36 research outputs found

    Synchronization of chaotic delayed systems via intermittent control and its adaptive strategy

    Get PDF
    In this paper the problem of synchronization for delayed chaotic systems is considered based on aperiodic intermittent control. First, delayed chaotic systems are proposed via aperiodic adaptive intermittent control. Next, to cut down the control gain, a new generalized intermittent control and its adaptive strategy is introduced. Then, by constructing a piecewise Lyapunov auxiliary function and making use of piecewise analysis technique, some effective and novel criteria are obtained to ensure the global synchronization of delayed chaotic systems by means of the designed control protocols. At the end, two examples with numerical simulations are provided to verify the effectiveness of the theoretical results proposed scheme

    Weighted Sum Synchronization of Memristive Coupled Neural Networks

    Get PDF
    Funding Information: This work is supported by the National Natural Science Foundation of China (No. 61971185) and the Open Fund Project of Key Laboratory in Hunan Universities (No. 18K010). Publisher Copyright: © 2020 Elsevier B.V.It is well known that weighted sum of node states plays an essential role in function implementation of neural networks. Therefore, this paper proposes a new weighted sum synchronization model for memristive neural networks. Unlike the existing synchronization models of memristive neural networks which control each network node to reach synchronization, the proposed model treats the networks as dynamic entireties by weighted sum of node states and makes the entireties instead of each node reach expected synchronization. In this paper, weighted sum complete synchronization and quasi-synchronization are both investigated by designing feedback controller and aperiodically intermittent controller, respectively. Meanwhile, a flexible control scheme is designed for the proposed model by utilizing some switching parameters and can improve anti-interference ability of control system. By applying Lyapunov method and some differential inequalities, some effective criteria are derived to ensure the synchronizations of memristive neural networks. Moreover, the error level of the quasi-synchronization is given. Finally, numerical simulation examples are used to certify the effectiveness of the derived results.Peer reviewe

    Distributed consensus of discrete time-varying linear multi-agent systems with event-triggered intermittent control

    Get PDF
    The consensus problem of discrete time-varying linear multi-agent systems (MASs) is studied in this paper. First, an event-triggered intermittent control (ETIC) protocol is designed, aided by a class of auxiliary functions. Under this protocol, some sufficient conditions for all agents to achieve consensus are established by constructing an error dynamical system and applying the Lyapunov function. Second, in order to further reduce the communication burden, an improved event triggered intermittent control (I-ETIC) strategy is presented, along with corresponding convergence analysis. Notably, the difference between the two control protocols lies in the fact that the former protocol only determines when to control or not based on the trigger conditions, while the latter, building upon this, designs new event trigger conditions for the update of the controller during the control stage. Finally, two numerical simulation examples are provided to demonstrate the effectiveness of the theoretical results

    Finite-time synchronization of multi-layer nonlinear coupled complex networks via intermittent feedback control

    Get PDF
    This paper addresses the problem of finite-time synchronization for a class of multi-layer nonlinear coupled complex networks via intermittent feedback control. Firstly, based on finite-time stability theory, some novel criteria are given to guarantee that the error system of drive-response systems is still finite-time stable under an inherently discontinuous controller. Then, by proposing two kinds of intermittent feedback control laws, sufficient conditions of finite-time synchronization of two kinds of multi-layer complex networks are derived, respectively. The time delay between different layers is also taken into consideration. Finally, a numerical example is provided to verify the effectiveness of the proposed methods.http://www.elsevier.com/locate/neucom2018-02-28hb2017Electrical, Electronic and Computer Engineerin

    Impulsive mean square exponential synchronization of stochastic dynamical networks with hybrid time-varying delays

    Get PDF
    This paper investigates the mean square exponential synchronization problem for complex dynamical networks with stochastic disturbances and hybrid time-varying delays, both internal delay and coupling delay are considered in the model. At the same time, the coupled time-delay is also probabilistic in two time interval. Impulsive control method is applied to force all nodes synchronize to a chaotic orbit, and impulsive input delay is also taken into account. Based on the theory of stochastic differential equation, an impulsive differential inequality and some analysis techniques, several simple and useful criteria are derived to ensure mean square exponential synchronization of the stochastic dynamical networks. Furthermore, pinning impulsive strategy is studied. An effective method is introduced to select the controlled nodes at each impulsive constants. Numerical simulations are exploited to demonstrate the effectiveness of the theory results in this paper

    Bipartite consensus for multi-agent networks of fractional diffusion PDEs via aperiodically intermittent boundary control

    Get PDF
    In this paper, the exponential bipartite consensus issue is investigated for multi-agent networks, whose dynamic is characterized by fractional diffusion partial differential equations (PDEs). The main contribution is that a novel exponential convergence principle is proposed for networks of fractional PDEs via aperiodically intermittent control scheme. First, under the aperiodically intermittent control strategy, an exponential convergence principle is developed for continuously differentiable function. Second, on the basis of the proposed convergence principle and the designed intermittent boundary control protocol, the exponential bipartite consensus condition is addressed in the form of linear matrix inequalities (LMIs). Compared with the existing works, the result of the exponential intermittent consensus presented in this paper is applied to the networks of PDEs. Finally, the high-speed aerospace vehicle model is applied to verify the effectiveness of the control protocol

    Finite-time stochastic synchronization of fuzzy bi-directional associative memory neural networks with Markovian switching and mixed time delays via intermittent quantized control

    Get PDF
    We are concerned in this paper with the finite-time synchronization problem for fuzzy bi-directional associative memory neural networks with Markovian switching, discrete-time delay in leakage terms, continuous-time and infinitely distributed delays in transmission terms. After detailed analysis, we come up with an intermittent quantized control for the concerned bi-directional associative memory neural network. By designing an elaborate Lyapunov-Krasovskii functional, we prove under certain additional conditions that the controlled network is stochastically synchronizable in finite time: The 1st moment of every trajectory of the error network system associated to the concerned controlled network tends to zero as time approaches a finite instant (the settling time) which is given explicitly, and remains to be zero constantly thereupon. In the meantime, we present a numerical example to illustrate that the synchronization control designed in this paper is indeed effective. Since the concerned fuzzy network includes Markovian jumping and several types of delays simultaneously, and it can be synchronized in finite time by our suggested control, as well as the suggested intermittent control is quantized which could reduce significantly the control cost, the theoretical results in this paper are rich in mathematical implication and have wide potential applicability in the real world

    Multi-weighted complex structure on fractional order coupled neural networks with linear coupling delay: a robust synchronization problem

    Get PDF
    This sequel is concerned with the analysis of robust synchronization for a multi-weighted complex structure on fractional-order coupled neural networks (MWCFCNNs) with linear coupling delays via state feedback controller. Firstly, by means of fractional order comparison principle, suitable Lyapunov method, Kronecker product technique, some famous inequality techniques about fractional order calculus and the basis of interval parameter method, two improved robust asymptotical synchronization analysis, both algebraic method and LMI method, respectively are established via state feedback controller. Secondly, when the parameter uncertainties are ignored, several synchronization criterion are also given to ensure the global asymptotical synchronization of considered MWCFCNNs. Moreover, two type of special cases for global asymptotical synchronization MWCFCNNs with and without linear coupling delays, respectively are investigated. Ultimately, the accuracy and feasibility of obtained synchronization criteria are supported by the given two numerical computer simulations.This article has been written with the joint financial support of RUSA-Phase 2.0 grant sanctioned vide letter No.F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, UGC-SAP (DRS-I) vide letter No.F.510/8/DRSI/2016(SAP-I) and DST (FIST - level I) 657876570 vide letter No.SR/FIST/MS-I/2018/17
    corecore