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Abstract

This paper addresses the problem of finite-time synchronization for a class of multi-layer nonlinear coupled complex networks

via intermittent feedback control. Firstly, based on finite-time stability theory, some novel criteria are given to guarantee that the

error system of drive-response systems is still finite-time stable under an inherently discontinuous controller. Then, by proposing two

kinds of intermittent feedback control laws, sufficient conditions of finite-time synchronization of two kinds of multi-layer complex

networks are derived, respectively. The time delay between different layers is also taken into consideration. Finally, a numerical

example is provided to verify the effectiveness of the proposed methods.
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I. I

In the past few decades, the synchronization problem of complex networks has attracted more and more attention in practical

applications [1], [2], [3], [4], [5], [6]. A basic complex network consists of some nodes and links between the nodes, where each

node is a dynamic system. Since the problem of synchronization of chaotic systems has been studied in [1], synchronization

as a potential engineering application has been applied into secure communication, neural network, biology and information

processing [7], [8], [9], [10], [11]. Up till now, there are lots of different types of synchronization, for instance, complete

synchronization [12], anti-synchronization [13], projective synchronization [14] and cluster synchronization [15], [16].

It should be noted that information of different nodes is transmitted based on a shared band-limited digital communication

network. Thus, it is interesting to study synchronization of complex networks with delayed coupling. For example, global

synchronization of a general linear coupled network has been studied with a time-varying coupling delay in [17]. Then, a

developed generalized mixed outer synchronization are also studied with a time-varying coupling delay [18]. In [19], local and

global synchronization of complex networks have been studied with a fixed delay. In [20], global exponential synchronization of
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nonlinear coupled dynamical networks are also considered with a delayed coupling. However, the aforementioned results are based

on one or two layers network. Multi-layer networks which have more than two layers can be seen as some sub-networks distributed

in different layers. For example, there exists a three-layers network about information transmission in a simple telephone network.

Moreover, different transmission delays between different layers should also be taken into account. Therefore, synchronization of

multi-layer networks with delayed coupling are more significant.

Different from continuous control methods, intermittent controller is implemented intermittently during a control period. Because

of easier implementation and smaller control cost, the problem of synchronization under intermittent control has attracted lots of

attention [21], [22], [23], [24], [25], [26], since the intermittent control is firstly proposed in [27]. Synchronization with finite time

convergence has advantages to enhance the robustness and to overcome the disturbance in practical control and applications [28].

The existing results about finite-time stability and finite-time synchronization have been considered in [29], [30], [31], [32], [33],

[34], [35], [36]. Therefore, it is very interesting to investigate finite-time synchronization of complex networks via intermittent

feedback control. Some related results have been studied in our previous works [37], [38], [39], [40], however, the linear coupling

is adopted in these works.

In this paper, finite-time synchronization of multi-layer nonlinear coupled complex networks is studied via intermittent feedback

control. Firstly, based on finite-time stability theory, some novel criteria are given to guarantee that the nonlinear system is

still finite-time stable. Then, by proposing two kinds of intermittent feedback controllers, sufficient conditions of finite-time

synchronization of two complex networks are derived. The main contributions of this paper include: i) some novel criteria are

given to guarantee finite-time synchronization of the error system of the drive-response systems under an intermittent controller;

ii) then, based on these presented criteria, finite-time synchronization of two kinds of multi-layer nonlinear coupled networks is

studied via periodically intermittent feedback control and aperiodically intermittent feedback control, respectively. The time delay

between different layers is also taken into consideration. The corresponding sufficient conditions are also given to guarantee that

the error system is finite-time stable.

This paper is organized as follows. In Section II, some definitions of finite-time stability and some novel finite-time criteria

are given. In Section III, by proposing two kinds of intermittent feedback controllers, sufficient conditions of finite-time synchro-

nization of delayed complex networks are derived respectively. Section IV provides an example to illustrate the validity of the

proposed design methods. Finally, this paper is concluded in Section V.

II. P

Let Rn denote n-dimension real space and R+ denote 1-dimension positive real space. For any x ∈ Rn, let ‖x‖ = (xT x)1/2. For

a matrix P ∈ Rn×n, λmax(P) and λmin(P) denote the largest and the smallest eigenvalues of the symmetric matrix P, respectively.

Consider the following master system (drive system):

ẋ(t) = φ(x(t)), (1)

where x(t) ∈ Rn, x(0) = x0, φ(·) : D → Rn is continuous on an open neighborhood D of the origin x(t) = 0 with φ(0) = 0.

Definition 1: [41] The zero solution of (1) is finite-time convergent if there is an open neighborhood U ⊂ D of the origin

and a function T : U \ {0} → (0,∞), such that ∀x0 ∈ U, the solution ψ(t, x0) of system (1) is defined and ψ(t, x0) ∈ U {0} for
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t ∈ [0,T (x0)), and limt→T (x0) ψ(t, x0) = 0. Then, ψ(t, x0) is called the settling time. If the zero solution of system (1) is finite-time

convergent, the set of point x0 such that ψ(t, x0)→ 0 is called the domain of attraction of the solution.

Definition 2: [41] The zero solution of (1) is finite-time stable if it is Lyapunov stable and finite-time convergent. When,

U = D = Rn, the zero solution is said to be globally finite-time stable.

Consider the following slave system (response system):

ẏ(t) = ϕ(y(t), u(t)), (2)

where y(t) ∈ Rn, y(0) = y0, u(t) ∈ Rq is the controller, u(0) = u0, ϕ(·) : Rn × Rq → Rn is continuous. Denote the solutions of (1)

and (2) as x(t, x0) and y(t, y0, u0), respectively. For the notational simplicity, we denote x(t, x0) simply by x(t), and y(t, y0, u0) by

y(t). Next, we give the definition of finite-time synchronization of systems (1) and (2).

Definition 3: Systems (1) and (2) are said to be synchronization in finite time if there exists an open neighborhood U ⊂ Rn

of the origin such that e0 = y0 − x0 ∈ U and a function T1 : U \ {0} → (0,+∞) and

limt→T1(e0) ||e(t)|| → 0,

||e(t)|| = 0,∀t > T1(e0),
where e(t) = y(t) − x(t) denotes the synchronization error of systems (1) and (2).

A continuous controller is designed in the form of u(t) = F (e(t)),∀t ∈ [t0,+∞). If there exists a Lyapunov function V(e(t))

defined on a neighborhood U ⊂ Rn of the origin such that V̇(e(t)) ≤ −αVη(e(t)), where α > 0, 0 < η < 1, from [42] and

Definition 1, the error system (2)-(1) is synchronized in finite time. Based on our previous work [37], a new controller is

proposed as follows: 

u(t) = 0, t0 + kT ≤ t < t0 + (k + h1)T,

u(t) = F (e(t)), t0 + (k + h1)T ≤ t < t0 + (k + h2)T,

u(t) = 0, t0 + (k + h2)T ≤ t < t0 + (k + 1)T,

(3)

where 0 ≤ h1 < h2 ≤ 1, T > 0 is the control period, h2 − h1 is the control rate and k ≥ 0 is a nonnegative integer. Now, sufficient

conditions are given to guarantee that the error systems (1)-(2) is synchronized in finite time via the controller (3).

Theorem 1: Consider systems (2) and (1) with controller (3), if there is a Lyapunov function V(e(t)) defined on a neighborhood

U ⊂ Rn of the origin such that


V̇(e(t)) ≤ 0, t0 + kT ≤ t < t0 + (k + h1)T,

V̇(e(t)) ≤ −αVη(e(t)), t0 + (k + h1)T ≤ t < t0 + (k + h2)T,

V̇(e(t)) ≤ 0, t0 + (k + h2)T ≤ t < t0 + (k + 1)T,

(4)

hold, where 0 ≤ h1 < h2 ≤ 1, α > 0, 0 < η < 1, then, the error system (2)-(1) is synchronized in finite-time. In addition, for any

given t0, the following inequality holds:

V1−η(e(t)) ≤ V1−η(e0) − α(1 − η)(h2 − h1)(t − t0 − h1T ), t0 ≤ t ≤ T ′, (5)

and V(e(t)) ≡ 0,∀t > T ′, where T ′ =
V1−η(e0)

α(1−η)(h2−h1) + t0 + h1T denotes the settling time.

Proof: The proof is based on a recursive approach and the following auxiliary function

H(t) = V1−η(t) − M + α(1 − η)(h2 − h1)t, (6)
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where M = V1−η(e0) + α(1 − η)(h2 − h1)(t0 + h1T ). It is also easy to obtain that H(t0) < 0. For simplicity, we denote V(e(t)) as

V(t).

Step 1: For any t ∈ [t0, t0 + h1T ), we have

V1−η(t) ≤ V1−η(t0).

Then, we can obtain

H(t) ≤ V1−η(t0) − M + α(1 − η)(h2 − h1)t < 0.

For any t ∈ [t0 + h1T, t0 + h2T ), we have

V1−η(t) ≤ V1−η(t0 + h1T ) − α(1 − η)(t − t0 − h1T )

≤ V1−η(t0) − α(1 − η)t + α(1 − η)(t0 + h1T ).

Then,
H(t) ≤ V1−η(t0) − α(1 − η)t + α(1 − η)(t0 + h1T ) − M + α(1 − η)(h2 − h1)t

≤ −α(1 − η)t + α(1 − η)(t0 + h1T ) − α(1 − η)(h2 − h1)(t0 + h1T )

+α(1 − η)(h2 − h1)t

≤ α(1 − η)(1 − (h2 − h1))(t0 + h1T − t) ≤ 0.

(7)

For any t ∈ [t0 + h2T, t0 + T ), we have

V1−η(t) ≤ V1−η(t0 + h2T ) ≤ V1−η(t0) − α(1 − η)(t0 + h2T ) + α(1 − η)(t0 + h1T ).

Then,
H(t) ≤ V1−η(t0) − α(1 − η)(t0 + h2T ) + α(1 − η)(t0 + h1T ) − M + α(1 − η)(h2 − h1)t

≤ α(1 − η)(h2 − h1)(t − t0 − h1T − T ) < 0.
(8)

Step 2: For any t ∈ [t0 + T, t0 + (1 + h1)T ), we have

V1−η(t) ≤ V1−η(t0 + T ) ≤ V1−η(t0) − α(1 − η)(t0 + h2T ) + α(1 − η)(t0 + h1T ).

Then,
H(t) ≤ V1−η(t0) − α(1 − η)(t0 + h2T ) + α(1 − η)(t0 + h1T ) − M + α(1 − η)(h2 − h1)t

≤ α(1 − η)(h2 − h1)(t − t0 − h1T − T ) < 0.
(9)

For any t ∈ [t0 + (1 + h1)T, t0 + (1 + h2)T ), we have

V1−η(t) ≤ V1−η(t0 + T + h1T ) − α(1 − η)(t − t0 − h1T − T )

≤ V1−η(t0) − α(1 − η)t + α(1 − η)[t0 + (h1 + 1)T − (h2 − h1)T ].

Then,
H(t) ≤ V1−η(t0) − α(1 − η)t + α(1 − η)[t0 + (h1 + 1)T − (h2 − h1)T ] − M + α(1 − η)(h2 − h1)t

≤ −α(1 − η)t + α(1 − η)[t0 + (h1 + 1)T − (h2 − h1)T ] − α(1 − η)(h2 − h1)(t0 + h1T )

+α(1 − η)(h2 − h1)t

≤ α(1 − η)(1 − (h2 − h1))(t0 + h1T + T − t) ≤ 0.

(10)

September 6, 2016 DRAFT



5

Inductive Step : For any T ′ > t0, there exists k ≥ 0 such that T ′ ∈ [t0 + kT, t0 + (k + 1)T ). Thus, if T ′ ≤ t0 + (k + h1)T , for any

t ∈ [t0 + kT,T ′], we have

V1−η(t) ≤ V1−η(t0 + kT ) ≤ V1−η(t0) − α(1 − η)(h2 − h1)kT,

then,

H(t) ≤ −α(1 − η)(h2 − h1)(t0 + h1T + kT − t) < 0.

For any t ∈ (T ′,+∞), we have

V1−η(t) ≤ V1−η(T ′) ≤ V1−η(t0) − α(1 − η)(h2 − h1)(T ′ − t0) ≤ 0.

Note that V(t) ≥ 0, thus, V(t) = 0.

If t0 + (k + h1)T < T ′ ≤ t0 + (k + h2)T , then, for any t ∈ [t0 + (k + h1)T,T ′], we have

V1−η(t) ≤ V1−η(t0) − α(1 − η)t + α(1 − η)[t0 + (h1 + k)T − (h2 − h1)kT ].

Then,

H(t) ≤ −α(1 − η)(1 − (h2 − h1))t + α(1 − η)(1 − (h2 − h1))(t0 + h1T + kT ) ≤ 0.

For any t ∈ (T ′,+∞), it is easy to find that

V1−η(t) ≤ V1−η(T ′) ≤ 0.

Note that V(t) ≥ 0, thus, V(t) = 0.

If T ′ > t0 + (k + h2)T , for any t ∈ [t0 + (k + h1)T,T ′], we have

V1−η(t) ≤ V1−η(t0) − α(1 − η)t + α(1 − η)[t0 + (h1 + k)T − (h2 − h1)kT ].

Then,

H(t) ≤ −α(1 − η)(1 − (h2 − h1))t + α(1 − η)(1 − (h2 − h1))(t0 + h1T + kT ) ≤ 0.

For any t ∈ (T ′,+∞), we have

V1−η(t) ≤ V1−η(T ′) ≤ 0.

Therefore,

H(t) ≤ −α(1 − η)(h2 − h1)[(k + 1)T + t0 + h1T ] + α(1 − η)(h2 − h1)t < 0. (11)

Overall, when t ∈ [t0,T ′], we have H(t) < 0 and when t > T ′, V(t) ≡ 0. The proof is completed.

Remark 1: If h1 = 0 and h2 = 1, Theorem 1 is reduced to that considered in [42], that is so-called full-control or continuous

control; If h1 = 0 and 0 < h2 < 1, Theorem 1 is reduced to that considered in [37], that is so-called front-control which belongs to

a type of intermittent feedback control. The authors in [37] studied the finite-time synchronization of a class of complex networks.

Especially, only controlling the front part of one control period is considered, which is not practical in nature. In most cases,

the control part is stochastic in one period. If 0 < h1 < 1 and h2 = 1, the results could be seen as another type of intermittent

feedback control.
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It is very important to notice that constants h1 and h2 are adopted in (4). In what follows, the different values of h1
k and h2

k

are considered, which have a more general form.

Corollary 1: Suppose there is a Lyapunov function V(e(t)) defined on a neighborhood U ⊂ Rn of the origin, such that the

following conditions 

V̇(e(t)) ≤ 0, t0 + kT ≤ t < t0 + (k + h1
k)T,

V̇(e(t)) ≤ −αVη(e(t)), t0 + (k + h1
k)T ≤ t < t0 + (k + h2

k)T,

V̇(e(t)) ≤ 0, t0 + (k + h2
k)T ≤ t < t0 + (k + 1)T,

(12)

hold, where 0 ≤ h1
k < 1 − θ, h2

k = h1
k + θ, θ > 0, α > 0, 0 < η < 1, T > 0 is the control period and k ≥ 0 is a nonnegative integer.

Then, the origin of error system (2)-(1) is finite-time stable. In addition, for any given t0, the following inequality holds:

V1−η(e(t)) ≤ V1−η(e0) − αθ(1 − η)(t − t0 − θT ), t0 ≤ t ≤ T ′, (13)

and

V(e(t)) ≡ 0, ∀t > T ′,

where T ′ = t0 + θT +
V1−η(e0)
αθ(1−η) denotes the settling time.

Proof: Construct an auxiliary function H1(t) = V1−η(t) − M1 + αθ(1 − η)t, where M1 = V1−η(e0) + αθ(1 − η)(t0 + θT ). By using

a similar recursive approach to Theorem 1, then, the results could be obtained.

Remark 2: Obviously, when h1
k = h1 and h2

k = h2, the result of Corollary 1 is reduced to that of Theorem 1. In Corollary 1, the

control parts in different periods are different. This case can be used widely in practice. It should be noticed that the length of

the control parts in different control periods are constant. A time-varying length of the control part will be considered in future.

In addition, in one control period, we can divide it into many small intervals. It is very important to show that when the length

of the control part is constant, such a case is reduced to Corollary 1 in essence.

III. F-        

Consider the following m layers complex dynamical networks consisting of N nonlinearly identical nodes:

ẋi(t) = fi(xi(t)) +
N∑

j=1
a0

i jg0 j(x j(t)) +
m−1∑
r=1

N∑
j=1

ar
i jgr j(x j(t − τr)), i = 1, 2, · · · ,N, (14)

where xi(t) = [xi1(t), xi2(t), · · · , xin(t)]T ∈ Rn denotes the state vector of the ith node. Functions fi(·) : Rn → Rn and gr j(·) : Rn → Rn

are continuous. The abbreviation x(t) = [x1(t)T , · · · , xN(t)T ]T , f (x) := [ f1(x1), · · · , fN(xN)]T , g(x) = [g0(x)T , · · · , gm−1(x)T ]T and

gr(x) := [gr1, · · · , grN]T can be used to simply the notations. τr ≥ 0 (r = 1, · · · ,m − 1) denote the different coupling delays. It

should be noticed that {τr} is a strictly increasing sequence. Ar = (ar
i j) ∈ RN×N (r = 0, 1, · · · ,m−1) denote the weight configuration

matrices. If there is a connection between nodes i and j (i , j), then ar
i j = ar

ji > 0; otherwise, ar
i j = ar

ji = 0. The diagonal elements

of matrices Ar are defined as

ar
ii = −

N∑
j=1, j,i

ar
i j, r = 0, 1, · · · ,m − 1. (15)

For simplicity, the drive system (14) can be written in following form:

ẋ(t) = f (x(t)) + A0g0(x(t)) +
m−1∑
r=1

Argr(x(t − τr)). (16)
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Remark 3: When m = 2 and g(x) = Γx, (Γ denotes the inner-coupling matrix), the finite-time synchronization control for

system (14) has been studied in [37]. Then, based on the same control strategy of [37], the finite-time lag synchronization for

system (14) with m = 2 is studied in [43]. More similar systems to (14) have been studied in [29], [30], [38], [39], [40]. Compared

with the aforementioned systems, the system (14) has a more general form.

Assumption 1: [44] The function f (·) ∈ QUAD (P,∆, ξ), if there exists a positive definite diagonal matrix P = diag{P1,

P2, · · · , PN} ∈ RnN×nN , a diagonal matrix ∆ = diag{∆1,∆2, · · · ,∆N} ∈ RnN×nN and a scalar ξ > 0, such that

(y(t) − x(t))T P[ f (y(t)) − f (x(t)) − ∆(y(t) − x(t))] ≤ −ξ(y(t) − x(t))T (y(t) − x(t)),

holds for any x, y ∈ RnN , where Pi, ∆i ∈ Rn×n are diagonal matrices.

Remark 4: Assumption 1 has been considered in [37], [40]. In fact, it can be applied to all the well-known systems, such as

Lorenz system, Chen system, Chua’s system and so on.

Assumption 2: There exists a positive constant l such that g(·) satisfies the following Lipschitz condition:

||g(x(t)) − g(y(t))|| ≤ l||(x(t) − y(t))||, (17)

for all x, y ∈ RnN and t ≥ 0.

The following lemmas are useful for our main results.

Lemma 1: [45] Given any real matrices X,Y and K of appropriate dimensions and a scalar ε > 0 such that K = KT > 0.

Then, the following inequality holds:

XT Y + YT X ≤ εXT KX + ε−1YT K−1Y.

Lemma 2: [37] For any real vectors x1, x2, · · · , xn ∈ Rn, there exists 0 < q < 2 such that

(||x1||2 + ||x2||2 + · · · + ||xn||2)q/2 ≤ ||x1||q + ||x2||q + · · · + ||xn||q.
Note that the drive system is in form of (16), thus, the response system can be written as follows:

ẏ(t) = f (y(t)) + A0g0(y(t)) +
m−1∑
r=1

Argr(y(t − τr)) + u(t), (18)

where y(t) = [y1(t)T , · · · , yN(t)T ]T , yi(t) = [yi1(t), yi2(t), · · · , yin(t)]T ∈ Rn denotes the response state vector of xi(t) of the ith node.

u(t) = [u1(t)T , · · · , uN(t)T ]T , ui(t) denotes the control input of the ith node.

In view of (18)- (16), the synchronization errors system can be obtained

ė(t) = f (y(t)) + A0g0(y(t)) +
m−1∑
r=1

Argr(y(t − τr)) + u(t)

− f (x(t)) − A0g0(x(t)) −
m−1∑
r=1

Argr(x(t − τr)),
(19)

where e(t) = [e1(t)T , e2(t)T , · · · , eN(t)T ]T , ei(t) = yi(t) − xi(t).
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In order to achieve finite-time synchronization of (16) and (18), the periodically intermittent controller ui(t) ( i = 1, 2, · · · ,N)

are designed as follows:

ui(t) =



0, ||ei(t)|| = 0 or t ∈ [kT, (k + h1)T ),

−λiei(t) − γ λmax(P)η

λmin(P) sign(ei(t))|ei(t)|2η−1 − (γ
m−1∑
r=1

∫ t
t−τr

ei(s)T Piei(s)ds)η ei
||ei ||2

1
λmin(P) ,

t ∈ [(k + h1)T, (k + h2)T ),

0, t ∈ [(k + h2)T, (k + 1)T ),

(20)

where λi > 0 denotes the control gain, γ > 0 is a tunable constant and 1
2 < η < 1, T denotes the control period, h2 − h1 is the

control rate.

Now, we give the main results.

Theorem 2: Suppose that Assumption 1 and Assumption 2 hold. If there exist two positive definite diagonal matrices P and

∆ and three positive constants ξ, ξ1, ξ2 such that

− ξInN

λmax(P) + ∆ + ξ1AT
0 A0 + l2InN

ξ1
+ ξ2

m−1∑
r=1

AT
r Ar + (m − 1)InN ≤ 0,

l2 − ξ2 ≤ 0,
(21)

where InN ∈ RnN denotes identity matrix, then the error system (19) is synchronized under the periodically intermittent con-

troller (20) in a finite time:

T2 =
V1−η(t0)

α(1 − η)(h2 − h1)
+ t0 + h1T,

where V(t0) = 1
2 e(t0)T Pe(t0) +

m−1∑
r=1

∫ t0
t0−τr

e(s)T Pe(s)ds.

Proof: Consider the following Lyapunov-Krasovskii functional:

V(t) = V1(t) + V2(t), (22)

where V1(t) = 1
2 e(t)T Pe(t), V2(t) =

m−1∑
r=1

∫ t
t−τr

e(s)T Pe(s)ds.

The derivative of V1(t) along the error system (19) is given by

V̇1(t) = e(t)T Pė(t) = e(t)T P[ f (y) − f (x(t))]

+e(t)T PA0[g0(y) − g0(x(t))] + e(t)T Pu(t)

+
m−1∑
r=1

e(t)T PAr[gr(t − τr) − gr(t − τr)].

(23)

By Assumption 1, Assumption 2 and Lemma 1, we have

e(t)T P[ f (y) − f (x(t) − ∆e(t)] ≤ −ξe(t)T e(t)

and

e(t)T PA0[g0(y) − g0(x(t))] ≤ ξ1e(t)T AT
0 PA0e(t) + l2

ξ1
e(t)T Pe(t),

and

e(t)T PAr[gr(t − τr) − gr(t − τr)] ≤ ξ2e(t)T AT
r PAre(t) + l2

ξ2
e(t − τr)T Pe(t − τr),

where ξ1, ξ2 > 0 are positive constants.
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Then, it follows from (23) that

V̇1(t) ≤ −ξe(t)T e(t) + e(t)T ∆e(t) + ξ1e(t)T AT
0 PA0e(t)

+ l2
ξ1

e(t)T Pe(t) +
m−1∑
r=1

ξ2e(t)T AT
r PAre(t)

+
m−1∑
r=1

l2
ξ2

e(t − τr)T Pe(t − τr) + e(t)T Pu(t).

(24)

When t ∈ [(k + h1)T, (k + h2)T ), ui(t) = −λiei(t) −γ λmax(P)η

λmin(P) ×sign(ei(t))|ei(t)|2η−1 − (γ
m−1∑
r=1

∫ t
t−τr

ei(s)T Piei(s)ds)η ei
||ei ||2 ×

1
λmin(P) . By

Lemma 2, we have

e(t)T Pu(t) = −
N∑

i=1
[ei(t)T Piλiei(t) + γ λmax(P)η

λmin(P) ei(t)T Pisign(ei(t))|ei(t)|2η−1 + ei(t)T Pi

×(γ
m−1∑
r=1

∫ t
t−τr

ei(s)T Piei(s)ds)η ei
||ei ||2

1
λmin(P) ]

≤ −e(t)T Pλe(t) − γλmax(P)η
N∑

i=1
ei(t)T sign(ei(t))|ei(t)|2η−1 −

N∑
i=1

(γ
m−1∑
r=1

∫ t
t−τr

ei(s)T Piei(s)ds)η

≤ −e(t)T Pλe(t) − γλmax(P)η|e(t)T e(t)|η − (γ
m−1∑
r=1

∫ t
t−τr

e(s)T Pe(s)ds)η,

(25)

where λ = [λ1, λ2, · · · , λn]T . Then, we can obtain

V̇1(t) ≤ −ξe(t)T e(t) + e(t)T ∆e(t) + ξ1e(t)T AT
0 PA0e(t) + l2

ξ1
e(t)T Pe(t) +

m−1∑
r=1

ξ2e(t)T AT
r PAre(t)

+
m−1∑
r=1

l2
ξ2

e(t − τr)T Pe(t − τr) − e(t)T Pλe(t) − γλmax(P)η|e(t)T e(t)|η − (γ
m−1∑
r=1

∫ t
t−τr

e(s)T Pe(s)ds)η

≤ e(t)T P[− ξInN

λmax(P) + ∆ + ξ1AT
0 A0 + l2InN

ξ1
+ ξ2

m−1∑
r=1

AT
r Ar − λInN]e(t) +

m−1∑
r=1

l2
ξ2

e(t − τr)T Pe(t − τr)

−γλmax(P)η|e(t)T e(t)|η − (γ
m−1∑
r=1

∫ t
t−τr

e(s)T Pe(s)ds)η.

(26)

The derivative of V2(t) satisfies

V̇2(t) =
m−1∑
r=1

[e(t)T Pe(t) − e(t − τr)T Pe(t − τr)]. (27)

From (26) and (27), we have

V̇(t) ≤ e(t)T P[− ξInN

λmax(P) + ∆ + ξ1AT
0 A0 + l2InN

ξ1
+ ξ2

m−1∑
r=1

AT
r Ar − λInN + (m − 1)InN]e(t)

+( l2
ξ2
− 1)

m−1∑
r=1

e(t − τr)T Pe(t − τr) − γλmax(P)η|e(t)T e(t)|η − (γ
m−1∑
r=0

∫ t
t−τr

e(s)T Pe(s)ds)η

≤ −γVη(t).

(28)

When t ∈ [kT, (k + h1)T ) or t ∈ [(k + h2)T, (k + 1)T ), ui(t) = 0,

V̇(t) ≤ e(t)T P[− ξInN

λmax(P) + ∆ + ξ1AT
0 A0 + l2InN

ξ1
+ ξ2

m−1∑
r=1

AT
r Ar + (m − 1)InN]e(t)

+( l2
ξ2
− 1)

m−1∑
r=1

Pe(t − τr)T e(t − τr) ≤ 0.
(29)

Therefore, from (28) and (29), we have

V̇(t) ≤



0, t ∈ [kT, (k + h1)T ),

−γVη(t), t ∈ [(k + h1)T, (k + h2)T ),

0, t ∈ [(k + h2)T, (k + 1)T ).

(30)
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From the proof of Theorem 1, we can obtain that when t → T ′

λ
1−η
min (P)||e(t)||2(1−η) ≤ V1−η(e(t)) ≤ V1−η(e0) − α(1 − η)(h2 − h1)(t − t0 − h1T )→ 0,

and

λ
1−η
min (P)||e(t)||2(1−η) ≤ V(e(t)) = 0, ∀t > T ′.

Note that P is a positive definite matrix and η ∈ ( 1
2 , 1), thus from Definition 3, the finite-time synchronization of systems (14)

and (18) is achieved under the periodically intermittent controller (20). The proof is completed.

It should be noticed that the intermittent controller (20) is periodic. However, sometimes the controller may be implemented

aperiodically in different control periods. Thus, the following aperiodically intermittent controller can be constructed:

ui(t) =



0, ||ei(t)|| = 0 or t ∈ [kT, (k + h1
k)T ),

−λiei(t) − γ λmax(P)η

λmin(P) sign(ei(t))|ei(t)|2η−1 − (γ
m−1∑
r=1

∫ t
t−τr

ei(s)T Piei(s)ds)η ei
||ei ||2

1
λmin(P) , t ∈ [(k + h1

k)T, (k + h2
k)T ),

0, t ∈ [(k + h2
k)T, (k + 1)T ),

(31)

where 1
2 < η < 1, 0 ≤ h1

k < 1 − θ, h2
k = h1

k + θ and θ > 0 denotes the control rate, λi > 0 denotes the control gain, γ > 0 is a

tunable parameter.

Then, we can obtain the following results.

Theorem 3: Suppose that Assumption 1 and Assumption 2 hold. If there exist two positive definite diagonal matrices P and

∆ and three positive constants ξ, ξ1, ξ2 such that

− ξInN

λmax(P) + ∆ + ξ1AT
0 A0 + l2InN

ξ1
+ ξ2

m−1∑
r=1

AT
r Ar + (m − 1)InN ≤ 0,

l2 − ξ2 ≤ 0,
(32)

where InN ∈ RnN denotes identity matrix, then the error system (19) is synchronized under the aperiodically intermittent

controller (31) in a finite time:

T3 =
V1−η(t0)
αθ(1 − η)

+ t0 + θT,

where V(t0) = 1
2 e(t0)T Pe(t0) +

m−1∑
r=1

∫ t0
t0−τr

e(s)T Pe(s)ds.

Proof : By using Corollary 1, the similar proof to Theorem 2 can be achieved. Thus, it is omitted here.

Remark 5: The aperiodically intermittent controller (31) could be seen as an extension of the periodically intermittent con-

troller (20). When h1
k = h1 and h2

k = h2, the controller (31) is reduced to the controller (20). Though the aperiodically intermittent

controller (31) is more complex than (20), it is more pragmatic and worktable in practical appications.

IV. N 

In this section, we give a simple example to verify the effectiveness of our proposed methods.

Example 1: Consider the following multi-layer complex network with 10 identical nodes:

ẋ(t) = f (x(t)) + A0g0(x(t)) +

2∑

r=1

Argr(x(t − τr)), (33)
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where

fi(xi(t)) =



−a a 0

b −1 0

0 0 −c





xi1(t)

xi2(t)

xi3(t)


+



0

−xi1(t)xi3(t)

xi1(t)xi2(t)


,

g0(x(t)) = sin(x(t)),

g1(x(t − τ1)) = sin(x(t − τ1)),

g2(x(t − τ2)) = 0.3x(t)cos(x(t − τ2)),

A0 =



−4 0 0 1 1 0 0 0 1 1

0 −4 1 1 0 1 0 1 0 0

0 1 −5 1 0 1 0 1 1 0

1 1 1 −6 0 1 1 1 0 0

1 0 0 0 −3 1 0 0 1 0

0 1 1 1 1 −7 1 1 1 0

0 0 0 1 0 1 −3 0 0 1

0 1 1 1 0 0 0 −6 1 1

1 0 1 0 1 1 0 1 −5 0

1 0 0 0 0 0 1 1 0 −3



,

A1 =



−7 1 1 0 1 0 1 1 1 1

1 −5 1 0 1 0 0 1 1 0

1 1 −5 1 1 1 0 0 0 0

0 0 1 −3 1 1 0 0 0 0

1 1 1 1 −6 0 1 0 0 1

0 0 1 1 0 −5 1 1 0 1

1 0 0 0 1 1 −4 0 0 1

1 1 0 0 0 1 0 −4 1 0

1 1 0 0 0 0 0 1 −3 0

1 0 0 0 1 1 1 0 0 −4



,
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A2 =



−6 1 1 0 0 1 0 1 1 1

1 −4 1 0 0 1 1 0 0 0

1 1 −6 0 1 0 1 1 1 0

0 0 0 −3 1 1 1 0 0 0

0 0 1 1 −4 1 0 1 0 0

1 1 0 1 1 −7 1 1 0 1

0 1 1 1 0 1 −5 0 0 1

1 0 1 0 1 1 0 −5 1 0

1 0 1 0 0 0 0 1 −4 1

1 0 0 0 0 1 1 0 1 −4



,

where the parameters are selected as a = 10, b = 30, c = 8/3, Ar ∈ R10×10 (r = 0, 1, 2) are symmetrically coupling matrices

and the time delays τ1 = 0.05s and τ2 = 0.1s. It is valuable to note that Ai (i = 0, 1, 2) are randomly generated such that (15)

holds. The chaotic attractor of the Lorenz system ẋ(t) = f (x(t)) is shown in Figure 1. Moreover, the initial values are given as:

x(0) = (3 + i, 5 + 2i, 7 + 2i)T , y(0) = (−2 + 7i,−5 + 6i,−7 + 8i)T (i = 1, · · · , 10). The other parameters of the controller are λi = 1,

η = 5/8 and γ = 8. Take Pi = diag{0.5, 0.4, 0.2} and ∆i = diag{50, 50, 50} as [43], it is easy to verify that Assumption 1 holds

with ξ = 43.48. Given T = 0.5s, h1 = 0.1 and h2 = 0.7, the trajectories of errors are illustrated with a periodically intermittent

controller in Figures 2-4. When h1 = 0 and h2 = 1, that is, a full controller is designed, the trajectories of errors are illustrated

with a continuous controller in Figures 5-7. From Theorem 2, the settling time of the intermittent controller is larger than that of

a full controller. By making a comparison of these figures, it is reasonable to show that the convergent time under the intermittent

controller is larger than that of the full controller. In addition, the trajectories of errors are illustrated with a mixed intermittent

controller in Figures 8-10 with h1
2k = 0.1, h2

2k = 0.7 and h1
2k+1 = 0.3, h2

2k+1 = 0.9 (k ≥ 0), respectively. We can also find that

the convergent time under a mixed intermittent controller is larger than that of a full controller. Figures 11-13 show that the

trajectories of errors are not convergent with h1 = h2, that is, the controller is always 0. The results show that the system itself

is not convergent and the proposed controller can work well.
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Fig. 1 Trajectories of the Lorenz system.

September 6, 2016 DRAFT



13

0 1 2 3 4 5
−30

−20

−10

0

10

20

30

40

50

60

e
i1
(t
),

1
≤

i
≤

1
0

t

Fig. 2 Trajectories of the synchronization errors ei1 with control parameters γ = 8, T = 0.5s, h1 = 0.1 and h2 = 0.7.
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Fig. 3 Trajectories of the synchronization errors ei2 with control parameters γ = 8, T = 0.5s, h1 = 0.1 and h2 = 0.7.
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Fig. 4 Trajectories of the synchronization errors ei3 with control parameters γ = 8, T = 0.5s, h1 = 0.1 and h2 = 0.7.
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Fig. 5 Trajectories of the synchronization errors ei1 with control parameters γ = 8, T = 0.5s, h1 = 0 and h2 = 1.
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Fig. 6 Trajectories of the synchronization errors ei2 with control parameters γ = 8, T = 0.5s, h1 = 0 and h2 = 1.
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Fig. 7 Trajectories of the synchronization errors ei3 with control parameters γ = 8, T = 0.5s, h1 = 0 and h2 = 1.
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Fig. 8 Trajectories of the synchronization errors ei1 with control parameters γ = 8, T = 0.5s, h1
2k = 0.1, h2

2k = 0.7 and h1
2k+1 = 0.3, h2

2k+1 = 0.9 (k ≥ 0), respectively.
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Fig. 9 Trajectories of the synchronization errors ei2 with control parameters γ = 8, T = 0.5s, h1
2k = 0.1, h2

2k = 0.7 and h1
2k+1 = 0.3, h2

2k+1 = 0.9 (k ≥ 0), respectively.
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Fig. 10 Trajectories of the synchronization errors ei3 with control parameters γ = 8, T = 0.5s, h1
2k = 0.1, h2

2k = 0.7 and h1
2k+1 = 0.3, h2

2k+1 = 0.9 (k ≥ 0), respectively.
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Fig. 11 Trajectories of the synchronization errors ei1 with control parameters γ = 8, T = 0.5s, h1 = h2.
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Fig. 12 Trajectories of the synchronization errors ei2 with control parameters γ = 8, T = 0.5s, h1 = h2.
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Fig. 13 Trajectories of the synchronization errors ei3 with control parameters γ = 8, T = 0.5s, h1 = h2.
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V. C

This paper has addressed the problem of finite-time synchronization for a class of multi-layer nonlinear coupled complex

networks via intermittent feedback control. Based on finite-time stability, some novel criteria were proposed to guarantee that the

nonlinear system was still finite-time stable. Then, by proposing two kinds of different intermittent feedback controllers, sufficient

conditions of finite-time synchronization of two complex networks were derived, respectively. At last, a numerical example was

provided to verify the effectiveness of the proposed methods. It should be noticed that the same control rate is considered in this

paper. In the future works, a mixed intermittent controller with different control rates may be studied. To the author’s knowledge,

the intermittent controller with different control rates can be applied more widely with a more natural property.
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