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Abstract. In this paper the problem of synchronization for delayed chaotic systems is considered
based on aperiodic intermittent control. First, delayed chaotic systems are proposed via aperiodic
adaptive intermittent control. Next, to cut down the control gain, a new generalized intermittent
control and its adaptive strategy is introduced. Then, by constructing a piecewise Lyapunov
auxiliary function and making use of piecewise analysis technique, some effective and novel criteria
are obtained to ensure the global synchronization of delayed chaotic systems by means of the
designed control protocols. At the end, two examples with numerical simulations are provided to
verify the effectiveness of the theoretical results proposed scheme.

Keywords: delayed chaotic systems, aperiodic intermittent control, synchronization, adaptive
strategy.

1 Introduction

Chaos is an interesting nonlinear phenomenon and has been known for a rather long time
in the mathematics, physics, engineering and other related fields [5]. Nevertheless, duo
to its sensitive dependence on initial conditions, chaos was believed in a long time to be
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neither predictable nor controllable. However, a great many researchers from various
fields have made insightful investigations on this subject, and many important and funda-
mental results have been reported.

Chaos synchronization is a contemporary topic in nonlinear science with its applica-
tions to diverse areas such as secure communications, biological chemical reactions and
so on. In general, in order to synchronize two or more nonlinear dynamical systems, it
is natural to address the proper control approaches. Up to now, many typical and useful
control methods have been proposed such as adaptive control [9, 25], feedback control
[6,17], pinning control [10,18], intermittent control [19,23] and impulsive control [7,13].

Recently, discontinuous control approaches such as impulsive, switched [20] and
intermittent controls have attracted increasing attention since they are commonly used in
transportation, manufacturing and communication engineering. For instance, in commu-
nications, intermittent control scheme is usually used as a central means of transmitting in-
formation between transmitter and receiver in order to realize synchronization. However,
discontinuous control dynamical systems are governed by complex mathematical models
displaying rather irregular dynamical behaviors with interesting challenges. Generally
speaking, intermittent control strategy is composed of control time and the rest time in
turn. And intermittent control is activated during the work time and is off during the rest
time.

Compared with impulsive control, intermittent control is easier to be implemented
because it may be more reasonable to realise control process in some time intervals other
than some time instants in practice control application. The intermittent controller has
been triumphant applied to stabilize and synchronize neural networks [26, 27], com-
plex networks [10, 18, 19, 23], chaotic systems [9, 11] in recent decades. Nevertheless,
periodic intermittent control may be inadequate in the practical application and may
cause unreasonable and unnecessary results. For instance, the generation of wind power
is emblematical aperiodically intermittent. Therefore, for the real applications and the
theoretical analysis, it is momentous to consider the synchronization problem of chaotic
systems under aperiodically intermittent control scheme.

As everyone knows, adaptive control scheme are designed under control objective
because of the characteristics of considered system [1, 4, 15, 16, 22, 28]. The strong merit
of adaptive control is that the control parameters can automatically adjust themselves
according to some appropriate updating laws. Adaptive consensus control for a class of
nonlinear multiagent time-delay systems using neural networks was investigated in [4].
In [1], adaptive synchronization of fractional-order memristor-based neural networks with
time delay was studied. In [15], Li and Hu proposed Pinning adaptive and impulsive
synchronization of fractional-order complex dynamical networks. Pinning synchroniza-
tion of complex directed dynamical networks under decentralized adaptive strategy for
aperiodically intermittent control was investigated in [28].

It is well known that due to the finite switching speeds of transmission and spreading,
time delay is a very typical phenomenon in some fields and may lead to undesirable dy-
namic behaviors such as oscillation and instability behavior. Therefore, it is extraordinary
essential to consider the influence of time delay on the dynamical behavior for systems.
Recently, a great many of results for delays dynamical systems have been obtained [2,
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3, 8]. However, to the best of our knowledge, the synchronization problem for delayed
dynamical systems under intermittent adaptive control, until now, receives few attentions.
We will devote our efforts to this problem in this letter.

Motivated by the above discussion, synchronization of nonlinear dynamical systems
with time-varying delays is investigated via a novel and generalized adaptive intermittent
control protocol. The main contributions in this paper can be summarized as follows.
The first one is that the time-varying delays is taken into account for the chaos systems,
which may be more consistent with the real world case. When dealing with delays,
it is difficult to construct a piecewise Lyapunov auxiliary function and use analytical
techniques. The second one is that adaptive intermittent control strategy is adopted to
synchronize nonlinear dynamical systems. The controller is an economic and realistic
method for network and is an extension of periodic intermittent adaptive control strategy.
The third one is that by constructing a piecewise Lyapunov auxiliary function and making
use of piecewise analysis technique, some effective and novel criteria are obtained to
ensure the global synchronization of delayed chaotic systems by means of the designed
control protocols. At the end, two numerical examples with are provided to verify the
effectiveness of the theoretical results proposed scheme.

The rest of this paper is organized as follows. In Section 2, model of nonlinear dy-
namical systems with time-varying delays and preliminaries are given. Synchronization
of the considered model under the aperiodically intermittent control and its adaptive
strategy is investigated in Section 3. In Section 4 the effectiveness and feasibility of the
developed methods are presented by two numerical examples. Finally, some conclusions
are obtained in Section 5.

Notations. Let Rn be the space of n-dimensional real column vectors. ‖x‖ denotes
a vector norm defined by ‖x‖ = (

∑n
i=1 x

2
i )

1/2, where x = (x1, . . . , xn)
T ∈ Rn. Rn×n

denotes the set of all n × n real matrix. In is the identity matrix with n dimensions. For
a square matrix A, AT denotes its transpose, λmax(A) and λmin(A) are the maximum
and minimum eigenvalues of matrix A. For a real matrix M ∈ RN×N , write M > 0
(M < 0) if M is positive (negative) definite, and M > 0 (M 6 0) if M is semipositive
(seminegative) definite. I be the set of all natural numbers. Z+ be the set of all
nonnegative integers.

2 Preliminaries

In this section a class of delayed nonlinear chaotic systems is considered. The differential
equations are described by

ẋ(t) = Ax(t) +Bf
(
x(t)

)
+Cf

(
x
(
t− τ(t)

))
+ J, (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ Rn denotes the state vector, f : Rn → Rn is

a nonlinear vector function, the time-varying delay τ(t) may be unknown but is bounded
by known constant, i.e., 0 6 τ(t) 6 τ , A,B,C ∈ Rn×n are three constant matrices,
J = (J1, J2, . . . , Jn)

T is a constant vector, which may be an external disturbance or the
system bias.
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The initial condition of system (1) is given by x(h) = φ(h) ∈ C([−τ, 0],Rn), where
C([−τ, 0],Rn) represents the set of all n-dimensional continuous functions defined on
the interval [−τ, 0].

In the case that system (1) reaches complete synchronization, we have response chaotic
system described as follows:

ẏ(t) = Ay(t) +Bf
(
y(t)

)
+Cf

(
y
(
t− τ(t)

))
+ J+ u(t), (2)

where u(t) is an appropriate control input designed in the following.
In order to obtain our main results, the following assumptions, definition and lemmas

are necessary:

Assumption 1. (See [21].) For the nonlinear function f(t), there exist positive constant l
such that for any x(t),y(t) ∈ Rn,∥∥f(x)− f(y)

∥∥ 6 l‖x− y‖.

Assumption 2. (See [21].) For the aperiodically intermittent control strategy, there exist
two positive scalars 0 < θ < ω < +∞ such that, for m ∈ Z+,

inf
m
(sm − tm) = θ, sup

m
(tm+1 − tm) = ω,

where tm < sm < tm+1 < sm+1.

Assumption 3. Time-delay function τ(t) : [0,+∞) → [0,+∞) is real-valued continu-
ous function and satisfies

τ̇(t) 6 σ < 1.

Definition 1. (See [21].) For the aperiodically intermittent control, define

Ψ = lim sup
m→∞

tm+1 − sm
tm+1 − tm

.

Obviously, 0 6 Ψ < 1 and Ψ 6 1− θ/ω. When Ψ = 0, the aperiodically intermittent
control becomes the continuous control. In the following, without loss of generality, we
always suppose that 0 < Ψ < 1.

Lemma 1. (See [18].) If Y and Z are real matrices with appropriate dimensions, then
there exists a positive constant ς > 0 such that

YTZ+ ZTY 6 ςYTY +
1

ς
ZTZ.

Lemma 2. (See [18].) Suppose that function Q(t) is continuous and nonnegative for
t→ [−τ,+∞) and satisfies the following condition:

Q̇(t) 6

{
−γ1Q(t) + γ2(supt−τ6s6tQ(s)), tm 6 t 6 sm,

γ3Q(t) + γ4(supt−τ6s6tQ(s)), sm < t < tm+1,
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where γ1, γ2, γ3, γ4 are constants and m ∈ Z+. Suppose that for the aperiodically
intermittent control, there exists a constant Ψ ∈ (0, 1), where Ψ is defined in Definition 1.
If

γ1 > γ∗ = max{γ2, γ4} > 0, ρ = γ1 + γ3 > 0, $ = q − ρΨ > 0,

then

Q(t) 6
(

sup
−τ6s60

Q(s)
)
exp{−$t}, t > 0,

where q > 0 is the unique positive solution of the equation q − γ1 + γ∗ exp{qτ} = 0.

3 Main results

Let e(t) = (e1(t), e2(t), . . . , en(t))
T = y(t) − x(t) be synchronization errors. In this

section, two control schemes will be designed to synchronize nonlinear system (1) to the
desired state (2). The main results are stated in the following.

3.1 Intermittent control with constant control gains

To achieve the synchronization, firstly, a generalized intermittent control u(t) with adap-
tive constant control gain defined as follows:

u(t) =

{
−d e(t), tm 6 t 6 sm,

0, sm < t < tm+1,
(3)

where m ∈ Z+, d > 0 is a constant.
According to the control law (3), the error dynamical system is then governed as

follows:

ė(t) =


Ae(t) +B

(
f
(
y(t)

)
− f
(
x(t)

))
+C

(
f
(
y
(
t− τ(t)

))
− f
(
x
(
t− τ(t)

)))
− d e(t), tm 6 t 6 sm,

Ae(t) +B
(
f
(
y(t)

)
− f
(
x(t)

))
+C

(
f
(
y
(
t− τ(t)

))
− f
(
x
(
t− τ(t)

)))
, sm < t < tm+1.

(4)

It is easy to see that the synchronization of the delayed dynamical systems (1) and (2) are
achieved if the zero solution of the error dynamical system (4) is stable.

Theorem 1. Suppose that Assumptions 1–2 hold. Under controller (3), if there exist
positive constants ε1, ε2, a1, a2, l, d, q, Ψ such that

(i) A+AT + ε1BBT + ε2CCT + (l2/ε1 − d+ a1)I < 0,
(ii) A+AT + ε1BBT + ε2CCT + (l2/ε1 − (a2 − a1))I 6 0,

(iii) l2/ε2 − a1 < 0,
(iv) η = q − a2Ψ > 0, where q > 0 is the unique positive solution of the equation

q − a1 + (l2/ε2) exp{qτ} = 0,
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then the delayed dynamical systems (1) and (2) are globally asymptotically synchro-
nized.

Proof. Define the Lyapunov function as

V (t) =
1

2
eT(t)e(t).

Then its derivative with respect to time t along with solutions of (4) can be calculated
as follows.

When tm 6 t 6 sm, m ∈ Z+,

V̇ (t) = eT(t)
[
Ae(t) +B

(
f
(
y(t)

)
− f
(
x(t)

))
+C

(
f
(
y
(
t− τ(t)

))
− f
(
x
(
t− τ(t)

)))
− d e(t)

]
6

1

2
eT(t)

[
A+AT + ε1BBT + ε2CCT +

(
l2

ε1
− d+ a1

)
I

]
e(t)

− a1
2
eT(t)e(t) +

l2

ε2

(
sup

t−τ6s6t
V (s)

)
.

According to condition (i), it can be obtained that

V̇ (t) 6 −a1V (t) +
l2

ε2

(
sup

t−τ6s6t
V (s)

)
.

Similarly, for sm < t < tm+1, using condition (ii), it can be derived that

V̇ (t) 6
1

2
eT(t)

[
A+AT + ε1BBT + ε2CCT +

l2

ε1
I

]
e(t)

+
l2

2ε2
eT(t− τ(t))e

(
t− τ(t)

)
6 (a2 − a1)V (t) +

l2

ε2

(
sup

t−τ6s6t
V (s)

)
.

Hence, it can be gotten that

V̇ (t) 6

{
−a1V (t) + l2

ε2
(supt−τ6s6t V (s)), tm 6 t 6 sm,

(a2 − a1)V (t) + l2

ε2
(supt−τ6s6t V (s)), sm < t < tm+1.

By Lemma 2 and conditions (iii), (iv) it can be obtained that

V (t) 6
(

sup
t−τ6s6t

V (s)
)
exp{−ηt}.

Therefore, the asymptotical synchronization of the controlled system (2) is realized,
and the proof of Theorem 1 is completed.
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3.2 Intermittent control with adaptive control gains

For the controlled system (2), the feedback control gains may be chosen according to
Theorem 1 to derived synchronization. However, feedback gains may be given much
larger than those needed in practice. A better way is to use adaptive approach to tune
the feedback gains. In the section an adaptive method is introduced to determine the
intermittent control gains, and the global synchronization will be investigated based on
the aperiodically intermittent adaptive control gains. For the sake of simplicity, the control
input u(t) = (u1(t), u2(t), . . . , un(t))

T in the controlled system (2) is defined as follows:

ui(t) =


−di(t)ei(t)− µl2

2ε2(1−σ)
∫ t
t−τ(t) e

T(s)e(s) ds ei(t)
‖e(t)‖2 ,

‖e(t)‖ 6= 0 and tm 6 t 6 sm,

0, ‖e(t)‖ = 0 or sm < t < tm+1,

(5)

where

di(t) =


di(t0), t = t0,

di(sm), t = tm+1,

0, sm < t < tm+1,

(6)

and
ḋi(t) = ζie

2
i (t), tm 6 t 6 sm, (7)

here m ∈ Z+, l, µ, ε2, σ are the positive constant control strengths.
According to the control law (5)–(7), the error dynamical system is then governed as

follows:

ė(t) =



Ae(t) +B(f(y(t))− f(x(t)))

+C(f(y(t− τ(t)))− f(x(t− τ(t))))
−d(t)e(t)− µl2

2ε2(1−σ)
∫ t
t−τ(t) e

T(s)e(s) ds e(t)
‖e(t)‖2 , tm 6 t 6 sm,

Ae(t) +B(f(y(t))− f(x(t)))

+C(f(y(t− τ(t)))− f(x(t− τ(t)))), sm < t < tm+1,

(8)

where d(t) = diag{d1(t), d2(t), . . . , dn(t)} is a diagonal matrix.
It is easy to see that the synchronization of the delayed dynamical systems (1) and (2)

is achieved if the zero solution of the error dynamical system (8) is stable.

Theorem 2. Suppose that Assumptions 1–3 hold. Under controller (5) satisfying (6) and
(7), systems (1) and (2) are globally asymptotically synchronized.

Proof. Let λ is the largest eigenvalue of the matrix

A+AT + ε1BBT + ε2CCT +

(
l2

ε1
+

l2

ε2(1− σ)

)
I.

Nonlinear Anal. Model. Control, 26(6):993–1011, 2021
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Choose a positive number µ such that α = µθ − λ(ω − θ) > 0. Construct a piecewise
function described by

W (t) =


1
2 exp{−µ(t− tm)}

∑n
i=1

1
ζi
(d∗i − di(t))2,

tm 6 t 6 sm,
1
2 exp{λ(t− sm)− µ(sm − tm)}

∑n
i=1

1
ζi
(d∗i − di(sm))2,

sm < t < tm+1

(9)

for m ∈ Z+ in which d∗i is a positive constant to be determined later. It follows from (9)
that W (t) is continuous except for t = tm+1 with m ∈ Z+ and

W+(tm+1) = exp
{
µ(sm − tm)− λ(tm+1 − sm)

}
W−(tm+1), (10)

where W+(tm+1) and W−(tm+1) denote the right limit and the left limit of W (t) at time
tm+1, respectively.

Define the Lyapunov function as

V (t) = U(t) +W (t),

where

U(t) =
1

2
eT(t)e(t) +

l2

2ε2(1− σ)

t∫
t−τ(t)

eT(s)e(s) ds.

Evidently, U(t) is continuous for all t > t0, and V (t) is continuous except for t = tm+1

with m ∈ Z+ and it is right continuous at t = tm+1.
Then its derivative with respect to time t along with solutions of (8) can be calculated

as follows.
When tm 6 t 6 sm, m ∈ Z+,

V̇ (t) 6 eT(t)

[
Ae(t) +B

(
f
(
y(t)

)
− f
(
x(t)

))
+C

(
f
(
y
(
t− τ(t)

))
− f
(
x
(
t− τ(t)

)))
− d(t)e(t)− µl2

2ε2(1− σ)

t∫
t−τ(t)

eT(s)e(s) ds
e(t)

‖e(t)‖2

]

− l2

2ε2
eT
(
t− τ(t)

)
e
(
t− τ(t)

)
+

l2

2ε2(1− σ)
eT(t)e(t)

− µ

2
exp
{
−µ(t− tm)

} n∑
i=1

1

ζi

(
d∗i − di(t)

)2
− exp

{
−µ(t− tm)

} n∑
i=1

(
d∗i − di(t)

)
e2i (t)

https://www.journals.vu.lt/nonlinear-analysis
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6
1

2
eT(t)

[
A+AT + ε1BBT + ε2CCT

+

(
l2

ε1
+

l2

ε2(1− σ)
+ µ− 2d̂ exp{−µω}

)
I

]
eT(t)

− µl2

2ε2(1− σ)

t∫
t−τ(t)

eT(s)e(s) ds− 1

2
µeT(t)e(t)− µW (t),

where d̂ = min{d∗i , i ∈ I }. It is easy to see that some suitable d̂ can be chosen such that

A+AT + ε1BBT + ε2CCT +

(
l2

ε1
+

l2

ε2(1− σ)
+ µ− 2d̂ exp{−µω}

)
I 6 0,

which shows that
V̇ (t) 6 −µV (t), tm 6 t 6 sm.

So,
V (t) 6 exp

{
−µ(t− tm)

}
V+(tm), tm 6 t 6 sm. (11)

Similarly, for sm < t < tm+1,

V̇ (t) 6 eT(t)
[
Ae(t) +B

(
f
(
y(t)

)
− f
(
x(t)

))
+C

(
f
(
y
(
t− τ(t)

))
− f
(
x
(
t− τ(t)

)))]
− l2

2ε2
eT
(
t− τ(t)

)
e
(
t− τ(t)

)
+

l2

2ε2(1− σ)
eT(t)e(t) + λW (t)

6
1

2
eT(t)

[
A+AT+ε1BBT+ε2CCT+

l2

ε1
I+

l2

ε2(1− σ)
I

]
e(t) + λW (t)

6 λV (t).

Hence, for sm < t < tm+1,
V̇ (t) 6 λV (t),

which leads to
V (t) 6 exp

{
λ(t− sm)

}
V (sm). (12)

In the following, it can be proved that

lim
t→+∞

U(t) = 0.

By virtue of (10), (11) and (12) it can be derived that

V−(tm+1) 6 exp
{
λ(tm+1 − sm)

}
V (sm)

6 exp
{
λ(tm+1 − sm)

}
exp
{
−µ(sm − tm)

}
V+(tm)

= exp
{
λ(tm+1 − sm)

}
exp
{
−µ(sm − tm)

}
U(tm) +W−(tm)

6 exp{−α}U(tm) +W−(tm)

= exp{−α}V−(tm) +
(
1− exp{−α}

)
W−(tm),

Nonlinear Anal. Model. Control, 26(6):993–1011, 2021
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which implies that

V−(tm+1)− V−(tm) 6
(
exp{−α} − 1

)
V−(tm) +

(
1− exp{−α}

)
W−(tm)

=
(
exp{−α} − 1

)
U(tm),

and then

V−(tm+1)− V (t0) 6
(
exp{−α} − 1

) m∑
i=0

U(ti).

It shows that
∞∑
i=0

U(ti) 6
V (t0)

1− exp{−α}
,

therefore, by the theory of series,

lim
i→+∞

U(ti) = 0.

In addition, for tm < t < tm+1, in view of the nonnegativity of di(t) and µl2/(1− σ), it
is easy to estimate that

U̇(t) 6 eT(t)
[
Ae(t) +B

(
f
(
y(t)

)
− f
(
x(t)

))
+C

(
f
(
y(t− τ(t)

))
− f
(
x
(
t− τ(t)

)))]
− l2

2ε2
eT
(
t− τ(t)

)
e
(
t− τ(t)

)
+

l2

2ε2(1− σ)
eT(t)e(t)

6
1

2
eT(t)

[
A+AT+ε1BBT+ε2CCT +

(
l2

ε1
+

l2

ε2(1− σ)

)
I

]
e(t)

6 λU(t).

In view of this, it can be gotten that

U(t) 6 exp
{
λ(t− tm)

}
U(tm) 6 exp{λω}U(tm), tm 6 t 6 tm+1.

Evidently, m→∞ when t→∞, by the above results we obtain

lim
t→+∞

U(t) = 0.

Therefore, the asymptotical synchronization of the controlled system (2) is realized, and
the proof of Theorem 2 is completed.

If for all m ∈ Z+, tm+1 − tm = T and sm − tm = δT , where T > 0 and 0 < δ <
1, the aperiodically intermittent adaptive control (5) satisfying (6) and (7) becomes the
following periodically intermittent adaptive control:

ui(t) =


−di(t)ei(t)− µl2

2ε2(1−σ)
∫ t
t−τ(t) e

T(s)e(s) ds ei(t)
‖e(t)‖2 ,

‖e(t)‖ 6= 0 and t0 +mT 6 t 6 t0 + (m+ δ)T,

0, ‖e(t)‖ = 0 or t0 + (m+ δ)T < t < t0 + (m+ 1)T,

(13)

https://www.journals.vu.lt/nonlinear-analysis
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where

di(t) =


di(t0), t = t0,

di(t0 + (m+ δ)T ), t = t0 + (m+ 1)T,

0, t0 + (m+ δ)T < t < t0 + (m+ 1)T,

(14)

and
ḋi(t) = ζie

2
i (t), t0 +mT 6 t 6 t0 + (m+ δ)T, (15)

here m ∈ Z+, l, µ, ε2, σ are the positive constant control strengths.
Then based on Theorem 2, the following Corollary 1 is immediately obtained.

Corollary 1. Suppose that Assumptions 1–3 hold. Under controller (13) satisfying (14)
and (15), system (1) and the controlled delayed system (2) are synchronized.

If for all m ∈ Z+, sm = tm+1, the aperiodically intermittent adaptive control
becomes the following general continuous control:

ui(t) =

{
−di(t)ei(t)− µl2

2ε2(1−σ)
∫ t
t−τ(t) e

T(s)e(s) ds ei(t)
‖e(t)‖2 ,

ḋi(t) = ζie
2
i (t).

(16)

Then, based on Theorem 2, the following Corollary 2 is immediately gotten.

Corollary 2. Suppose that Assumptions 1–3 hold. Under controller (16), system (1) and
the controlled delayed dynamical system (2) are synchronized.

Suppose τ(t) = 0, we can rewrite nonlinear system model (1) as follows:

ẋ(t) = Ax(t) +Bf
(
x(t)

)
+ J, i ∈ I . (17)

Correspondingly, the response chaotic system y(t) is represented by

ẏ(t) = Ay(t) +Bf
(
y(t)

)
+U(t) + J, i ∈ I , (18)

where u(t) = (u1(t), . . . , un(t))
T is the aperiodically intermittent adaptive control gain

defined as follows:

ui(t) =

{
−di(t)ei(t), tm 6 t 6 sm,

0, sm < t < tm+1,
(19)

where

di(t) =


di(t0), t = t0,

di(sm), t = tm+1,

0, sm < t < tm+1,

(20)

and
ḋi(t) = ζie

2
i (t), tm 6 t 6 sm. (21)

Based on Theorem 2, we can get the following Corollary 3.
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Corollary 3. Suppose that Assumptions 1 and 2 hold. Under controller (19) satisfy-
ing (20) and (21), system (17) and the controlled delayed system (18) are synchronized.

Remark 1. Due to the finite information transmission and processing speeds among
the units, time delays are usually encountered in dynamical networks and may result
in undesirable dynamic behaviors such as oscillation behavior and network instability.
Hence, time delays should be taken into account in realistic modeling of dynamical
networks. Otherwise, because of the technical reasons, time delays is not considered
in [9, 10, 12, 14, 28]. In this paper, by establishing piecewise auxiliary function, piece-
wise analysis technique and constructing novel generalized adaptive intermittent control,
the synchronization of delayed dynamical systems has been realized. When τ(t) = 0,
Corollary 3 in the paper is equivalent to Theorem 4 in [9]. This is to say, results in [9] are
the special case of our results. So, the model we choose in the paper is more close to the
reality.

Remark 2. In this paper a generalized adaptive intermittent control strategy, which con-
tains the traditional periodically intermittent control and the aperiodic case, is introduced.
Especially, when tm+1 − tm ≡ T , sm+ − tm ≡ δT , where T , δ are positive constants,
0 < δ < 1, the generalized adaptive intermittent control becomes the adaptive periodic
one which have been studied in [10, 23]. When sm = tm+1, the adaptive intermittent
control is reduced to the continuous-time adaptive control, which have been studied in
[1, 4, 15, 25]. This is to say, our results in the paper are less conservative and more
practically applicable.

Remark 3. Evidently, it follows from adaptive intermittent strategy (5)–(7) that the
adaptive gains di(t) for i = 1, 2, 3 are increasing in each work time according to the
update law (7) and identically equal to zero in the rest time. When the synchronization is
realized, the values of di(t) are converge to some positive constants in each work time.
The adaptive gains will be shown in the numerical examples in the four section.

Remark 4. In [24] the authors utilize the method of adaptive intermittent control and
the theory of Lyapunov stability to realize the synchronization of chaotic systems with
time-varying delay. The synchronization of chaotic system is obtained by constructing
a conventional Lyapunov function in [24]. In the paper, by using a piecevise function
described by

W (t) =

{
1
2 exp{−µ(t− tm)}

∑n
i=1

1
ζi
(d∗i − di(t))2, tm 6 t 6 sm,

1
2 exp{λ(t− sm)− µ(sm − tm)}

∑n
i=1

1
ζi
(d∗i − di(sm))2, sm < t < tm+1,

the synchronization of delayed chaotic system is gotten.

4 Numerical simulations

In this section, two numerical examples are given to present the effectiveness of our results
achieved in this paper.
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Example 1. Consider the following 3-D oscillator model with variable delay as follows:

ẋ(t) = Ax(t) +Bf
(
x(t)

)
+Cf

(
x
(
t− τ(t)

))
+ J, (22)

where x(t) = (x1(t), x2(t), x3(t))
T ∈ R3, f(x) = (tanh(x1), tanh(x2), tanh(x3)),

τ(t) = 0.1et/(1 + et), J = 0 and

A =

−1 0 0
0 −1 0
0 0 −1

 , B =

 1.25 −0.32 −0.32
−0.32 1.1 −0.44
−0.32 0.44 1

 ,

C =

−1.5 −0.1 −0.1
−0.1 −1.5 −0.1
−0.1 −1.5 −1.1

 .

In the following, we consider the synchronization between (22) and the following re-
sponse system:

ẏ(t) = Ay(t) +Bf
(
y(t)

)
+Cf

(
y
(
t− τ(t)

))
+ J+U(t), (23)

where A, B, C, f , J and τ(t) are defined in system (22), the controller U(t) is an
intermittent protocol defined in (3).

The dynamic property of (22) with the initial values (x1(h), x2(h), x3(h))T = (0.2,
0.6,−0.2)T with h ∈ [−0.1, 0] can be emerged, which is revealed in Fig. 1, and the
state is chaotic attractor in this case. Furthermore, we choose ε1 = ε2 = 1. Hereinafter,
we will choose suitable control parameters such that (22) and (23) achieves the global
synchronization.

By computation it can be obtained that τ = 0.1, l = 1. Moreover, the different
dynamic properties of (23) with the initial values (y1(h), y2(h), y3(h))T = (−0.2,−0.6,
0.2)T with h ∈ [−1, 0] are presented in Figs. 2–7. The intermittent control exists on time
span

[0, 3] ∪ [3.2, 6.4] ∪ [6.5, 9.5] ∪ [9.8, 12.8] ∪ [13, 16] ∪ [16.2, 19.2]

∪ [19.5, 22.6] ∪ [22.8, 25.8] ∪ · · · .
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Figure 1. Phase trajectory of chaotic system (22).
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Figure 2. Synchronization evaluation between
x1(t) and y1(t) in systems (22) and (23) under
the intermittent control (3).
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Figure 3. Synchronization evaluation between
x2(t) and y2(t) in systems (22) and (23) under
the intermittent control (3).
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Figure 4. Synchronization evaluation between
x3(t) and y3(t) in systems (22) and (23) under
the intermittent control (3).
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Figure 5. Synchronization error e1(t) between
systems (22) and (23) under the intermittent
control (3).
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Figure 6. Synchronization error e2(t) between
systems (22) and (23) under the intermittent
control (3).
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Figure 7. Synchronization error e3(t) between
systems (22) and (23) under the intermittent
control (3).
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So, θ = 3, ω = 3.3. By simple computing it is easy to verify that Ψ = 1/11. Then
let a1 = 4, and it can be obtained that q = 3.3042 is the unique positive solution of the
equation q − a1 + (l2/ε2) exp{qτ} = 0. Let a2 = 11, d = 12, then we can derive that
conditions (i)–(iv) of Theorem 1 are satisfied. From Theorem 1 systems (22) and (23) can
be global asymptotical synchronized. Figures 2–4 show the synchronization of dynamics,
and Figs. 5–7 show the errors of dynamics.

Example 2. Consider the 3-D neural networks model with variable delay as follows:

ẋ(t) = Ax(t) +Bf
(
x(t)

)
+Cf

(
x
(
t− τ(t)

))
+ J, (24)

where x(t) = (x1(t), x2(t), x3(t))
T ∈ R3, f(x) = (tanh(x1), tanh(x2), tanh(x3)),

τ(t) = et/(1 + et), J = 0 and

A =

−1 0 0
0 −1 0
0 0 −1

 , B =

 1.25 −0.32 −0.32
−0.32 1.1 −0.44
−0.32 0.44 1

 ,

C =

−1.5 −0.1 −0.1
−0.1 −1.5 −0.1
−0.1 −1.5 −1.1

 .

In the following, we investigate the synchronization of system (24) and the response
system (25) described by

ẏ(t) = Ay(t) +Bf
(
y(t)

)
+Cf

(
y
(
t− τ(t)

))
+ J+U(t), (25)

where A, B, C, f , J and τ(t) are defined in system (24), the controller U(t) is an
intermittent adaptive protocol defined in (5)–(7).

The dynamic property of (24) with the initial values (x1(h), x2(h), x3(h))T = (0.8,
−0.6, 0.2)T with h ∈ [−1, 0] can be emerged, which is revealed in Fig. 8, and the
state is chaotic attractor in this case. Moreover, the different dynamic properties of (25)
with the initial values (y1(h), y2(h), y3(h))T = (0.1,−0.45, 0.45)T with h ∈ [−1, 0] are
presented in Figs. 9–12. The intermittent control exists on time span

[0, 3] ∪ [4, 7] ∪ [9, 13] ∪ [14, 17] ∪ [19, 22] ∪ [23, 27]

∪ [28, 32] ∪ [33, 36] ∪ [37, 40] ∪ [42, 46] ∪ [47, 50]

∪ [52, 56] ∪ [19, 22] ∪ [57, 60] ∪ [61, 64] ∪ [66, 70] ∪ · · · .

So, θ = 3, ω = 5. From Theorem 2 the networks (24) and (25) can be global
asymptotical synchronized under the adaptive intermittent control rules (5)–(7). Figure
9 shows the error of dynamics, and Figs. 10–12 show the synchronization of dynamics.
Time evolution of adaptive aperiodic intermittent control gain di(t) with di(0) = 1.1 and
ζi = 0 for i = 1, 2, 3 are given in Figs. 13–15.
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Figure 8. Phase trajectory of chaotic system
(24).
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Figure 9. Synchronization error between
systems (24) and (25) under the adaptive
intermittent control (5)–(7).
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Figure 10. Synchronization evaluation between
x1(t) and y1(t) in systems (24) and (25) under
the control (5)–(7).

0 10 20 30 40 50 60 70

−0.4

−0.2

0

0.2

0.4

0.6

t

x
2
(t

),
y

2
(t

)

 

 

x
2
(t)

y
2
(t)

Figure 11. Synchronization evaluation between
x2(t) and y2(t) in systems (23) and (24) under
the control (5)–(7).
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Figure 12. Synchronization evaluation between
x3(t) and y3(t) in systems (24) and (25) under
the control (5)–(7).
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Figure 13. Synchronization control gain d1(t)
of the adaptive intermittent control (5)–(7).
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Figure 14. Synchronization control gain d2(t)
of the adaptive intermittent control (5)–(7).
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Figure 15. Synchronization control gain d3(t)
of the adaptive intermittent control (5)–(7).

5 Conclusion

The paper deal with synchronization of delayed chaotic systems by means of a novel
generalized intermittent and its adaptive strategy. This is to say, this article solves the open
question mentioned in [9, 10, 28]. And it is noted that the control protocols in the paper
are more general and practical than the traditional periodic intermittent control. Some
novel global synchronization criteria have been derived based on the method of piecewise
auxiliary function and piecewise analysis technique via the designed control protocols
designed in the paper. Finally, two numerical examples are provided to demonstrate the
feasibility of the proposed theoretical results.
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