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Abstract: In this paper, the exponential bipartite consensus issue is investigated for multi-agent net-
works, whose dynamic is characterized by fractional diffusion partial differential equations (PDEs).
The main contribution is that a novel exponential convergence principle is proposed for networks of
fractional PDEs via aperiodically intermittent control scheme. First, under the aperiodically intermit-
tent control strategy, an exponential convergence principle is developed for continuously differentiable
function. Second, on the basis of the proposed convergence principle and the designed intermittent
boundary control protocol, the exponential bipartite consensus condition is addressed in the form of
linear matrix inequalities (LMIs). Compared with the existing works, the result of the exponential in-
termittent consensus presented in this paper is applied to the networks of PDEs. Finally, the high-speed
aerospace vehicle model is applied to verify the effectiveness of the control protocol.

Keywords: multi-agent system; networks; fractional PDEs; bipartite consensus; intermittent
boundary control

1. Introduction

Multi-agent systems (MASs) evolve from the distributed artificial intelligence, which aim to solve
large-scale, complex and uncertain realistic problems. MASs can undertake more complex tasks that
a single agent can not finish. Therefore, the application of MASs has attracted extensive attention
in various fields, such as the air traffic management, the control of unmanned aerial vehicles, the
synchronization of team satellites and other engineering fields, see [1–3] and references therein. As a
basic problem for MASs, consensus has attracted considerable attention from scholars in the different
fields, and some results can be found in [4–6].

However, in practical engineering problems, there are situations with antagonism information be-
tween agents, such as the networks in [7, 8]. To solve the consensus with antagonism information, the
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concept of bipartite consensus is proposed in [9]. At the same time, many researchers pay attention to
the bipartite consensus of MASs. In [10], the bipartite consensus is considered for networks of MASs
via event-triggered control protocol. The exponential bipartite consensus is researched for fractional
nonlinear MASs with the switching directed signed networks in [11]. In [12], the bipartite consensus
issue is investigated for fractional nonlinear MASs.

It is worth noting that, in the literature mentioned above [4–12], MASs are described by ordinary
differential equations (ODEs). However, in the real world, the state of MASs is not only related to
the time, but also the space position, such as the moving beam, the service function chain for telecom
operator and surface of the aerospace vehicle, see [13–16]. Therefore, many efforts are devoted to
the consensus problem for MASs modeled by PDEs in [17–20]. In [17], the consensus issue was
investigated for networks of diffusion PDEs. In [18], the consensus tracking was solved for networks
of parabolic PDEs with unknown disturbances. In [19], the bipartite consensus is studied for MASs
of wave PDEs. [20] studied finite and fixed-time bipartite consensus for diffusion PDEs Multi-agent
system.

Compared with integer-order systems, the application of fractional systems is more popular in
physics, engineering, biology and so on, because of its hereditary and memory. In recent years, large
numbers of works are devoted to solve the consensus issue of multi-agent networks depicted by frac-
tional ODEs, see [21–26]. Simultaneously, networks of fractional PDEs have attracted the extensive
attention of many scholars. For example, in [27], the boundary fractional derivative control was re-
searched for MASs of wave equations. In [28], authors considered the boundary control issue for MASs
of fractional diffusion PDEs with the time-varying input disturbance. In [29], boundary feedback sta-
bilisation problem was investigated for MASs of fractional anomalous diffusion PDEs. It should be
point out that, the works in [27–29] are concerned with the asymptotical consensus for the networks of
fractional PDEs, where the convergence rate can not be estimated.

Figure 1. The working mechanism of aperiodically intermittent control protocol.

To realize the consensus for MASs, some control mechanisms are designed, such as feedback
control, impulsive control, adaptive control, sliding mode control and event-triggered control etc.,
see [30–35]. It is worth noting that, the controllers mentioned above are continuous, which cannot
save communication resources. Therefore, it becomes very meaningful to study intermittent control
approach. So there are many works on intermittent control for PDEs networks, see [36–38]. Mean-
while, the working mechanism of aperiodically intermittent control protocol is shown in Figure 1. As
far as we know, few scholars have studied the consensus issue for networks of fractional PDEs via
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aperiodically intermittent control.
Obviously, the control strategies aforementioned in [30–32], which requires to assign actuators to

each position, brings the waste of space resources. In order to overcome this shortcoming, boundary
control strategy is presented. Under this control method, the actuator only needs to be placed on
the boundary, which reduces the space cost. Clearly, the intermittent boundary control strategy can
not only save the space cost, but also the time cost. Thus, there are some works about intermittent
boundary control for networks of PDEs, see [39–41]. Unfortunately, little work has been devoted
to aperiodically intermittent boundary control of fractional PDEs system. Therefore, how to deploy
aperiodically intermittent control in PDEs Multi-agent system is the main challenge. In addition, how
to design the control protocol to make the PDEs system reach the exponential bipartite consensus is
another difficulty.

Based on the above analysis, the bipartite consensus problem of fractional PDEs networks via ape-
riodically intermittent boundary control method has not been studied. Therefore, our object is to study
the exponential bipartite consensus issue for multi-agent networks of fractional diffusion PDEs via
aperiodically intermittent boundary control strategy. The contributions are briefly summarized.

1) Under the aperiodically intermittent control method, an exponential convergence principle is de-
veloped for the continuously differentiable functions, see Lemma 5. Moreover, Compared with the
ideal results for ODEs systems in [42,43], in this paper, the consensus issue is investigated for PDEs
system. Particularly, compared with the results of [42] with the intermittent communication, this
paper is devoted to the intermittent control for the networks of PDEs.

2) Under the designed intermittent boundary control strategy and the presented convergence principle,
the bipartite consensus condition can be derived in terms of LMIs. In addition, different from the
asymptotical consensus of PDEs systems in [27–29], this paper focuses on the exponential bipartite
consensus for PDEs system via aperiodically intermittent boundary control.

3) The high-speed aerospace vehicle model is applied to verify the effectiveness of the theoretical
results;

The remaining components of this paper is organized as follows: Section 2 introduces the related
knowledge with regard to graph theory, fractional calculus and aperiodically intermittent control
method. In addition, a new exponential convergence principle is developed, under the aperiodically
intermittent control strategy. In Section 3, the multi-agent network of fractional diffusion PDEs is
modeled. In Section 4, the exponential bipartite consensus is considered for multi-agent networks of
fractional diffusion PDEs. Section 5 provides an application example of the high-speed aerospace
vehicle model to verify the effectiveness of the control strategy. Finally, the final decision is drawn in
Section 6.

Notation: see Table 1. Moreover, the symbol ∗ denotes that[
E + F + ∗ H
∗ J

]
,

[
E + F + FT + ET H

HT J

]
.
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Table 1. Notations

Symbol Stand for
R Real numbers set
Rn n-dimensional real vector set
R+ Positive real numbers set
R̃ Nonnegative real numbers set
I Identify matrix
AT Transpose of A
A > 0 Positive definite matrix A
λmin(·) The minimum eigenvalue of matrix
| ∗ | Absolute value of ∗
||xi||2 (

∑n
i=1 |xi|

2)
1
2 , xi ∈ Rn

‖ f (x, t)‖ (
∫ l

0
f T (x, t) f (x, t)dx)

1
2 : the standard Euclidean norm

C([0, l],R) The family of continuous function from [0, l] to R

2. Preliminaries

2.1. Graph theory

Let G = (υ, ε, A) be the directed signed graph, which represents the information among N dynamical
nodes, where υ = {1, 2, . . . ,N} represents the set of nodes; ε ⊆ (υ× υ) denotes the set of edges; and the
adjacency matrix of G is A = (ai j)N×N , which stands for signed weights among nodes. If (i, j) ∈ ε, then
ai j , 0, otherwise, ai j = 0. In addition, aii = 0 for i ∈ υ.

Divide υ into two non-empty subsets υ1 and υ2, i.e., υ1 ∪ υ2 = υ, υ1 ∩ υ2 = ∅, if satisfy,{
ai j ≥ 0 for i, j ∈ υp, p = 1, 2,
ai j ≤ 0 for i ∈ υp and j ∈ υq, p , q,

then the directed signed graph G is said to be structurally balanced, otherwise, G is structurally un-
balanced. If ( j, i) ∈ ε, then j is addressed as the neighbor of i. The neighbor set of agent i is
Ni = {( j, i) ∈ ε, j , i}.

For the directed signed graph G, corresponding Laplacian matrix L = (li j)N×N , is represented as

L = diag(
∑
k∈N1

|a1k|,
∑
k∈N2

|a2k|, . . . ,
∑
k∈NN

|aNk|) − A.

2.2. Fractional calculus

Definition 1: For the integrable function f : [t0,+∞) −→ R, t0 ≥ 0, the Riemann-Liouville fractional
integral of order 0 < α ≤ 1 is defined by,

t0 Iαt f (t) =
1

Γ(α)

∫ t

t0

f (τ)
(t − τ)1−αdτ,

where Γ(z) =
∫ ∞

0
e−ttz−1dt is the Gamma function.
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Definition 2: For the continuously differentiable function f : [t0,+∞) −→ R, t0 ≥ 0, the Caputo
fractional derivative of order 0 < α ≤ 1 is defined as,

c
t0 Dα

t f (t) =

 1
Γ(1−α)

∫ t

t0

d f (τ)
dτ

(t−τ)α dτ, 0 < α < 1,
d f (t)

dt , α = 1.

Let f (x, t) : [0, l] × [t0,+∞)→ R be continuously differentiable with respect to t. Then, the Caputo
partial fractional derivative and Riemann-Liouville partial fractional-order integral on t, respectively,
are given by,

∂α f (x, t)
∂tα

=

 1
Γ(1−α)

∫ t

t0
∂ f (x,τ)
∂τ

1
(t−τ)α dτ, 0 < α < 1,

∂ f (x,t)
∂t , α = 1,

and t0I
α
t f (x, t) = 1

Γ(α)

∫ t

t0
f (x,τ)

(t−τ)1−α dτ, for 0 < α ≤ 1.
Lemma 1: [44] Let g(x, t) : R × R̃→ R be a continuously differentiable function about t, then,

∂α(gT (x, t)g(x, t))
∂tα

≤ 2gT (x, t)
∂αg(x, t)
∂tα

.

Lemma 2: [45] (Wirtinger’s inequality) If ξ : R→ R is a continuously differentiable function, which
satisfies ξ(0) = 0 or ξ(l) = 0, and P > 0. Then,∫ l

0
ξT (s)Pξ(s)ds ≤

4l2

π2

∫ l

0

(
dξ(s)

ds

)T

P
dξ(s)

ds
ds.

Lemma 3: [46] (Gronwall-Bellman Integral Inequality) If there exists a function z(t) satisfies z(t) ≤∫ t

t0
a(s)z(s)ds + b(t), with the real function a(t) and differential real function b(t). Then it holds that,

z(t) ≤ b(t0) exp
(∫ t

t0
a(s)ds

)
+

∫ t

t0
b(s) exp

(∫ t

s
a(τ)dτ

)
ds.

Specifically, if b(t) = b, it follows z(t) ≤ b exp
(∫ t

t0
a(s)ds

)
.

Definition 3: If ϑ : Rn → R̃ satisfy the following conditions: i) continuously differentiable; ii)
positive definite; iii) radially unbounded, then function ϑ is called as CP-function.

Lemma 4: For continuously differentiable function x : [t0,+∞) → R and CP-function ϑ : Rn → R̃.
Set V(t) = ϑ(x(t)), for 0 < α ≤ 1, If there exists constant k̃, such that

c
t0 Dα

t V(t) ≤ k̃V(t), (2.1)

then we can get V(t) ≤ V(t0) exp
(

k̃(t−t0)α

Γ(1+α)

)
.

Proof. On the basis of (2.1), it holds that
c
t0 Dα

t V(t) = k̃V(t) − ζ(t), (2.2)

then taking the fractional integral t0 Iαt on the both sides of (2.2), it obtains that,

V(t) = V(t0) +

∫ t

t0

(t − s)α−1

Γ(α)

(
k̃V(s) − ζ(s)

)
ds ≤ V(t0) + k̃

∫ t

t0

(t − s)α−1V(s)
Γ(α)

ds.

Then according to Lemma 3, it holds that V(t) ≤ V(t0) exp
(∫ t

t0
k̃ (t−s)α−1

Γ(α) ds
)
, then from

∫ t

t0
k̃ (t−s)α−1

Γ(α) ds =

k̃ (t−t0)α

Γ(α+1) , we can further get, V(t) ≤ V(t0) exp
(

k̃(t−t0)α

Γ(1+α)

)
, the proof is completed.
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2.3. Basic knowledge of aperiodically intermittent control

As for the aperiodically intermittent control protocol, some corresponding knowledge are given in
this subsection, which in order to make the networks of fractional diffusion equations PDEs achieve
exponential consensus.

Assumption 1: Regarding aperiodically intermittent control protocol, there exists two constants θ
and η, satisfy 0 < θ < η < +∞, for m = 0, 1, 2, . . ., such that,{

infm(εm − tm) = θ,

supm(tm+1 − tm) = η,

which means that the rest width no more than η − θ.
Lemma 5: For continuously differentiable function x : [t0,+∞) → R and CP-function ϑ : Rn → R̃.

Set V(t) = ϑ(x(t)) and 0 < α ≤ 1. If there exist constants a > 0 and b > 0, satisfy the following
conditions for m = 0, 1, 2, . . .,

i)
{

c
tm Dα

t V(t) ≤ −aV(t), tm ≤ t < εm,
c
εm

Dα
t V(t) ≤ bV(t), εm ≤ t < tm+1;

ii) 0 < % = exp
(
−aθα

Γ(1+α)

)
exp

(
bηα

Γ(1+α)

)
< 1 (i.e., aθα > bηα), then V(t) ≤ V(0) exp

(
−aθα+bηα

Γ(1+α)

)
.

Proof. 1) For 0 = t0 ≤ t < ε0, on the basis of Lemma 4, it follows that,

V(t) ≤ V(0) exp
(
−atα

Γ(1 + α)

)
, (2.3)

then, we can further get,

V(ε0) ≤ V(0) exp
(
−aεα0

Γ(1 + α)

)
≤ V(0) exp

(
−aθα

Γ(1 + α)

)
. (2.4)

2) If ε0 ≤ t < t1, combine Lemma 4, (2.3) and (2.4), it holds,

V(t) ≤ V(ε0) exp
(
b(t − ε0)α

Γ(1 + α)

)
≤ V(0) exp

(
−aεα0

Γ(1 + α)

)
exp

(
b(t − ε0)α

Γ(1 + α)

)
, (2.5)

by (2.5), we can easily get,

V(t1) ≤ V(0) exp
(
−aεα0

Γ(1 + α)

)
exp

(
b(t1 − ε0)α

Γ(1 + α)

)
≤ V(0) exp

(
−aθα

Γ(1 + α)

)
exp

(
bηα

Γ(1 + α)

)
≤ V(0)%. (2.6)

3) When t1 ≤ t < ε1, it follows from (2.6) that,

V(t) ≤ V(t1) exp
(
−a(t − t1)α

Γ(1 + α)

)
≤ V(0)% exp

(
−a(t − t1)α

Γ(1 + α)

)
, (2.7)

next, it obtains that,

V(ε1) ≤ V(0)% exp
(
−aθα

Γ(1 + α)

)
.
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4) If ε1 ≤ t < t2, one has,

V(t) ≤ V(ε1) exp
(
b(t − ε1)α

Γ(1 + α)

)
≤ V(0)% exp

(
−aθα

Γ(1 + α)

)
exp

(
b(t − ε1)α

Γ(1 + α)

)
, (2.8)

then on the basis of (2.8), yields,
V(t2) ≤ V(0)%2.

Then according to mathematical induction, it follows that, for tm ≤ t < εm,

V(t) ≤ V(0)%m exp
(
−a(t − tm)α

Γ(1 + α)

)
, (2.9)

meanwhile, by (2.9), we have, for εm ≤ t < tm+1

V(t) ≤ V(0)%m exp
(
−aθα

Γ(1 + α)

)
exp

(
b(t − εm)α

Γ(1 + α)

)
. (2.10)

Assuming that (2.9) and (2.10) hold, then for m = k + 1, it is easy to obtain that,

V(tk+1) ≤ V(0)%k+1.

Therefore, if tk+1 ≤ t < εk+1,

V(t) ≤ V(0)%k+1 exp
(
−a(t − tk+1)α

Γ(1 + α)

)
,

so V(εk+1) ≤ V(0)%k+1 exp
(
−aθα

Γ(1+α)

)
.

And for εk+1 ≤ t < tk+2,

V(t) ≤ V(0)%k+1 exp
(
−aθα

Γ(1 + α)

)
exp

(
b(t − εk+1)α

Γ(1 + α)

)
,

thus, V(tk+2) ≤ V(0)%k+2.
Above all, (2.9) and (2.10) hold for m = k + 1. Therefore, for any tm ≤ t < εm+1, we have

V(t) ≤ V(0)%m+2, i.e., V(t) ≤ V(0)
(
exp

(
−aθα+bηα

Γ(1+α)

))m+2
≤ V(0) exp

(
−aθα+bηα

Γ(1+α)

)
, the proof of this Lemma is

completed.

3. System model description

3.1. System model

The networks of fractional diffusion PDEs, which consist of N subnetworks are presented in this
subsection. The dynamic of i-th subnetwork is described by,

∂αωi(x,t)
∂tα = ρ∂

2ωi(x,t)
∂x2 + f (ωi(x, t)), t ≥ 0, x ∈ [0, l],

∂ωi(x,t)
∂x |x=0= 0, ∂ωi(x,t)

∂x |x=l= ui(t),
ωi(x, t) |t=0= ωi0(x),

(3.1)
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where ωi(x, t) ∈ R, denotes the state of the i-th subnetwork at the position x with the time t; ρ ∈ R is
the diffusivity parameter; ui(t) ∈ R stands for the boundary control input for the i-th agent; ωi0(x) ∈
C([0, l],R), is the initial value, i ∈ υ; f : R→ R is the nonlinear function about ωi(x, t).

Set the error is ei j(x, t) = ωi(x, t) − sgn(ai j)ω j(x, t), then the error system can be described as
∂αei j(x,t)
∂tα = ρ∂

2ωi(x,t)
∂x2 + f̂ (ei j(x, t)), t ≥ 0, x ∈ [0, l],

∂ei j(x,t)
∂x |x=0=

∂ei j(x,t)
∂x |x=l= ũ(t),

ei j(x, t) |t=0= ei j0(x),
(3.2)

where ei j0(x) ∈ C([0, l],R), is the initial value of ei j(x, t). ρ is the same as that in (3.1). Meanwhile,
f̂ (ei j(x, t)) = f (ωi j(x, t)) − sgn(ai j) f (ωi j(x, t)) , ũ(t) = ui(t) − sgn(ai j)u j(t) and ei j0(x) = ωi0(x) −
sgn(ai j)ω j0(x), for i, j ∈ υ. Set ei(x, t) =

∑
j∈Ni

ei j(x, t) =
∑

j∈Ni

(
ωi(x, t) − sgn(ai j)ω j(x, t)

)
.

Throughout this paper, for the nonlinear function f , the following assumption is satisfied.
Assumption 2: For function f , the Lipschitz condition is satisfied, i.e., ∀ δ, η ∈ R, there exists µ > 0,

such that,
| f (δ) − f (η)| ≤ µ|δ − η|.

Under Assumption 2, the well-posedness of networks (3.1) and (3.2) can be easily get by [47].
Definition 4: (Exponential Bipartite Consensus), If there exists a constant ı, for any x ∈ (0, l),

lim
t→∞
‖ei(x, t)‖ ≤ ‖ei0(x, t)‖ exp{−ı}, ∀i, j ∈ υ,

then networks of diffusion PDEs are said to achieve the exponential bipartite consensus with the rate ı,
under control protocol ui(t).

On the basis of Definition 4, the exponential bipartite consensus issue is investigated, which can be
transformed to discuss the exponential stability of error system (3.2).

4. Exponential bipartite consensus for networks of fractional diffusion PDEs

In this section, the exponential bipartite consensus for MASs of fractional diffusion PDEs is con-
sidered on a directed graph via intermittent boundary control protocol.

4.1. Exponential bipartite consensus via aperiodically intermittent boundary control

Consider the designed aperiodically intermittent control protocol as following:

ui(t) =

 −k
∑

j∈Ni
ai j

(
ωi(x, t) − sgn(ai j)ω j(x, t)

)
, tm ≤ t ≤ εm,

0, εm ≤ t ≤ tm+1,
(4.1)

where i ∈ υ, and k > 0, is called the control gain which to be determined later.
Theorem 1: Under Assumptions 1 and 2, if the following inequalities hold,
1) m1θ

α ≥ m2η
α;

2) if there exists constant k > 0, such that,

Ψ =

[
Ψ11 −ρkL
∗ Ψ22

]
< 0;

where Ψ11 = − π
4l2 (ρIN +∗), Ψ22 = −2ρkL+ (µ2 +1)IN , m1 = λmin(−Ψ) and m2 = µ2 +1, then networks of

diffusion PDEs can achieve the exponential bipartite consensus via intermittent control protocol (4.1).

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12649–12665.
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Proof. Construct the following Lyapunov function

V(t) =

N∑
i=1

Vi(t), Vi(t) =

∫ l

0
eT

i (t)ei(t)dx,

for t ∈ [tm, tm+1], by Lemma 1, take the fractional derivative of order α with respect to Vi(t), derives,

c
tm Dα

t Vi(t) ≤ 2
∫ l

0
eT

i (x, t)
∂αei(x, t)
∂tα

dx =2
∫ l

0

∑
j∈Ni

eT
i j(x, t)

∑
j∈Ni

∂αei j(x, t)
∂tα

dx

=2
∫ l

0

∑
j∈Ni

eT
i j(x, t)

∑
j∈Ni

(
ρ
∂2ei j(x, t)
∂x2 + f

(
ei j(x, t)

))
dx.

Next we divide the time into two sections for discussion.
Step 1: For t ∈ [tm, εm), applying Lemmas 2 and 3, we obtain,

2
∫ l

0

∑
j∈Ni

eT
i j(x, t)

∑
j∈Ni

(
ρ
∂2ei j(x, t)
∂x2

)
dx

=2ρ
∑
j∈Ni

eT
i j(l, t)

∑
j∈Ni

∂ei j(l, t)
∂x

− 2ρ
∫ l

0

∑
j∈Ni

∂eT
i j(x, t)

∂x

∑
j∈Ni

∂ei j(x, t)
∂x

dx

= − 2ρk
∫ l

0

∑
j∈Ni

eT
i j(l, t)

∑
j∈Ni

li jei j(x, t)dx − 2ρ
∫ l

0

∑
j∈Ni

∂eT
i j(x, t)

∂x

∑
j∈Ni

∂ei j(x, t)
∂x

dx

≤ − 2ρkli

∫ l

0
eT

i (l, t)ei(x, t)dx − 2ρ
∫ l

0

∂eT
i (x, t)
∂x

∂ei(x, t)
∂x

dx

≤ − 2ρkli

∫ l

0

(
eT

i (x, t) + ẽT
i (x, t)

)
ei(x, t)dx −

πρ

2l2

∫ l

0
ẽT

i (x, t)ẽi(x, t)dx

where ẽi(x, t) = ei(l, t) − ei(x, t). Then on the basis of Assumption 2, we have,

2
∫ l

0
eT

i (x, t) f (ei(x, t))dx

≤

∫ l

0
eT

i (x, t)ei(x, t)dx +

∫ l

0
f (eT

i (x, t)) f (ei(x, t))dx ≤ (µ2 + 1)
∫ l

0
eT

i (x, t)ei(x, t)dx.
(4.2)

Combining the above three formulas, we can easily get the following results,

c
tm Dα

t Vi(t) ≤ − 2ρkli

∫ l

0

(
eT

i (x, t) + ẽT
i (x, t)

)
ei(x, t)dx

−
πρ

2l2

∫ l

0
ẽT

i (x, t)ẽi(x, t)dx + (µ2 + 1)
∫ l

0
eT

i (x, t)ei(x, t)dx
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where ēT
i (x, t) =

(
ẽT

i (x, t), eT
i (x, t)

)T
. Hence, we get,

c
tm Dα

t V(t) ≤ − 2ρkL
∫ l

0

(
eT (x, t) + ẽT (x, t)

)
e(x, t)dx

−
π

4l2

∫ l

0
ẽT (x, t)(ρIN + ∗)ẽ(x, t)dx + (µ2 + 1)IN

∫ l

0
eT (x, t)e(x, t)dx

=

∫ l

0
ēT (x, t)Ψē(x, t)dx,

where ēT (x, t) =
(
ẽT (x, t), eT (x, t)

)T
, set m1 = λmin(−Ψ), we can further get,

c
tm Dα

t V(t) ≤ −m1V(t).

Step 2: For t ∈ [εm, tm+1), apply Lemma 2, we obtains

2
∫ l

0

∑
j∈Ni

eT
i j(x, t)

∑
j∈Ni

(
ρ
∂2ei j(x, t)
∂x2

)
dx

=2ρ
∑
j∈Ni

eT
i j(l, t)

∑
j∈Ni

∂ei j(l, t)
∂x

− 2ρ
∫ l

0

∑
j∈Ni

∂eT
i j(x, t)

∂x

∑
j∈Ni

∂ei j(x, t)
∂x

dx

= − 2ρ
∫ l

0

∑
j∈Ni

∂eT
i j(x, t)

∂x

∑
j∈Ni

∂ei j(x, t)
∂x

dx = −2ρ
∫ l

0

∂eT
i (x, t)
∂x

∂ei(x, t)
∂x

dx

≤ −
πρ

2l2

∫ l

0
ẽT

i (x, t)ẽi(x, t)dx,

then combine with (4.2), the following inequality is established,

c
εm

Dα
t Vi(t) ≤ −

πρ

2l2

∫ l

0
ẽT

i (x, t)ẽi(x, t)dx + (µ2 + 1)
∫ l

0
eT

i (x, t)ei(x, t)dx ≤ (µ2 + 1)Vi(t).

Furthermore, set m2 = (µ2 + 1), we can get c
εm

Dα
t V(t) ≤ m2V(t). Above all, it holds that{

c
tm Dα

t Vi(t) ≤ −m1Vi(t), tm ≤ t < εm,
c
εm

Dα
t Vi(t) ≤ m2Vi(t), εm ≤ t < tm+1;

By Lemma 5, it follows that, Vi(t) ≤ Vi(t0) exp(−m1θ
α+m2η

α

Γ(1+α) ). By applying = Vi(t) =
∫ l

0
eT

i (t)ei(t)dx,
it holds that ‖

∑
j∈Ni

ei j(x, t)‖2 ≤ ‖
∑

j∈Ni
ei j0(x, t)‖2 exp(−m1θ

α+m2η
α

Γ(1+α) ), we can easily get limt→∞ ‖ei(x, t)‖ ≤
‖ei0(x, t)‖ exp(−m1θ

α+m2η
α

Γ(1+α) ). Then by means of Definition 4, which shows that, the exponential bipartite
consensus for networks of diffusion PDEs can be achieved, under the control protocol (4.1).

5. An application for high-speed aerospace vehicle

The high-speed aerospace vehicle, which displayed in Figure 2, is modeled to show that the theo-
retical results are effective.
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Figure 2. The high-speed aerospace vehicle model (from the internet).

The surface of high-speed aerospace vehicle is shown in Figure 3, and it holds that, Ex + Egen =

Econv + Erad + Ex+∆x + Echg. More details of the modeling process can be found in [48]. By analogy with
[46], we can further establish the high-speed aerospace vehicle model via fractional calculus. Next we
research the bipartite consensus issue of high-speed aerospace vehicles via aperiodically intermittent
boundary control strategy, by applying the theoretical results we presented.

Figure 3. The topologies among high-speed aerospace vehicles.

Consider the high-speed aerospace vehicles modeled by networks of diffusion PDEs (3.1) with
N = 20. Number each high-speed aerospace vehicles, the topological graph among them is shown in
Figure 4. Next, some suitable parameters are given. f (ω(x, t)) is chosen as cos(ω(x, t)), which satisfies
Lipschitz condition with µ = 1. Set α = 0.3, l = 5, ρ = 6, θ = 0.08 and η = 0.03. Furthermore,
the validity of theorem is verified by simulation results. The initial values of the aerospace vehicles
states are selected as ωi0(x) = sin(0.5ix), for i ∈ υ. The state trajectories of aerospace vehicles are
described in Figure 5. The communication information among followers is stored in A = (ai j)N×N and
the corresponding L = (li j)N×N .

By LMI toolbox, it holds that, k = 0.076. The bipartite consensus of high-speed aerospace vehicles
modeled by (3.1) can achieve, which displays in Figures 6 and 7. Therefore, the goal of this brief
shown can achieve, and the theoretical result is verified.
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Figure 4. The topologies among high-speed aerospace vehicles.

Figure 5. The The evolution of t high-speed aerospace vehicles over position x and time t.

Figure 6. The state trajectories of high-speed aerospace vehicles under boundary control.

Figure 7. The error state trajectories of high-speed aerospace vehicles.
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6. Conclusions

In this paper, the bipartite consensus has been investigated for the multi-agent networks of fractional
diffusion PDEs via aperiodically intermittent control protocol. To achieve the exponential goal, a new
aperiodically intermittent boundary control strategy was designed for PDEs system. Under the de-
signed aperiodically intermittent boundary control mechanism, the exponential convergence principle
is developed for continuously differential function. In addition, the exponential consensus conditions
have been established in terms of LMIs.

In the future, the research direction will focus on the consensus for networks of fractional/variable-
order PDEs systems

1) control protocol design: sliding mode control, event-triggered control and so on;
2) topology: switching topology, stochastic topology, fuzzy topology and so on;
3) application: viscoelasticity, transport processes and control, as well as the biological interaction

seen in nature.
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4161–4172. https://doi.org/10.1109/TCYB.2020.3023704

24.X. N. Li, H. Q. Wu, J. D. Cao, Prescribed-time synchronization in networks of piecewise smooth
systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simul., 203
(2023), 647–668. https://doi.org/10.1016/j.matcom.2022.07.010

25.H. G. Zhang, Z. Y. Gao, Y. C. Wang, Y. L. Cai, Leader-following exponential
consensus of fractional-order descriptor multiagent systems with distributed event-
triggered strategy, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2022), 3967–3979.
https://doi.org/10.1109/TSMC.2021.3082549

26.P. Gong, Exponential bipartite consensus of fractional-order non-linear multi-agent systems
in switching directed signed networks, IET Control Theory Appl., 14 (2020), 2582–2591.
https://doi.org/10.1049/iet-cta.2019.1241

27.B. Mbodje, G. Montseny, Boundary fractional derivative control of the wave equation, IEEE Trans.
Autom. Control, 40 (1995), 378–382. https://doi.org/10.1109/9.341815

28.F. D. Ge, Y. Q. Chen, Event-driven boundary control for time fractional diffusion systems under
time-varying input disturbance, in 2018 Annual American Control Conference (ACC), (2018), 140–
145. https://doi.org/10.23919/ACC.2018.8431000

29.F. D. Ge, Y. Q. Chen, C. H. Kou, Boundary feedback stabilisation for the time fractional-
order anomalous diffusion system, IET Control Theory Appl., 10 (2018), 1250–1257.
https://doi.org/10.1049/iet-cta.2015.0882

30.Y. Cao, Y. G. Kao, J. H. Park, H. B. Bao, Global Mittag-Leffler stability of the delayed fractional-
coupled reaction-diffusion system on networks without strong connectedness, IEEE Trans. Neural
Networks Learn. Syst., 33 (2021), 6473–6483. https://doi.org/10.1109/TNNLS.2021.3080830

31.J. D. Cao, G. Stamov, I. Stamova, S. Simeonov, Almost periodicity in impulsive fractional-order
reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., 51 (2021), 151–
161. https://doi.org/10.1109/TCYB.2020.2967625

32.J. H. Qin, G. S. Zhang, W. X. Zheng, Y. Kang, Adaptive sliding mode consensus tracking for
second-order nonlinear multiagent systems with actuator faults, IEEE Trans. Cybern., 49 (2019),
1605–1615. https://doi.org/10.1109/TCYB.2018.2805167

33.J. Sun, C. Guo, L. Liu, Q. H. Shan, Adaptive consensus control of second-order nonlinear multi-
agent systems with event-dependent intermittent communications, J. Franklin Inst., 360 (2023),
2289–2306. https://doi.org/10.1016/j.jfranklin.2022.10.045

Mathematical Biosciences and Engineering Volume 20, Issue 7, 12649–12665.

http://dx.doi.org/ https://doi.org/10.1016/j.nahs.2020.100888
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2020.12.033
http://dx.doi.org/https://doi.org/10.1109/TCYB.2020.3023704
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2022.07.010
http://dx.doi.org/https://doi.org/10.1109/TSMC.2021.3082549
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2019.1241
http://dx.doi.org/https://doi.org/10.1109/9.341815
http://dx.doi.org/https://doi.org/10.23919/ACC.2018.8431000
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2015.0882
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3080830
http://dx.doi.org/https://doi.org/10.1109/TCYB.2020.2967625
http://dx.doi.org/https://doi.org/10.1109/TCYB.2018.2805167
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2022.10.045


12664

34.J. Wang, M. Krstic, Output-feedback boundary control of a heat PDE sand-
wiched between two ODEs, IEEE Trans. Autom. Control, 64 (2019), 4653–4660.
https://doi.org/10.1109/TAC.2019.2901704

35.J. Sun, Z. S. Wang, Event-triggered consensus control of high-order multi-agent systems with ar-
bitrary switching topologies via model partitioning approach, Neurocomputing, 413 (2020), 14–22.
https://doi.org/10.1016/j.neucom.2020.06.058

36.X. Z. Liu, K. N. Wu, Z. T. Li, Exponential stabilization of reaction-diffusion systems
via intermittent boundary control, IEEE Trans. Autom. Control, 67 (2022), 3036–3042.
https://doi.org/10.1109/TAC.2021.3100289

37.X. Z. Liu, K. N. Wu, W. H. Zhang, Intermittent boundary stabilization of stochastic
reaction-diffusion Cohen -Grossberg neural networks, Neural Networks, 131 (2020), 1–13.
https://doi.org/10.1016/j.neunet.2020.07.019

38.X. Y. Li, Q. L. Fan, X. Z. Liu, K. N. Wu, Boundary intermittent stabilization for delay
reaction-diffusion cellular neural networks, Neural Comput. Appl., 34 (2022), 18561–18577.
https://doi.org/10.1007/s00521-022-07457-1

39.N. Espitia, A. Polyakov, D. Efimov, W. Perruquetti, Boundary time-varying feedbacks for fixed-time
stabilization of constant-parameter reaction-diffusion systems, Automatica, 103 (2019), 398–407.
https://doi.org/10.1016/j.automatica.2019.02.013

40.T. Hashimoto, M. Krstic, Stabilization of reaction-diffusion equations with state de-
lay using boundary control input, IEEE Trans. Autom. Control, 61 (2016), 4041–4047.
https://doi.org/10.1109/TAC.2016.2539001
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