figure 4.1 contains both the representation of a sequence diagram
with only one message (Figure 4.1a), and the corresponding CPN model
(Figure 4.1b). The message called message1 flows from the lifeline of object
A to the lifeline of object B.

sd example

A B

message1

(a) A sequence diagram with only one
message (message1).

f_message1(aB)

aB

s

s

message1Pb

B

pos_m1

ScenarioInfo

pre_m1

ScenarioInfo

(b) The obtained CPN model.

Figure 4.1: Transforming a sequence diagram with only one message.

Each message in a sequence diagram is represented in the CPN model by
a transition, thus the firing of a transition in the CPN model represents the
execution of the corresponding message in the sequence diagram. The CPN
model presented in Figure 4.1b has the transition message1 that represents
the message in the (source) sequence diagram.

The place pre m1 represents the initial step of execution of the sequence
diagram, that is tokens in this place allow the execution of the part of

60

4.1. Plain Sequence Diagrams

the CPN model that represents the body of the sequence diagram. In this
example, the body of the sequence diagram is the execution of message1.
The place pos m1 represents the last step of the execution of the sequence
diagram.

There are places in the CPN model that hold the current values of the
object that appears in the sequence diagram. Each message in a sequence
diagram carries a function that may change the value of the receptor object.
In this way, each time a transition fires, the values of objects may change.
Next to each transition in the CPN model there is a place that holds a repre-
sentation of the current value of the object in the message’s destination. In
Figure 4.1b, place pb that holds the tokens of the current values of instances
of object B.

The sequence diagram in Figure 4.2a represents an interaction without
high-level operators. There are three objects (A, B and C) with the corre-
sponding lifelines. There exist three messages in the sequence diagram:

(a) A UML 2.0 sequence diagram without
high-level operators

()

()

()

m3(aB)

aB

()

m1(aB)

aB

()

()aC

m2(aC)

m3

m1

m2

UNIT

Fusion 2

B

UNIT

UNIT

Fusion 2

B

Fusion 3
C

UNIT

Fusion 3

Fusion 2

Fusion 2

(b) The obtained CPN model

Figure 4.2: Example of transform a sequence diagram without high-level
operators

1. message m1, that flows from A to B;

2. message m2, that flows from B to C;

3. message m3, that flows from A to B.

61

Chapter 4. Transforming Sequence Diagrams into a CPN Model

One can observe that message m1 appears before message m2; and mes-
sage m2 appears before m3. Figure 4.2b depicts the CPN model obtained
from the sequence diagram. The messages m1, m2 and m3, are represented
by the transitions with the same names in the CPN model. When executing
the CPN model the firing of a transition represents the execution of the
corresponding message in the sequence diagram.

The order between the messages is ensured by introducing places between
the transitions with the colour set UNIT. The input place for transition m1

represents the beginning of the execution, the output place for transition m3

represents the end of the execution, and the places between two transitions
(i.e. a place that is input place for one transition and output place for
another) guarantees the order between the firing of transitions.

An InteractionFragment is a set of Lifelines, each of which has a sequence
of EventOccurences associated with it.

4.2 Sequence Diagrams with High-level Operators

This section illustrates how to translate some of the high-level operators
available in the UML 2.0 sequence diagrams, into a behaviourally-equivalent
CPN model. We restrict our study to the following set of high-level oper-
ators: strict, seq, par, loop and alt. Operators like neg, assert, and
critical are not considered in this work. The operators present in a se-
quence diagram one described in Section 2.2.2.

4.2.1 Alternative choice

The choice of behaviour is represented by a CombinedFragment with the
interactionOperator alt. Each operand of alt has an associated guard,
which is evaluated when choosing the operand to be executed. No more than
one operand will be chosen and in this work we assume that the guards must
be mutually disjoint (exclusive). When one of the operands has its guard
evaluated to true, the interaction associated with this operand is considered.
The empty guard is by default evaluated to true. The operand guarded by
else is evaluated to true only when the guards in the other operands are
all evaluated to false. In the case that none of the operands’ guards are
evaluated to true (this means that there are no else and empty guards),
operand is executed.

The sequence diagram in Figure 4.3a is transformed into the CPN model
in Figure 4.3b. Each operand in the sequence diagram is transformed into

62

4.2. Sequence Diagrams with High-level Operators

a sequential branch. All sequential branchs begin in a common input place
and end in a common output place.

(a) A UML 2.0 sequence diagram

()

anA anA

m3(aB)

aB

()

()

()

aC

m2(aC)

m1(aB)

()

()

()

aB ()

()

anA

()()
()

m3

m2

m1

alt ELSEalt2

[cond2(anA)]

alt1

[cond1(anA)]

Fusion 1
A

Fusion 1
A

Fusion 2
B

UNIT

UNIT

UNIT

UNIT

Fusion 3
C

Fusion 2

B

Fusion 1
A

UNIT

Fusion 1

Fusion 2

Fusion 3

Fusion 2

Fusion 1 Fusion 1

[(not (cond1 anA))
 andalso
 (not (cond2 anA))]

(b) The obtained CPN

Figure 4.3: Example with the alternative choice operator (alt)

Please notice that in this case there is no else guard, and thus when none
of the guards is evaluated as true, no operand is executed. In terms of the
CPN model, this is represented by its rightmost branch where the condition
of the “alt ELSE” transition is the negated disjunction of all other guards.
The other branches are guarded by the same condition as in the sequence
diagram and describe the same sequence.

4.2.2 Optional

The optional operator, represented by InteractionOperator opt, can be seen
as an alternative choice with only one Operand, whose guard is not the else

(see Figure 4.4). With this similarity, we can apply to the optional operator
the same general translation scheme used for alternative choice.

4.2.3 Parallel composition

The parallel merge between two or more behaviours is represented by a
CombinedFragment with the interactionOperator par. Keeping the order
imposed within each operand, EventOccurrences from different operands can
be interleaved in any way. The sequence diagram in Figure 4.5a is trans-
formed into the CPN in Figure 4.5b. The obtained CPN model has two
additional transitions to control the interleaving of behaviours. The transi-

63

Chapter 4. Transforming Sequence Diagrams into a CPN Model

(a) A UML 2.0 sequence diagram (b) The corresponding UML 2.0 sequence di-
agram with alt

Figure 4.4: The option operator (opt) expressed by an alternative choice.

tion “begin par” creates two branches (one for each operand) introducing
a token into the two output places. This way, we obtain the interleaving
between the transitions of each branch. The transition “end par” waits for
the execution of all created branches, because it is enabled only when its
input place has a number of token equal to the number of created branches.

(a) A UML 2.0 sequence diagram

()

()

()

()

()

m3(aB)

aB

()

2`()

()

m1(aB)

aB

()

()

()

aC

m2(aC)

m3

end par

begin par

m1

m2

UNIT

Fusion 2
B

UNIT

UNIT

UNIT

Fusion 2
B

UNIT

UNIT

Fusion 3
C

Fusion 3

Fusion 2 Fusion 2

(b) The obtained CPN

Figure 4.5: Example with the parallel composition operator (par)

64

4.2. Sequence Diagrams with High-level Operators

4.2.4 Weak sequencing

When using the InteractionOperator seq the corresponding CombinedFrag-
ment represents a weak sequencing between the behaviours of the operands.
The ordering of EventOccurrences within each of the operands are main-
tained in the result. OccurrenceSpecifications on different lifelines from dif-
ferent operands may come in any order. OccurrenceSpecifications on the
same lifeline from different operands are ordered such that an EventOccur-
rence of the first operand comes before that in the second operand.

In Figure 4.6a we have an example of a sequence diagram with seq

operator. The messages m1 and m3 have the EventOccurence in the same
Lifeline, and in the first operand, after the message m1 we have the message
m2. Thus, message m1 must occur before messages m3 and m2.

(a) A UML 2.0 sequence diagram

()

()

2`()

()

()
aC

m2(aC)

m3(aB)()

()

()

()

()

m1(aB)

aB

()

end
seq

m2

m3

begin
seq

m1

UNIT

Fusion 3
C

UNIT

Fusion 2
B

UNIT

UNIT

UNIT

Fusion 2
B

UNIT

Fusion 2 Fusion 2

Fusion 3

UNIT

()

aB()

(b) The obtained CPN

Figure 4.6: Example with the weak sequencing operator (seq)

To construct from a sequence diagram with the seq operator the corre-
sponding CPN model, we first consider the structure for the parallel com-
position between the operands, and after that we impose some more order
between transitions in different branches.

The sequence diagram in Figure 4.7a is another example using the op-
erator seq. The corresponding CPN model is presented in Figure 4.7b.

There are some particular cases using this operator. If the EventOccur-

65

Chapter 4. Transforming Sequence Diagrams into a CPN Model

(a) A UML 2.0 sequence diagram

()
m3(aB)

()

m2(aC)

aC

()()

()

()

()

()

()

2`()

()

()

m1(aB)

aB

()

()
aC

m2(aC)

m3

m4

begin
seq

end
seq

m1

m2

Fusion 3
C

UNIT

UNIT

UNIT

UNIT

Fusion 2
B

UNIT

UNIT

UNIT

Fusion 2
B

UNIT

Fusion 3
C

Fusion 3

Fusion 2 Fusion 2

Fusion 3

() aB

UNIT

()

()

(b) The obtained CPN

Figure 4.7: Another example with the weak sequencing operator (seq)

rence of the last message from the first operand is in the same Lifeline as
the first message of the second operand, we have a sequential order between
all the messages in the operands. If none EventOccurrence of messages is in
the same lifeline we have a parallel composition between the operands.

4.2.5 Looping

The loop InteractionOperator represents the iterative application of the
operand in the CombinedFragment. This iterative application can be con-
trolled by a guard or by a minimum and maximum number of iterations.

Given the CPN module for the operand inside the loop, we add two
transitions: “loop” and “end loop”. These two transitions have the same
input place. Transition “loop” is enabled if the condition (guard for loop

operator) evaluates to true, and its output place is the input place for the
operand’s CPN. The transition “end loop” is enabled when the condition
evaluates to false and its output place is used as connection to the end of
the loop operator. In Figure 4.8 we have an example of a sequence diagram
with the loop operator.

66

4.3. Tool Support

(a) A UML 2.0 sequence diagram

aBaB

()

()

()
()

m1(aB)

aB

()

()

()

()

aC

m2(aC)

[not (cond aB)][cond(aB)]

m1

Fusion 2

B

Fusion 2

B

UNIT

UNIT

Fusion 2

B

UNIT

UNIT

Fusion 3
C

Fusion 3

Fusion 2

Fusion 2 Fusion 2

m2

loop end loop

(b) The obtained CPN

Figure 4.8: Example with the looping operator (loop).

4.3 Tool Support

This section details a prototype of a tool that permits one to transform
in an automatic way a set of sequence diagrams describing scenarios of a
given system, into a CPN model. We have constructed our tool following
a model-to-model transformation approach [Czarnecki and Helsen 2006].
Model transformations are described by means of the so called transforma-
tion languages [Sendall and Kozaczynski 2003]. The tool uses the mecha-
nisms provided by the Atlas Transformation Language (ATL) [Jouault et al.
2008], namely to implement the transformation. ATL is supported by a set
of development tools built on top of the Eclipse environment [Bézivin et al.
2004].

We adopt this approach in order to reuse the existing tools for the in-
volved metamodels, in particular the tools to manipulate the sequence dia-
grams have the capability of exporting the diagrams using a XML standard
language.

67

Chapter 4. Transforming Sequence Diagrams into a CPN Model

4.3.1 Description of the involved metamodels

As explained before, the behaviour of each use case is described by a collec-
tion of UML 2.0 sequence diagrams, which constitute the source metamodel
for the transformation considered here. UML 2.0 has been launched to
substitute the previous versions, and among other changes it introduces in
sequence diagrams many new high-level flow operators. The description of
the metamodel for UML 2.0 is presented in Section 2.2.

In this work we are assuming a linear semantics for the sequence di-
agrams, which considers basically that if a message m1 precedes a mes-
sage m2, then m1 must be received before the sending of m2. According
to [Sibertin-Blanc et al. 2008], the usage of this linear semantics is appropri-
ate when considering sequence diagrams that capture the behaviour given
by the interactions among the actors and the system.

The ATL transformation engine accepts XMI serialisations of models and
metamodels that conform to the Meta-Object Facility (MOF), which is the
metamodeling architecture to describe models introduced by the OMG. The
ECORE framework can be seen as a practical implementation of MOF. We
consider an implementation of the UML2 metamodel defined in the ECORE
framework and provided by the UML2 Eclipse project [Eclipse UML2 2008].
Thus, it is possible to use a UML modelling tool that exports to XMI in
order to create the UML2 sequence diagrams.

An Example of a Sequence Diagram Model

Let us see how the sequence diagram in Figure 4.9 is represented in the
UML2 metamodel provided by the Eclipse project.

Figure 4.9: An example of UML2 sequence diagram.

Figure 4.10 shows an example on how sequence diagrams are edited in the
UML editor of the Eclipse modelling tools, where the elements of the model

68

4.3. Tool Support

are shown in an hierarchical, tree-like view. Each element of the sequence
diagram is preceded by a classifier (and also an icon associated with it)
that represents the element in the metamodel. This view of the sequence
diagram shows its elements and allows the navigation on the elements. The
properties associated to each element can be found in a separate tab.

Figure 4.10: The elements of the sequence diagram in Figure 4.9 shown in
the UML editor of the Eclipse modelling tool.

Figure 4.11 presents fragments of the XMI code that represents the se-
quence diagram in Figure 4.9. Lines 1 and 2 present the code for the lifeline
corresponding to the A entity, with the corresponding list of elements in it,
given by the attribute coveredBy. Lines 4-7 present the code for the message
occurrence specification MOS(1), that is one of the elements in the lifeline of
the entity A. Similarly, lines 9-12 show the code for the message occurrence
specification MOS(4), which is another element in the lifeline of the entity
A. Lines 14-16 detail the behaviour execution specification present in the
lifeline of the entity A, that starts with MOS(1) and finishes with MOS(4).

Lines 18-19 describe the message called Message1, detailing its send
event, that is the message occurrence specification MOS(1) (present at the
lifeline of the entity A); and its receiving event that is the message occurrence
specification MOS(2) (present at the lifeline of the entity B).

69

Chapter 4. Transforming Sequence Diagrams into a CPN Model

1 < l i f e l i n e xmi : id="LifeLine(A)" name="A"
2 coveredBy="MOS(1) MOS(4) BES(1)"/>
3 . . .
4 <fragment xmi:type="uml:MessageOccurrenceSpecification"
5 xmi : id="MOS(1)" name="MessageOccurrenceSpecification1"
6 covered="LifeLine(A)" event="CallEv(1)"
7 message="Msg(1)"/>
8 . . .
9 <fragment xmi:type="uml:MessageOccurrenceSpecification"

10 xmi : id="MOS(4)" name="MessageOccurrenceSpecification4"
11 covered="LifeLine(A)" event="CallEv(2)"
12 message="Msg(2)"/>
13 . . .
14 <fragment xmi:type="uml:BehaviorExecutionSpecification"
15 xmi : id="BES(1)" name="BehaviorExecutionSpecification1"
16 covered="LifeLine(A)" s t a r t="MOS(1)" f i n i s h="MOS(4)"/>
17 . . .
18 <message xmi : id="Msg(1)" name="Message1"
19 r ece iveEvent="MOS(2)" sendEvent="MOS(1)"/>

Figure 4.11: XMI code corresponding to the sequence diagram presented in
Figure 4.9.

A metamodel for CPN

The CPN modelling language is the target metamodel for the transforma-
tion. The CPN Tools saves the CPN models being edited in a XML-based
format, whose description can be found in [CPN Tools 2009]. Based on this
description, we have created a description, using the UML notation, of a
part of the metamodel used in CPN Tools. Figure 4.12 shows the UML
description of the metamodel for CPN models, which is used to support
the process of obtaining a CPN model, within the model transformation
approach considered in this work.

The CPN metamodel presented in Figure 4.12 has the element CPN as its
main element. Each CPN has a non-empty set of modules (also called pages),
which are represented by the element Page. Each Page can have two kinds
of artefacts: the nodes and the arcs. The Node element is defined as an
abstract class (name is presented in italic), and it can be used to represent
either a Transition element, or a Place element.

The element Arc is associated with one place and one transition, and each
Arc has an orientation and an inscription. The possible orientations of an
Arc is defined as the enumeration given by ArcKind, where PtoT represents
an arc that goes from a place to a transition, TtoP represents an arc that

70

4.3. Tool Support

Figure 4.12: Metamodel of CPN modelling language.

goes from a transition to a place, and BothDir represents a bidirectional arc
between a place and a transition. The arc inscriptions are represented as a
String data type.

This metamodel does not address the graphical properties of the ele-
ments (like places, transitions or arcs) of a CPN model. We use an addi-
tional transformation of a CPN model into a textual representation of the
corresponding XML-file to allow its usage within the CPN Tools. Default
values for the graphical properties of each element are used when generat-
ing the XML representation of a CPN model. We are assuming that the
user can use the tool facilities to rearrange the graphical layout of the CPN
model.

CPN models following the metamodel in Figure 4.12 can be represented
in XMI code. Figure 4.13 presents part of the XMI file to represent the CPN
model in Figure 2.8.

In Figure 4.13, lines 1-3 describe the transition T1, that is a node of
type Transition with the name T1, and the arcs that are connected with
the node, which are determined by a set of references to parts of the XMI
document. For example, one of the arcs connected with T1 is the arc referred
as arcs.0, which means the first occurrence of the tag arcs in the document.

71

Chapter 4. Transforming Sequence Diagrams into a CPN Model

1 <nodes x s i : t y p e="CPN:Transition" name="T1"
2 connectedArcs="//@pages.0/@arcs.0 //@pages.0/@arcs.1

3 //@pages.0/@arcs.2"/>
4 . . .
5 <nodes x s i : t y p e="CPN:Place" name="P1"
6 c o l o r s e t="Int" i n i t i a lMa rk i ng="1‘1++1‘5"
7 connectedArcs="//@pages.0/@arcs.0 //@pages.0/@arcs.5"/>
8 . . .
9 <a rc s name="fromP1toT1" o r i e n t a t i o n="PtoT" i n s c r i p t i o n="a"

10 transend="//@pages.0/@nodes.0"
11 placeend="//@pages.0/@nodes.2"/>

Figure 4.13: A part of the XMI code representation of the CPN model
presented in Figure 4.12.

Lines 5-7 describe the place P1, which is a node of type Place with the
name P1, and the corresponding list of arcs that are connected with it.
Lines 9-11 constitute the first occurrence of the tag arcs and describe the
arc fromP1toT1 flowing from place P1 to transition T1, thus its has the
orientation PtoT with the inscription a. This example illustrates how the
target model in our transformation is built.

4.3.2 Details of the transformation

The mapping from scenarios described as sequence diagrams to a CPN
model is implemented using ATL. Transformations in ATL are defined by
helper operations and a set of rules, called transformation rules. An helper
operation is defined in the context of a metamodel element, and it can be
used within the rules. Each transformation rule matches model elements in
a source model and creates elements in a target model.

This subsection presents an illustrative subset of the ATL rules to be
applied to the elements in the source metamodel (sequence diagrams) to
obtain the corresponding elements in the target metamodel (CPN modelling
language).

Figure 4.14 presents an overview of the transformation, where the rectan-
gles represent the artefacts being considered. The connections between the
artefacts are either the relation “conforms to”, represented by a continuous
line with an arrowhead, or the relation “is transformed into”, represented
by a dashed line with an arrowhead. The model with the sequence diagrams
is serialized in an XMI-file, which conforms to the metamodel for UML2 di-

72

4.3. Tool Support

MOF

UML2.ecore CPN.ecore

interactions.xmi outputCPN.xmi

SeqDia2CPN.atl

ATL

Figure 4.14: An overview of the transformation.

agrams described in ECORE. This model is used as a source model for the
tranformation defined in the ATL file SeqDia2CPN.atl, which constitutes a
model that conforms to the metamodel for the ATL transformations. As tar-
get model, one obtains a CPN model, which conforms to the metamodel for
the CPN modelling language defined in Subsection 4.3.1. The metamodels
can be seen as models conforming to MOF.

The rules to transform elements of sequence diagrams follow the ideas
explained in previous sections, and each rule is defined for one of the ele-
ments of the metamodel for UML 2.0 sequence diagrams, whose details are
described in Section 2.2.

Each message in an interaction has two message occurrence events: one
corresponding to the sending of the message, and another corresponding to
the receipt of the message. We consider that each message occurrence event
in an interaction is transformed into a place in the CPN model. Figure 4.15
shows the part of the ATL rule to be applied to the message occurrences
events in order to create the corresponding place. For this place, the colour
set is defined as the name of the actor where the event occurs.

1 r u l e MOS {

2 from sourceMOS: UML!MessageOccurrenceSpecification

3 to targetPlace: CPN!Place (

4 name ← ’mos_’ + s.name ,

5 colorset ← ’cs_’ + sourceMOS.covered.name)}

Figure 4.15: The ATL transformation rule MOS to be applied to a message
occurrence specification.

73

Chapter 4. Transforming Sequence Diagrams into a CPN Model

A message of an interaction is transformed into a transition in the CPN
model. Figure 4.16 shows the part of the ATL rule that permits to transform
a message into a transition and the two arcs related with this transition. The
name of the obtained transition is obtained by pre-appending the string
“msg” to the name of the source message, and its guard is defined as true
by default (see lines 9-10). The two arcs related with this transition are:

1 r u l e Msg {

2 from sourceMessage: UML!Message

3 to targetTrans: CPN!Transition (

4 name ← ’msg_’+ sourceMessage.name ,

5 guard ← ’true’),

6 arcToTrans: CPN!Arc(

7 name ← ’arc_to_ ’ + sourceMessage.name ,

8 orientation ← #PtoT ,

9 inscription ← ’var’+ sourceMessage.name ,

10 transend ← tragetTrans ,

11 placeend ← sourceMessage.sendEvent),

12 arcFromTrans: OUTMODEL!Arc(

13 name ← ’arc_from_ ’ + sourceMessage.name ,

14 orientation ← #TtoP ,

15 inscription ← ’var’+ sourceMessage.name

16 transend ← tragetTrans ,

17 placeend ←
18 l e t nextMOS: ...

19 i n i f (nextMOS → oclIsUndefined ())

20 then sourceMessage.receiveEvent.covered

21 e l s e nextMOS

22 end i f)}

Figure 4.16: The ATL transformation rule Msg to be applied to a message.

1. one input arc that comes from the place obtained by the transforma-
tion of the sending event associated with the considered message (see
lines 6-11); and

2. one output arc that goes to the place obtained by the transformation of
the message occurrence that follows the receiving event in the lifeline
(see lines 12-22), where variable nextMOS receives the value of the
next message occurrence specification in the lifeline. Then the value
of nextMOS is tested in order to discover if there exists a next message
occurrence event in the lifeline.

74

4.3. Tool Support

There exists a rule to map an interaction element into a CPN element,
where the sets of nodes and arcs are created based on the transformation of
the elements occurring inside the considered interaction.

A lifeline is represented by a place in the target model. Figure 4.17
presents the ATL code of the rule to be applied to a lifeline.

1 r u l e Lifeline {

2 from s : INMODEL !"uml:: Lifeline" (

3 thisModule.inElements → includes(s))

4 to t : OUTMODEL!Place(name ← s.name)}

Figure 4.17: The ATL transformation rule Lifeline to be applied to a lifeline.

The interaction is the top-most element of a sequence diagram, i.e., in
the structure of a sequence diagram an interaction contains all the elements
constituting the diagram. In this way, the rule for the transformation to be
applied to an interaction outputs the corresponding CPN model, collecting
the resulting CPN model elements (nodes and arcs) of the application of the
corresponding rules to the elements in the sequence diagram. Figure 4.18
details the code to implement the rule of an interaction.

75

Chapter 4. Transforming Sequence Diagrams into a CPN Model

1 r u l e Interaction {

2 from s: INMODEL !"uml:: Interaction"

3 (thisModule.inElements → includes(s))

4 to t: OUTMODEL!CPN(

5 name ← ’INTERACTION_ ’+ s.name ,

6 nodes ← thisModule.allLifelines

7 → union(thisModule.allMessages)

8 → union(thisModule.

9 allBehaviorExecutionSpecifications)

10 → union(thisModule.

11 allMessageOccurrenceSpecifications),

12 arcs ← (thisModule.allMessages

13 → collect(m|

14 thisModule.resolveTemp(m,’arcToTrans ’)))

15 → union(thisModule.allMessages

16 → collect(m|

17 thisModule.resolveTemp(m,’arcFromTrans ’)))

18 → union(thisModule.allMessages

19 → collect(m|

20 thisModule.resolveTemp(m,’arc1’))

21))

22 }

Figure 4.18: The ATL transformation rule Interaction to be applied to an
interaction.

76

Chapter 5

Enriching CPN models for
Animation

Summary

This chapter describes some guidelines that we suggest to be
taken into account when enriching a CPN model for anima-
tion purposes. These guidelines aim to ensure that the obtained
CPN model: (1) allows the easy modification of the initial con-
ditions of scenarios; (2) includes a description of the state of
the relevant entities in the environment; and (3) implies that
the elements related to the animation are clearly separated from
the other ones.

Contents

5.1 Introduction . 78

5.2 Mapping sequence diagrams into a CPN model 78

5.3 Data representation for the environment 81

5.4 Animation of messages in the sequence diagrams 83

5.5 Initial conditions for scenario execution 84

5.6 Building an animation 86

77

Chapter 5. Enriching CPN models for Animation

5.1 Introduction

The CPN model that is constructed from a set of scenario descriptions is
an executable model that can be used to drive a graphical animation layer
showing elements and concepts from the problem domain. Additionally, the
CPN model needs to include a mechanism to manage how animation events
are handled.

The BRITNeY [Westergaard 2006; Westergaard and Lassen 2006] ani-
mation tool is used to connect the execution of the CPN model in the CPN
Tools with the SceneBeans objects corresponding to the animation specified
in XML-based file. We use the SceneBeans plug-in present in the BRITNeY
suite to display and interact with a SceneBeans animation.

As stated before, we consider that the requirements process includes the
creation of a set of use cases. The behaviour of each use case is detailed by
a collection of scenario descriptions, which can be represented by sequence
diagrams. In the UML 2.0, sequence diagrams have many high-level flow op-
erators. The transformation from these sequence diagrams to a CPN model
is based on the general principles described in Chapter 4, which associate
each message in the sequence diagram with a transition in the CPN model
and define some mechanisms in the CPN model to represent the high-level
operators present in the sequence diagrams.

We describe the construction of a CPN model to execute the scenarios
described by sequence diagrams and also the additional constructs that need
to be introduced to allow the obtained CPN model to regulate the animation.
The description of the techniques is uses some examples taken from the case
study of an elevator controller system described in Chapter 6, in particular
we consider the sequence diagram with the main scenario for the “Service
Floor” use case presented in Figure 5.1. The material presented in this
chapter was published in [Ribeiro and Fernandes 2007a].

5.2 Mapping sequence diagrams into a CPN model

We suggest that each sequence diagram is translated to a CPN model where
there is a substitution transition for each message or high-level operator in
the sequence diagram. The places between substitution transitions guar-
antee the order between the messages in the sequence diagram, and their
colour set needs to include the necessary information to allow the parallel
execution of many scenarios.

Figure 6.27 shows a CPN model that was obtained from the sequence dia-

78

5.2. Mapping sequence diagrams into a CPN model

opt

 loop

Elevator

Controller
Direction

 Indicator

Car Door Car Motor Floor

Indicator

lightDirInd(c,d)

start(c,d)

Location

Sensor

close(c)

Door Motor

lightFloorInd(c,f)

isArrivingFloor(c,f)

stop(c)

isAtFloor(c,f)

opt

slowDown(c)

[f = Fd]

d=up, if Fd>Fo;

d=down, if Fd<Fo;

Elevator car c is at floor Fo, and

the next requested floor is the Fd

Fi=Fo+1, if d=up;

Fi=Fo-1, if d=down;

[for each f between Fi and Fd]

[CarDoor.isOpen(c)]

Figure 5.1: Sequence Diagram describing the “Service Floor” use case.

gram in Figure 5.1, where messages, and high-level operators in the sequence
diagram are represented by substitution transitions in the CPN model.

For example, the message lightDirInd is represented by the substitution
transition with the same name, and the first opt operator in the sequence di-
agram is represented by the substitution transition “opt (Is car door open?)”.
The messages inside the opt operator are tackled inside the corresponding
subpage. The subpages contain the necessary details to animate the mes-
sages in the sequence diagram.

Places in the CPN of Figure 6.27 have the colour set ScenarioUC2, which
provides the necessary information to execute a scenario of “Service Floor”
use case, namely the origin and destination floors and the car being used.
In other words, the definition of the colour set ScenarioUC2 comes from the
textual annotation “Elevator car c is at floor Fo, and the next requested floor
is the Fd”, from the sequence diagram in Figure 5.1, where the variables c, Fo

and Fd are informally declared. These implicit and informal declarations of

79

Chapter 5. Enriching CPN models for Animation

stop

msg stop

loop
current floor

 between Fo and Fd

loop

opt
(is car door open?)

opt1

lightDirInd

msg lightDirInd

start motor
of a car

msg start

car stopped

Out
ScenarioUC2

car is at Fd

ScenarioUC2

car motor is
started

ScenarioUC2

begin of UC2

In
ScenarioUC2

car door
is closed

ScenarioUC2

light direction
actualised

ScenarioUC2

In

Out

msg start

msg lightDirInd

opt1

loop

msg stop

Figure 5.2: CPN model representing a sequence diagram for UC2 “Service
Floor”.

variables by a textual annotation allow for the usage of the same sequence
diagram in different situations, by using the variables as a parameter in
messages, or even in other textual annotations. The definition of the colour
set ScenarioUC2 in the CPN ML programming language has the following
code:

1 colset ScenarioUC2tmp = record
2 c: CarId *
3 fo: FloorNumber *
4 fd: FloorNumber ;

5 fun hasDiffFloors(s:ScenarioUC2tmp)= (#fo s) <> (#fd s) ;

6 colset ScenarioUC2 = subset ScenarioUC2tmp by hasDiffFloors;

80

5.3. Data representation for the environment

The colour sets CarId and FloorNumber are defined as integers to identify
a car and a floor, respectively. The colour set ScenarioUC2tmp is created
essentially to be used in the definition of the colour set ScenarioUC2. When
executing an instance of the “Service Floor” use case, it is implicit that
the origin and destination floors are different. This is specified using the
predicate hasDiffFloors to restrict the colour set ScenarioUC2tmp to obtain
the colour set ScenarioUC2, whose elements are guaranteed to have different
origin and destination floors.

The colour set ScenarioUC2 is used to distinguish between parallel exe-
cutions of the use case, and thus the colour set must identify the car, the
origin floor, and the destination floor. To start the execution of the CPN
model it is necessary to define the input parameters using the place begin
of UC2, where several tokens can be put to allow the parallel execution of
different UC2 instances.

The places in the CPN model in Figure 6.27 ensure that the order be-
tween messages in the sequence diagram is maintained when firing the tran-
sitions in the CPN model. Each token in the place begin of UC2 means that
a “Service Floor” has been requested to be executed, i.e., a given car must
travel from a origin to a destination floor.

A token in the place light direction actualised means that the direction
indicator light is now indicating the direction that the car is taking to go
from the origin to the destination floor, and allows the next transition to be
enabled.

5.3 Data representation for the environment

It is important to define a data representation of the main elements in the
environment of the system under development. This data description is used
to represent both the current state of the elements in the environment, and
the changes introduced by the behaviour of each message in the sequence
diagrams.

To obtain a description of the system’s environment, its elements are
specified as data in the CPN model using the CPN ML programming lan-
guage, defining a colour set for each element in the environment. In our case
study, the cars and the floors are the top-most entities of the environment.
For example, the colour set Car is a record with an identification of the car,
the door of the car, the motor to move the car, and the sensors and actuators
inside the car.

1 colset Car = record

81

Chapter 5. Enriching CPN models for Animation

2 id : CarId *
3 motor : CarMotor *
4 door : CarDoor *
5 interior : CarInterior ;

Where the CarId colour set is an integer, the CarMotor colour set is a tuple
containing its moving speed and the direction being followed. The CarDoor
colour set is defined as a record stating if the door is open or closed, and
representing also the motor, the sensor and the timer of the door.

1 colset CarDoor = record
2 door : Door *
3 doorMotor : DoorMotor *
4 doorSensor: DoorSensor*
5 doorTimer : DoorTimer ;

Similarly, the entities inside a car are defined by the colour set CarInterior,
which includes the lights to indicate the direction being followed by the car,
the lights to indicate the current floor (there is a light for each floor), and a
control panel where we can find a button to open the door, and buttons to
allow the passenger to select one of the existing floors.

1 colset CarInterior = record
2 directionIndicator : Direction *
3 floorIndicator : FloorNumber *
4 controlPanel : ControlPanel;

We consider that the components in the car are part of the colour set,
such as the car door, the door motor, the door sensor, the door timer and
the car motor.

The textual annotation “d = up, if Fd > Fo; d = down, if Fd < Fo;”
in the sequence diagram of Figure 5.1 is represented by the function calcDi-
rection which takes a ScenarioUC2 colour set and gives a direction based on
the origin and destination floors, and is defined as follows:

1 colset Direction = with up | down | idle ;

2 fun calcDirection(a:ScenarioUC2) =
3 case (Int.compare(#fo p,#fd p)) of
4 LESS => up
5 |GREATER => down
6 |EQUAL => idle ;

82

5.4. Animation of messages in the sequence diagrams

Some of the messages in the sequence diagram have the parameter di-
rection, which can be calculated using the values of the ScenarioUC2. For
example, the message lightDirInd uses the parameter direction.

5.4 Animation of messages in the sequence dia-
grams

One must detail how the execution of each substitute transition in the CPN
model representing a message in the sequence diagram is animated in the
SceneBeans animation.

The communication between the CPN model and the SceneBeans ani-
mation is done using an animation object which can be used in the code
segments of CPN model to invoke some commands to be executed in the
SceneBeans animation. The CPN model contains the following declaration
of the variable anim as a SceneBeans object:

1 structure anim = SceneBeans(
2 val name= "Elevator Controller Animation");

Figure 5.3 shows the subpage associated to the message lightDirInd. The
animation of a message in the sequence diagram is divided into two transi-
tions of the CPN model: the first one (lightDirInd) to invoke the command in
the animation, and the second one (ack lightDirInd) to wait for the feedback
from the animation, informing that the command has been executed. Thus,
a token in the place waiting for lightDirInd event means that the animation is
updating the appearance of the direction indicator in the animation. This
mechanism, that waits for the event from the animation, ensures the syn-
chronization between the animation and the execution of the CPN model.

To ask for an execution of a command in the SceneBeans animation, we
use the “invokeCommand” method, which can be used for an object with a
SceneBeans animation. The parameter for this method is a string that must
correspond to a command in the animation. The command lightDirInd is
used to animate the direction indicator in an elevator car has two parame-
ters:

• the name of the car, and

• the direction that the car is taking.

To ease the creation of the command identifier, the following function can
be created:

83

Chapter 5. Enriching CPN models for Animation

aCar

sUC2
let
 val ev = mkEvent_lightDirInd(aCar,sUC2)
in filterEvent(ev,events) end

events

sUC2

setCar_lightDirInd(aCar, sUC2)

aCar

sUC2

sUC2

ack lightDirInd

[isThisCar(aCar,sUC2),
(let
 val ev = mkEvent_lightDirInd(aCar,sUC2)
 in existEvent(ev, events) end)]

lightDirInd

[isThisCar(aCar,sUC2)]

input (aCar, sUC2);
output ();
action
 let
 val cmd = mkCmd_lightDirInd(aCar, sUC2)
 in anim.invokeCommand(cmd)
 end;

Fusion Car

Car

lightDirInd msg is
completly executed

Out
ScenarioUC2

Incoming
Events

event

1`[]

EVENTS

Fusion Car
Car

waiting for
lightDirInd event

ScenarioUC2

ready to send
lightDirInd msg

In
ScenarioUC2

In

Fusion Car

event

Out

Fusion Car

Figure 5.3: CPN model for the execution of the message lightDirInd.

1 fun mkCmd_lightDirInd(aCar:Car, sUC2: ScenarioUC2) =
2 let
3 val sc = carName(aCar)
4 val strd = showDir(calcDirection(#floors sUC2))
5 in "lightDirInd("ˆsc ˆ"Car,"ˆ strd ˆ")" end

To verify the incoming of the corresponding event of the command light-
DirInd, it is necessary to test if the event is in the list of incoming events.
Our CPN model is constantly aware of the events being generated by the
animation through the module in Figure 5.4. The running fusion place is
used to test if the animation has already started.

5.5 Initial conditions for scenario execution

We suggest to add a module to the CPN model where the initial conditions
for the scenario execution and the selection of the SceneBeans XML file to
used are introduced.

84

5.5. Initial conditions for scenario execution

e

if event = ""
then events
else events ^^ [event]events

Capture
Event input ();

output (event);
action
(if anim.hasMoreEvents ()
then anim.getNextEvent()
else "");

Running

run
E

Incoming
Events

event

1`[]

EVENTS
event

run

Figure 5.4: Subpage of CPN model to capture events from the SceneBeans
animation.

The CPN model in Figure 5.5 analyses the initial conditions of the en-
vironment that the user wants to simulate and subsequently initialises the
animation. The initial conditions are introduced in the pre-places (in green)
of transition Initialise. The firing of the Initialise transition invokes the nec-
essary commands to start running the animation according to the specified
conditions. Figure 5.5 constitutes a top page of the CPN model, where for
each scenario a separate subpage exists and for which the start place can
be found through a fusion place. The Running place is used to allow the
execution of the CPN module in Figure 5.4.

Let us see now how to change the CPN model to allow the consideration
of a different numbers of cars and floors in the animation. To accomplish
this, we need to adapt both the CPN model and the SceneBeans XML file
defining the animation layer.

The changes in the CPN model are done in the topmost page presented
in Figure 5.5, changing the initial marking of the pre-places for the Initialise
transition. It is also necessary to change the value of a constant that repre-
sents the number of floors and another that represents the number of cars.
The post-places for the Initialise transition are fusion places connected to
CPN modules representing the behaviour for scenarios. These changes must
be complemented with the corresponding changes in the animation specifi-
cation, namely in what concerns the variables that represent the available
cars and the available floors.

Assuming that we want to introduce a new car in the middle of the two
existing cars, we define a constant, e.g. centerCar, with its data representa-
tion, to be included in the list of initial marking in place Cars of Figure 5.5,

85

Chapter 5. Enriching CPN models for Animation

ssUC2

ssUC2
theFloors

theFloors theCars

theCars

e
Initialise

[{car=1, fo=2, fd=6},
 {car=2, fo=2, fd=1}]

ScenariosUC2

Initial ScenarioUC2

ScenarioUC2

Fusion floor

Floor

Floors

1`allFloors

Floors

Cars

[leftCar, rightCar]

Cars

Fusion Car

Car

Running

run
E

run

Fusion CarFusion floor Initial ScenarioUC2

Initial
Scenario

input (theCars, theFloors);
output ();
action
(anim.setAnimation("C:/AnimElevator.xml");
setInitialAnimation(theCars, theFloors);())

Figure 5.5: CPN module to initialise the environment values and the
SceneBeans animation.

which results in the list [leftCar, centerCar, rightCar]. If we want to execute
a scenario related to this new car we need to add the scenario description to
the list of initial scenarios to be executed, and to introduce in the animation
the icon for the additional car.

5.6 Building an animation

This section describes the tools used to deploy animations, and how to use
them.

5.6.1 Initial considerations

The visual animation to be built is intended to reproduce the behaviour
of the elevator controller, specified by the considered collection of sequence
diagrams. The animation can be used during the validation to facilitate the
dialogue between the system developers and the users and clients, which
is a useful mechanism to ensure that both parts agree on what is to be
developed.

One can start the construction of a visual animation, after some initial
work on the analysis task has been accomplished. For this purpose, it is
useful to have the context diagram, since it enumerates the main entities of
the environment with which the controller interacts. Typically, these entities

86

5.6. Building an animation

are strong candidates to be represented in the animation, since the system’s
behaviour depends on them.

It is also important to have the use case descriptions, together with
their corresponding sequence diagrams, since they describe which messages
are received by the elements in the environment, and how these elements
react on those messages. These artefacts specify the behaviour that must
be covered by the animation layer.

The construction of the animation must be synchronised with the ac-
tivity of creating the CPN model, because the CPN model must include
some elements which are specific to control the animation as explained in
Subsection 5.6.2.

The animation was created using the SceneBeans tool [Magee et al. 2000;
Pryce and Magee 2007], which is a framework for creating and controlling
animations, using the Java programming language. There is a XML-based
file format to define animations and a parser to translate those XML files
into animation objects for SceneBeans.

In the SceneBeans architecture, scene graphs, behaviours and animations
are the basic elements with which one can create a visual animation. A
scene graph is implemented in JavaBeans by a direct acyclic graph, which
draws a two-dimensional image. In the leaf nodes of a scene graph there
are primitive shapes (such as circles, ellipses, rectangles). An intermediate
node either combines or transforms its subgraphs. The combination can be
done in two ways: putting one subgraph on the top of another; or choosing
one from the set of subgraphs. In a transform node, it is possible to apply a
linear transformation followed by a translation to its subgraphs (for example
rotation, scaling or translation) or to change the way that its subgraphs are
rendered (for example, changing the colour in which a node is drawn).

Associated to each graphic element in the animation, there are some
behaviours (not to be confused with the behaviour of the controller) to
animate some of the properties of the element. A behaviour in SceneBeans is
implemented by a Java bean that controls a time value, and when the value
changes it announces an event. This permits the animation of the visual
appearance of the scene graph. Notice that there is a so called animation
thread that manages the frame rate of the overall animation and signals the
passage of time. One can also to define commands to call the execution of
a set of behaviours and to announce an event when they finish.

87

Chapter 5. Enriching CPN models for Animation

5.6.2 Static part of the animation

The behaviour of reactive systems, in general, lies in the interaction with
its environment, by sending messages to the environment, which in response
can also send messages in the opposite direction (i.e., to the controller).
The elements in the environment can be seen as the actors of the system
being developed. Some of these elements must be depicted in the animation.
The first activity that must be done is to select a picture to represent each
element in the environment.

The validation focuses essentially on the reactions of the controller to
requests made by the passengers. If some flaw on the behaviour of the
elevator is detected during validation, the developer may also need to analyse
all the entities of the environment (even those that do not appear in the
visual animation), to identify and understand the cause of the error.

The structure of the animation is essentially based on importing some
icons to represent an element of the system or on drawing a geometric arte-
fact using a XML tag. This structure is present in the leaf nodes of the
scene graph, and for example to include the image in the file door.png we
use the XML tag primitive, as follows:

1 <primitive type="sprite">
2 <param name="src" value="door.png"/>
3 </primitive>

The primitives allow the definition of the elements to be used in the
dynamic part of the animation.

5.6.3 Dynamic part of the animation

In this subsection we show how to define the dynamic part of an animation
in the SceneBeans XML-based format.

As we said before, in the leaf nodes of a scene graph there are primitive
shapes and in the intermediate nodes either combination or transformation
of its subgraphs using a set of parameters. Each parameter can be associated
to a behaviour that needs to be previously defined. To allow the user to
control the existing behaviours, there are commands, and each one includes
a sequence of behaviour invocations. Thus, calling a command results on
the animation of some of the parameters present in the intermediate nodes.

This message allows the Direction Indicator to change its state, among
its possible values (up, down, and idle). The Direction Indicator is composed
of two triangular lights. If the car is going up (down), the top light “

a
”

88

5.6. Building an animation

is on (off) and the bottom light “
`

” is off (on). If the car is stopped, the
idle direction is represented by delighting both lights. Figure 5.6 presents
three different images used to represent the possible states of the direction
indicator.

(a) (b) (c)

Figure 5.6: Three representations for the light direction indicator inside the
elevator car. (a) Going Up, (b) Going down, (c) Idle.

In the animation, it is necessary to define behaviours associated to the
elements in the animation. For example, to indicate that the car is going
up, we use the following XML code, whose XML tags param in lines 2-4 are
used to set the parameters from, to and duration of the behaviour:

1 <behaviour algorithm="move" event="ldi"
2 id="showlightDirInd(rightCar,up)">
3 <param name="from" value="-1000"/>
4 <param name="to" value="750"/>
5 <param name="duration" value="0.0001"/>
6 </behaviour>

This block of code defines a behaviour that is based on a specific move-
ment of an animation icon from a given point (‘from’) to another point (‘to’)
during a given time (‘duration’). This behaviour will be associated to the
parameters in the nodes of the scene graph.

To indicate, during the animation, that the car is going up, one needs
to put an icon (showing the top light on, and the bottom light off) at the
position of the Direction Indicator entity in the animation picture. This is
achieved by the following XML code:

1 <transform type="translate">
2 <param name="translation" value="(-1000,50)"/>
3 <animate param="x"
4 behaviour="showlightDirInd(rightCar,up)"/>
5 <animate param="x"
6 behaviour="hidelightDirInd(rightCar,up)"/>

89

Chapter 5. Enriching CPN models for Animation

7 <primitive type="sprite">
8 <param name="src"
9 value="direction_indicator_up.png"/>

10 </primitive>
11 </transform>

In lines 3 to 6, behaviours showLightDirInd (presented in the previous
block of code) and hideLightDirInd are associated to the parameter “x” of the
transformation node, in order to change the x-axis position of the icon, i.e.,
they move the icon horizontally in the animation picture. These behaviours
are invoked through their inclusion in a command definition as we present
in the next block of code.

There is one icon to represent each state of the Direction Indicator entity,
and showLightDirInd behaviour moves the respective icon to a visible part of
the animation, and the hideLightDirInd behaviour moves the respective icon
to a non-visible part of the animation. Thus, the change to a new state is
animated showing the icon of the new state and hiding the other two icons.

To allow the external invocation of these behaviours in order to animate
the changing of the Direction Indicator in the car on the right-hand side to
indicate the up direction, the following command announces an event with
the same name.

1 <command name="lightDirInd(rightCar,up)">
2 <start behaviour="hidelightDirInd(rightCar,down)"/>
3 <start behaviour="hidelightDirInd(rightCar,idle)"/>
4 <start behaviour="showlightDirInd(rightCar,up)"/>
5 <announce event="lightDirInd(rightCar,up)"/>
6 </command>

There are similar code blocks for the other two possible directions and
for the other car.

5.6.4 Scripting language

We have created a Ruby script to facilitate the manipulation of the XML tags
in the XML-file that specify the animation. Ruby [Ruby 2007; Thomas
et al. 2004] is a scripting language that follows the principles of object-
oriented programming. The Ruby script uses components from the library
REXML [REXML 2007].

With Ruby, we can easily manipulate the XML to be generated, namely
when repetitive parts of the XML code follow a given pattern. To generate

90

5.6. Building an animation

the XML code for the animation, a Ruby script was created in order to
save some functions to be used on the generation of XML for animations,
independently from the case being considered. For example, the code in
line 26 creates an object of the class Behaviour which has the following
definition:

1 class Behaviour
2 def initialize(id,algorithm,params,event,announce="no")
3 @id = id
4 @algorithm = algorithm
5 @params = params # class BehaviourParams
6 @event = event
7 @toBeAnnounced = announce
8 end
9 def toXML(xb)

10 xb.behaviour("id" =>@id, "algorithm"=> @algorithm ,
11 "event" => @event){
12 @params.toXML(xb)
13 }
14 end
15 end

This a simple definition of a Ruby class, where we can find the same pa-
rameters as the behaviour XML tag, and the definition of the method toXML
to generate the corresponding XML code. For example for the behaviour
described above we write:

1 Behaviour.new("showlightDirInd(rightCar,up)",
2 "move", BehaviourParams.new(-1000,750), "ldi")

The advantage is that we can use this class to have a less verbose (i.e.,
easier to read by humans) code to specify a behaviour. Consequently, if
we repeat this process for all other XML tags present in the SceneBeans
XML-based format, we obtain a less verbose way to define an animation
layer.

We believe that this Ruby script constitutes an abstract way to deal,
with the XML-based stuff, in particular it is an easy way to work with
parameterisation in the visualizations. When comparing it with the forall
construct, we believe that the Ruby script is a more flexible and user-friendly
way to manipulate the parameters. However, the forall construct has the
advantage that it is defined in the same XML-file as the rest of the animation
definitions.

91

Chapter 5. Enriching CPN models for Animation

92

Chapter 6

Case Studies

Summary

This chapter presents the case studies that were considered in
this thesis: (a) the reactor system; (b) the elevator controller
system; and (c) the check-in system in an international airport.
These are different examples of reactive systems. The reactor
system does not interact with human actors. In the elevator
system there are human actors that interact with the system
through the interface elements. Human actors are an impor-
tant part of check-in system, thus it is crucial to consider their
behaviour. The rules and the guidelines introduced in previous
chapters are discussed and are exemplified in the context to the
three case studies.

Contents

6.1 Reactor System 94

6.2 Elevator Controller System 125

6.3 Check-in System 141

6.4 Discussion . 153

93

Chapter 6. Case Studies

6.1 Reactor System

This section introduces the reactor system case study, which consists in
a reactor that controls the filling of a tank. This case study was already
considered in previous works [Adamski 1987; Fernandes et al. 1995; Machado
et al. 1997].

The section illustrates two different ways to obtain CPN models for
describing the reactor system. The first CPN model is obtained directly
from the requirements (or more precisely adapted from an existent PN-
based specification) and the another CPN model is obtained from sequence
diagrams using the transformation rules described above in Chapter 4.

6.1.1 General description

The reactor is used to mix two liquids (or products) in specific quantities and
to transport the mixed solution to an unloading area. A plant of the reactor
system is presented in Figure 6.1. The system has two storage vessels, called

Start

OpenCar EmptyCar

Unloading AreaLoading Area

Car

OpenReactor

EmptyReactor

FullReactor

Reactor

Mixer

Turn

MV2MV1
EmptyMV1

FullMV1

EmptyMV2

FullMV2

OpenMV2OpenMV1

Switch

SV2SV1

OpenMV1 OpenMV2

Figure 6.1: The environment of industrial reactor system.

94

6.1. Reactor System

SV1 and SV2, each one equipped with a valve (OpenSV1 and OpenSV2) to
control the exit of the liquid. Below each storage vessel, there is a measuring
vessel (MV1 and MV2), which has the same structure as the storage vessel, plus
two sensors, one indicating when it is full (FullMV1 and FullMV2 sensors)
and another one indicating when it is empty (EmptyMV1 and EmptyMV2).

The Reactor constitutes the main tank of the system, and it is fed with
two kinds of liquids from the measuring vessels MV1 and MV2. To ensure
complete reaction the liquid in the reactor is agitated by stirrer Mixer.
After the reaction between the liquids is complete, the liquid in the reactor
is discharged into the carriage Car. When the Reactor is empty the mixed
product is transported using the Car.

When the button Start is pressed, the valves OpenSV1 and OpenSV2

are opened and measuring vessels MV1 and MV2 are refilled until sensor
FullMV1 (FullMV2) is activated. Afterwards, OpenSV1 (OpenSV2) is closed.
To start mixing, liquids are delivered into the reactor from the measur-
ing vessels MV1 and MV2, by opening valves OpenMV1 and OpenMV2. Mean-
while, the reactor stirrer may start (Turn), when the level in the reactor
is higher than MixingLevelReactor. When EmptyMV1 and EmptyMV2 get
activated, OpenMV1 and OpenMV2 are closed and the reactor is emptied by
opening OpenReactor. After discharging the reactor (which is given when
EmptyReactor is activated), the product is transported by using the carriage
Car, which is able to move right, to go the unloading area, and to move left,
to return to the loading area.

6.1.2 A shobi-PN based CPN model

Based on the shobi-PN model of reactor system presented in [Machado et al.
1997], we have created the CPN model in Figure 6.2. The shobi-PN mod-
elling language was conceived as an extension to SIP-nets (Synchronous and
Interpreted Petri nets) [Fernandes et al. 1995]. The shobi-PN modelling
language includes the same characteristics as the SIP-net modelling lan-
guage, in what concerns synchronism and interpretation, and adds two new
concepts by supporting object-oriented modelling mechanisms and a new
hierarchical constructor, in both the control unit and the plant (i.e., the
system under control).

The objects are represented by record colours, and the methods are
represented by functions on the object’s colour, e.g., the storage vessel object
and the method to open it are defined by the CPN-ML code in Figure 6.3.

Notice that the token associated to each instance of an object is used to
control the behavior of the CPN model. The place anti-place (a pre-place

95

Chapter 6. Case Studies

of t1, and a post place of t10) is only used to restrict the firing of transition
t1. To simulate the system behaviour, a CPN to represent the environment
of reactor was created.

As previously described, the switch available in the reactor system can be
pressed in order to start the system execution. The behaviour of the switch is
modelled by the CPN module in Figure 6.4. The transition Toggle Switch

represents the switch being toggled, and the place Swt, which is a fusion
place with the place Pf2 (that appears on the top of Figure 6.2), holds the
current state (on or off) of the switch. This CPN module is complemented
with the CPN-ML code in Figure 6.5. Line 1 defines the colour set Switch as
an enumerated type with two alternative values (on or off). Line 2 declares
the variable aSwitch with the colour set Switch. Line 3 defines the function
toggle that toggles the value associated to the switch. Line 4 declares the
predicate isOn to inspect if the switch is currently on.

After the switch Start is pressed the valves openSV1 and openSV2 are
opened. At this point, based on the physical layout of the system, each
measuring vessel starts being refilled with the liquid that comes from the
corresponding storage vessel. Figure 6.6 presents a CPN module to repre-
sent the filling of measuring vessels. The activation of sensors isEmptyMV1

and isEmptyMV2 is represented by the transition Begin Filling Measuring

Vessel, and the activation of sensors isFullMV1 and isFullMV2 is rep-
resented by the transition End Filling Measuring Vessel. The fusion
places allows the connection of this module with the main module of the re-
actor system. During the simulation of the CPN model, the tokens in each
place guarantees the correct order among the firing of these two transitions,
and the time space between the firings of these two transitions represents the
time necessary to filling the measuring vessel. The predicate isConnected

(used as a guard of transitions in the CPN module) is defined based on the
layout of the system to test the correspondence between a storage vessel
and the measuring vessel that is below it (see Figure 6.1). The activation
of isFullMV1 (isFullMV2) implies that the valve OpenSV1 (OpenSV2) must
be closed. This is the reason why the transition End Filling Measuring

Vessels takes a storage vessel aSV and puts back a modified one using the
arc inscription “StorageVessel.set isOpen aSV false”.

The opening of the valves OpenMV1 and OpenMV2 is represented by transi-
tion t4 (in Figure 6.2) using the arc inscription openAllMVs(listFullMVs).
Afterwards, the measuring vessels can start to be emptied. Figure 6.7
presents a CPN module to capture the behaviour of emptying a measur-
ing vessel, and delivering the liquids into the reactor. The transition Begin

Emptying Measuring Vessel represents the start of emptying the measur-

96

6.1. Reactor System

ing vessel, deactivating the corresponding isFull sensor (isFullMV1 or
isFullMV2), and the transition End Emptying Measuring Vessel repre-
sents the activation of the corresponding isEmpty sensor (isEmptyMV1 or
isEmptyMV2), and consequently terminates the emptying of the measuring
vessel.

Similarly, other behaviours of the environment are also modelled, such as
the mixing of the liquids in reactor, the emptying of the reactor, the filling
of the car, and all possible movements of the car.

The obtained CPN model has a similar behaviour when compared with
the original shobi-PN for the reactor system. The objects in the shobi-PN
are modeled as a colour set in the CPN model, and the methods over the
object as functions on the colour set elements. To capture the synchronism
present in the shobi-PN model, each set of transitions than can be simulta-
neously enabled to fire are represented by a unique transition into the CPN
model. This exercise has been done to explore the capability of the CPN
modeling language to model reactive systems that have many interactions
with the environment. In this way, the CPN model includes also the be-
haviour that happens in the environment, which is an important part to
capture in the model when developing an animation of the system (see Sub-
section 6.1.4). The author has also conducted a study over the reactor sys-
tem to formally verify some of its desired properties (see Subsection 6.1.5).

97

Chapter 6. Case Studies

e

e

aCar

goLoadingArea(aCar)

aReactor

aReactor

turnOffMixer(aMixer)

(aReactor,aMixer)

aCar

aCar

goUnloadingArea(aCar)

aCar

aCar

openCar(aCar)

(openReactor(aReactor),aMixer)

(aReactor,aMixer) aCar

listEmptyMVs

aMV

aMV(aReactor, turnOnMixer(aMixer))

aReactor
aMixer

closeAllMVs(listEmptyMVs)

closeReactor(aReactor)

openAllMVs(listFullMVs)
aReactor

aReactor
listFullMVs

closeCar(aCar)

aCar

aCar
aMV

aMV

closeSV(aSV)

aSV

openAllSVs

aSwitch

listStorageVessels

t1b

t10b

[isAboveMixingLevelReactor(aReactor)]

t13

[isEmptyCar(aCar)]

t12

[isAtUnloadingArea(aCar)]

t11[isEmptyReactor(aReactor)]

t10

t7 t8

[isEmptyMV(aMV)]

t5

[isAtMixingLevelReactor(aReactor)]

t4 t9

[isAtLoadingArea(aCar)]

t2 t3

[isConnected(aSV,aMV) andalso
isFullMV(aMV)]

t1

[isON(aSwitch)]

anti-place

1`e

E

p14c

Fusion 4

Reactor

p14b

Car

p16

Car Events 3

Car

p15

Car Events 2

Car

p14

Fusion 3
Reactor_x_Mixer

p13

Car

p11 p12

MeasuringVessel

p7

Reactor_x_Mixer

mixer

Mixer

p9 10

MV Events2 MeasuringVessel

p8

Fusion 2
Reactor

pf8

reactor

Reactor

p4 p5

MeasuringVessel

pf6 7

MV Events1

listMeasuringVessels

MeasuringVessel

p2 p3

SV Events
StorageVessel

p6
Car Events 1

Car

Pf4

listCars

Car

Pf2

Fusion 1

1`off

Switch

Pf 1 2

listStorageVessels

StorageVessel
Fusion 1

Car Events 1
SV Events

MV Events1

Fusion 2
MV Events2

Fusion 3

Car Events 2

Car Events 3

Fusion 4

Figure 6.2: A CPN model for reactor system.

98

6.1. Reactor System

1 colset StorageVessel =
2 record id : INT *
3 isOpen : BOOL*
4 capacity : INT ;

5 fun openStorageVessel (sv:StorageVessel)
6 = StorageVessel.set_isOpen sv true;

Figure 6.3: CPN-ML code for colour set StorageVessel.

aSwitch

toggle(aSwitch)

toggle
Switch

Bt

Fusion 1

1`off

Switch
Fusion 1

Figure 6.4: A CPN module for toggle switch.

1 colset Switch = with on| off;
2 var aSwitch : Switch;
3 fun isON(s:Switch) = if (s=on) then true else false;
4 fun toggle(s:Switch) = if (s=on) then off else on;

Figure 6.5: CPN-ML code for colour set Switch.

99

Chapter 6. Case Studies

aSV

aMV

aMV

End Filling
Measuring Vessel

Begin Filling
Measuring Vessel

listMeasuringVessels

MeasuringVessel

SVs
SV Events

StorageVessel

MVs
MV Events1

StorageVessel.set_isOpen aSV false

MeasuringVessel.set_isFull aMV true

[isConnected(aSV,aMV) andalso
(#isOpen aSV) andalso
(#isEmpty aMV)]

MeasuringVessel.set_isEmpty aMV false

[isConnected(aSV,aMV) andalso
(#isOpen aSV) andalso
not(#isEmpty aMV)]

aSV

Figure 6.6: A CPN module for filling a measuring vessel.

aMV

MeasuringVessel.set_isEmpty aMV trueMeasuringVessel.set_isFull aMV false

aMV

End Emptying
Measuring Vessel

[not(#isEmpty aMV) andalso
not(#isFull aMV)]

Begin Emptying
Measuring Vessel

[(#isFull aMV)]

MVs
MV Events2

MeasuringVessel

Figure 6.7: A CPN module for emptying measuring vessel.

100

6.1. Reactor System

6.1.3 A scenario-based CPN model

This subsection discusses how a CPN model for the reactor system can be
obtained by applying the rules presented in Chapter 4 to a set of scenarios
represented by UML sequence diagrams.

In this case, we assume that from the requirements document, one can
construct sequence diagrams to represent some scenarios of the system’s
usage. An example is the sequence diagram in Figure 6.8 that uses high-
level operators, namely the ref to point to another two sequence diagrams:
“Preparing Car” (see Figure 6.9) and “Vessels Behaviour” (see Figure 6.10).
High-level operators make it possible to represent in a unique sequence di-
agram several simple scenarios.

Figure 6.8: A sequence diagram describing some scenarios of using the re-
actor system

To transform this sequence diagram we firstly apply the rules to the frag-
ments within a high-level operator. Afterwards, we compose the obtained

101

Chapter 6. Case Studies

Figure 6.9: A sequence diagram describing the behaviour of vessels.

Figure 6.10: A sequence diagram describing the preparation of car.

CPNs into a hierarchical CPN. We put each sequence diagram pointed by
ref into a subpage. Figure 6.11 shows the CPN obtained from the sequence
diagram in Figure 6.9, where we can observe some transitions which are
links to a CPN modules. The subpage Vessels Behavior, presented in
Figure 6.11, corresponds to the sequence diagram presented in Figure 6.9.

102

6.1. Reactor System

openReactor(aReactor)

aReactor

closeMVs(listAllMVs)

listAllMVs

toggle(aSwitch)

aSwitch

aSwitchaSwitch

()

()

()

()

()

()

2`()

()

()()
()

()

()

()

()

()

()

()
()

()

()

2`()

()

()

()

()

()

()

Preparing
Car_

Prepapring Car

end par 2

begin par 2

CloseAllMVs
openReactor

Preparing
Car

Prepapring Car

Vessels
Behavior

Vessels Behavior

Transport

Transport

Vessels
Behavior_

Vessels Behavior

end loop

[not (isON aSwitch)]

Start

loop

begin par 1

end par 1

Fusion 4
Reactor

Fusion 3
MeasuringVessel

Swt
Fusion 1

Switch

Fusion 1
Switch

Fusion 1
Switch

UNIT

UNITUNIT

UNIT

UNIT

UNIT

UNIT

1`()

UNIT

UNIT

UNIT

UNIT

UNIT

UNIT

Fusion 1 Fusion 1

Fusion 1

Fusion 3

Fusion 4

Vessels Behavior
Transport

Vessels Behavior Prepapring Car

Prepapring Car

[isON aSwitch]

Figure 6.11: CPN from the sequence diagram presented in Figure 6.8.

103

Chapter 6. Case Studies

mv2

mv1

sv1

()()

() ()

()

()()

()

()

()

()

()

()

()

()

()

2`()

()()

()

()

()

()

()

Start Emptying
MVs

Start Emtying MVs

Mix

Mix

end par 2

begin par 2

openAllSVs

end par 1

begin par 1

closeSV2

Full MV2

[isFullMV mv2]

Full MV1

[isFullMV mv1]

closeSV1

MeasuringVessel

Fusion 3
MeasuringVessel

Fusion 2
StorageVessel

Fusion 2

Fusion 2

UNIT UNIT

UNITUNIT

UNIT

UNIT

UNIT

UNIT

UNITUNIT

UNIT

In
UNIT

Out
UNIT

Out

In

Fusion 2

Fusion 2 Fusion 2

Fusion 3

MixStart Emtying MVs

listAllSV

StorageVessel
openSVs(listAllSV)

StorageVessel closeSV(sv1)

Fusion 3Fusion 3

sv2

closeSV(sv2)

Figure 6.12: CPN to represent the behaviour of vessels (see Figure 6.9)

104

6.1. Reactor System

6.1.4 Building an animation

We have developed a SceneBeans animationto be associated with the created
CPNs, through BRITNeY animation tool [Westergaard and Lassen 2005].
A screen shot of the animation of the reactor system is shown in Figure 6.13.

Figure 6.13: A screenshot of the animation of the reactor system

In this animation we can find the elements of the problem domain,
which is the reactor domain. We have obtained this animation using the
SceneBeans animator. On the top left side of the image we have commands
accepted by the animation. On the bottom left side, we have the events pro-
duced by the animation. These sets of commands and events are used to do
the interaction between the animation and the CPN models. For example,
to animate the message “openAllSVs” in sequence diagram of Figure 6.9,
we invoke, in the corresponding transition, two commands of the animation
“openSV1” and “openSV2”. The user can interact with the animation using
the start switch. The vessels on the top are the storage vessels. Each stor-
age vessel has a corresponding measuring vessel. In the center we have the
reactor vessel, with a mixer inside of it. On the bottom, we have the car
which transports the liquid to the unloading area.

This animation is intended to help the developers and users in validating

105

Chapter 6. Case Studies

the behaviour of the reactor system.

6.1.5 A SIP-net approach to model the reactor

This subsection presents an exercise to model the reactor using a syn-
chronous Petri net model (called SIP-nets) that was conducted before the
experiments described in the previous subsections. This exercise was en-
lightening in the sense that it provide insights on the need to address the
behaviour of the environment. The material presented in this subsection
was published in [Ribeiro and Fernandes 2007c].

This subsection describes an approach to apply the model checking tech-
nique using the Spin tool. This approach allows important properties of
reactive systems, such as liveness, deadlock-freedom, and the absence of
structural conflicts among transitions, to be verified. The need to verify
properties of a computer-based system is of paramount importance, namely
when the systems are safety-critical.

In the proposed approach, the behaviour of the reactive systems (i.e.,
its control part) is modelled with a variant of Petri Nets, called SIP-net.
When compared to traditional PN models, SIP-net models present guards
associated to transitions, inhibitor and enabling arcs, and synchronous fir-
ings of the transitions. Due to this synchronous nature of the firings, the
description of the SIP-net models with PROMELA is not trivial, because
the Spin tool assumes the existence of a finite-state system where only one
transition fires at each instant.

Since the values of the input signals are not known in the modelled
system, we must consider all their possible values. In the SIP-net models
the input signals are used as variables of guards. In this way, all possible
scenarios for values of guards must be considered.

Therefore, this work discusses in some detail how SIP-net models should
be specified with the PROMELA language (input format for the Spin model
checker), so that some of their behaviour properties are verified. This model
checking approach, namely the Haskell program, was already used in a case
study [Ribeiro et al. 2005].

Synchronous and Interpreted Petri Nets (SIP-nets) were obtained by the
enrichment of safe PNs with guarded transitions, synchronous firing, and
also enabling and inhibitor arcs [Fernandes et al. 1997]. With these charac-
teristics, the models that can be obtained are easier to synthesize [Adamski
1987]. In fact, synchronous circuits represent the largest portion of cir-
cuit designs and the state of the art in synthesising synchronous systems
is more advanced and stable than the corresponding one for asynchronous

106

6.1. Reactor System

circuits [De Micheli 1994].
For developing embedded systems, the design process may benefit in

some contexts from the usage of formal methods, namely to find critical
errors and flaws, before final design and implementation decisions are taken.
The Synchronous and Interpreted Petri Net (SIP-net) modelling language
is considered in this approach to model embedded systems. This model
of computation is based on safe Petri nets with guarded transitions and
synchronous transitions firing, and also includes enabling and inhibitor arcs.
The Spin tool, whose input language is PROMELA, is a verification system
based on model checking techniques. This section presents a program to
translate SIP-net models into PROMELA code and discusses in detail the
adequacy of the created PROMELA specification for verification through
model checking techniques.

Concurrency is considered one of the essential features of reactive sys-
tems [Manna and Pnueli 1992]. A concurrent system is a collection of se-
quential processes that in abstract are executed in parallel, i.e., it is not
required that a separate physical processor is used to execute each process.
A process is a set of instructions in a programming language which are ex-
ecuted sequentially. Thus, the semantics of concurrent systems is usually
based on the notion of a global state, where the instructions of each process
define a set of events denoting transitions between states. However, in a
concurrent system an event affects and is affected by a limited number of
other events (event scope). Events with disjoint scopes are free to occur
independently.

When a formal model of a given system is created, it can be analysed
with respect to some desired properties, thus allowing the detection of design
errors prior to the system implementation. In general, the major weakness
of PNs is the complexity problem; PN-based models tend to become too
large for analysis even for a small real system [Murata 1989]. In [Fernandes
et al. 1997] reachability graph analysis of the SIP-net description is used to
investigate the properties of the modeled system.

Model checking [Clarke et al. 2000] is a verification technique that is
based on the idea of exhaustively exploring the reachable state space of a
system. The model checker Spin [Holzmann 2003] is a verification system,
which accepts a specification language called PROMELA (Process Meta
Language) [Holzmann 1991]. Spin has two main modes of operation: sim-
ulation and verification. Verification requires exhaustive search, whereas
simulation does not and thus can deal with bigger state spaces. Simulation
is a testing technique that can only indicate errors and never their absence.
It is quite useful in practical terms, but in some situations verification is

107

Chapter 6. Case Studies

the only solution, especially whenever one needs to formally guarantee that
a system is free of errors, an essential condition for safety-critical systems.
Spin uses the linear temporal logic (TL) to specify the properties to be
verified.

The main motivation of this work is to study how SIP-net models can
be verified using the Spin tool. We present a model checking approach, that
uses the Spin tool to verify critical properties of embedded systems such as
liveness, deadlock-freedom, and the absence of structural and behavioural
conflicts among transitions.

The suggested design flow of our approach is presented in Figure 6.14.
As tool support, we have created a computer application, written in the
Haskell language, to automatically translate SIP-net models into equivalent
PROMELA specification. With the assistance of the Spin tool, the generated
PROMELA specification can be either simulated or verified with respect to
some TL properties. This is possible, since the computer application can
generate two different types of PROMELA specifications, one more adequate
to be simulated and the other more adequate to the verification of some
properties.

SIP-net Model

Computer

Application

PROMELA spec.

to be Simulated

PROMELA spec.

to be Verified

Properties

in TL

Spin tool

as Simulator

Spin tool

as Verifier of TL formulas

Figure 6.14: Design flow of the approach.

We already reported in [Ribeiro et al. 2005] the application of this ap-
proach in a case study. This work focus on the presentation of the issues

108

6.1. Reactor System

related to the translation process (from SIP-nets models to PROMELA spec-
ifications) and its tool support.

SIP-net Modelling Language

Next we introduce the SIP-net modelling language, showing how it was
obtained from generic PN modelling languages. We present the structural
apparatus to create a SIP-net model, the dynamics associated to an SIP-net
model, and some important properties of SIP-net models. The definition of
a generic PN, of type place/transition system, presented in [Reisig 1985] is
the following.

Definition 6.1.1 (Petri Net) A 6-tuple N = (P, T, F,C,M0,W) is a Petri
net if and only if

• (P, T, F) is a basic net, i.e. P , T are disjoint finite sets and F ⊆
(P × T) ∪ (T × P) is a binary relation called flow relation, whose
elements are called arcs. The elements of P and T are called places
and transitions, respectively;

• C : P → N∪{ω} gives the capacity (ω represents the infinite capacity)
for each set;

• W : F → N \ {0} gives one weight for each arc;

• M0 : P → N ∪ {ω} is the initial marking for net, respecting the
capacities, i.e., ∀p∈P M(p) ≤ C(p).

�

The SIP-net modelling language has been enriched with respect to the
generic PN modelling language (see Definition 6.1.1) in three different ways:

• two new types of arcs are allowed: enabling arcs (also known as read
arcs, test arcs, or positive context arcs), and inhibitor arcs (also desig-
nated negative context arcs) [Kleijn and Koutny 2000; Peterson 1981];

• transitions can have associated guards, which are propositional for-
mulas where variables represent input signals of the modeled system,
i.e., guards over transitions are formulas containing external variables,
which may affect the enabling of transitions;

• transitions firing are synchronized with the active edge of a (global)
clock.

109

Chapter 6. Case Studies

Definition 6.1.2 (Structure of a SIP-net) The structure of a syn-
chronous and interpreted Petri net (written structure of an SIP-net
model) is a tuple N = (P, T, F,E, I,G) such that:

1. (P, T, F) is a basic net;

2. E, I ⊆ P × T are sets of enabling and inhibitor arcs respectively; the
sets E, I and F are expected to be all disjoint;

3. G : T → PROP is a mapping associating a propositional formula to
each transition.

Often P , T , F , E, I, G are denoted by PN , TN , FN , EN , IN , GN respec-
tively. A marking to N is a mapping from PN into the set {0, 1}. �

Graphically, the places and transitions are represented by circles and
rectangles, respectively. The flow relation elements are represented by ar-
rows.

The control part of embedded systems has input and output signals. Al-
though the output signals are represented in the SIP-net model, associated
with places, we do not consider them in the formalization of the SIP-net
model. When analysing the behaviour of an SIP-net model, it is not neces-
sary to consider the output signals, because we assume that their influence
on the behaviour of the SIP-net model, if existent, is reflected by changes
in the input signals.

Inhibitor arcs can be used to model a priority between processes. An
inhibitor arc, represented by a dashed line with a circle, connects a place to
a transition and disables the transition when the place is marked. Consider,
for example, a system in which two processes access a shared resource. A
conflict arises when both processes apply for the resource. To solve this
problem, an inhibitor arc connecting the resource (a place) to one of the
processes can be introduced.

Enabling arcs can be used to model a synchronization between two pro-
cesses. An enabling arc, represented by a dashed line with an arrow, connects
a place to a transition and enables the transition when the place is marked.
Nevertheless, when the transition fires, no token is removed from the place
connected to the transition through an enabling arc.

It is useful for each transition to determine the set of all places connected
to it through a normal, inhibitor or enabled arc.

Definition 6.1.3 (Places linked to transitions) Let N be a structure of
an SIP-net model. For each t ∈ TN :

110

6.1. Reactor System

1. •t = {p | p FN t} is called the preset of t;

2. t• = {p | t FN p} is called the postset of t;

3. .t = {p | p EN t} is the set of places linked with t through an enabling
arc;

4. ◦t = {p | p IN t} is the set of places linked with t through an inhibitor
arc.

For T ′ ⊆ TN , let •T ′ =
⋃

t∈T ′
•t , T ′• =

⋃
t∈T ′ t

• , .T ′ =
⋃

t∈T ′
.t , and

◦T ′ =
⋃

t∈T ′
◦t . �

As shown later, the behaviour of an SIP-net model is affected by the
interpretation of the variables appearing in the guards of its transitions
(external events). Thus, to simulate the behaviour of an SIP-net model,
every possible valuation of the variables in the guards of its transitions must
be considered. In rigour, we take a valuation of a net N to be a mapping
from the set of all the variables occurring in the guards of N into the two-
valued set {0, 1}. The set of all valuations to N is denoted by VN . In the
next definitions we consider only conflict-free SIP-net models.

Now, we attend to the dynamics associated to an SIP-net model.

Definition 6.1.4 (Ready) Let N be the structure of an SIP-net, M a
marking to N , v ∈ VN and t ∈ TN . The transition t is ready for M
and v, ready (t, M, v), if

1. Each input place to t has one token, i.e., ∀p∈ •tM (p) = 1;

2. Each output place to t have no tokens, i.e., ∀p∈ t•M (p) = 0;

3. Each place connected to t with an enabling arc has one token, i.e.,
∀p∈ .tM (p) = 1;

4. Each place connected to t with an inhibitor arc has no tokens, i.e.,
∀p∈ ◦tM (p) = 0;

5. The interpretation of the guard associated with t using the valuation v
is true.

The set of all ready transitions for M and v is denoted by Tready(M,v).
The transition t is enabled for M , written as enabled (t, M), when the first
four previous conditions, which are related only with the places linked to
the transitions, are verified. A set A ⊆ TN is said to be ready, denoted

111

Chapter 6. Case Studies

as ready (A), if there exists a marking M and a valuation v, such that all
transitions in A are ready for M and v. The set A is enabled, written as
enabled (A), if there exists a marking M , such that all transitions in A are
enabled. �

Although the condition 2) of definition 6.1.4 is not very often used, it
is a way to guarantee the boundedness of net, because a net describing a
control unit should be safe.

Usually, the firing in a classical PN is defined as the firing of one, and only
one, ready transition at each time [Reisig 1985]. So, there is no simultaneous
firings of transitions. The SIP-net token game differs in several ways from
the standard one for PNs: instead of just one transition firing at a time, all
transitions that are ready to fire must do so; firing of a transition is blocked
if any place in its postset is non-empty. The use of simultaneous firing of
sets of transitions (usually called steps) is discussed in [Mukund 1992].

Definition 6.1.5 (Simultaneous Firing) Let N be the structure of an
SIP-net model, M a marking to N and v ∈ VN . The marking M ′ to N ,
obtained from M with the valuation v through the simultaneous firing of
all t ∈ TN , ready for M and v, written M[〉vM′ , is defined as:

∀p∈PN
M ′ (p) =

0 if p ∈ •Tready(M,v)
1 if p ∈ Tready(M,v)

•

M (p) otherwise.

In other words, the input places of all enabled transitions become empty, one
token is added to the output places of all enabled transitions, and the other
places are left unchanged. �

We can consider the above definition as a mathematical relation between
two markings and one valuation. Thus the reflexive and transitive closure
is defined as follow.

Definition 6.1.6 Let N be the structure of an SIP-net, and M a marking
to N . A marking M ′ to N is accessible from M , written M[∗〉M′, if:

1. M = M ′, or

2. ∃M ′′ M[∗〉M′′ ∧ (∃v∈VN M′′[〉vM′).

The set of all markings to N accessible from M is denoted by [M〉.

112

6.1. Reactor System

A firing sequence is a sequence with the form M0[〉v0M1[〉v1 . . .[〉vk−1Mk[〉vk . . .
where k ∈ N, for all i, Mi is a marking to N , and vi−1 ∈ VN . By definition
of simultaneous firing we can observe that a transition t ∈ TN can be fired in
a firing sequence if there exists a natural i, such that ready (t, Mi, vi). �

In order to have the behaviour of an SIP-net model completely defined it
must be formed by a structure of an SIP-net plus a marking to this structure.

Definition 6.1.7 A pair N = (N,M0) where M0 is the initial marking to
N , is called an SIP-net. �

Some Properties of SIP-net models
Since transitions in SIP-net models fire synchronously, one may observe

some conflicts amongst transitions, which are not present in other models
of computation based on PNs.

Definition 6.1.8 Let N = (N,M0) be an SIP-net, and t1, t2 ∈ T . The
transitions t1 and t2 are in structural conflict if transitions t1 and t2
have a common pre-place (post-place), i.e., •t1 ∩ •t2 6= ∅ (t1

• ∩ t2
• 6= ∅).

If the transitions t1, t2 are in structural conflict, they are also in be-
havioural conflict if there exist an accessible marking M and a valuation
v that enable both transitions. �

Let us now consider the formulation of the liveness property in the SIP-
net modelling language. Often, the verification of liveness is very expensive
and sometimes even impracticable. To overcome this difficulty, we follow
the liveness levels proposed in [Murata 1989], some of which reduce the cost
of verification.

Definition 6.1.9 Let N = (N,M0) be an SIP-net and t ∈ TN . The tran-
sition t is L0-live (or dead) when it can never be fired for any marking
accessible from M0:

∀M ′∈[M0〉 ∀v∈VR ¬ ready
(
t, M′, v

)
;

The transition t is L1-live, if there exists at least an accessible marking
from M0, for which t can be fired:

∃M ′∈[M0〉 ∃v∈VR ready
(
t, M′, v

)
;

The transition t is L4-live (or live), if it is L1-live for all markings
accessible from M0:

∀M∈[M0〉 L1-Live (N, M, t).

113

Chapter 6. Case Studies

.

.

•
p0

p2

•
p1

p3

t0

x0

t1

x1

t2

x2

t3

x3

Figure 6.15: An example of an SIP-net model.

The SIP-net N is said to be Lk-live, if every transition in the SIP-net
N is Lk-live, where k = 0, 1, 4. �

We are not considering in this work the liveness levels L2 and L3, which
means respectively for each transition t: given any natural m, t can be fired
at least m times in some firing sequence; and t appears infinitely, often in
some firing sequence.

An Example on Specifying SIP-net Models with PROMELA

In this section, we present a specification in the PROMELA language for the
illustrative SIP-net model represented in Figure 6.15, which is based on the
relation, through enabling and inhibitor arcs, between two similar SIP-nets.

Formally, this SIP-net model is defined by the tuple (N,M0):

• N = (P, T, F,E, I,G) is the structure of the SIP-net model, where:
P = {p0, p1, p2, p3}, T = {t0, t1, t2, t3}, F = {(p0, t0), (p1, t1), (t0, p2),
(t1, p3), (p2, t2), (p3, t3), (t2, p0), (t3, p1)}, E = {(p3, t2)}, I = {(p0, t1)}
and G = {(t0, x0), (t1, x1), (t2, x2), (t3, x3)};

• M0 = {(p0, 1)(p1, 1)(p2, 0)(p3, 0)} is the initial marking.

The specification of this SIP-net model in PROMELA uses the following
guidelines:

114

6.1. Reactor System

1 #define M 4
2 #define Nvar 4
3 #define rd_t0 (p[0] && !p[2] && v[0])
4 #define rd_t1 (p[1] && !p[3] && !p[0] && v[1])
5 #define rd_t2 (p[2] && !p[0] && p[3] && v[2])
6 #define rd_t3 (p[3] && !p[1] && !p[2] && v[2])
7 #define fire_t0 p[0] = 0; p[2] = 1;
8 #define fire_t1 p[1] = 0; p[3] = 1;
9 #define fire_t2 p[2] = 0; p[0] = 1;

10 #define fire_t3 p[3] = 0; p[1] = 1;
11 bool p[M];
12 bool v[Nvar];

Figure 6.16: Definitions and declarations in PROMELA.

• Each place is represented by a Boolean value and an array of Booleans,
with length equal to the number of places, is used to represent the set
of places;

• Each variable occurring in the guards is represented as a Boolean vari-
able and the set of variables is represented by an array of Booleans
with length equal to the number of variables.

With these guidelines, we present two approaches to obtain a PROMELA
specification from an SIP-net model. These approaches differs on the way
they treat with external variables occurring in the guards of SIP-net model.
The first one uses an explicit representation of external variables. The sec-
ond one does not use an explicit representation of variables, instead the se-
mantics of variables are implicitly represented in the options of PROMELA
specification, that is the second of the above guidelines will be not used.

Using Explicit Representation of the External Variables
The SIP-net model has four places (p0, p1, p2, p3) and four different vari-
ables in the guards (x0, x1, x2, x3). In PROMELA, we write the specifica-
tion shown in lines 1, 2, 11 and 12 in Figure 6.16 to declare those places and
guards. The array p represents the places (p[i] is the place pi of the SIP-net
model) and the array v represents the set of variables (v[j] is the guard xj of
the SIP-net model) The definition of the enabling and the firing conditions
for each transition uses arrays p and v. With these representations, ready
conditions and firing rules for each transition are defined from lines 3 to 10
in Figure 6.16, where rd ti represents the ready condition of transition ti
and fire ti represents the firing rule of transition ti.

According to the definition of simultaneous firing (Definition 6.1.5),
all ready transitions at a given moment must be fired. Therefore, the

115

Chapter 6. Case Studies

PROMELA specification must include one firing rule for each of the fifteen
possible non-empty combinations of the three transitions.

There is one (and only one) choice in the do-loop for each subset of
transitions. The choice condition for a subset T ′ of transitions is constructed
by:

1. the conjunction of the ready conditions of all the transitions in T ′, and

2. the conjunction of the negation of ready conditions corresponding to
each transition not in T ′.

The do-loop may present non-determinism. In the above case we only
have deterministic choices, because at most only one guard can be made
true at a given moment. This means that we can not have two or more
guards simultaneously true. Informally, given two guards, there is at least
one ready condition of a transition ti which appears uncomplemented in one
of the guard and appears complemented (or negated) in the another one.
Some of the guards are always false. We are not interested in considering
the guards with all the ready conditions negated, because there is no action
defined to that guard.

The behaviour of an SIP-net model depends on external stimuli through
the variables occurring in the guards. In this PROMELA specification, the
variables are present on the ready conditions (see lines 3 to 6 in Figure 6.16).

In an SIP-net model, nothing is known about the behaviour of its envi-
ronment, more precisely the value of the variables are not modelled by the
SIP-net model. Thus, we must consider all the possibilities for the value of
each variable. In PROMELA, it can be done as illustrated in Figure 6.17,
where the parameter ivar identifies the variable to be considered. The do-
loop gives non-deterministically the value 0 or 1 to the considered variable.

1 proctype randomVar(int ivar)
2 {do
3 :: atomic{ v[ivar] = 0 ; }
4 :: atomic{ v[ivar] = 1 ; }
5 od }
6 init{ atomic{
7 run randomVar(0);run randomVar(1);
8 run randomVar(2); run randomVar(3);
9 p[0]=1; p[1]=1; p[2]=0; p[3]=0; /*Initial Marking*/

10 run procParSyn();}}

Figure 6.17: PROMELA process for specifying the SIP-net model example.

116

6.1. Reactor System

Running one process for each variable allows us to simulate the behaviour
of the environment. The main process, for the SIP-net model example,
firstly creates four instances of the randomVar process, one for each variable,
(see lines 7 and 8 in Figure 6.17). After that, the places are initialized
according to the initial marking. Finally, an instance of the procParSyn
process is created. The corresponding PROMELA specification is presented
in Figure 6.17.

To study the appropriateness of the PROMELA specification for the
considered example, its behaviour has been simulated with the Spin tool.
By running the interactive simulation, we have the possibility to choose one
of two different values (0 or 1), for each of the guards x0, x1, x2, and x3. We
have these options in all points of the simulation, which allow us to control
the behaviour of the environment. In the PROMELA specification, both
the controller and the environment run concurrently. Thus, we obtain a
simulation of the system, whose non-determinism is introduced by external
variables. In this PROMELA specification we are assuming that values of
variables is part of system’s behaviour, but this not the case for the SIP-net
model, where the variables are considered elements of the environment.

Let us see what happens when we are using the Spin tool to analyse
the obtained PROMELA specification. When simulating the PROMELA
specification, since there is no explicit representation of environment’s be-
haviour, it is possible to change the value of all variables in any point of
execution, because as we said before the non-determinism is introduce by
the value of each variable. In this way, when changing the variables we are
defining the set of transitions to be fired. If none of the guards associated
to the enabled transition, for the selected values, are evaluated to true we
have a situations that the system we are simulating can not go to one its
next states. When we are simulating this is useful, because we are only
manipulating the environment and observing what happens to the system.

This solution is not adequate for verification of system’s properties, be-
cause it is possible to obtain a path execution where there are only actions
changing the value of one variable, which are not actions of the system we are
considering. In this way when we try to verify a system property we have not
the expected result. For example, when we try to verify on this PROMELA
specification the liveness property of transition t0, which is based on the
inspection if for all states (in the system generated by the PROMELA spec-
ification) there is at least one next state validating the ready condition for
transition t0. When using the Spin tool to verify this property the obtained
result is “not valid”. Running the resulting “trail” simulation is based on
an execution where the initial value of variable x0 (false) is never changed,

117

Chapter 6. Case Studies

1 #define en_t0 (p[0] && !p[2])
2 #define en_t1 (p[1] && !p[3] && !p[0])
3 #define en_t2 (p[2] && !p[0] && p[3])
4 #define en_t3 (p[3] && !p[1])

Figure 6.18: Definition of the enabled conditions.

and consequently the transition t0 never becomes ready, because t0 has the
variable x0 as its guard.

Not Using Explicit Representation of the External Variables
To overcome this problem, which prevents us from analysing the behaviour
of the system, we adopt a different solution. The key idea of our approach
to generate the PROMELA specification is that the semantics of guards are
present, without explicitly representing the variables. This is possible if we
guarantee that in each point of the PROMELA specification execution there
are all the possible choices corresponding to the different valuations of the
variables.

In the SIP-net model of Figure 6.15, transitions t0 and t1 are never
enabled for a given marking, because there is a inhibitor arc from place
p0 to transition t1. When analysing the SIP-model it is not necessary to
consider that guards x0 and x1 are both true.

For a marking which puts a token into the places p2 and p3 (notice that
this marking is accessible from the initial marking), the transitions t2 and
t3 are both enabled. The variables x2 and x3 permit the sequential (non-
concurrent) firing of transitions t2 and t3, i.e., transition t2 can be fired
without t3 being fired at the same time (or vice-versa). This happens if
x2 is true and x3 is false (or x2 is false and x3 is true). We still can fire
these two transitions simultaneously if x2 and x3 are both true. We are not
interested in the case that transitions x2 and x3 are both false.

Now, we can apply these ideas to the PROMELA specification for the
considered example. Since in this solution there are no variables in the
PROMELA specification, it is necessary to remove the references to the
variables in the definition of the ready conditions. These new conditions
only include references to places and are therefore called enabled conditions
(see Definition 6.1.4). They have the PROMELA definition presented in
Figure 6.18.

The structure of the main process is a do-loop, whose guards are based
on the conjunction of the conditions corresponding to the enabled condition
of a given subset of transitions.

118

6.1. Reactor System

vi x0 x2 ¬x0 ∧ ¬x2 Transitions

v1 1 1 0 {t0, t1, t2}
v2 1 0 0 {t0, t1}
v3 0 1 0 {t2}
v4 0 0 1 {t3}

Figure 6.19: Truth values of guards.

In the solution that uses variables, when we have a valuation to the
variables and a marking, we know that at most only one line of the do-loop
has choice condition that holds true.

With one line in the PROMELA specification for each subset of transi-
tions, we guarantee that the subsets of transitions, which are not expected
to fire, have a false choice condition associated with them. In the solution
without references to variables, we can not put one line for each subset of
transitions. We select only the subsets of transitions, whose corresponding
guards can be simultaneously true. For each A ⊆ TN , we write GN (A)
to denote

⋃
t∈A{X : (t,X) ∈ GN}. To write the PROMELA specifica-

tion for the SIP-net model example, we select all the consistent sets in
{G(A)|∅ ⊂ A ⊆ TN}.

With respect to the SIP-net model in Figure 6.15, the sets of the variables
in the guards are disjoint and guards could have the value true or false, so
all the sets are consistent.

We most consider only the subsets of transitions which elements could
be enabled for a given marking, otherwise we are generating a correct
PROMELA specification but some of choices are “dead” code and so they
could be removed.

We now change the guards of the transitions of the SIP-net model, such
that: G(t1) = x0, G(t3) = ¬x0 ∧ ¬x2.

The variables occurring in the guards are x0 and x2. The variable x0
occurs in the guards of transitions t0, t1 and t3, and the variable x2 occurs
in the guards of transitions t2 and t3. In Figure 6.19, for each combination
of the values for x0 and x2, the Boolean values of the guards are presented.
The last column shows the set of transitions whose guards are validated by
the valuation (vi) in the row.

Although the guards of the transitions t0, t1 and t2 are consistent, none
of the transitions is simultaneously enabled with the other two transitions,
due to the restrictions imposed by the structure of the SIP-net model. Thus,
by the valuation v1 in Figure 6.19, the transitions t0, t1, and t2 can be fired
alone. There exists a marking enabling transitions t2 and t3, but as we can

119

Chapter 6. Case Studies

state in Figure 6.19 there is no valuation validating the ready condition for
this two transitions. Thus the set of transitions {t2, t3} is not considered in
the do-loop of PROMELA specification.

Rules to Specify SIP-net Models with PROMELA

Based on the ideas expressed in the previous sections, we define more general
rules in this section. A PROMELA specification is constructed from three
basic types of objects: processes, data objects, and messages.

The principal process is called init. Many of PROMELA notational con-
ventions derive from the C language, including declaration and initialization
of variables. The do-loop statement gives a cyclic non-deterministic choice
of one guard, and each guard has actions associated with it.

For a given SIP-net model, we define that the corresponding PROMELA
specification has three parts: (1) the definition of the enabled condition for
each transition, (2) the definition of the firing condition for each transition,
and (3) the do-loop in the init function.

The first two parts are straightforward to obtain, because they only
depend upon the structure of the SIP-net model. The do-loop is harder to
obtain, because it must include all the possible subsets of transitions that
may fire simultaneously. To define the alternative choices of the do-loop,
some calculations must be performed based on the guards of each transition.

Firstly, we calculate the subsets of transitions which may be simulta-
neously enabled. Notice that subsets of this set are still sets of enabled
transitions, and thus, we need only to consider the maximal subsets of en-
abled transitions, independently of the valuation of their guards. Let us
denote the set of such maximal subsets by PEMAXS.

Secondly, for each MT ∈ PEMAXS, we calculate its maximal subsets
of ready transitions, i.e., we consider the maximal subsets of MT whose
guards can be made true under the same valuation. Let T ′ = {t1, . . . , tk}
be such a subset of MT . Although all the transitions in T ′ could be ready
to fire simultaneously, given a marking it may enable only a subset of the
transitions in T ′. Thus when calculating the guards of the do-loop, we must
consider the firing of all its subsets. Without loss of generality, we study
what happens to the subset T ′ \ {tk}. There exists a marking for which all
transitions in T ′ \ {tk} are enabled and tk is not enabled.

The guard corresponding to the set T ′ \ {tk} in the do-loop is given by
the conjunction C1 ∧ C2. Condition C1 is simply the conjunction of the
enabled conditions of the transitions in T ′ \ {tk}. For condition C2, firstly
we calculate the set T ′′ of transitions which contains the transition tk and

120

6.1. Reactor System

1 type SIPnet = (Structure, Marking, Context)
2 type Structure = [Trans]
3 type Marking = [Place] -- marked places
4 type Context = [Guard]
5 data Trans = Trans TransId [Place]
6 [Place] [Place] Guard [Place]
7 data Place = Place PlaceId
8 type Guard = Formula
9 type TransId = Id

10 type PlaceId = Id
11 type Id = String

Figure 6.20: Haskell data types to represent SIP-net models.

the transitions in the set
⋃

A∈PEMAXS∧A⊃(T ′\{tk}) A \ (T ′ \ {tk}).
Secondly, we calculate the subset T ′′′ of T ′′ consisting of the transitions

not validated by any of the valuations which validate the transitions in
T ′ \ {tk}. Condition C2 is then the conjunction of the negations of the
enabled conditions with respect to transitions in T ′′′.

Performing the previous calculations to all subset T ′′ of MT , and all MT
in PEMAXS, we obtain a do-loop modelling the structure of the SIP-net
model, where the non-deterministic choices correspond to the choice of a
valuation, for a given marking.

The ready conditions are the basic elements used to specify the be-
havioural properties of the SIP-net models. In the PROMELA specification,
there is no explicit representation of the transitions’ guards. Thus, the ready
condition, for a transition t, is the disjunction of all guards in the do-loop,
in which the enabled condition for t occurs. Notice that the ready condi-
tion of two or more transitions is not the conjunction of the corresponding
ready conditions of those transitions, but the disjunction of the guards in
the do-loop, in which enabled conditions for all considered transitions occur.

The Computer Application

In this section, the computer application that was created to generate the
PROMELA specification for a given SIP-net model is presented. The apli-
cation was written in Haskell. In order to describe an SIP-net model in
Haskell we use the data type definition presented in Figure 6.20, that is we
represent an SIP-net model in Haskell as a triple with the structure of the
net, a marking and a context.

A marking of a net is represented in Haskell as the set of places which
have one token. In Haskell a set is represented as an Haskell list. Notice

121

Chapter 6. Case Studies

1 parsyn :: SIPnet
2 parsyn = [
3 Trans "t0" [Place "p0"] [] [] (Var "x0") [Place "p2"],
4 Trans "t1" [Place "p1"] [] [Palce "p0"]
5 (Var "x1") [Place "p3"],
6 Trans "t2" [Place "p2"] [Place "p3"] []
7 (Var "x2") [Place "p0"],
8 Trans "t3" [Place "p3"] [] [] (Var "x3") [Place "p1"]]
9 prsm30 = [Place "p0",Place "p1"]

10 sparsyn= (parsyn,prsm30,[])

Figure 6.21: Haskell specification of the SIP-net model example.

that SIP-net models are safe nets, so a place has at most one token. This
allows the use of a set to represent the marked places. A context is a set of
guards, which is in Haskell a formula of propositional logic.

The structure of an SIP-net model is a set of transitions. Each transition
has a label of identification (TransId), the set of pre-places, the set of the
places linked through enabling arcs, the set of the places linked through
inhibitor arcs, a guard, and the set of post-places, respectively. For example,
the SIP-net model illustrated in Figure 6.15 has the Haskell representation
presented in Figure 6.21.

Next we present functions included in the tool to implement the cal-
culations described in the previous section. We also show its usage in the
Haskell representation in Figure 6.21. The function enabled has the following
signature:

1 enabled :: SIPnet -> [[Trans]]

Given an SIP-net model, the program calculates the maximal subsets of
enabled transitions, which is denoted by PEMAXS in the previous section.
Applying this function to the SIP-net model, we obtain the following result:

1 *Ex_parsyn> enabled sparsyn
2 [[t1],[t2,t3],[t0,t3]]

For each subset of PEMAXS we calculate the maximal subsets whose
transitions could be simultaneously ready.

Given an SIP-net model and the set of enabled transitions, it is calculated
the set of pairs, such that the first component has the transitions that can
be ready. This ready condition is determined by the no satisfaction of the
enabled condition of transition in each element of the second component.

Using the Application Using the previous results we can generate the
PROMELA specification for the SIP-net model. Additionally, we gener-
ate the TL conditions to test the potential conflicts in the SIP-net model.

122

6.1. Reactor System

These conditions are based on their ready condition, already included in the
PROMELA specification.

The toPROMELA function creates a String from an SIP-net model, and
has the following signature:

1 toPROMELA :: SIPnet -> String

The result of applying toPROMELA function to a SIP-net model is
a string with the PROMELA specification corresponding to the SIP-net
model, that constitute the input to Spin tool to analyze the properties of
the given SIP-net model. For the considered example we have the following
PROMELA specification:

1 *Ex_parsyn> (putStr.toPROMELA) sparsyn
2 #define M 4
3 #define en_t0 (p[0] && !p[2])
4 #define en_t1 (p[1] && !p[3] && !p[0])
5 #define en_t2 (p[2] && !p[0] && p[3])
6 #define en_t3 (p[3] && !p[1])
7 #define fire_t0 p[0] = 0; p[2] = 1;
8 #define fire_t1 p[1] = 0; p[3] = 1;
9 #define fire_t2 p[2] = 0; p[0] = 1;

10 #define fire_t3 p[3] = 0; p[1] = 1;
11 /* Enabled Conditions for each transition */
12 #define ready_t0 (en_t0 && en_t3) || (en_t0)
13 #define ready_t1 (en_t1)
14 #define ready_t2 (en_t2 && en_t3) || (en_t2)
15 #define ready_t3 (en_t0 && en_t3) || (en_t3)
16 /* Enabled conditions for transitions
17 in a potential conflict. */
18 bool p[M];
19 init{ atomic{ p[0] = 1; p[1] = 1; p[2] = 0; p[3] = 0; }
20 do
21 :: en_t0 && en_t3 -> atomic{ fire_t0; fire_t1; }
22 :: en_t2 && en_t3 -> atomic{ fire_t0; fire_t1; }
23 :: en_t0 -> atomic{ fire_t0; }
24 :: en_t1 -> atomic{ fire_t1;}
25 :: en_t2 -> atomic{ fire_t2;}
26 :: en_t3 -> atomic{ fire_t3;}
27 od }

In this PROMELA specification, for each transition, we have the defi-
nitions of: the enabled conditions (between lines 2 and 5), the fire actions
(between lines 6 and 9), and the ready conditions (between lines 10 and 14).

These definitions use the variables representing the places of the net,
which are declared in line 17. After that we have the init process. In line
18 the marking values are assigned to the places. The do-loop guards, lines
between 21 and 25, represent the different sets of transitions which can fire
simultaneously, and the corresponding action to fire the transitions.

123

Chapter 6. Case Studies

The ready condition, for a transition t, is the disjunction of all guards
in the do-loop, which have an occurrence of enabled condition for t. This
can be seen in the previous example on the definition of ready conditions.
The ready condition of two or more transitions is not the conjunction of the
corresponding ready conditions to those transitions, but the disjunction of
the guards in the do-loop, in which the enabled conditions for all consid-
ered transitions occurs. The ready conditions are the basic elements when
specifying the behavioural properties of SIP-net models.

To check if a potential conflict among transitions constitute a behavioural
conflict we need to evaluate the simultaneous enabling of these transitions,
thus we need to have the enabling conditions of transitions in potential
conflict. Thus we decide to define only the following conditions:

• the ready conditions for each transition (presented between lines 11
and 14); and

• the ready conditions for each set of transitions in potential conflict (in
the example there are no potential conflicts, thus no enabling condi-
tions for more than one transition is defined, but we put commentary
on line 15).

Next, we present the specification and the verification of properties of the
SIP-net models in the context of the PROMELA specification, using the TL
formulas. The three SIP-net model properties considered here are: (1) be-
havioural conflicts freedom, (2) dead-lock freedom, and (3) liveness of its
transitions.

To check the freedom of behavioural conflicts in SIP-net models, we use
the TL formula with the � operator and the negation of the ready condition
corresponding to the set of transitions that are in conflict. If the transitions
in potential conflict are the transitions ti and tj , the formula is the following:
� ¬ready ti tj.

According to Definition 6.1.9 we can define in TL two levels of liveness
(L1 and L4) in the context of the generated PROMELA specification. The
operators � and ♦ represent, respectively, the universal, and the existential
quantification over the states of the system.

Given an SIP-net model N and t ∈ TN . The TL formula to be verified
in order to prove that: t is L1-Live is checked by the formula ♦ ready t;
and t is L4-Live is checked by the formula �♦ ready t. In this way, we can
study the behavioural conflicts freedom, liveness of system’s transitions and
also the absence of dead-locks.

124

6.2. Elevator Controller System

6.2 Elevator Controller System

The purpose of this section is to provide a consistent and complete descrip-
tion of the requirements for an elevator controller software system for low-
rise building elevators. This case study is an adaptation from the description
presented in the technical report [Blanco 2005].

6.2.1 General description

An elevator (also known as lift) is vertical transport vehicle to move people
or goods between floors of a building. Typically an elevator is powered by
electric motors that either drive traction cables and counterweight systems,
or pump hydraulic fluid to raise a cylindrical piston. In this work we are
considering elevator systems with electric motors to move essentially people.

The software of the elevator controller is responsible for the safe and
efficient operation of elevator hardware components in order to allow elevator
passengers travel between floors of the building.

An elevator controller needs to interact with the components present
in the elevator system. We are assuming for this case study, an elevator
controller that manages an elevator system with two cars in a building with
six floors. Next we introduce the components in the elevator system we are
considering for this case study.

In a building prepared to receive an elevator system there are the elevator
shafts, and in each floor there are a connection between the floor hall and
the elevator shaft. The elevator car is a compartment with some available
free space to receive a set of passengers, and it can be moved by the motor
connected with it, in the elevator shaft along the floors of the building. In
this case study there are two elevator cars where the passengers travel from
one floor to another one, along the six floors of the building.

Figure 6.22 depicts the context diagram for the elevator controller, where
the main sensors and actuators present in the considered top-most entities
(Floor and Car) are shown. We are considering a building with six floors.
There are two cars where the passengers travel from one floor to another
one. Each car has a door (called a Car Door) that opens when the car is
stopped in a floor, to allow the passenger to enter or to exit the elevator
car. Each Floor contains two Location Sensors, one for each car, to detect
when the respective car is at or is arriving to the floor. In each Floor there
are Hall Buttons to allow the passengers to call an elevator car indicating
the direction (up or down) he wishes to travel. Obviously, the first and
the last floors have only one button to select the unique direction that is

125

Chapter 6. Case Studies

possible to travel (up for the first floor and down for the top-most floor).
After being pushed a light in the Hall Button is turned on, and the button
stay illuminated until the car that will service the passenger arrives. This
light allows the waiting passengers to be informed that a car elevator in
that direction has been already called. There is a Floor Door in each floor
to protect the car’s shaft, and the doors only open when the corresponding
car is stopped at the floor.

Car (x2)

Door

Car Motor

Floor (x6)

Location

Sensor (x2)

Hall

Button (x2 or x1)

Floor

Door (x2)

Interior

Control Panel

Open Door

Button

Floor

Button (x6)

Direction

Indicator

Floor

Indicator (x6)

Elevator

Controller

Door Timer

Door Sensor

Door Motor

Car Door

Figure 6.22: Context diagram for the elevator controller.

Each of the two Cars has one Car Motor, which is an electric motor
connected with the elevator car to move up or down along the floors. Each
car has a Door which has:

• a Car Door that opens when the car is stopped in a floor, to allow the
passenger to enter or to exit the elevator car. It includes two sensors,
to indicate either if the door is closed or totally opened;

• a Door Timer to define the period to wait before start closing the door,
in order to automatically close the door after a given amount of time;

• a Door Sensor to detect if there is something obstructing the door
during closure;

• a Door Motor to open or to close the car door;

126

6.2. Elevator Controller System

When the elevator car is stopped at a floor the Car Door is mechanically
linked with the Floor Door in the current floor, in this way the floor door
opens or closes at the same time the car door is open or closed in that floor,
without the direct intervention of the elevator controller.

Inside the car a passenger can find:

• a Floor Indicator that shows the current floor of the car,

• a Direction Indicator that shows the direction being followed by the car,
and

• a Control Panel that contains an Open Door Button to open the doors
and six Floor Buttons to select the destination floor.

6.2.2 Use cases descriptions

The behaviour of the elevator controller is triggered by the passengers’ ac-
tions. A passenger can push the buttons in each floor to select the direction
he wants to travel. When the passenger is inside a car he can select the floor
he wants to travel, pushing the button with the number of the floor. Inside
the car, there is also a button to open the door. The elevator controller has
the responsibility of managing the movements of the cars in accordance to
the requests of the passengers through pushing on the buttons.

Our approach proposes the usage of a use case diagram to depict the main
functionalities provided by the system to its users. Figure 6.23 presents a
use case diagram for the elevator controller system. The brief description of
each use case in the Use case diagram of Figure 6.23 is the following:

UC1 - Travel to Floor : Passenger at a floor requests an elevator to
travel in an intended direction;

UC2 - Service Floor : System moves an elevator car from an origin
floor to a destination floor;

UC3 - Open Door : System opens the door of an elevator car;

UC4 - Close Door : System closes the door of an elevator car;

UC5 - Announce Emergency : Passenger announces an emergency in
the elevator car where the passenger is in;

UC6 - Ring Alarm Bell : Alarm bell rings while bell button is being
pressed by the passenger;

127

Chapter 6. Case Studies

Figure 6.23: Use case diagram for the elevator controller system.

UC7 - Set Operation Mode: Passenger changes the operation mode of
the elevator car;

UC8 - Recall due to fire Alarm: Elevator cars are recalled to a floor,
determined by the fire alarm system in the building, when the fire
alarm is activated;

UC9 - Recall to Floor : Elevator car is recalled to a floor;

UC10 - Stop at Floor : System stops the elevator car at a floor;

UC11 - Notify Floor Passed : System informs the passenger inside the
elevator car that the car is just passed the floor.

To illustrate the usage of sequence diagrams to describe the scenarios
present in a use case description, we start by detailing the use case UC2
called “Service Floor”. This use case is responsible for moving an elevator
car from an origin floor to a destination floor, by request of a passenger
either in one of the building’s hall or inside an elevator car.

Figure 6.24 depicts the sequence diagram with the main scenario of the
“Service Floor” use case. This sequence diagram uses some high-level oper-
ators present in the UML 2.0, namely the opt and the loop operators. These
operators permit the description of several scenarios in a unique sequence
diagram.

128

6.2. Elevator Controller System

opt

 loop

Elevator

Controller
Direction

 Indicator

Car Door Car Motor Floor

Indicator

lightDirInd(c,d)

start(c,d)

Location

Sensor

close(c)

Door Motor

lightFloorInd(c,f)

isArrivingFloor(c,f)

stop(c)

isAtFloor(c,f)

opt

slowDown(c)

[f = Fd]

d=up, if Fd>Fo;

d=down, if Fd<Fo;

Elevator car c is at floor Fo, and

the next requested floor is the Fd

Fi=Fo+1, if d=up;

Fi=Fo-1, if d=down;

[for each f between Fi and Fd]

[CarDoor.isOpen(c)]

Figure 6.24: Sequence Diagram describing the “Service Floor” use case.

In order to abstract from the scenarios presented in the sequence dia-
gram, there are along the left-hand side of the diagram some textual anno-
tations where some variables being used in the messages (and guards) are
informally declared. For example, the diagram in Figure 6.24 abstracts from
the car, and the origin and destination floors. With the textual annotation
“Elevator car c is at Floor Fo, and the next requested floor is the Fd”, we are
declaring the variables c, Fo (origin floor) and Fd (destination floor), to be
used as parameters for the scenario present in the diagram. With these vari-
ables, we are able to define variable d that represents the direction followed
by the car, in the textual annotation “d=up, if Fd>Fo; d=down, if Fd<Fo”.
The textual annotation “Fi=Fo+1, if d=up; Fi=Fo-1, if d=down;” defines
the variable Fi, representing the next floor from the origin floor.

The scenario presented in Figure 6.24 describes the following behaviour
related to UC2.

1. The passenger in the current floor is notified about the direction the

129

Chapter 6. Case Studies

car will take (message lightDirInd);

2. If the car door is open (high-level operator opt)

(a) The car door is closed (message close)

3. The car is moved in direction to the destination floor (message start);

4. While the destination floor is not reached (high-level operator loop):

(a) The location sensor informs the elevator controller that the car
is arriving to the next floor (message isArrivingFloor);

(b) The Floor Indicator corresponding to the next floor is activated
(message lightFloorInd);

(c) The Car Door must slow down its speed, when the next floor is
the destination floor (message slowDown);

(d) The location sensor informs the elevator controller that the car
is at the next floor (message isAtFloor);

5. The car stops (message stop).

In this main scenario of the “Service Floor” use case, we are assuming that
during its execution there are no other interactions of the passengers with
the buttons. These situations could origin some other variations to this
main scenario.

When a passenger requests the elevator to stop, it can be in an inter-
mediate floor while it is moving. Figure 6.25 presents a sequence diagram
that includes these variations, which is a sequence diagram obtained from
the sequence diagram in Figure 6.24, adding the high-level operator loop.

Systems sends an elevator car to the floor from where the passenger is
located, and carry the passenger to the destination floor. The main scenario
for the UC1 Travel to Floor use case:

1. Passenger, who is at one of the floors in the building, pushes one of the
hall buttons in the floor indicating the travel direction (up or down);

2. System selects one of the elevator cars to answer the request of the
passenger;

3. System assigns the selected car to the request of the passenger;

4. System notifies the passenger about the assignment of a car to the
request, by illuminating hall button pressed by the passenger;

130

6.2. Elevator Controller System

5. System starts a service floor (use case service floor);

6. System notifies the passenger that the car has arrived to the floor;

7. System opens the door of the elevator car;

8. System turns on the direction indicator light inside the elevator car
according to the direction that the passenger selected to travel;

9. Passenger enters in the elevator car;

10. Passenger pushes a floor button inside the elevator car to select the
destination floor;

11. System records the request;

12. System notifies the passenger that the request was recorded, by illu-
minating the floor button that was pressed by the passenger;

13. System closes the door (use case Close Door);

14. System starts a service floor (use case service floor);

15. System notifies the passenger that the request was served, by illumi-
nating the floor button that has been pressed by the passenger;

16. System opens the door of the elevator car;

17. Passenger exits the elevator car.

The main scenario for the use case “Travel to Floor” is described in the
sequence diagram depicted in Figure 6.26.

131

Chapter 6. Case Studies

loop

par

opt

opt

opt

Elevator

Controller

Direction IndicatorCar Door Car Motor Floor Indicator

[CarDoor.isOpen(c)]

light(c,d)

start(c,d)

Floor Door Location Sensor

[for each f between Fi and Fj]

Hall Button

notifyCarSelected(Fn,d)

Floor Button

[HallButton.carRequest(Fn,d)]

[Car c has a request at floor f]

Elevator car c is at floor Fo, and

the next requested floor is the Fd

d=up, if Fd>Fo;

d=down, if Fd<Fo;

Fi=Fo+1, Fj=Fd-1, if d=up;

Fi=Fo-1, Fj=Fd+1, if d=down;

start(c,d)

AssignsRequest(c)

ref
{UC11} Notify Passenger Floor Passed (c,f)

ref
{UC10} Stop Car (c,f)

ref
{UC3} Open Door

ref
{UC4} Close Door

ref
{UC10} Stop Car

ref
{UC11} Notify Passenger Floor Passed (c,Fd)

ref
{UC4} Close Door

Figure 6.25: Sequence Diagram describing the main scenario of the use case
UC2 “Service Floor”, and some of its variations.

132

6.2. Elevator Controller System

ref
{UC3} Open Door

ref
{UC2} Service Floor

ref
{UC3} Open Door

ref
{UC2} Service Floor (to go in direction d, with variation 1)

Elevator

Controller

Door Timer Door SensorOpen Door Button

ref
{UC4} Close Door

Car MotorCar DoorHall Button

carRequest(f,d)

SelectElevatorCar

notifyCarSelected(f,d)

notifyCarArrived(f,d)

Direction Indicator

light(c,d)

Floor Button

destinationFloorSelected(c,f)

Records Request

notifyRequestFloorRecorded(c,f)

notifyRequestFloorServed(c,f)

Passenger enters elevator car c

Passenger exits elevator car

Passenger at floor f requests an

elevator to travel in an intended

direction d

Car c was selected

AssignsRequest(c)

Figure 6.26: Sequence Diagram describing the main scenario of the use case
UC1 “Travel to Floor”.

133

Chapter 6. Case Studies

6.2.3 Expressing scenarios by a CPN model

In this subsection we present the CPN model to express some of the sce-
narios for the elevator controller system. We concentrate on the use case
UC2 “Service Floor”, whose sequence diagram is presented in Figure 6.25.
Figure 6.27 presents the top-level CPN model obtained from this sequence
diagram.

stop

msg stop

loop
current floor

 between Fo and Fd

loop

opt
(is car door open?)

opt1

lightDirInd

msg lightDirInd

start motor
of a car

msg start

car stopped

Out
ScenarioUC2

car is at Fd

ScenarioUC2

car motor is
started

ScenarioUC2

begin of UC2

In
ScenarioUC2

car door
is closed

ScenarioUC2

light direction
actualised

ScenarioUC2

In

Out

msg start

msg lightDirInd

opt1

loop

msg stop

Figure 6.27: CPN model representing a sequence diagram for UC1 “Service
Floor”.

Figure 6.28 represents the initial part of the sequence diagram presented
in Figure 6.26 for the use case UC1 “Travel to Floor”.

134

6.2. Elevator Controller System

sUC1

sUC1

sUC1

sUC2

sUC2

sUC2

aCar

aCar
sUC1

Notify Car Arrived

[(#car sUC1)=(#car sUC2),
isAtFloor((#id aCar), aFloor2)]

selectCar
AssignRequest

Notify Car Select

SUC1_4

ScenarioUC1

SUC1_3

ScenarioUC1

SUC2_1

ScenarioUC1

SUC2_0

Car

Car

Fusion floor

SUC1_1

ScenarioUC1[(#f sUC1)= (#floorId aFloor),
 hasHallButtonRequestedCar(aFloor),
 isAtFloor((#id aCar), aFloor2)]

1`aFloor++1`aFloor2

Fusion floor
Floor

1`carSelectHallBt(aFloor)
++1`aFloor2

{car=carId(aCar),
 floors={fo= floorId(aFloor2), fd= floorId(aFloor1)},
 f= floorIdS(sUC1) }setCar(sUC1, aCar)

ScenarioUC2

sUC1

ScenarioUC2

SUC1_2

available
Cars

Fusion 2Fusion 2

C1
Fusion CarFusion Car

UC4-Open Door

msguc1OpenDoormsguc1OpenDoor

UC2-ServiceFloor

UC2 Service Floor v2_5UC2 Service Floor v2_5

Fusion floorFusion floor
Floor

aFloor2

FloorCarArrived(aFloor2)

Figure 6.28: CPN model representing a sequence diagram for UC1 “Travel
to Floor”.

6.2.4 Building an animation

This subsection presents the steps followed to build an animation of the
elevator system and also the tools involved in the deployment of the anima-
tion. Only the functionalities related with use case UC2 “Service Floor” is

135

Chapter 6. Case Studies

considered in this animation.
In the previous subsection, we present the elevator system consisting

on an elevator controller managing two elevator cars in a building with six
floors. In this subsection, we present the development of an animation layer
for the elevator controller introduced in the previous section.

In this case study we consider the elements in the environment as the
actors of the elevator controller system. The actors for the “Service Floor”
use case are the ones that participate in the sequence diagram in Figure 6.24.

An elevator can be visually represented by a picture with the floors and
the cars, where the cars can go up/down across the floors. While the cars are
moving, the elevator controller must update the information shown in the
panels inside each elevator car and attend the requests from the passengers.

For the elevator controller, only a subset of the entities of the environ-
ment are relevant for animation, since the passenger is not aware of (or does
not interact with) all of them. This means that the animation layer only
includes the relevant entities. In contrast, the CPN model does specify all
the environment’s entities. In the elevator controller, the passenger inter-
acts only with the following six entities: Hall Button, Car Door, Direction
Indicator, Floor Indicator, Open Door Button, and Floor Button.

Figure 6.29 presents a detailed version of the context diagram in Fig-
ure 6.22, and associates the graphical representation to some of the entities
presented in the context diagram. A dashed arrow from one entity to the
graphical icon means that the entity is graphically represented by the icon.
If an entity as no that have no icons associated with it, it is not graphically
represented in the animation.

Figure 6.30 shows a screenshot obtained from the animation of the el-
evator controller. On the left part of the figure, there is a representation
of each floor with the buttons to call an elevator. We can also see the two
elevator cars in Figure 6.30: the left-hand side elevator is at the second floor
with its door open, and the right-hand side elevator is at the fifth floor with
its door closed.

On the right part of the figure, the interior of both cars are depicted.
Each car has a floor indicator, which has one light for each floor, and only
the light of the current floor is on. There are also two lights, one to indicate
the up direction and another one to indicate the down direction, showing
the direction being followed by the car. Figure 6.30 shows that the left-hand
side car has the light with the number two in yellow indicating that this light
is on, and thus that the car is currently at the second floor. The left-hand
side car currently has no direction, and the light direction of the right-hand
side car indicates that the car is going down. One can use the associations

136

6.2. Elevator Controller System

Elevator

Controller

Floor (x6)

Location

Sensor (x2)

Hall

Button (x2 or x1)

Floor

Door (x2)

Car (x2)

Car Motor

Door Timer

Door Sensor

Door Motor

Car Door

Car Interior

Direction

Indicator

Floor

Indicator

Control Painel

Floor

Button (x6)

Open Door

Button

lightDirInd

close

start

isArrivingFloor

lightFloorInd

slowDown

isAtFloor

stop

carRequest

notifyCarSelected

notifyCarArrived
destinationFloorSelected

notifyRequestFloorRecorded

notifyRequestFloorServed

light

Figure 6.29: Diagram that associates graphical representations to some of
the entities of the environment of the elevator controller.

between the entities of the elevator controller system and the graphical icons
presented in Figure 6.29.

Scripting language

Next we show part of the Ruby script that generates the XML code for the
animation of the Direction Indicator.

1 require ’builder’
2 require ’sbXMLgen.rb’

3 xmlBuilder = Builder::XmlMarkup.new(
4 :target => $stdout, :indent => 3)
5 xmlBuilder.instruct! :xml, :version => "1.0"
6 xmlBuilder.animation("width" =>"800", "height" => "600"){
7 carIds = ["left","right"]
8 carInteriorCoord = {"left" => Tuple.new(420,20),
9 "right" => Tuple.new(610,20)}

137

Chapter 6. Case Studies

Figure 6.30: A screenshot of an animation for the elevator controller system.

10 lstBhLightDI = Hash.new()

11 lstCommands = Hash.new()
12 carIds.each{ |carId|
13 bhparams = Hash.new()
14 durQuick = 0.0001
15 xHide = -1000
16 xVisible = carInteriorCoord[carId].getX+7*20
17 bhparams["show"] =
18 BehaviourParams.new(xHide,xVisible,durQuick)
19 bhparams["hide"] =
20 BehaviourParams.new(xVisible,xHide,durQuick)
21 directions = ["up", "down", "idle"]
22 movs = ["show", "hide"]
23 bh = Hash.new()
24 movs.each{ |m| bh[m] = Hash.new() }
25 lstBhLightDI[carId] = {"up"=>[],
26 "down"=>[], "idle"=>[]}
27 mkCmdStrDI= lambda{|mov, cId, dir|

138

6.2. Elevator Controller System

28 "#{mov}lightDirInd(#{cId}Car,#{dir})"}

29 directions.each{ |d|
30 movs.each{ |mov|
31 cmdStrDI = mkCmdStrDI.call(mov,carId,d)
32 bh[mov][d] = Behaviour.new(cmdStrDI, "move",
33 bhparams[mov], "xpto")
34 bh[mov][d].toXML(xmlBuilder)
35 lstBhLightDI[carId][d].push(
36 Tuple.new("x", cmdStrDI))
37 if (mov=="show") then
38 d_tmp = directions.dup
39 d_tmp.delete(d)
40 lstBhToStart = Array.new()
41 lstBhToStart.push(cmdStrDI)
42 d_tmp.each{ |od|
43 cmdStrDIod =
44 mkCmdStrDI.call("hide",carId,od)
45 lstBhToStart.push(cmdStrDIod)
46 }
47 cmdStrDIname =
48 mkCmdStrDI.call("",carId,d)
49 lstCommands[cmdStrDIname] =
50 lstBhToStart.dup
51 end
52 } }
53 }
54 lstCommands.each{|k,v| make_command(xmlBuilder,k,v) }
55 xmlBuilder.draw {
56 carIds.each{ |carId|
57 draw_DirectionIndicator(xmlBuilder,
58 carInteriorCoord[carId], lstBhLightDI[carId])}
59 }

In line 1, the package from the builder library to build XML tags is
included. When we define an object as a Builder (see lines 3 and 4 where
we define the variable xmlBuilder) we are able to generate a XML tag by
using the name of the tag to be generated as a method for the object. For
example in line 6 the following XML structure is created:

1 <animation height="600" width="800">
2 ...
3 </animation>

139

Chapter 6. Case Studies

The tag animation includes the XML code generated by the lines 7-47 of the
Ruby script.

In line 6, the variable carIds is defined as an array with the car identi-
fiers. It is possible to create an iteration over this variable, as is shown in
line 10. This permits an easy integration of new similar cars in the anima-
tion, because we have a dynamic structure based on the elements into the
array carIds.

140

6.3. Check-in System

6.3 Check-in System

This section describes a case study used to exemplify the application of our
approach. The case study consists on a check-in system in an international
airport [Robertson and Robertson 2006]. The results presented in this sec-
tion were published in [Ribeiro and Fernandes 2009].

6.3.1 General description

The main stakeholder in this system is the so called check-in agent that
interacts with the passenger in order to execute the check-in of the passenger.
An informal description of the checking in of a passenger is given by one of
the check-in agents in the following paragraphs [Robertson and Robertson
2006].

“I call the next customer in line when he gets to my desk, I ask for a
ticket. If the passenger is using an e-ticket, I need the booking record
locator: Most of the passengers are not organized enough to have it
written down, so I ask them their name and the flight they are on.
Most people do not know the flight number, so I usually ask for his
destination. They must know that!”

“I make sure I have the right passenger and the right flight. It would
be pretty embarrassing to give away someone else’s seat or to send a
passenger to the wrong destination. Anyway, somehow I locate the
passengers’ flight record in the computer: If he has not already given
it to me, I ask for the passenger’s passport. I check that the picture
looks like the passenger and that the passport is still valid.”

“If there is no frequent-flyer number showing against the booking, I ask
the passenger if he belongs to our mileage scheme. Either he hands me
the plastic card with the FF number, or I ask him and if he wishes to
join I give him the sign-up form. We can put temporary FF numbers
against the flight record so the passenger is credited for that trip.”

“If the computer has not already assigned a seat, I find one. This
usually means I ask if the passenger prefers a window or an aisle seat,
or, if the plane is already almost full, I tell him what I have available.
Of course, if the computer has assigned one, I always ask if it is okay.
Somehow we settle on a seat and I confirm it with the computer system.
I can print the boarding pass at this stage, but I usually do the bags
first.”

141

Chapter 6. Case Studies

“I ask how many bags the passenger is checking in and, at the same
time, verify that he is not exceeding the carry-on limit. Some people are
unbelievable with what they want to carry into fairly space-restricted
aircraft cabin. I ask the security questions about the bags and get the
passenger’s responses. I printout the bag tags and securely attach them
to the bags, and then I send the bags on their way down the conveyor
belt.”

“Next I print the boarding pass. This means that I have everything
done as far the computer is concerned. But there is one more thing
to do: I have to make sure that everything agrees with passenger’s
understanding. I read out form the boarding pass where he is going,
what time the flight is, and what time it will board. I also read out
how many bags have been checked and confirm that their destination
matches the passenger’s destination. I hand over the documents, and
wish the passenger a good flight.”

Based on this description one can sketch out the scenario, that contains
the steps capturing the normal path through the descrition. A possible
sequence of steps performed by the check-in agent during the main scenario
of the check-in passenger business use case is the following [Robertson and
Robertson 2006]:

1. Get the passenger’s ticket or record locator;

2. Confirm that this is the right passenger, flight, and destination;

3. Check that the passport is valid and belongs to the passenger;

4. Record the frequent-flyer (FF) number;

5. Find a seat;

6. Ask security questions;

7. Check the baggage onto the flight;

8. Print and hand over the boarding pass and bag tags;

9. Wish the passenger a pleasant flight.

The main scenario is modelled by the UML2 sequence diagram illustrated
in Figure 6.31, where we can observe a parallel high-level operator that
represents the fact that steps 4 and 5 (“record the FF number” and “find a
seat” respectively) can be done in any order.

142

6.3. Check-in System

par

Reservation

System

Passenger

getTicket

Check-in

Agent

confirmTicketInfo

getPassport

checkPassport

findSeat

askSecurity
checkBaggage

print & handOver

wishNiceTravel

recordFF

SD check-in passenger

Figure 6.31: Sequence diagram for the main scenario of the “check-in pas-
senger” business use case.

Each step in the scenario is represented by a message in the sequence
diagram. The sender and the receiver of a message are extracted from the
step’s description, and the order between these messages is the same as the
order introduced by the numbers of the corresponding steps in the textual
descriptions.

Some alternative and exception scenarios can be added to the main sce-
nario. For example, three alternatives for step 4 were identified:

A4.1 Allow the FF number to be changed to that of a partner airline;

A4.2 Allow the FF number to be changed to that of a family member; or

A4.3 Allow the mileage of the flight to be donated to a charity of the
passenger’s choice.

The “A4” prefix in the previous items are used to indicate that the items
constitute an alternative for step 4 in the main scenario, and each alternative

143

Chapter 6. Case Studies

item is also enumerated.

In the case that the passenger has an invalid passport, an exception to
the main scenario is introduced and the execution of the scenario must be
ended.

The behaviour of the main scenario, with the alternatives listed above
together with the exception for the invalid passport could be expressed by
the sequence diagram in Figure 6.32. Notice that this sequence diagram
describes a set of elementary scenarios, since some high-level operators are
used.

6.3.2 Expressing scenarios by a CPN model

To illustrate our approach we show how it can be applied to the “check-in
passenger” business use case. This subsection explains the transformation of
UML2 sequence diagrams, describing scenarios, into a CPN model. After ex-
plaining how to obtain the CPN model for the main scenario of the use case,
we show how to add alternative and exception scenarios, and how to enrich
the CPN model with some possible (unexpected) behaviours performed by
the passengers. The interested reader is referred to Chapter 4, where the
modelling guidelines that were applied to iteratively obtain a CPN model
from a set of sequence diagrams are presented.

Expressing the main scenario

The main scenario of the use case is described by the sequence diagram in
Figure 6.31 and it gives rise to the CPN model presented in Figure 6.33.

The initial state for the considered scenario is modelled by the tokens
inside the two places at the top of Figure 6.33. The place ready to check-in
passengers contains the tokens that represent the passengers that are ready
to proceed with the check-in, and the place available agents contains the
tokens that represent the available check-in agents. These two places are
used as input places to the transition getTicket, which represents the step
in the scenario where the passenger gives the ticket to the agent. After
this trigger, the passenger and the agent must proceed together to complete
the steps of the scenario. There are places between transitions to save the
information related to the considered passenger and agent along the scenario
execution and to preserve the order between the transitions (according to
the order given in the sequence diagram). The input arcs for getTicket have
the inscriptions p and a that are variables representing a passenger and an
agent, respectively.

144

6.3. Check-in System

opt

par

Reservation

System

Passenger

getTicket

Check-in

Agent

confirmTicketInfo

getPassport

checkPassport

findSeat

askSecurity
checkBaggage

print & handOver

wishNiceTravel

alt recordFF

changeFFfamily

changeFFpartner

SD check-in passenger

[passport is valid]

donateToCharity

Figure 6.32: Sequence diagram with alternative scenarios of and exceptions
to the “check-in passenger” business use case.

The execution of each instance of the scenario terminates when the con-
sidered passenger is checked-out, which implies that the agent is available
again to start a new check-in procedure. The place checked-out passengers
at the bottom of Figure 6.33 is used to contain the tokens of the passengers
that were successfully checked-out. The details about the colour sets used
in the places of the CPN model can be found below.

145

Chapter 6. Case Studies

s

#agent s

#passenger s

s

s

s

s

s

s

s

s

s

s

2`s

s s

ss

s

s

{passenger=p,
agent=a}

ap

checkPassport

wishNiceTravel

handOver

print

checkBaggage

askSecurity

findSeatrecordFF

confirmTicketInfo

getTicket

checked-out
passengers

Out Passenger

S8

ScenarioInfo

S7

ScenarioInfo

S6

ScenarioInfo

S5

ScenarioInfo

S4
ScenarioInfo

S3.b

ScenarioInfo

S3.a

ScenarioInfo

S2

ScenarioInfo

S1

ScenarioInfo

available
agents

I/O
Agent

ready to
check-in

passengers
In

Passenger
In I/O

Out

Figure 6.33: CPN module to represent the main scenario of the “check-in
passenger” business use case.

Adding alternative and exception scenarios

The alternatives and exceptions are integrated in the CPN model obtained
for the main scenario, in the following way. As explained above, the ex-
ception introduced by the usage of an invalid passport, and the alternatives
introduced by the possibility to save the flight in a FF number of a partner
airline, to save the flight in a FF number of a family member, or to donate
the mileage to a charity.

146

6.3. Check-in System

The resulting behaviour is described by the sequence diagram in Fig-
ure 6.32, where we can find opt and alt high-level operators. The CPN
module that reflects these alternatives and exceptions is based on the ver-
sion for the main scenario in Figure 6.33.

Figure 6.34 presents the resulting CPN module obtained after consider-
ing the sequence diagram in Figure 6.32, where the transitions recordFF and
checkPassport are now substitution transitions so that they represent the be-
haviour introduced by the high-level operators. The substitution transition
recordFF is connected to the CPN module presented in Figure 6.35, where
there is an alternative execution between the four presented transitions. No-
tice that in the common input place S3.a there is only one token for each
scenario instance (in this case a scenario instance is represented by a pair of
a passenger and a check-in agent). The substitution transition checkPassport
is connected to the module in Figure 6.36, where there are two alternative
transitions, one for the case when the passport is valid, and another when
the passport is invalid. The use of an invalid passport is considered an ex-
ception, implying that the execution of the scenario must terminate. The
end of the scenario execution moves the token representing the passenger
participating in the scenario to the place idle passengers (which represents
passengers not ready or willing to check-in), and the token representing the
check-in agent to the place available agents.

Adding the behaviour of actors to the CPN model

We assume, as explained in [Jackson 2000], that passengers have free will and
might behave in unexpected ways. Check-in agents also have free will, but
they are more biddable, so they are expected to behave in a more constrained
way. Therefore, in this case we enrich our CPN models with alternative
scenarios triggered by possible abnormal or unexpected behaviours of the
passengers, which may include, for example, ignorance, insubordination or
malevolence. This is an important issue to make the CPN models more
useful for animation and validation purposes, since they address a richer set
of scenarios of usage.

In the context of the “check-in passenger” business use case, three main
states were identified for passengers. In the main scenario we have identified
the state (to begin the scenario) when the passenger is ready to check-in, and
another state to finish the scenario when the passenger is checked-out. These
two states are represented in the obtained CPN module in Figure 6.33 by the
places ready to check-in passengers (at the top of the figure) and checked-out
passengers (at the bottom of the figure). When considering alternatives and

147

Chapter 6. Case Studies

s

s

s

#agent s

s

#passenger s

s

#agent s

#passenger s

s

s

s

s

s

s

s

s

2`s

s s

ss

s

s

{passenger=p,
agent=a}

ap

Passenger Cancel
Check-in S5

passenger cancel

Passenger Cancel
Check-in S2

passenger cancel

checkPassport

check passport

wishNiceTravel

handOver

print

checkBaggage

askSecurity

findSeatrecordFF

alternatives FF

confirmTicketInfo

getTicket

checked-out
passengers

Out Passenger

idle
passengers

Out
Passenger

S8

ScenarioInfo

S7

ScenarioInfo

S6

ScenarioInfo

S5

ScenarioInfo

S4

ScenarioInfo

S3b

ScenarioInfo

S3.a

ScenarioInfo

S2

ScenarioInfo

S1

ScenarioInfo

available
agents

I/O
Agent

ready to
check-in

passengers
In

Passenger
In I/O

Out

Out

alternatives FF

check passport

passenger cancel

passenger cancel

Figure 6.34: CPN module to express an alternative of and an exception to
the main scenario of the “check-in passenger” business use case.

exceptions to the main scenario a third state was identified to capture the
fact that the passenger is idle. For example, when the agent checks that the
passenger’s passport is invalid the check-in scenario ends and this passenger
is considered to be idle. The CPN module presented in Figure 6.34 has a
place idle passengers to contain the tokens corresponding to passengers that
are idle.

To capture some of the abnormal behaviours introduced during the ex-

148

6.3. Check-in System

s

change the FF to
a family member

record FF
number

S4

Out

S3.aIn

donate mileage
to a charity

change the FF to
a partner airline

s

ScenarioInfo

s

In ScenarioInfo

Out

s s s

ss

Figure 6.35: The altenativesFF CPN module.

#agent s

s s

#passenger s

ss

passport
is invalid

passport
is valid

available
agents

Out
Agent

S3.a

Out

ScenarioInfo

S3.b

Out

ScenarioInfo

idle
passengers

Out
Passenger

S2

In

ScenarioInfo

In

Out

OutOut

Out

Figure 6.36: The check passport CPN module.

ecution of a scenario we can enrich the CPN model with a specific module.
The CPN module that expresses the considered behaviours of the passenger
is presented in Figure 6.37. We consider that an idle passenger can go for

p

pp

p

give up
waiting

go to
waiting line

idle
passengers

I/O
Passenger

ready to
check-in

passengers
I/O

Passenger
I/O

I/O

Figure 6.37: The passenger behaviour CPN module.

the waiting line for proceeding with the check-in (transition go to waiting
line in Figure 6.37). A passenger in the waiting line can decide to abandon

149

Chapter 6. Case Studies

the area, becoming idle again (transition give up waiting in Figure 6.37).
We model the cancellation of the check-in process by the passenger after

the confirmation of the ticket information, or after the passenger being asked
about the security issues (these two execution points are represented by the
places S2 and S5 in Figure 6.34). The substitution transitions “Passenger
Cancel Check-in S2” and “Passenger Cancel Check-in S5” in Figure 6.34 intro-
duce the cancellation in the two corresponding execution points. After the
cancellation, the passenger can start again from the beginning of check-in
process.

Generalizing the CPN Model

In this subsection, we explain how a CPN model can be generalized in
order to allow more use cases and their scenarios to be executed in parallel.
Therefore we describe the role of colour sets used in the places of the CPN
models and how the usage of multiple tokens in the places of a CPN model
allows the parallel and concurrent execution of scenarios.

The top-most CPN module is presented in Figure 6.38. This module

passenger
behaviour

passenger behaviour

check-in
Passenger

check-in passenger

idle
passengers

[{name="Mary", passport="862794",
ticket={flight="4452", kind=normal}},
{name = "Ann", passport ="882528",
ticket={flight="4452", kind=normal}}]

Passenger

checked-out
passengers

Passenger

available
agents

Agent

ready to
check-in

passengers

Passenger

check-in passenger

passenger behaviour

{name="Jim"}

2

1`{name="Ann",passport="882528",
ticket={flight="4452",kind=normal}}
++
1`{name="Mary",passport="862794"
,ticket={flight="4452",kind=normal}}

1

1`{name="Jim"}

Figure 6.38: The top-most CPN module.

integrates, using substitution transitions, all the CPN modules presented
previously, namely the ones for the main scenario of the “check-in passenger”
business use case in Figure 6.34 and its exceptions and alternatives, and for
the behaviour of passengers in Figure 6.37.

We have defined a colour set to represent each actor of the system that
appears in the use case. The passengers and the check-in agents are the

150

6.3. Check-in System

actors for this system, and their colour sets are listed in Figure 6.39.

For the passenger, we consider that it is relevant to have her name, her
passport number, and her ticket information. For the agents, only the name
is used. As explained above the check-in of a given passenger is triggered
when she shows her ticket to one of the available check-in agents.

To save the information about the scenario being executed, we use a
colour set based on a record with the information of a passenger and an
agent, called ScenarioInfo (see Figure 6.39).

The CPN module in Figure 6.38 has two tokens in the place idle passen-
gers and one token in the place available agents. Near to each of these two
places, there is a rectangle where the values of its tokens are specified.

1 colset Passenger =
2 record name: STRING*
3 passport: INT*
4 ticket: TICKET;
5 colset Agent =
6 record name: STRING;
7 colset ScenarioInfo =
8 record passenger: Passenger*
9 agent: Agent;

Figure 6.39: Declaration of the colour sets.

In the specific case shown in Figure 6.38, no more than one passenger
can simultaneously do the check-in, because there is only one available agent
(called Jim). The introduction of an additional agent (adding one token
with his identification to the place available agents) potentially allows two
passengers to concurrently perform the check-in operation.

Consider more use cases

In this subsection we exemplify how to add more CPN modules representing
different use cases to the CPN model. We consider the use case that permits
a passenger to use the services associated with her FF card. This use case
is executed by a different type of agents.

Assuming that there is a CPN module called use FF card to represent the
scenarios of this use case, that module is integrated in the top-most module
by adding a substitution transition as depicted in Figure 6.40. Therefore,
the CPN model in Figure 6.40 permits instances of different use cases to be
executed (an consequently animated) in parallel.

151

Chapter 6. Case Studies

use
FF card

charge FF

passenger
behaviour

passengers behaviour_

check-in
Passenger

check-in passenger

ready to
use

FF card

available
FF cards
agents

{name="Fred"}

Agent

idle
passengers

[{name="Mary", passport="862794",
ticket={flight="4452", kind=normal}},
{name = "Ann", passport ="882528",
ticket={flight="4452", kind=normal}}]

checked-out
passengers

available
agents

{name="Jim"}

Agent

check-in passenger

passengers behaviour_

charge FF

Passenger

Passenger

Passenger

Passenger

ready to
check-in

passengers

1

1`{name="Fred"}

2

1`{name="Ann",passport="882528",
ticket={flight="4452",kind=normal}}
++
1`{name="Mary",passport="862794"
,ticket={flight="4452",kind=normal}}

1

1`{name="Jim"}

Figure 6.40: The top-most CPN module, with an additional use case.

6.3.3 Building an animation

This subsection presents an animation of the CPN models presented above
for some scenarios of the check-in system. Figure 6.41 presents a screen-
shot of an animation for the check-in passenger system. There is an icon
of a human figure to represent each passenger using the system, who are
identified by a number next to him. The check-in desks are depicted by a
rectangle, with a human figure inside it to represent the respective agent.
On the bottom of each check-in desk icon there is a number to identify it.
On the top of each check-in desk icon there is an icon to depict what the
agent is doing. For example, the check-in agent identified by the number 6
is now printing the boarding pass and bag tags for the passenger number
5. The passenger number 1 is at check-in 1, and the check-in agent has
just validated the ticket. On the bottom of the animation there are three
icons to represent the entrance door (on the left), the waiting room (on the
middle), and the checkout door (on the right).

This animation is parameterized by the number of passengers, and the
number of check-in desks, to be used on the animation. Depending on the
initial number of elements to be included in the animation, the elements are
distributed along the available space.

152

6.4. Discussion

Figure 6.41: A screenshot of an animation for the check-in system.

6.4 Discussion

This chapter describes the three case studies considered in this thesis. Firstly,
the reactor system case study has been considered. The reactor system case
study was started by modelling it using a synchronous and interpreted Petri
net variant, as presented in Subsection 6.1.5. This study contributed to
detect a set of limitations in the usage of this initial approach, in partic-
ular when conducting the verification of properties of the model, we have
detected the dependence of the results on the choice of the correct values for
the variables that represent the elements of the system environment. This
choice is in some contexts not free, which may imply that more scenarios
is being considered than the need ones. In fact making a previous analysis
of the behaviour of the environment may reduce its model complexity, and
consequently facilitates the comprehension and also the verification of the
properties of the model. After this exercise, we have started modelling the
reactor system using the CPN modelling language, where the environment
is also described. To accomplish this, the rules to transform a sequence dia-
gram were applied to obtain the CPN model. In order to better understand
the system behaviour we have created a graphical animation to validate the
requirements through the execution of the CPN model.

Secondly, an elevator controller system has been considered. This system

153

Chapter 6. Case Studies

is a reactive system where the humans have an important role on its oper-
ation, because its goal is to serve, human users, who are called passengers.
Although important, the passengers are not themselves part of the system,
since they only interact with system through the existing actuators and sen-
sors. Various versions of the CPN models have been created (based on the
scenarios descriptions), and we have studied how to easily parametrize the
models in terms of the number of passengers using the elevator system An
animation centered on the use case to travel a passenger between floors has
been considered. This animation has been used in some contexts to illustrate
our approach for the community.

Thirdly, the system to check-in passengers in an airport has been consid-
ered. Due to the abstraction level that we have considered for this system,
we have included behaviours produced by humans (i.e. the check-in agents)
as being part of the system. We have explored the possibility for abnormal
behaviours performed by the human users of the system.

154

Chapter 7

Related Work

Summary

This chapter presents the state-of-the-art of the research fields
considered in this work. The chapter starts with the analysis of
some efforts on turning the use case descriptions into a more
formal representations. After that, we consider some methods
to directly generate a state-based model from a scenario-based
descriptions, where there are no explicit reference to states of
the system. The use of Petri nets as a medium to a synthe-
sise scenarios describing a system behaviour is analysed. This
chapter ends with the description of some efforts that have been
presented to improve the way that formal specifications are pre-
sented to the users, in particular when these specifications rep-
resent software requirements.

Contents

7.1 Formalization of Use Case Descriptions 156

7.2 Generation of State-based Models from Scenarios157

7.3 Synthesis of Petri Net Models from Scenarios . 159

7.4 Animating Formal Specifications of Requirements166

155

Chapter 7. Related Work

7.1 Formalization of Use Case Descriptions

Several researchers have tried to formalize the informal aspects of use cases.
While earlier approaches focused primarily on developing the formal se-
mantics of use cases, recent proposals put more emphasis on developing
techniques to integrate and perform analysis on a set of use cases.

As an example of the former, Hsia et al. [1994] use a BNF-like grammar
to formally describe use cases. A graphical and tree-like representation,
called the conceptual state machine, is used. This approach is effective
when applied to a small number of relatively simple use cases. Specification
based on multiple viewpoints can, in principle, be supported by developing
a more complex grammar. However, this is likely to be too cumbersome to
be useful on industrial applications where frequent changes to requirements
are expected to occur and where iterative and incremental requirements
elicitation techniques are needed.

Andersson and Bergstand [1995] adopt Message Sequence Charts (MSCs),
which are frequently used to state the requirements for telecommunications
software. There are several features in the MSC standard aimed at enhanc-
ing the expressiveness of individual MSCs. Examples include constructs to
specify the conditional, iterative, or concurrent execution of MSC sections.
Anticipated exceptions and required system responses can be specified, too.
The authors argue that an MSC-based approach has advantages over the
grammar-based approach in terms of scalability and understandability.

Dano et al. [1997] suggest use cases to be collected and described by
tables, to facilitate the communication between the analyst and the domain
expert. Later, through mapping rules, Petri Nets are built from the tables
to formalize the requirements. The approach is used for producing object-
oriented requirements specifications, based on structural models and focuses
on deriving intra-object behavioural models.

In contrast, several researchers have proposed analysis techniques for
a set of interacting use cases. Glinz [1995] uses statecharts to represent
use cases. The relationships among use cases are represented using one of
the following constructs: sequence, alternation, iteration, or concurrency.
This approach assumes a disjointedness among the use cases and does not
support overlapping scenarios where the same event sequences appear in
multiple use cases. That is, when overlapping scenarios are later identified,
existing use cases (and, consequently, corresponding statecharts) have to be
modified to maintain the disjointedness. For example, statecharts connected
by a sequence relation may need to be further decomposed into more de-
tailed statecharts connected by sequence as well as by alternation constructs.

156

7.2. Generation of State-based Models from Scenarios

This approach does not satisfy the insensitivity property unless all of the
overlapping scenarios are known in advance. This “forced” (and potentially
unnatural) modification of statecharts does not support traceability.

Other approaches for analyzing dependencies include timed automata
[Some et al. 1996], finite state automata [Lustman 1997], and MSCs [Leue
and Ladkin 1996]. They are adequate for describing use cases individually
and can even analyze the interactions among a small number of use cases.
However, the larger the number of use cases there are to analyze, the more
difficult it becomes to grasp and analyze the global system behaviours since
the brute-force approach of considering all possible combinations quickly
leads to the state explosion problem.

A formal syntax and semantics based in Petri nets for describing use
cases in order to overcome the limitations of the use cases is proposed in
[Lee et al. 1998].

7.2 Generation of State-based Models from Sce-
narios

The main focus of our work is on the transformation of models of behavioural
scenarios into state-based models. In particular we are interested in the
translation of sequence diagrams into CPN models. Next, we describe sev-
eral approaches which were already proposed to combine the usage of these
two types of models.

Harel [2001] proposes the usage of scenario-based programming, through
UML use cases together with play-in scenariosThe play-in scenarios make it
possible to go from a high-level user-friendly requirements capture method,
via a rich language for describing message sequencing, to a full model of the
system, and from there to the final implementation.

Harel and Marelly [2003b] developed an engine, called play-in/play-out,
to obtain Live Sequence Charts (LSCs) from the requirements. The play-
in/play-out engine allows end users to capture LSCs by playing with a mock-
up of the final system’s user interface. The user clicks on the buttons, fills
in text fields, and simulates the system reaction. The user is said to play-
in the scenarios. Afterwards, scenarios that have been played-in can be
played-out, i.e., interpreted by the play-out engine. In order to do so, the
engine monitors input events, such as buttons being clicked, text fields being
filled in, and so on, and tracks these events in all LSCs of the specification.
This approach actually simulates a minimal implementation of the future
system. Harel and Marelly [2003a] present an approach called “Come Let’s

157

Chapter 7. Related Work

Play” to support the idea that scenarios can do much more than only de-
scribing a single execution or folded set of executions of a system, because
they can define the behaviour of a system. Their play engine [Harel et al.
2003] demonstrates that a system can be fully defined in terms of scenarios
without providing a model of the underlying components, and that the op-
erational state-based behaviour of the components can be synthesized from
the scenarios. In this way, one can see that scenarios are the system or, at
least, fully defined the system’s behaviour.

In many situations, however, we do not need to define the full system
behaviour from scratch. Instead, major parts of the system are either reused
or consist of pre-fabricated components with known behaviour. Thus, sce-
narios, as the means to describe the expected behaviour of the new parts
of the system, have to be incorporated with existing, usually state-based,
behavioural models.

Another extension in LSC of the MSC standard is the notion of a syn-
chronous message exchange. The distinction between possible and necessary
behaviour is possible on single events, on parts of an LSC or an complete
LSCs. Additionally, the inversion of this distinction allows the specification
of forbidden behaviour, i.e., traces that the system must not execute.

A major obstacle to the idea of synthesizing statecharts from LSCs is
the high computational complexity of the synthesis algorithms, that does
not allow the approach to be applied to large systems. Additional problems
are more methodological, related to the level of detail required in the sce-
narios to allow meaningful synthesis, the problem of ensuring that the LSC
requirements are exactly what the user intended, and a lack of tool support
and integration with existing development approaches.

Krüger et al. [1999] suggest the usage of MSCs for scenario-based specifi-
cations of component behaviour, especially during the requirements capture
phase of the software process. They discuss how to schematically derive
statecharts from MSCs, in order to have a seamless development process.

Whittle and Schumann [2000] propose an algorithm to automatically
generate UML statecharts from a set of UML sequence diagrams. This
work also presents the usage of the algorithm for a real application. Their
main conclusion is that it is possible to generate code mostly in an automatic
way from scenario-based specifications. This algorithm is applied in [Whittle
et al. 2003, 2005] to the weather control logic subsystem of Center TRACON
Automation system which is under development at NASA Ames Research
Center. The result of this study is that it is possible to use scenario-to-state
machine algorithms to reliably develop models of a complex and practical
system.

158

7.3. Synthesis of Petri Net Models from Scenarios

Soares and Vrancken [2008] suggest a meta modelling approach to trans-
form UML2.0 sequence diagram to Petri Nets in order to represent the real-
time constraints and the shared resources, characteristics that are not ad-
dressed by the sequence diagrams.

Störrle [1999] presents an approach to translate a sequence diagram into
a PN model, where a linear place-transition path is used to represent the
behaviour of each object, associating a message to the events of sending
or receiving messages. The two transitions that represent the send and
receive of a message are either connected by a communication place if the
message is asynchronous, or gathered into a single transition if the message
is synchronous.

7.3 Synthesis of Petri Net Models from Scenarios

There are also works on the synthesis of Petri nets from scenario-based
specification. Juhás et al. [2005] present a polynomial algorithm to decide
if a scenario, specified as a Labelled Partial Order, is executable in a given
Place/Transition PN. The algorithm preserves the given amount of concur-
rency and does not add causality. In case the scenario is indeed executable
in the PN, the algorithm computes a process net that respects the concur-
rency expressed by the scenario. Although quite useful, this technique is
not yet available for high-level PNs (such as Object-oriented PNs, CPNs,
or Reference nets), and to validate the scenario the user must simulate the
obtained process net, where the concepts of the problem domain are not
clearly represented as in the created animations used in our approach.

Amorim et al. [2005] introduce an informal methodology to map LSCs
into CPNs for allowing properties of the system to be verified and analysed.
They do not consider the validation of the gathered behavioural scenarios,
but only their verification, namely to detect some inconsistencies between
them.

Eichner et al. [2005] present a formal semantics by means of PNs for
the majority of the concepts of sequence diagrams. This semantics allows
the concurrent behaviour of the diagrams to be modelled and subsequently
analysed. Moreover, the usage of high-level PNs with data representation in
its tokens permits an efficient structure for data types and control elements.
In their approach, they use places to represent the messages, instead of tran-
sitions as we do. The authors consider the translation of UML 2.0 sequence
diagrams to M-nets (Multivalued nets), a high level PNs with the usual in-
scriptions governing colored token flow and additional inscriptions governing

159

Chapter 7. Related Work

composition and synchronization of nets [Best et al. 1998]. They do not de-
fine the semantics of time events into the diagrams. They restrict parameters
given to messages in constants attributes or variables of data type Boolean
and Integer. Conditions are translated to transition guards, which assure
that firing a transition is only possible if the respective condition is satisfied.
They built a semantics of an interaction in a bottom-up way, starting from
the innermost elements and incrementally adding surrounding elements on
each level of nesting. To define the semantics they define maximal indepen-
dent sets of partial lifelines, whose elements are completely unordered with
respect to all other elements that are not part of the same lifeline. Thus,
these lifelines fragments do not need special care for sequentialization. The
semantics of each message independent set is defined compositionally and
separately for each lifeline that is part of the set. All lifelines are put in
parallel due to their independent behaviour. Send and receive events as well
as data access inside conditions, actions, and message parameters are only
handled by inscriptions of the PNs. The resulting nets have to be completed
in a last step to gain explicit representations of PN semantics. A detailed
definition of the transformation is presented, namely for both elementary
diagram elements and combined fragments.

An aspect-oriented scenario modelling approach, to be used at the re-
quirements level is presented in [Whittle and Araújo 2004]. Aspectual sce-
narios are modelled using interaction pattern specifications and composition
of non aspectual requirements, which is represented by UML sequence dia-
grams. A technique for composing aspectual scenarios using an instantia-
tion of an interaction pattern specification and an algorithm to synthesise
state machines is introduced. The result is a set of state machines that
represent the composed behaviour from the aspectual and nonaspectual sce-
narios. When executing these state machines, it is possible to simulate the
combined aspectual and non aspectual behaviour at an early stage of the
development process.

Haugen et al. [2005] proposes an approach, called STAIRS, aiming to
provide a formal foundation for the use of UML interactions in a step-wise
and incremental system development. STAIRS views the process of develop-
ing the interactions as a process of learning by describing. From a fuzzy and
rough sketch, the aim is to reach a precise and detailed description applica-
ble for formal handling. To come from the rough and fuzzy to the precise
and detailed, STAIRS distinguishes among three main sub-activities:

• supplementing: categorizes (to this point) inconclusive behaviour as
either positive or negative, recognizing that early descriptions normally

160

7.3. Synthesis of Petri Net Models from Scenarios

lack completeness. The initial requirements concentrate on the most
obvious exceptional ones;

• narrowing: means reducing the allowed behaviour to better match
the problem;

• detailing: involves introducing a more detailed description without
significantly altering the externally observable behaviour.

The focus is on the refinement of sequence diagrams as a means for system
development and validation.

Bontemps [2005] presents a way to create distributed reactive systems,
based on modelling languages and their automated analysis. To narrow the
gap between requirements and design models they suggest to follow two
steps. Firstly, a complete behavioural specification of all user requirements
(usually given by examples) is built. Secondly, the specification is trans-
formed into the whole behaviour of each component of the system.

Hinchey et al. [2005] propose a round trip engineering approach, called
R2D2C (Requirements to Design to Code), where designers write require-
ments as scenarios in constrained (domain specific) natural language. Other
notations, including UML use cases, are however also possible. Based on
the requirements, an equivalent formal model, using CSP, is derived, which
is then used as a basis for code generation.

Uchitel and Kramer [2001] present a basis for a common approach to
scenario-based specification, synthesis and analysis. Uchitel et al. [2003] present
an MSC language with semantics in terms of labeled transition systems and
parallel composition. The language integrates other languages based on the
usage of high-level MSCs and on the identification of component states.
With their language, scenario specifications can be broken up into manage-
able parts using high-level MSCs. These authors also present an algorithm
that translates scenarios into a specification in the form of Finite Sequential
Processes, which can be used for model checking and animation purposes.
First, they define an MSC language with sound abstract semantics in terms
of labeled transition systems and parallel composition. The language in-
tegrates existing approaches based on scenario composition by using high-
level MSCs and those based on state identification by introducing explicit
component labeling. This combination allows them to introduce additional
domain-specific information and general assumptions explicitly into the sce-
nario specification state labels. Second, they provide a synthesis algorithm
which translates scenarios into a behavioural specification in the form of Fi-
nite Sequencial Processes [Magee and Kramer 1999]. This specification can

161

Chapter 7. Related Work

be analyzed with the Labeled Transition System Analyzer, which is a ver-
ification tool for concurrent systems, using model checking and animation.
After that, they can demonstrate how many of the assumptions embedded
in existing synthesis approaches can be made explicit and modeled in their
approach.

The project P–UMLaut [2007] allows to develop tools to prevent incon-
sistencies, and expensive erroneous implementations of diagrams elements
due the lacking of their precise semantic. The tools offered by P–UMLaut
are used to design, simulation and prototyping of correct systems. The
tools enhance system specifications providing a precise description of the di-
agrams. The simulation and animation components of the tools are used for
the visualisation of the system behaviour. System executions can be anal-
ysed interactively in a 3D environment. P–UMLaut supports the following
specification languages: UML 2.0 Sequence Diagrams, SDL, and BPEL. A
formal description is automatically generated from the model, thereby ex-
actly representing the system’s behaviour by means of PNs. The adaptable
simulator allows for execution of the modelled systems and interacts with
various output targets via dedicated interfaces. In addition to the 3D anima-
tion, direct control of hardware and software systems is possible. P-UMLaut
is thus an all-purpose engine for model-based control. Visualisation in P-
UMLaut is accomplished by means of user defined 3D worlds. Already in
the early phases of complex systems design, the model, its possible runs, and
test cases can be demonstrated, simulated, visually analysed, and debugged.
The formal semantics used in P-UMLaut enable automatic and interactive
analysis of models. The verification component adds the possibility of a
provable examination of system properties. Counterexamples found during
this process can be simulated and hence point out flaws in the design. The
p–UMLaut tool is divided into three main sections, which are the following:

• the description of the modelled system as an UML 2.0 sequence dia-
gram;

• the Simulator which executes the PNs built by the Compiler;

• the 3D animation based on the IRRLICHT engine.

Firstly, the user creates different XML-files describing the sequence dia-
grams, 3D world and a xml-file mapping UML events and 3D animations or
user events. According to the described system world the user has to create
the 3D models.

Desharnais et al. [1998] present a way to represent scenarios as a rela-
tion between states (a state-oriented setting). This representation can be

162

7.3. Synthesis of Petri Net Models from Scenarios

graphical, due to relational transition systems. They make a distinction be-
tween environment moves and system moves, allowing moves “within” the
environment and “within” the system, as we do it. A scenario is assumed to
describe possible environment inputs and all legal system reactions. The au-
thors propose an operator for integrating scenarios, based on the “demonic
meet” operator. Like in our work, the integration of two scenarios relative to
the same input obliges the system to answer as specified by both scenarios.

There are several work on the use of Petri nets to model the semantics of
scenario-based models, namely MSCs [Heymer 2000; Kluge 2002; Rudolph
et al. 1993].

Elkoutbi and Keller [1998] suggest the usage of use case diagrams and
scenarios to obtain one hierarchical CPN model for the behaviour of an in-
teractive system. The hierarchy of the CPN model mimics the one of the
use case diagram. The usage of the colours in the nets preserves the inde-
pendence of several scenarios after their integration in to the CPN model.
This permits modelling of concurrency among use cases, scenarios and copies
of the same scenario. However, their approach only tackles the controller
perspective, and does not include the environment parts.

The work presented in [Elkoutbi and Keller 2000; Elkoutbi et al. 2006]
includes two scenario-based techniques to generate user interfaces (UI). One
technique suggests an approach for requirements engineering, linking UML
models with UI prototypes. It provides a process involving five activities to
derive a UI prototype from scenarios and to generate a formal specification
of the application. Scenarios are acquired in the form of UML collaboration
diagrams and are enriched with UI information. These diagrams are auto-
matically transformed into the UML statechart specifications of all involved
objects.

The other technique substitutes the use of statecharts by CPN models,
that is, it automatically transforms the UML sequence diagrams into CPN
models. It aims to model separately the use case and the scenario levels.
The four activities leading from scenarios to executable UI prototypes are
the following:

• Scenario Acquisition

• Specification Building

• Scenario Integration

• UI Prototype Generation

163

Chapter 7. Related Work

In the Scenario Acquisition, the analyst elaborates the use case diagram
capturing the system functionalities, and for each use case, he or she acquires
the corresponding scenarios in the form of sequence diagrams. Scenarios of a
given use case are classified by type and ordered by frequency of use. They
consider two types of scenarios: normal scenarios, which are executed in
normal situations, and scenarios of exception executes in case of errors and
abnormal situations. The frequency of use (or the frequency of execution) of
a scenario is a number between 1 and 10 assigned by the analyst to indicate
how often a given scenario is likely to occur.

The Specification Building consists on deriving CPN models from both
the acquired used case diagram and all sequence diagrams. The CPN cor-
responding to the use case diagram is derived by mapping use cases into
places. The transition leading to one place (Enter) corresponds to the ini-
tiating action of the use case. A place Begin may contain several tokens
to model concurrent executions. In a use case diagram, a use case can call
upon the services of another one via the relation uses, thus this must be
specified at this level.

For each scenario of a given use case, one associates a table of object
states, which is directly obtained from the sequence diagram of the scenario
by following the exchange of messages from top to bottom and identifying
the changes in object states caused by the messages. From each object state
table, a CPN model is generated by transforming scenario states into places,
and messages into transitions. Each scenario is assigned a distinct colour.
When specifying scenarios, only the object state tables is manually obtained.
The rest of the operation is fully automatic.

In the next activity of the approach, Scenario Integration, all CPN mod-
els corresponding to the scenarios of a use case are merged, in order to
produce an integrated CPN model for the behaviour of the use case. Given
two CPN models that correspond to two different scenarios the algorithm
proposed in [Elkoutbi and Keller 1998] merges all places in the CPN models
with the same names. The merged places will have as color the union of
the colors of the two scenarios. Then, the algorithm looks for transitions
having the same input and output places in the two scenarios and merges
them with an OR of their guard conditions.

When integrating several scenarios, the resulting specification captures
in general not only the input scenarios, but perhaps even more, they call
it the interleaving problem [Elkoutbi and Keller 1998], which is solved by
introducing the so called chameleon token (a token that can take on several
colours). An integrated CPN model corresponding to a given use case can
be connected to the CPN model derived from the use case diagram.

164

7.3. Synthesis of Petri Net Models from Scenarios

In the user UI Prototype Generation, a UI prototype of the system is
derived from the CPN model. The generated prototype is standalone and
comprises a menu to switch between the different use cases. The various
screens of the prototype represent the static aspect of the UI; the dynamic
aspect of the UI, as captured in the CPN models, map into the dialog
control of the prototype. The activity of prototype generation includes of
the following five operations:

• Generating graph of transitions

• Masking non-interactive transitions

• Identifying UI blocks

• Composing UI blocks

• Generating frames from composed UI blocks

Küster-Filipe [2006] is gives a semantics of sequence diagrams, com-
bined with an OCL liveness, using labelled event structures [Winskel and
Nielsen 1995], and shows how sequence diagrams can be embedded into
a true-concurrent two-level logic interpreted over labelled event structures
[Küster-Filipe 2000]. The top level logic, called communication logic, is
used to describe inter-object specification, that is it describes interactions
among several instances. The lower level logic, called home logic, describes
intra-object behaviour, such as state invariants and interactions constraints.
Thus, Küster-Filipe’s work presents a concurrent distributed temporal logic
and shows how interactions and various constraints can be described in this
logic. The work indicates two ways to use that logic. Firstly, to capture some
interaction properties to check whether the inter-object behavioural model
(a labelled event structure) satisfies the properties. Secondly, to capture the
entire interaction of a sequence diagram as a set of formulae.

Kloul and Küster-Filipe [2005] show a way of modelling mobility and
performance information at design level using the interaction overview di-
agrams (IODs), and UML2 sequence diagrams, the performance modelling
technique PEPA (Perfomance Evaluation Process Algebra) nets [Gilmore
et al. 2003], the result of the combination of coloured stochastic PNs and
the stochastic process algebra formalism also called PEPA. They describe
the formal translation of IODs into PEPA nets. This translation allows
designers using UML2.0, to formally analyse their models formally using
the PEPA workbench for PEPA nets. The mobility is modeled in UML2.0
notation in the following way:

165

Chapter 7. Related Work

• the locations and movements of objects between locations are de-
scribed in the high level of IOD;

• the locally behaviour and interaction of objects is described in the low
level of IOD by the individual nodes of the IOD, which are sequence
diagrams.

Both levels of IODs are enriched with performance related information,
by indicating, at the source pin of an IOD edge, the explicit action that
corresponds to the movement of an object from one location to another.
With this information, a PEPA net model can be derived. There is a direct
correspondence between the IOD nodes and the objects in the UML model,
with the places and the components in the PEPA net model. The idea of
modelling mobility, with UML notation, for the performance analysis is not
new [Grassi et al. 2004].

Giese et al. [2005] present an approach to integrate scenario-based mod-
els with the state-based models in the design and synthesis of a controller for
flexible production systems, in order to obtain the expected behaviour. Sce-
narios describe the expected behaviour of the controller and the work shows
how the scenarios can be used to record observed behaviour for analysis or
3D-visualization.

The work presented in thesis work is based on the results presented
in [Machado et al. 2005], where the authors show how the behaviour of
animation prototypes results from the translation of sequence diagrams into
CPN models. We extend their results by showing how to translate more
types of operators in UML 2.0 sequence diagrams, namely by considering
parallel constructors which result in CPN models with true concurrency (i.e.,
CPN models that are not just sequential machines).

7.4 Animating Formal Specifications of Require-
ments

In some works, [Morrey et al. 1998; Vázquez 2001] the animation is used to
mean a creation of a prototype following a formal specification.

Several works suggest the usage different visualizations of requirements
specifications. The visual representations provide cognitive support by high-
lighting the most relevant aspects of a specification and interactions.

Dulac et al. [2002] propose a set of principles and a taxonomy for creat-
ing visual representations corresponding to requirements specifications de-
scribed in a formal language. The principles and taxonomy are illustrated

166

7.4. Animating Formal Specifications of Requirements

by sample visualizations created while understanding a formal specification
of a flight management system.

Other works suggest the usage of graphic elements to animate the re-
quirements. Burd et al. [2002] suggest that sequence diagrams can be better
understood through the usage of animation to evaluate the control flow de-
scribed in the sequence diagram.

Van et al. [2004] present a tool for the animation of goal-oriented re-
quirements. The model is obtained using model synthesis techniques, and
supports animation and validation of property-based specifications. Ponsard
et al. [2005] also present an approach to support animation and validation
of property-based specifications.

Magalhães et al. [1998] introduce the use of PNs and some of their exten-
sions for animation. The authors argue that the usage of PNs can improve
the techniques for modelling different aspects of the behaviour of an anima-
tion.

Holzmann et al. [1997] present a set of three tools to support the formal-
ization of requirements, to organize, and to make queries in the obtained
formalization. These authors consider MSCs as the formal language to be
used. The first tool is based on a graphical environment to create and edit
MSCs, that allows also the association of informal text descriptions to the
elements in the diagram. The second tool, called POGA, is used to organize
the existing MSCs creating a graph containing the interdependencies among
them, and generating visual display of the obtained graph. The third tool
is the TEMPLE to search fragments of MSCs along the graph representing
the interdependencies of MSCs. Notice that the POGA tool aims to display
the interdependencies between the MSCs, but not the behaviour present in
each MSCs in a different notation, as we do in this work for the sequence
diagrams. These tools facilitate the manipulation of the obtained formal
specifications of requirements, which is different from our goal of offering an
animation view of the problem domain.

Gargantini et al. [2009] presents a method to validate embedded system
designs provided in terms of UML models, by transforming the considered
UML models into abstract state machines (ASM) formal models, and allow-
ing the simulation-based validation of formal models.

Ermel and Bardohl [2004] present an approach to extend formal specifi-
cations with specifications of graphical animations using a graph-grammar
approach. This extension was done over the GenGED tool [Bardohl 2002],
that proposes the automatic generation of a visual environment to manip-
ulate visual models based on a specified visual language. This approach is
illustrated in [Ehrig et al. 2006], where the PN modelling language is consid-

167

Chapter 7. Related Work

ered as an example of the formal language to be used on the formalization
of an elevator example. The approach to create an animation view is not
focused in a specific modelling language, as does our approach with the CPN
modelling language. Another difference is that they consider the modelling
using the language to be animated, and we consider that the CPN to be an-
imated are obtained from scenario descriptions by sequence diagrams. The
authors consider a notion of animation, very close to ours in the sense that
it is not considers a prototype generated from a formal specification, but an
animation of the problem domain.

168

Chapter 8

Conclusions and Future
Work

Summary

This chapter presents a summary of the contributions result-
ing from the work described in this dissertation document, and
points out several ideas for future work.

Contents

8.1 Contributions . 170

8.2 Future Work . 171

169

Chapter 8. Conclusions and Future Work

8.1 Contributions

The contribution of this thesis is an approach to validate, through anima-
tion, a reactive system that is described by a set of behavioural scenarios.
The method transforms these scenarios into a state-based model that also
includes the behaviour of elements from the environment. Tool support
for the transformation is partially supported in order to illustrate that the
transformation can be automated with state-of-the-art technologies.

In particular, this work is focused in obtaining a CPN model, i.e., our
approach allows a CPN model to be generated from a set of scenarios, ex-
pressed as UML2 sequence diagrams. The natural support to parallelism
and concurrency given by the CPN modelling language permits the CPN
model to be considered for simultaneous execution of several scenarios (ei-
ther of the same use case or of different use cases) and also to represent the
parallel activities inside a scenario. Therefore, the CPN models support two
types of parallelism (intra-scenario and inter-scenario), which means that
they can be made rich enough to explore situations where several scenarios
that might affect each other are executed simultaneously.

The method also supports the modelling of some aspects of the human
users, namely some possible unexpected behaviours. This feature is very
important to address more cases in the animation, and thus better validate
the requirements with the stakeholders.

Our approach easily scales up, since a CPN model distributes the sys-
tem’s complexity among its graphical and textual parts. For example, in
the system for the check-in of passengers (see Section 6.3), the introduction
of more passengers and check-in agents does not change the structure of the
CPN model; we only need to add extra tokens to some well identified places.
Additionally, we propose scenarios to be reflected in the CPN model in an
iterative way. This implies that when, for example, the first alternative sce-
nario is being considered, we should update the CPN model obtained for
the main scenario with the extra behaviour introduced by the alternative or
exception scenarios. Typically, one expects the extra features to be much
smaller than all behaviour, since there are some overlapping parts in the
scenarios (of the same use case).

During this thesis work some efforts have been conducted to study the
feasibility of accomplishing the transformation of a set of scenarios into a
CPN model in an automatic way. A tool was developed to support the trans-
formation of a set of sequence diagrams into a unique CPN model. This tool
must be understood as a proof-of-concept to illustrate that this transforma-
tion can be automated with state-of-art paradigms and technologies.

170

8.2. Future Work

For validation purposes, our approach suggests the development of a
graphical animation layer over the obtained state-based model. This thesis
suggests some guidelines to enrich the CPN model with some animation-
specific code. Due to the support for parallelism and concurrency given by
a CPN model, the behaviours in the animation can be executed simulta-
neously, which allows one to detect some situations where scenarios or use
cases affect each other.

The animation layer consists on a set of graphical elements that are
intended to represent the elements in the context of the system being de-
veloped. When creating an animation, the software engineer must base her
work on the requirements document information, and on her perception
about what turns an animation easy to understand for the stakeholders.
During this activity some changes may be introduced into the CPN model
in order to obtain the expected animations when executing the CPN model
together with the animation specification. The BRITNeY suite animation
tool is used to connect in the CPN tools the execution of the CPN model
with the animation, namely by using the SceneBeans plug-in. Our work
provides some guidelines on how to introduce in the CPN model the code
related to the animation.

The animations used in this work are based on SceneBeans objects that
are specified in XML-based file. To facilitate the generation and manipu-
lation of the XML-files used to define SceneBeans animation, we propose a
set of scripts to enclose and to hide some of the XML syntax details.

In general terms, this work is a contribution to the combination of the
UML and Petri nets, which is considered to be useful to the software engi-
neering area by some authors [Denaro and Pezzè 2004; Gomaa 2006].

8.2 Future Work

As future work, we plan to apply our approach in industrial contexts in order
to evaluate how useful and practical it proves to be for software practitioners.
To facilitate the practical application of the approach, we expect to improve
the tool support for the automatic transformation from scenarios into CPN
models.

Our approach that for describing requirements adopts scenarios as the
main source model can be improved and made more effective if comple-
mented with other techniques. The adoption of those techniques must be
carefully evaluated, since they should truly complement scenarios, and not
address the same perspectives. For example, goal modelling approaches and

171

Chapter 8. Conclusions and Future Work

scenario-based techniques can be complementary used [van Lamsweerde and
Willemet 1998]. Similarly, it seems that personas, goals and scenarios consti-
tute also a useful combination for requirements engineering [Aoyama 2007].

There are some other usages for the obtained CPN model, namely the
exploration of the verification of some properties using the available tech-
niques like model checking for that purpose.

An interesting point to be studied in the future is the usage of the ob-
tained CPN model along to support the rest of the development activities
on the development process, such as the obtainment of a first architecture
for the software system under consideration.

We plan also to extend our work to support some different kinds of
graphical animations, that can be more adequate for some specific situations,
such as the ones where there is a continuous behaviour to be animated.
There is an ongoing project on the usage of virtual worlds of Second Life as
animations (in three dimensions), whose avatars represent the human users
of the system under development. This context is specially interesting and
useful for analysing the user experience within a complex software-based
system.

172

Bibliography

A. Abran, J. W. Moore, P. Bourque, R. Dupuis, and L. L. Tripp. Guide to
the Software Engineering Body of Knowledge (SWEBOK). IEEE, 2004.
URL http://www.swebok.org/. 39, 40

M. A. Adamski. Direct Implementation of Petri Net Specification. In 7th In-
ternational Conference on Control Systems and Computer Science, pages
74–85, 1987. 94, 106

M. A. Adamski, A. Karatkevich, and M. Wegrzyn, editors. Design of Em-
bedded Control Systems, 2005. Springer. 26

L. Amorim, P. Maciel, M. Nogueira, R. Barreto, and E. Tavares. A Method-
ology for Mapping Live Sequence Chart to Coloured Petri Net. In IEEE
International Conference on Systems, Man and Cybernetics, volume 4,
pages 2999–3004, October 2005. DOI 10.1145/1127878.1127880. 159

M. Andersson and J. Bergstand. Formalizing Use Cases with Message Se-
quence Charts. Master’s thesis, Lund Institute of Technology, 1995. 156

M. Aoyama. Persona-Scenario-Goal Methodology for User-Centered Re-
quirements Engineering. In 15th IEEE International Requirements Engi-
neering Conference (RE 2007). IEEE CS Press, 2007. 172

A. Aurum and C. Wohlin. Engineering and Managing Software Require-
ments. Springer Berlin Heidelberg, 2005. DOI 10.1007/3-540-28244-0.
38, 187

I. J. Ball and T. C. Ormerod. Putting Ethnography to Work: the Case
for a Cognitive Ethnography of Design. International Journal of Human-
Computer Studies, 53(1):147–68, July 2000. 48

R. Bardohl. A Visual Environment for Visual Languages. Science of Com-
puter Programming, 44(2):181–203, 2002. ISSN 0167-6423. DOI 10.1016/
S0167-6423(02)00038-2. 167

173

http://www.swebok.org/
http://dx.doi.org/10.1145/1127878.1127880
http://dx.doi.org/10.1007/3-540-28244-0
http://dx.doi.org/10.1016/S0167-6423(02)00038-2
http://dx.doi.org/10.1016/S0167-6423(02)00038-2

BIBLIOGRAPHY

E. Best, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz. M-nets: An
Algebra of High-level Petri Nets, with an Application to the Semantics of
Concurrent Programming Languages. Acta Informatica, 35(10):813–857,
1998. DOI 10.1007/s002360050144. 160

J. Billington, M. Diaz, and G. Rozenberg, editors. Application of Petri Nets
to Communication Networks, Advances in Petri Nets, London, UK, 1999.
Springer-Verlag. ISBN 3-540-65870-X. 26

J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to
Protocol Verification. In Lectures on Concurrency and Petri Nets, pages
49–70, 2004. 26

R. M. Blanco. Requirements Specification for an Elevator Controller.
Technical report, School of Computer Science, University of Waterloo,
Canada, 2005. URL http://www.student.cs.uwaterloo.ca/~cs445/

Winter2006/Project/SRS-Rolando-Blanco.pdf. 125

B. W. Boehm. Verifying and Validating Software Requirements and Design
Specifications. IEEE Software, 1(1):75–88, January 1984. DOI 10.1109/
MS.1984.233702. 6

B. W. Boehm. A spiral Model of Software Development and Enhancement.
IEEE Computer, 21(5):61–72, May 1988. DOI 10.1109/2.59. 42

B. W. Boehm, P. Grünbacher, and R. O. Briggs. Developing Groupware
for Requirements Negotiation: Lessons Learned. IEEE Software, 18(3):
46–55, 2001. ISSN 0740-7459. DOI 10.1109/52.922725. 43

Y. Bontemps. Relating Inter-Agent and Intra-Agent Specifications (The Case
of Live Sequence Charts). PhD thesis, Facultés Universitaires Notre-Dame
de la Paix, Institut d’Informatique (University of Namur, Computer Sci-
ence Dept), April 2005. 161

J. A. Bubenko and B. Wangler. Objectives Driven Capture of Business Rules
and of Information Systems Requirements. International Conference on
Systems, Man and Cybernetics (ICSMC 1993), 1:670–7, October 1993.
DOI 10.1109/ICSMC.1993.384821. 49

E. Burd, D. Overy, and A. Wheetman. Evaluating Using Animation to Im-
prove Understanding of Sequence Diagrams. In Proceedings of the 10th
International Workshop on Program Comprehension (IWPC 2002), Mis-
souri, USA, 2002. 167

174

http://dx.doi.org/10.1007/s002360050144
http://www.student.cs.uwaterloo.ca/~cs445/Winter2006/Project/SRS-Rolando-Blanco.pdf
http://www.student.cs.uwaterloo.ca/~cs445/Winter2006/Project/SRS-Rolando-Blanco.pdf
http://dx.doi.org/10.1109/MS.1984.233702
http://dx.doi.org/10.1109/MS.1984.233702
http://dx.doi.org/10.1109/2.59
http://dx.doi.org/10.1109/52.922725
http://dx.doi.org/10.1109/ICSMC.1993.384821

BIBLIOGRAPHY

J. Bézivin, F. Jouault, and P. Valduriez. An Eclipse-Based IDE for the
ATL Model Transformation Language. Technical Report 04.08, LINA
Research, , University of Nantes, 2004. 67

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
2000. 107

CPN Tools, 2009. URL http://www.daimi.au.dk/CPNtools. 9, 35, 70

K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation
Approaches. IBM Systems Journal, 45(3):621–40, 2006. DOI 10.1147/

sj.453.0621. 67

B. Dano, H. Briand, and F. Barbier. An Approach Based on the Concept
of Use Case to Produce Dynamic Object-Oriented Specifications. In 3rd
IEEE International Symposium on Requirements Engineering (RE 1997),
pages 54–64. IEEE CS Press, 1997. ISBN 0-8186-7740-6. DOI 10.1109/
ISRE.1997.566842. 8, 156

A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed Require-
ments Acquisition. Sci. Comput. Program., 20(1-2):3–50, 1993. ISSN
0167-6423. DOI 10.1016/0167-6423(93)90021-G. 49

G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,
1994. 107

G. Denaro and M. Pezzè. Petri Nets and Software Engineering. In J. Desel,
W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and Petri
Nets: Advances in Petri Nets, volume 3098 of Lecture Notes in Computer
Science, pages 439–466. Springer, January 2004. DOI 10.1007/b98282.
6, 171

J. Desharnais, M. Frappier, R. Khédri, and A. Mili. Integration of Sequential
Scenarios. IEEE Transactions on Software Engineering, 24(9):695–708,
September 1998. DOI 10.1109/32.713325. 162

A. A. Desrochers and R. Y. Al-Jaar. Applications of Petri Nets in Manu-
facturing Systems: Modeling, Control, and Performance Analysis. IEEE,
1994. 26

N. Dulac, T. Viguier, N. Leveson, and M.-A. Storey. On the Use of Visu-
alization in Formal Requirements Specification. In Proceedings of IEEE
Joint International Conference on Requirements Engineering, pages 71–
80, 2002. 166

175

http://www.daimi.au.dk/CPNtools
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1109/ISRE.1997.566842
http://dx.doi.org/10.1109/ISRE.1997.566842
http://dx.doi.org/10.1016/0167-6423(93)90021-G
http://dx.doi.org/10.1007/b98282
http://dx.doi.org/10.1109/32.713325

BIBLIOGRAPHY

Eclipse UML2. Eclipse UML2 project web page. online, 2008. URL http:

//www.eclipse.org/uml2. 68

H. Ehrig, C. Ermel, and G. Taentzer. Simulation and Animation of Visual
Models of Embedded Systems: A Graph-Transformation-Based Approach
Applied to Petri Nets. In G. Hommel and H. Sheng, editors, Proceedings
of 7th Workshop on Embedded Systems – Modeling, Technology, and Ap-
plications, Technische Universität Berlin, pages 11–20. Springer Verlag,
2006. DOI 10.1007/1-4020-4933-1. 167

C. Eichner, H. Fleischhack, R. Meyer, U. Schrimpf, and C. Stehno. Compo-
sitional Semantics for UML 2.0 Sequence Diagrams Using Petri Nets. In
12th International SDL Forum (SDL 2005), volume 3530 of Lecture Notes
in Computer Science, pages 133–148, Grimstad, Norway, January 2005.
Springer. 159

M. Elkoutbi and R. K. Keller. Modeling Interactive Systems with Hierarchi-
cal Colored Petri Nets. In Advanced Simulation Technologies Conference
(ASTC 1998), pages 432–37, 1998. 8, 163, 164

M. Elkoutbi and R. K. Keller. User Interface Prototyping Based on UML
Scenarios and High-Level Petri Nets. In M. Nielsen and D. Simpson,
editors, 21st International Conference on Application and Theory of Petri
Nets (ICATPN 2000), volume 1825 of Lecture Notes in Computer Science,
pages 166–186, Aarhus, Denmark, June 2000. Springer. 163

M. Elkoutbi, I. Khriss, and R. K. Keller. Automated Prototyping of
User Interfaces based on UML Scenarios. Automated Software Engi-
neering, Kluwer Academic Publishers, 1:5–40, 2006. DOI 10.1007/

s10515-006-5465-5. 163

C. Ermel and R. Bardohl. Scenario Animation for Visual Behavior Models:
A Generic Approach. Software and System Modeling, 3(2):164–177, 2004.
DOI 10.1007/s10270-003-0048-4. 167

J. M. Fernandes, A. M. Pina, and A. J. Proença. Concurrent Execution
of Petri Nets based on Agents. In Encontro Nacional do Colégio de En-
genharia Electrotécnica (ENCEE 1995), pages 83–89, Lisbon, Portugal,
December 1995. Ordem dos Engenheiros. 94, 95

J. M. Fernandes, M. A. Adamski, and A. J. Proença. VHDL Generation
from Hierarchical Petri Net Specifications of Parallel Controller. IEE

176

http://www.eclipse.org/uml2
http://www.eclipse.org/uml2
http://dx.doi.org/10.1007/1-4020-4933-1
http://dx.doi.org/10.1007/s10515-006-5465-5
http://dx.doi.org/10.1007/s10515-006-5465-5
http://dx.doi.org/10.1007/s10270-003-0048-4

BIBLIOGRAPHY

Proceedings: Computers and Digital Techniques, 144(2):127–37, March
1997. 106, 107

W. Foddy. Constructing Questions for Interviews and Questionnaires. Cam-
bridge University Press, Cambridge, 1993. ISBN 0-521-46733-0. 46

M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modelling
Language. Addisson-Wesley, 2004. 7

F. Fransella. Some Skills and Tools for Personal Construct Practitioners. In
International Handbook of Personal Construct Psychology, pages 105–121.
John Wiley & Sons, Ltd, 2004. DOI 10.1002/0470013370.ch10. 47

A. Gargantini, E. Riccobene, and P. Scandurra. Model-driven Design and
ASM-based Validation of Embedded Systems. In L. Gomes and J. M.
Fernandes, editors, Behavioral Modeling for Embedded Systems and Tech-
nologies: Applications for Design and Implementation, pages 24–55. In-
formation Science Reference, July 2009. 167

H. Giese, E. Kindler, F. Klein, and R. Wagner. Reconciling Scenario-
centered Controller Design with State-based System Models. In 4th Inter-
national Workshop on Scenarios and State Machines: Models, Algorithms
and Tools (SCESM 2005), pages 1–5, NY, USA, 2005. ACM Press. ISBN
1-58113-963-2. DOI 10.1145/1083183.1083187. 166

S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. PEPA nets: A Structured
Performance Modelling Formalism. Performance Evaluation, 54(2):79–
104, 2003. ISSN 0166-5316. DOI 10.1016/S0166-5316(03)00069-5. 165

M. Glinz. An integrated formal model of scenarios based on statecharts. In
W. Schäfer and P. Botella, editors, 5th European Software Engineering
Conference, pages 254–271. Springer, 1995. 156

J. A. Goguen and C. Linde. Techniques for Requirements Elicitation. In
International Symposium on Requirements Engineering (RE 1993), pages
152–164, Los Alamitos, California, 1993. IEEE CS Press. 46, 47, 48

H. Gomaa. A Software Modeling Odyssey: Designing Evolutionary
Architecture-Centric Real-Time Systems and Product Lines. In 11th In-
ternational Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS 2006), Lecture Notes in Computer Science, pages 1–15,
Genova, Italy, 2006. Springer. DOI 10.1007/11880240_1. 171

177

http://dx.doi.org/10.1002/0470013370.ch10
http://dx.doi.org/10.1145/1083183.1083187
http://dx.doi.org/10.1016/S0166-5316(03)00069-5
http://dx.doi.org/10.1007/11880240_1

BIBLIOGRAPHY

H. Gomaa and D. B. Scott. Prototyping as a Tool in the Specification of User
Requirements. In 5th International Conference on Software Engineering
(ICSE 1981), pages 333–342, Piscataway, NJ, USA, 1981. IEEE Press.
ISBN 0-89791-146-6. 48

E. Gottesdiener. Requirements by Collaboration: Workshops for Defining
Needs. Addison-Wesley Professional, April 2002. ISBN 0201786060. 48

V. Grassi, R. Mirandola, and A. Sabetta. UML based modeling and perfor-
mance analysis of mobile systems. In 7th ACM International Symposium
on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM 2004), pages 95–104, New York, NY, USA, 2004. ACM Press.
ISBN 1-58113-953-5. DOI 10.1145/1023663.1023683. 166

D. Harel. From Play-In Scenarios To Code: An Achievable Dream. IEEE
Computer, 34(1):53–60, January 2001. (Also, Proc. Fundamental Ap-
proaches to Software Engineering (FASE; invited paper), Lecture Notes
in Computer Science, Vol. (Tom Maibaum, ed.), Springer-Verlag, March
2000, pp. 22-34.). 157

D. Harel and R. Marelly. Specifying and Executing Behavioral Require-
ments: the Play-in/Play-out Approach. Software and System Modeling, 2
(2):82–107, 2003a. DOI 10.1007/s10270-002-0015-5. 157

D. Harel and R. Marelly. Come, Let’s Play! Scenario-Based Programming
Using LSCs and the Play-Engine. Springer, 2003b. ISBN: 3-540-00787-3.
157

D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart Play-out. In
R. Crocker and G. L. Steele Jr., editors, Companion of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA, pages 68–69, October 26-30 2003.
DOI 10.1145/949344.949353. 158

O. Haugen, K. E. Husa, R. K. Runde, and K. Stolen. STAIRS Towards
Formal Design with Sequence Diagrams. Software and Systems Modeling,
2:1–13, June 2005. 160

P. Haumer, K. Pohl, and K. Weidenhaupt. Requirements Elicitation and
Validation with Real World Scenes. IEEE Transactions on Software En-
gineering, 24(12):1036–54, Dec 1998. ISSN 0098-5589. DOI 10.1109/32.
738338. 49

178

http://dx.doi.org/10.1145/1023663.1023683
http://dx.doi.org/10.1007/s10270-002-0015-5
http://dx.doi.org/10.1145/949344.949353
http://dx.doi.org/10.1109/32.738338
http://dx.doi.org/10.1109/32.738338

BIBLIOGRAPHY

S. Heymer. A Semantics for MSCs based on Petri Nets Components. In
Second Conference on SDL and MSC (SAM 2000), Grenoble, June 2000.
163

M. G. Hinchey, J. L. Rash, and C. A. Rouff. A Formal Approach to
Requirements-Based Programming. In 12th IEEE International Con-
ference and Workshops on the Engineering of Computer-Based Systems
(ECBS 2005), pages 339–45. IEEE CS Press, 2005. ISBN 0-7695-2308-0.
DOI 10.1109/ECBS.2005.7. 161

K. Holtzblatt and H. R. Beyer. Requirements Gathering: the Human Fac-
tor. Communications of the ACM, 38(5):31–32, 1995. ISSN 0001-0782.
DOI 10.1145/203356.203361. 46

G. J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, New Jersey, 1991. ISBN 0-13-539925-4. 107

G. J. Holzmann. The Spin Model Checker: Primier and Reference Manual.
Addison-Wesley, September 2003. 107

G. J. Holzmann, D. A. Peled, and M. H. Redberg. Design Tools for Require-
ments Engineering. Bell Labs Technical Journal, 1:86–95, Winter 1997.
167

P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen. Formal
Approach to Scenario Analysis. IEEE Software, 11(2):33–41, 1994. ISSN
0740-7459. DOI 10.1109/52.268953. 156

M. Jackson. Problem Frames: Analysing & Structuring Software Develop-
ment Problems. Addison-Wesley, 2000. 47, 147

D. Jankowicz. The Easy Guide to Repertory Grids. Wiley, 2003. 47

K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer Berlin Heidelberg, 2009.
DOI 10.1007/b95112. 26, 29

K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri Nets and
CPN Tools for Modelling and Validation of Concurrent Systems. Jour-
nal on Software Tools for Technology Transfer, 9(3-4):213–54, June 2007.
DOI 10.1007/s10009-007-0038-x. 9, 35

M. Jirotka and J. A. Goguen. Requirements Engineering: Social and Techni-
cal Issues. Academic Press Professional, Inc., San Diego, CA, USA, 1994.
ISBN 0-12-385335-4. 48

179

http://dx.doi.org/10.1109/ECBS.2005.7
http://dx.doi.org/10.1145/203356.203361
http://dx.doi.org/10.1109/52.268953
http://dx.doi.org/10.1007/b95112
http://dx.doi.org/10.1007/s10009-007-0038-x

BIBLIOGRAPHY

J. B. Jørgensen and K. B. Lassen. Aligning Work Processes and the Adviser
Portal Bank System. In 13th Annual IEEE International Symposium
and Workshop on Engineering of Computer Based Systems (ECBS 2006),
pages 259–268, Washington, DC, USA, 2006. IEEE Computer Society. 35

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model Trans-
formation Tool. Science of Computer Programming, 72(1-2):31–39, 2008.
ISSN 0167-6423. DOI 10.1016/j.scico.2007.08.002. 67

G. Juhás, R. Lorenz, and J. Desel. Can I Execute My Scenario in Your Net?
In G. Ciardo and P. Darondeau, editors, 26th International Conference
on Applications and Theory of Petri Nets (ICATPN 2005), volume 3536
of Lecture Notes in Computer Science, pages 381–390, Miami, USA, June
2005. Springer. DOI 10.1007/b136988. 159

L. D. Kaufman, S. M. Thebaut, and M. F. Intemnte. System Modeling
for Scenario-Based Requirements Engineering. Technical report, SERC,
USA, 1989. 50

W. D. Kelton, R. P. Sadowski, and D. T. Sturrock. Simulation with Arena.
McGraw-Hill, third edition edition, 2004. 54

J. Kleijn and M. Koutny. Process Semantics of P/T-Nets with Inhibitor
Arcs. In ICATPN, pages 261–81, 2000. 109

L. Kloul and J. Küster-Filipe. From Interaction Overview Diagrams to
PEPA Nets. In 4th Workshop on Process Algebras and Timed Activities
(PASTA 2005), Edinburgh, UK, 2005. 165

O. Kluge. Compositional Semantics for Message Sequence Charts based on
Petri Nets. PhD thesis, Technische Universität Berlin, Germany, Septem-
ber 2002. 163

L. Kristensen, M. Westergaard, and P. Nørgaard. Model-Based Proto-
typing of an Interoperability Protocol for Mobile Ad-Hoc Networks.
In 5th International Conference on Integrated Formal Methods (IFM
2005), volume 3771 of LNCS, pages 266–286. Springer-Verlag, Oct. 2005.
DOI 10.1007/11589976_16. 35

I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs to Statecharts.
In Distributed and Parallel Embedded Systems, pages 61–71. Kluwer Aca-
demic Publishers, 1999. 158

180

http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1007/b136988
http://dx.doi.org/10.1007/11589976_16

BIBLIOGRAPHY

J. Küster-Filipe. Fundamentals of a Module Logic for Distributed Object
Systems. Journal of Functional and Logic Programming, 3:5–10, March
2000. 165

J. Küster-Filipe. Modelling Concurrent Interactions. Theoretical Computer
Science, Algebraic Methodology and Software Technology, 351(2):203–220,
February 2006. 165

A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-
Hill, third edition edition, 2000. 51, 53

W. J. Lee, S. D. Cha, and Y. R. Kwon. Integration and Analysis of Use Cases
using Modular Petri Nets in Requirements Engineering. IEEE Transac-
tions on Software Engineering, 24(12):1115–30, December 1998. 157

S. Leue and P. B. Ladkin. Implementing and Verifying Scenario-Based Spec-
ifications Using Promela/XSpin, 1996. 157

F. Lustman. A Formal Approach to Scenario Integration. Ann. Softw. Eng.,
3:255–71, 1997. ISSN 1022-7091. 157

R. J. Machado, J. M. Fernandes, and A. J. Proença. Specification of Indus-
trial Digital Controllers with Object-Oriented Petri Nets. In IEEE In-
ternational Symposium on Industrial Electronics (ISIE 1997), volume 1,
pages 78–83, July 1997. DOI 10.1109/ISIE.1997.651794. 94, 95

R. J. Machado, K. B. Lassen, S. Oliveira, M. Couto, and P. Pinto. Execution
of UML Models with CPN Tools for Workflow Requirements Validation.
In Sixth Workshop and Tutorial on Practical Use of Coloured Petri Nets
and the CPN Tools, 2005. 35, 166

L. P. Magalhães, A. B. Raposo, and I. L. M. Ricarte. Animation Modeling
with Petri Nets. Computers & Graphics, 22(6):735–43, 1998. 167

J. Magee and J. Kramer. Concurrency: State Models and Java Programs.
John Wiley and Sons, 1999. 161

J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer. Graphical An-
imation of Behavior Models. In International Conference on Software
Engineering (ICSE 2000), pages 499–508, Limerick, Ireland, 2000. 9, 87

N. Maiden. CREWS-SAVRE: Scenarios for Acquiring and Validating
Requirements. Automated Software Engineering, 5(4):419–446, 1998.
DOI 10.1023/A:1008605412971. 50

181

http://dx.doi.org/10.1109/ISIE.1997.651794
http://dx.doi.org/10.1023/A:1008605412971

BIBLIOGRAPHY

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, USA, 1992. 4, 107

I. Morrey, J. Siddiqi, R. Hibberd, and G. Buckberry. A Toolset to Support
the Construction and Animation of Formal Specifications. Journal of
Systems Software, 41(3):147–160, 1998. ISSN 0164-1212. DOI 10.1016/
S0164-1212(97)10016-4. 166

M. Mukund. Petri Nets and Step Transition Systems. International Journal
of Foundations of Computer Science, 3(4):443–78, 1992. 112

T. Murata. Petri Nets: Properties, Analysis and Applications. In Procedings
of the IEEE, pages 541–80, April 1989. 107, 113

B. Nuseibeh and S. Easterbrook. Requirements Engineering: a Roadmap.
In Proceedings of the Conference on The Future of Software Engineering
(FOSE 2000), pages 35–46, New York, NY, USA, 2000. ACM Press. ISBN
1-58113-253-0. DOI 10.1145/336512.336523. 45

B. Nuseibeh, A. Finkelstein, and J. Kramer. Method Engineering for Multi-
perspective Software Development. Information and Software Technology,
38(4):267–72, 1996. 50

Object Management Group. Unified Modeling Language: Superstructure
Specification, version 2.1.2, August 2007. URL http://www.omg.org/

spec/UML/2.1.2/Superstructure/PDF/. 16, 20, 21, 22, 23, 24, 25

P–UMLaut. Project P-UMLaut. Online, 2007. http://www.p-umlaut.de.
162

J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981. ISBN 0136619835. 109

C. Ponsard, P. Massonet, A. Rifaut, J. F. Molderez, A. v. Lamsweerde,
and H. T. Van. Early Verification and Validation of Mission-Critical Sys-
tems. Electronic Notes in Theoretical Computer Science, 133:237 – 254,
2005. DOI 10.1016/j.entcs.2004.08.067. Proceedings of the Ninth In-
ternational Workshop on Formal Methods for Industrial Critical Systems
(FMICS 2004). 167

C. Potts, K. Takahashi, and A. I. Anton. Inquiry-Based Requirements Anal-
ysis. IEEE Software, 11(2):21–32, 1994. ISSN 0740-7459. DOI 10.1109/
52.268952. 49, 50

182

http://dx.doi.org/10.1016/S0164-1212(97)10016-4
http://dx.doi.org/10.1016/S0164-1212(97)10016-4
http://dx.doi.org/10.1145/336512.336523
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
http://dx.doi.org/10.1016/j.entcs.2004.08.067
http://dx.doi.org/10.1109/52.268952
http://dx.doi.org/10.1109/52.268952

BIBLIOGRAPHY

N. Pryce and J. Magee. SceneBeans: A Component-Based Animation
Framework for Java. Online, 2007. URL http://www-dse.doc.ic.ac.

uk/Software/SceneBeans/. 35, 87

W. Reisig. Petri Nets - An Introduction. Springer, Heidelberg, Germany,
EATCS monographs on theorical computer science edition, 1985. 25, 31,
109, 112

W. Reisig. Elements of Distributed Algorithms: Modeling and Analysis with
Petri Nets. Springer, 1998. 26

REXML. Ruby REXML Lybrary. Online, 2007. URL www.

germane-software.com/software/rexml/. 90

Ó. R. Ribeiro and J. M. Fernandes. Some Rules to Transform Sequence
Diagrams into Coloured Petri Nets. In 7th Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools (CPN 2006),
pages 227–41, October 2006. URL http://www.daimi.au.dk/CPnets/

workshop06/cpn/papers/. 60

Ó. R. Ribeiro and J. M. Fernandes. On the Use of Coloured Petri Nets
for Visual Animation. In 8th Workshop and Tutorial on Practical Use
of Coloured Petri Nets and the CPN Tools (CPN 2007), pages 223–241,
October 2007a. URL http://www.daimi.au.dk/CPnets/workshop07/

cpn/papers/. 78

Ó. R. Ribeiro and J. M. Fernandes. Validation of Reactive Software from
Scenario-based Models. In In Second Software Engineering Doctoral Con-
sortium (SEDES 2007) at QUATIC 2007, pages 213–7, Lisbon, Portugal,
September 2007b. IEEE Computer Society Press. DOI 10.1109/QUATIC.
2007.33. 9

Ó. R. Ribeiro and J. M. Fernandes. Translating Synchronous Petri Nets
into PROMELA for Verification of Behavioural Properties. In Second
IEEE International Symposium on Industrial Embedded Systems (SIES
2007), pages 266–73, Lisbon, Portugal, July 2007c. IEEE Computer So-
ciety Press. DOI 10.1109/SIES.2007.4297344. 106

Ó. R. Ribeiro and J. M. Fernandes. Validation of Scenario-based Business
Requirements with Coloured Petri Nets. In The Fourth International Con-
ference on Software Engineering Advances (ICSEA 2009), pages 250–255.
IEEE Computer Society Press, September 2009. DOI 10.1109/ICSEA.

2009.45. 141

183

http://www-dse.doc.ic.ac.uk/Software/SceneBeans/
http://www-dse.doc.ic.ac.uk/Software/SceneBeans/
www.germane-software.com/software/rexml/
www.germane-software.com/software/rexml/
http://www.daimi.au.dk/CPnets/workshop06/cpn/papers/
http://www.daimi.au.dk/CPnets/workshop06/cpn/papers/
http://www.daimi.au.dk/CPnets/workshop07/cpn/papers/
http://www.daimi.au.dk/CPnets/workshop07/cpn/papers/
http://dx.doi.org/10.1109/QUATIC.2007.33
http://dx.doi.org/10.1109/QUATIC.2007.33
http://dx.doi.org/10.1109/SIES.2007.4297344
http://dx.doi.org/10.1109/ICSEA.2009.45
http://dx.doi.org/10.1109/ICSEA.2009.45

BIBLIOGRAPHY

Ó. R. Ribeiro, J. M. Fernandes, and L. F. Pinto. Model Checking Embedded
Systems with PROMELA. In 12th IEEE International Conference on
the Engineering of Computer Based Systems (ECBS 2005), pages 378–85,
Greenbelt, MD, USA, Apr. 2005. IEEE Computer Society Press. DOI 10.
1109/ECBS.2005.53. 106, 108

J. Richardson, T. C. Ormerod, and A. Shepherd. The Role of Task Analysis
in Capturing Requirements for Interface Design. Interacting with Com-
puters, 9(4):367–384, 1998. 46

S. Robertson and J. Robertson. Mastering the Requirements Process. Ad-
dison Wesley Professional, second edition, 2006. 41, 48, 141, 142

C. Rolland, C. Souveyet, and C. B. Achour. Guiding Goal Modeling Using
Scenarios. IEEE Transactions on Software Engineering, 24(12):1055–71,
Dec 1998. ISSN 0098-5589. DOI 10.1109/32.738339. 49

Ruby. Ruby Programming Language. Online, 2007. URL http://www.

ruby-lang.org. 90

E. Rudolph, J. Grabowski, and P. Graubmann. Towards a Petri Net Based
Semantics Definition for Message Sequence Charts. In O. Faergemand
and A. Sarma, editors, SDL 1993 - Using Objects, pages 193–208, October
1993. 163

Scenario Plus, 2008. URL http://www.scenarioplus.org.uk/. Accessed
29 July 2008. 50

S. Sendall and W. Kozaczynski. Model Transformation: The Heart and
Soul of Model-Driven Software Development. IEEE Software, 20(5):42–
45, Sept-Oct 2003. DOI 10.1109/MS.2003.1231150. 67

C. Sibertin-Blanc, N. Hameurlain, and O. Tahir. Ambiguity and Struc-
tural Properties of Basic Sequence Diagrams. Innovations in Sys-
tems and Software Engineering, 4(3):275–284, 2008. DOI 10.1007/

s11334-008-0063-2. 68

M. d. S. Soares and J. Vrancken. A Metamodeling Approach to Trans-
form UML 2.0 Sequence Diagrams to Petri Nets. In Proceedings of the
IASTED International Conference Software Engineering, Innsbruck, Aus-
tria, february 2008. 158

184

http://dx.doi.org/10.1109/ECBS.2005.53
http://dx.doi.org/10.1109/ECBS.2005.53
http://dx.doi.org/10.1109/32.738339
http://www.ruby-lang.org
http://www.ruby-lang.org
http://www.scenarioplus.org.uk/
http://dx.doi.org/10.1109/MS.2003.1231150
http://dx.doi.org/10.1007/s11334-008-0063-2
http://dx.doi.org/10.1007/s11334-008-0063-2

BIBLIOGRAPHY

S. Some, R. Dssouli, and J. Vaucher. Toward an Automation of Requirement
Engineering using Scenarios. Journal of Computing and Information, 2
(1):110–132, 1996. 157

I. Sommerville. Software Engineering. International Computer Sciences
Series. Addison-Wesley, 8th edition, 2006. 38, 39, 41, 42, 44, 49, 51, 53

I. Sommerville, P. Sawyer, and S. Viller. Viewpoints for Requirements Elic-
itation: A Practical Approach. ICRE, 00:0074, 1998. ISSN 1097-0592.
DOI 10.1109/ICRE.1998.667811. 50

Standard ML. Online:, 2006. http://www.smlnj.org. 27

H. Störrle. A Petri-net Semantics for Sequence Diagrams. In GI/ITG
Fachgespräch Formale Beschreibungstechniken für verteilte Systeme (FBT
1999), 1999. 159

A. Sutcliffe and N. Maiden. The Domain Theory for Requirements En-
gineering. IEEE Transactions on Software Engineering, 24(3):174–196,
Mar. 1998. DOI 10.1109/32.667878. 47

D. Thomas, C. Fowler, and A. Hunt. Programming Ruby: The Pragmatic
Programmers’ Guide. Pragmatic Bookshelf, second edition, October 2004.
ISBN 0974514055. 90

S. Uchitel and J. Kramer. A Workbench for Synthesising Behaviour Models
from Scenarios. In Proceedings of the 23rd International Conference on
Software Engineering, ICSE 2001, 12-19 May 2001, Toronto, Ontario,
Canada, pages 188–197. IEEE Computer Society, 2001. 161

S. Uchitel, J. Kramer, and J. Magee. Synthesis of Behavioral Models from
Scenarios. IEEE Transactions on Software Engineering, 29(2):99–115,
Feb. 2003. DOI 10.1109/TSE.2003.1178048. 161

S. Uchitel, M. Broy, I. H. Krüger, and J. Whittle. Guest Editorial: Special
Section on Interaction and State-Based Modeling. IEEE Transactions on
Software Engineering, 31(12):997–998, 2005. DOI 10.1109/TSE.2005.

139. 7

J. D. Ullman. Elements of ML programming. Prentice-Hall, 1998. 27

H. T. Van, A. van Lamsweerde, P. Massonet, and C. Ponsard. Goal-Oriented
Requirements Animation. In Proceedings of the 12th IEEE International

185

http://dx.doi.org/10.1109/ICRE.1998.667811
http://dx.doi.org/10.1109/32.667878
http://dx.doi.org/10.1109/TSE.2003.1178048
http://dx.doi.org/10.1109/TSE.2005.139
http://dx.doi.org/10.1109/TSE.2005.139

BIBLIOGRAPHY

Requirements Engineering Conference (RE 2004), pages 218–28, Wash-
ington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2174-6.
DOI 10.1109/RE.2004.24. 167

W. van der Aalst and K. van Hee. Workflow Management : Models, Meth-
ods, and Systems (Cooperative Information Systems). The MIT Press,
March 2004. 26

A. van Lamsweerde and L. Willemet. Inferring Declarative Requirements
Specifications from Operational Scenarios. IEEE Transactions on Soft-
ware Engineering, 24(12):1089–114, 1998. ISSN 0098-5589. DOI 10.1109/
32.738341. 172

A. J. G. Vázquez. Computer-Aided Validation of Formal Conceptual Models.
PhD thesis, Technical University of Braunschweig, 2001. 166

M. Westergaard. The BRITNeY Suite: A Platform for Experiments. In 7th
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools (CPN 2006), October 2006. 78

M. Westergaard and K. B. Lassen. Building and Deploying Visualizations of
Coloured Petri Net Models Using BRITNeY Animation and CPN Tools.
In Sixth Workshop and Tutorial on Practical Use of Coloured Petri Nets
and the CPN Tools, 2005. 105

M. Westergaard and K. B. Lassen. The BRITNeY Suite Animation Tool. In
27th International Conference on Applications and Theory of Petri Nets,
pages 431–440, 2006. DOI 10.1007/11767589_26. 9, 35, 78

J. Whittle and J. Araújo. Scenario Modelling with Aspects. IEE Proceedings
- Software, 151(4):157–171, 2004. 160

J. Whittle and J. Schumann. Generating Statechart Designs from Scenarios.
In 22nd International Conference on Software Engineering (ICSE 2000),
pages 314–323, Limerick, Ireland, June 2000. 158

J. Whittle, J. Saboo, and R. Kwan. From Scenarios to Code: An Air
Traffic Control Case Study. In 25th International Conference on Software
Engineering(ICSE 2003), pages 490–497, 2003. 158

J. Whittle, R. Kwan, and J. Saboo. From Scenarios to Code: An Air Traffic
Control Case Study. Software and Systems Modeling, 4(1):71 – 93, Feb
2005. 158

186

http://dx.doi.org/10.1109/RE.2004.24
http://dx.doi.org/10.1109/32.738341
http://dx.doi.org/10.1109/32.738341
http://dx.doi.org/10.1007/11767589_26

BIBLIOGRAPHY

K. E. Wiegers. Software Requirements. Microsoft Press, second edition
edition, 2003. 44

R. J. Wieringa. Design Methods for Reactive Systems: Yourdon, Statemate,
and the UML. Morgan Kaufmann, 2003. 4, 5

G. Winskel and M. Nielsen. Models for Concurrency. In S. Abramsky,
D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Com-
puter Science. Oxford University Press, 1995. 165

J. Wood and D. Silver. Joint Application Development. Wiley, 2nd edition
edition, 1995. 48

A. Yakovlev, L. Gomes, and L. Lavagno, editors. Hardware Design and Petri
Nets, 2000. Springer. 26

E. S. K. Yu. Towards Modeling and Reasoning Support for Early-Phase Re-
quirements Engineering. Requirements Engineering, IEEE International
Conference on, 0:226, 1997. ISSN 1090-705X. DOI 10.1109/ISRE.1997.
566873. 49

P. Zave and M. Jackson. Four Dark Corners of Requirements Engineering.
ACM Transactions on Software Engineering and Methodology (TOSEM),
6(1):1–30, 1997. ISSN 1049-331X. DOI 10.1145/237432.237434. 45

D. Zowghi and C. Coulin. Requirements Elicitation: A Survey of Tech-
niques, Approaches, and Tools. In Engineering and Managing Software
Requirements Aurum and Wohlin [2005], pages 19–46. DOI 10.1007/

3-540-28244-0_2. 44, 46

187

http://dx.doi.org/10.1109/ISRE.1997.566873
http://dx.doi.org/10.1109/ISRE.1997.566873
http://dx.doi.org/10.1145/237432.237434
http://dx.doi.org/10.1007/3-540-28244-0_2
http://dx.doi.org/10.1007/3-540-28244-0_2

	Abstract
	Resumo
	Acknowledgments
	List of Figures
	I Background
	1 Introduction
	1.1 Reactive Software Systems
	1.2 Motivation
	1.3 Problem Statement
	1.4 Aims
	1.5 Approach Taken
	1.6 Contribution
	1.7 Overview

	2 Behavioural Models
	2.1 Use cases
	2.2 Interactions
	2.2.1 Introduction to interactions
	2.2.2 Sequence diagrams
	2.2.3 Metamodel for UML2 sequence diagrams

	2.3 Coloured Petri Nets
	2.3.1 Basic concepts
	2.3.2 Creating a CPN model
	2.3.3 Tool support

	3 Software Requirements
	3.1 Introduction
	3.2 Requirements Engineering Process
	3.3 Requirements Elicitation and Analysis
	3.3.1 General considerations
	3.3.2 Techniques and approaches for elicitation

	3.4 Requirements Validation

	II Contribution
	4 Transforming Sequence Diagrams into a CPN Model
	4.1 Plain Sequence Diagrams
	4.2 Sequence Diagrams with High-level Operators
	4.2.1 Alternative choice
	4.2.2 Optional
	4.2.3 Parallel composition
	4.2.4 Weak sequencing
	4.2.5 Looping

	4.3 Tool Support
	4.3.1 Description of the involved metamodels
	4.3.2 Details of the transformation

	5 Enriching CPN models for Animation
	5.1 Introduction
	5.2 Mapping sequence diagrams into a CPN model
	5.3 Data representation for the environment
	5.4 Animation of messages in the sequence diagrams
	5.5 Initial conditions for scenario execution
	5.6 Building an animation
	5.6.1 Initial considerations
	5.6.2 Static part of the animation
	5.6.3 Dynamic part of the animation
	5.6.4 Scripting language

	6 Case Studies
	6.1 Reactor System
	6.1.1 General description
	6.1.2 A shobi-PN based CPN model
	6.1.3 A scenario-based CPN model
	6.1.4 Building an animation
	6.1.5 A SIP-net approach to model the reactor

	6.2 Elevator Controller System
	6.2.1 General description
	6.2.2 Use cases descriptions
	6.2.3 Expressing scenarios by a CPN model
	6.2.4 Building an animation

	6.3 Check-in System
	6.3.1 General description
	6.3.2 Expressing scenarios by a CPN model
	6.3.3 Building an animation

	6.4 Discussion

	7 Related Work
	7.1 Formalization of Use Case Descriptions
	7.2 Generation of State-based Models from Scenarios
	7.3 Synthesis of Petri Net Models from Scenarios
	7.4 Animating Formal Specifications of Requirements

	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Future Work

	Bibliography

	Óscar Rafael da Silva Ferreira Ribeiro.pdf
	Página 1
	Página 2
	Página 3
	Página 4

