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Abstract: The consensus problem of discrete time-varying linear multi-agent systems (MASs) is
studied in this paper. First, an event-triggered intermittent control (ETIC) protocol is designed, aided
by a class of auxiliary functions. Under this protocol, some sufficient conditions for all agents to
achieve consensus are established by constructing an error dynamical system and applying the Lya-
punov function. Second, in order to further reduce the communication burden, an improved event
triggered intermittent control (I-ETIC) strategy is presented, along with corresponding convergence
analysis. Notably, the difference between the two control protocols lies in the fact that the former
protocol only determines when to control or not based on the trigger conditions, while the latter, build-
ing upon this, designs new event trigger conditions for the update of the controller during the control
stage. Finally, two numerical simulation examples are provided to demonstrate the effectiveness of the
theoretical results.
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1. Introduction

In recent years, cooperative control of multi-agent systems (MASs) has become a hot research topic
in the field of control, with distributed consensus being one of the fundamental issues that attracts
considerable attention from researchers. Various control methods have been proposed to achieve con-
sensus, such as event-triggered control [1–5], intermittent control [6–8] and impulsive control [9–11].
These methodologies not only enable the system to achieve convergence but also reduce communica-
tion load to varying extents. Intermittent control refers to the strategy where the controller operates
within certain time intervals and remains idle during other periods. Compared to continuous control,
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intermittent control can decrease information measurement and unnecessary communications. An ad-
vantage of intermittent control over impulsive control is that, in practical applications, it is more practi-
cal to assign a small time duration for each control task rather than controlling with zero control width.
For instance, this approach has been leveraged in vehicle control [12, 13]. Hence, intermittent control
methods have drawn extensive attention from scholars in recent years and have been widely applied
in various fields, such as intermittent cluster synchronization of delayed coupling genetic regulatory
networks [14], synchronization of complex networks [15] and consensus of MASs [16–21].

The concept of intermittent control was first introduced in [22], where it was shown that synchro-
nization can be achieved under this control strategy for some systems. A theoretical analysis of nonlin-
ear systems with periodic intermittent control was initially provided in [23]. Subsequently, the theory
of intermittent control has been widely applied to the synchronization control of a large number of
systems, such as complex-valued networks [24], memory neural networks [25] and delay-coupled sys-
tems [26,27]. Additionally, the stability issues of linear and nonlinear systems with intermittent control
were considered in [28] and [29], respectively. The consensus problem of first-order and second-order
MASs with intermittent communication was discussed in [30] and [31], respectively. Notably, the
work in [32] derived a credible region for communication width given the coupling gain and network
structure and proposed a time-delay protocol. However, the above intermittent control protocols are
all periodic; that is, the working time intervals and resting time intervals are all fixed constants. As
pointed out in [33], the approach of periodic intermittent control might have its shortcomings since it
can limit the application range of intermittent control to some extent. By contrast, aperiodic intermit-
tency relaxes the requirement on the control interval, allowing control strategies to be better aligned
with practical situations. Therefore, the introduction of nonperiodic intermittent control methods bears
significant importance. In [34–36], the distributed consensus of discrete-time and continuous-time
systems were examined respectively using aperiodic intermittent control.

In the aforementioned literature, although the control interval is aperiodic, it is usually time-
triggered, relying on the Lyapunov stability conditions or the design of the settling time [37]. Such
control processes still generate some unnecessary information; a problem was depicted as the minimal
activation rate of aperiodic intermittent control in [38]. While finding the least activation rate as a
challenge when discussing the stability of nonperiodic intermittent control, designing a system with
a relatively lower minimum activation rate is also significantly crucial. Results indicated that com-
pared to time-triggered intermittent control, event-triggered intermittent control (ETIC) can achieve a
smaller minimum activation rate. Therefore, nonperiodic and periodic ETIC schemes were designed
in [39] and [40] to address synchronization problems in complex networks and distributed consensus
in MASs, respectively. Note that in ETIC, the controller’s working and resting switch are determined
by trigger conditions, with the controller continually updating within each working interval. Subse-
quently, aperiodic control methods were proposed to address cooperative control problems in MASs.
For the considered finite-time distributed optimization problem, the work in [41] proposed new aperi-
odic ETIC strategies under both undirected and directed network structures. The exponential stability
of continuous-time systems with time-triggered and ETIC was investigated in [42]. Furthermore, a
dynamic ETIC scheme with input delay was proposed in [43] to stabilize the delay dynamical systems.

Typically, intermittent control still requires continuous communication during a small execution
time interval. To save more communication energy and reduce the number of control updates, introduc-
ing event-triggered control schemes into intermittent control is of great significance. In [44–46], inter-
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mittent event-triggered control methods were used to address the consensus problem in MASs, where
the controller’s information in each working interval was updated according to the event-triggering
conditions.

Inspired by the aforementioned discussions, this paper proposes two distinct ETIC protocols to
investigate the distributed consensus of MASs. Additionally, considering system uncertainties or dis-
cretization treatment methods in practical applications, system matrices may be time-varying. There-
fore, studying the distributed consensus of MASs with time-varying linear matrices carries substantial
significance. Notably, most of the above-stated research has been conducted within continuous sys-
tems. However, with the rapid development of computer technology, data sampling and transmission
are primarily done through digital devices. This makes discrete-time algorithms more suitable for
practical applications than continuous-time algorithms. To the best of our knowledge, no current stud-
ies have reported addressing the consensus issue in MASs within discrete time using a dual-triggered
ETIC strategy. The main contributions of this paper can be summarized as follows:

1). In existing consensus research works [47–49], the linear time-invariant discrete systems are
considered. However, in this paper, we consider the consensus of time-varying linear multi-agent
systems. The system considered in this paper can be seen as an extension of existing ones, which has
a wider range of application prospects.

2). Although the ETIC strategy has been used in [50], this work is focused on continuous-time
systems. Our research is the first attempt to consider the consensus of discrete systems under event-
triggered intermittent control.

3). Two kinds of discrete-time event-triggered control protocols are proposed, and some sufficient
conditions are provided for MASs achieving consensus under the control protocols. The proposed con-
trol protocols can effectively reduce the communication frequency among agents, thereby effectively
reducing control costs.

The structure of the paper is as follows. In Section 2, we introduce some preliminaries about graph
theory and give the problem formulation. Two different ETIC protocols are proposed, and the conver-
gence property for the proposed algorithms are analyzed in Section 3. Two numerical simulations are
presented in Section 4. Section 5 summarizes the main results of this paper.

Notations: In this paper, Rn and Rn×n represent the n-dimensional real space and the n × n dimen-
sional set of real matrices, respectively. We denote 0N and 1N as N-dimensional column vectors with
all elements being zero and one, respectively. In represents the n-dimensional identity matrix. For a
vector x ∈ Rn, denote xT and x−1 as transpose and inversion of x and ∥x∥ is defined as the standard
Euclidean norm. The Kronecker product is given by ⊗. N denotes the set of natural numbers.

2. Preliminaries

2.1. Algebraic graph theory

Consider an undirected graph G = (V,E,A), where V = {1, . . . ,N} represents the set of nodes
and E indicates the set of interact links. For an edge (i, j) ∈ E, i, j ∈ V, if agent i and agent j can
send messages to each other, let Ni = { j ∈ V : ( j, i) ∈ E} be defined as the set neighbors of agent i.
The degree of agent i is the number of its neighbors and is given by di = |Ni|. The adjacency matric
associated to graph G is depicted byA = [ai j] ∈ RN×N , which ai j = 1 if ( j, i) ∈ E and ai j = 0 otherwise.
The Laplacian matrix L = [li j]N×N is given by li j = −ai j for i , j, and lii =

∑N
j=1, j,i ai j. i, j ∈ V, which

Mathematical Biosciences and Engineering Volume 21 , Issue 1, 415–443.



418

means L1N = 0N . Notice thatA and L are symmetric. Additionally, let L̃ = diag(λ2, λ3, · · · , λN), where
λ2, λ3, · · · , λN are positive eigenvalues of L, respectively, and satisfy λ2 ≤ λ3 ≤ · · · ≤ λN .

2.2. Problem formulation

Consider the following discrete time-varying linear MASs consisting of N agents, the dynamics of
the i-th agent are described as xi(t + 1) = A(t)xi(t) + ui(t), t ∈ N,

xi(t0) = xi(0),
(2.1)

where xi(t) ∈ Rn represents the state variable and ui(t) ∈ Rn is the distributed control input. A(t) ∈ Rn×n

is controllable system matrix of (2.1).
Assumption 1. Suppose the graph G is undirected and connected.
Assumption 2. Let A(t) is a time-varying positive definite bounded matrix, and it satisfies α <

∥A(t)∥ < β, where α, β are two constants.
Remark 1. A time-varying linear dynamic is considered in this paper, because it has some advan-

tages such as simplified model, excellent scalability and strong robustness. Up to now, time-varying
linear dynamics have been applied to many practical systems, such as ecosystems, transportation sys-
tems, financial markets, social networks, and control research. In [51], a fully distributed control strat-
egy was considered to study a synchronization problem. In addition, undirected connected graphs
are considered in this article. Therefore, how to study the distributed consensus of time-varying lin-
ear MASs under directed graphs or fully distributed control schemes by weakening conditions is a
challenge that needs to be broken through in future research work.

Remark 2. Time-varying linear dynamics are considered in this paper, but we still need to consider
many factors and overcome some difficulties to better simulate practice in practical applications. The
work in [52] considered switching stochastic nonlinear large-scale systems with time delay and sys-
tematically proposed an adaptive neural fault-tolerant decentralized control scheme. When unknown
system coefficient and time-varying delay occur at the same time, this control scheme can ensure the
performance of the system and facilitate on-line adjustment. Therefore, we will try to combine time-
varying time-delay systems with adaptive control strategies to achieve distributed consensus of MASs
in future work.

3. Main results

3.1. Consensus of linear time-varying systems with ETIC

The following distributed control algorithm is proposed to achieve state consensus of agents.

ui(t) =

−k1
∑

j∈Ni
ai j(xi(t) − x j(t)), t ∈ [tk, sk),

0, t ∈ [sk, tk+1),
(3.1)

where k1 > 0, tk and sk are control actuated and off time instants.
We denote the average state of the agents as x̄(t) = 1

N

∑N
i=1 xi(t), and the consensus error as δi(t) =

xi(t) − x̄(t), and one obtains δi(t) = xi(t) − 1
N

∑N
i=1 xi(t). Letting x(t) = [xT

1 (t), xT
2 (t), ..., xT

N(t)]T , δ(t) =
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[δT
1 (t), δT

2 (t), ..., δT
N(t)]T , we further derive its compact form as

δ(t) = x(t) − (
1
N

1N1T
N ⊗ In)x(t) = [(IN − JN) ⊗ In]x(t) = (Ψ ⊗ In)x(t), (3.2)

where JN =
1
N 1N1T

N ,Ψ = IN − JN .

Define the two positive definite decreasing to zero functions ℑ1(t) and ℑ2(t), which satisfy

ℑ1(t + 1) = α1ℑ1(t), ℑ1(0) = θ1∥δ(0)∥2,
ℑ2(t + 1) = α2ℑ2(t), ℑ2(0) = θ2∥δ(0)∥2,

(3.3)

where 0 < α2 < α1 < 1, 0 < θ2 < 1 < θ1. Controller execution and off times are determined by the
following event triggering mechanism

sk = {inf t|t > tk, δ
T (t)δ(t) ≤ ℑ2(t)},

tk+1 = {inf t|t > sk, δ
T (t)δ(t) ≥ ℑ1(t)},

(3.4)

where k ∈ N, t0 = 0.

The idea of the ETIC method considered in this section can be further understood according to the
following Algorithm 1 and Figure 1.

Figure 1. Structure diagram of ETIC method.

Mathematical Biosciences and Engineering Volume 21 , Issue 1, 415–443.



420

Algorithm 1 The control process under the ETIC protocol.
1: The related parameters and initial states of all agents are given.
2: for t = 1 to n do
3: ℑ1(t + 1) = α1ℑ1(t).
4: ℑ2(t + 1) = α2ℑ2(t).
5: if V(t) ≥ ℑ1(t) then
6: xi(t + 1) = A(t)xi(t) + ui(t).
7: if V(t − 1) < ℑ1(t − 1) then
8: tk = tk + 1.
9: else if V(t) ≤ ℑ2(t) then

10: xi(t + 1) = A(t)xi(t).
11: if V(t − 1) > ℑ2(t − 1) then
12: sk = sk + 1.
13: Get the value of V(t + 1).
14: end for

Remark 3. It is well known that intermittent control can reduce the communication between the
agent and the neighbor agents compared with continuous control. Moreover, different from periodic
and aperiodic intermittent control, this paper considers the ETIC protocol, which is a dual trigger con-
trol method, in the process of achieving consensus. Start control and stop control trigger points are
dynamic and determined by two different event triggering conditions. This strategy of not limiting
the control interval and stopping the control interval can simulate the actual scenario well and fur-
ther reduce the communication load. As far as we know, no such dual-triggered consensus protocol
with ETIC has been reported in discrete-time MASs. Therefore, the study of this paper is of great
significance.

Remark 4. Observing (3.3) and (3.4), the function V(t) generally fluctuates between ℑ1(t) and
ℑ2(t), and it is certain that the controller starts to stop control if V(t) ≤ ℑ2(t); that is, to produce point
sk, the controller starts to perform control if V(t) ≥ ℑ1(t); that is, to produce point tk.

Next, in Theorem 1, we give sufficient conditions for achieving consensus of discrete-time MASs
with ETIC protocol in general.

Theorem 1. Suppose that Assumptions 1 and 2 hold, the positive constant k1 satisfies ∥ϱ(t)∥ ≤
√
α2,

where ϱ(t) = IN−1⊗A(t)−k1L̃⊗In, L̃ = diag(λ2, λ3, · · · , λN), then the MASs (2.1) will achieve consensus
through ETIC (3.1) with event triggering mechanism (3.4).

Proof. Consider the Lyapunov function of the following form

V(t) = δT (t)δ(t). (3.5)

For t ∈ [tk, sk), the controller is actuated. Combining (2.1) and (3.1), one has

xi(t + 1) =A(t)xi(t) + ui(t)

=A(t)xi(t) − k1

∑
j∈Ni

ai j(xi(t) − x j(t))
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=A(t)xi(t) − k1

N∑
j=1

li jx j(t). (3.6)

Furthermore, one obtains

x(t + 1) =(IN ⊗ A(t))x(t) − k1(L ⊗ In)x(t)
=(IN ⊗ A(t) − k1L ⊗ In)x(t). (3.7)

According to (3), and ΨL = LΨ = L, one has

δ(t + 1) =(Ψ ⊗ In)x(t + 1)
=(Ψ ⊗ In)(IN ⊗ A(t) − k1L ⊗ In)x(t)
=(Ψ ⊗ A(t) − k1ΨL ⊗ In)x(t)
=[(IN ⊗ A(t))(Ψ ⊗ In) − (k1L ⊗ In)(Ψ ⊗ In)]x(t)
=(IN ⊗ A(t) − k1L ⊗ In)(Ψ ⊗ In)x(t)
=(IN ⊗ A(t) − k1L ⊗ In)δ(t). (3.8)

Let δ̃(t) = (T−1⊗In)δ(t), where T = [ξ, ϕ2, . . . , ϕN] is an orthogonal matrix obtained by the Schmidt’s
orthogonalization Method and ξ, ϕ2, . . . , ϕN are the eigenvectors corresponding to the eigenvalues of
the Laplacian matric L under the undirected connected graph G. Based on (3.8), it follows that

δ̃(t + 1) = (T−1 ⊗ In)δ(t + 1)
= (T−1 ⊗ In)[(IN ⊗ A(t) − k1L ⊗ In)]δ(t)
= (T−1 ⊗ In)[(IN ⊗ A(t) − k1L ⊗ In)](T ⊗ In)δ̃(t)
= (IN ⊗ A(t) − k1T−1LT ⊗ In)δ̃(t). (3.9)

Denote δ̃(t) =
(
δ̃1(t)
δ̃2(t)

)
. Due to (T−1 ⊗ In) = (T T ⊗ In) = δ̃(t), it has

δ̃1(t) = (ξT ⊗ In)δ(t)
= (ξT ⊗ In)[x(t) − (JN ⊗ In)x(t)]

= (
1T

N
√

N
⊗ In)x(t) − (

1T
N
√

N
JN ⊗ In)x(t)

= (
1T

N
√

N
⊗ In)x(t) − (

1T
N
√

N

1
N

1N1T
N ⊗ In)x(t)

= (
1T

N
√

N
⊗ In)x(t) − (

1T
N
√

N
⊗ In)x(t)

= 0.

Define L̃ = diag(λ2, λ3, · · · , λN). According to (3.9), it can be seen that

δ̃2(t + 1) = (IN−1 ⊗ A(t) − k1L̃ ⊗ In)δ̃2(t). (3.10)
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According to V(t) = δT (t)δ(t), one has

V(t + 1) = ∥δ(t + 1)∥2 = ∥δ̃(t + 1)∥2 (3.11)

Due to δ̃1(t) = 0, define V2(t) = δ̃T
2 (t + 1)δ̃T

2 (t + 1) and it yields that V(t + 1) = V2(t + 1).
Therefore, it has

V(t + 1) =V2(t + 1)
=δ̃T

2 (t + 1)δ̃T
2 (t + 1)

=[(IN−1 ⊗ A(t) − k1L̃ ⊗ In)δ̃2(t)]T [(IN−1 ⊗ A(t) − k1L̃ ⊗ In)δ̃2(t)]
=δ̃T

2 (t)(IN−1 ⊗ AT (t) − k1L̃ ⊗ In)(IN−1 ⊗ A(t) − k1L̃ ⊗ In)δ̃2(t). (3.12)

Due to ∥ϱ(t)∥ ≤
√
α2, it has

V(t + 1) − α2V(t) =V2(t + 1) − α2V2(t)
=δ̃T

2 (t)ϱT (t)ϱ(t)δ̃T
2 (t) − α2V2(t)

=∥ϱ(t)∥2∥V2(t) − α2V2(t)
=(∥ϱ(t)∥2 − α2)V2(t)
=(∥ϱ(t)∥2 − α2)V(t)
≤0. (3.13)

According to (3.3) and (3.4), ℑ2(tk) ≤ V(tk) = ℑ1(tk). Combined with (3.13), we can obtain that
V(t + 1) ≤ α2V(t) for t ∈ [tk, sk), and since ℑ2(t + 1) = α2ℑ2(t), one has V(t+1)

V(t) ≤ α2 =
ℑ2(t+1)
ℑ2(t) ; that is,

V(t+1)
V(t) ≤

ℑ2(t+1)
ℑ2(t) , which yields

|V(t + 1) − V(t)| ≥ |ℑ2(t + 1) − ℑ2(t)|.

Next, based on (3.3), ℑ2(t+1)
ℑ2(t) = α2 < α1 =

ℑ1(t+1)
ℑ1(t) ; that is, ℑ2(t+1)

ℑ2(t) <
ℑ1(t+1)
ℑ1(t) , and it follows that

|ℑ2(t + 1) − ℑ2(t)| ≥ |ℑ1(t + 1) − ℑ1(t)|.

Thus |V(t + 1) − V(t)| ≥ |ℑ2(t + 1) −ℑ2(t)| ≥ |ℑ1(t + 1) −ℑ1(t)| and ℑ2(t) < V(t) < ℑ1(t) for t ∈ [tk, sk).
Therefore, there exists an instant sk such that V(sk) ≤ ℑ2(sk) for t > tk.

For t ∈ [sk, tk+1), the controller is closed, one has

xi(t + 1) = A(t)xi(t). (3.14)

Moreover,

x(t + 1) = (IN ⊗ A(t))x(t). (3.15)

Since δ(t) = (γ ⊗ In)x(t), it has

δ(t + 1) =(Ψ ⊗ In)x(t + 1)
=(Ψ ⊗ In)(IN ⊗ A(t))x(t)
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=(Ψ ⊗ A(t))x(t)
=(IN ⊗ A(t))(Ψ ⊗ In)x(t)
=(IN ⊗ A(t))δ(t). (3.16)

According to V(t) = δT (t)δ(t), one obtains

V(t + 1) =δT (t + 1)δ(t + 1)
=[(IN ⊗ A(t))δ(t)]T [(IN ⊗ A(t))δ(t)]
=δT (t)(IN ⊗ AT (t))(IN ⊗ A(t))δ(t)
=δT (t)(IN ⊗ AT (t)A(t))δ(t)
≤β2V(t). (3.17)

Therefore, V(t) may be increasing, but V(t) < ℑ1(t). In general, 0 ≤ V(t) < ℑ1(t) for ∀t > 0. Let
0 < α1 = α2 + ε < 1, where ε is an arbitrarily small positive constant. V(t) → 0 because of ℑ1(t) → 0
as t → ∞.

On the basis of achieving consensus under the ETIC protocol, in order to narrow the value range
of the control gain in order to further reduce the energy consumption, the following Theorem 2 is
considered.

Theorem 2. Suppose that Assumptions 1 and 2 hold. If

0 <
β2

α2
−

( λ2

λmax

)2α2

α2
< 1

and the positive constant k1 satisfies

k
′

11 < k1 < k12,

where k
′

11 = max{0, k11}, k11 =
αλ2−
√
α2λ2

2−λ
2
maxβ

2+α2λ
2
max

λ2
max

and k12 =
αλ2+
√
α2λ2

2−λ
2
maxβ

2+α2λ
2
max

λ2
max

, 0 < α2 < 1,
λ2 and λmax are the second smallest and largest eigenvalues of the Laplacian matrix L of the graph G,
respectively. Then the MASs (2.1) will achieve consensus through ETIC (3.1) with the event triggering
mechanism (3.4).

Proof. Consider the Lyapunov function of the following form

V(t) = δT (t)δ(t). (3.18)

For t ∈ [tk, sk), the controller is actuated. According to Theorem 1, one has

δ(t + 1) = (IN ⊗ A(t) − k1L ⊗ In)δ(t). (3.19)

Furthermore, one obtains

V(t + 1)
=δT (t + 1)δ(t + 1)
=[(IN ⊗ A(t) − k1L ⊗ In)δ(t)]T [(IN ⊗ A(t) − k1L ⊗ In)δ(t)]
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=δT (t)(IN ⊗ AT (t) − k1L ⊗ In)(IN ⊗ A(t) − k1L ⊗ In)δ(t)
=δT (t)(IN ⊗ AT (t)A(t) − k1L ⊗ AT (t) − k1L ⊗ A(t) + k2

1L2 ⊗ In)δ(t)
=δT (t)(IN ⊗ AT (t)A(t) − 2k1L ⊗ A(t) + k2

1L2 ⊗ In)δ(t)
=δT (t)(IN ⊗ AT (t)A(t))δ(t) − 2k1δ

T (t)(L ⊗ A(t))δ(t) + k2
1δ

T (t)(L2 ⊗ In)δ(t)
≤β2∥δ(t)∥2 − 2αλ2k1∥δ(t)∥2 + λ2

maxk
2
1∥δ(t)∥

2

=(β2 − 2αλ2k1 + λ
2
maxk

2
1)V(t)

≤α2V(t). (3.20)

Let h(k1) = λ2
maxk

2
1 − 2αλ2k1 + β

2. On the one hand, assuming h(k1) = 0,

λ2
maxk

2
1 − 2αλ2k1 + β

2 = 0. (3.21)

Obviously, ∆ = 4α2λ2
2 − 4λ2

maxβ
2 < 0; thus, (3.21) has no solution. Due to 0 < min{h(k1)} = 4ac−b2

4a =
4λ2

maxβ
2−4α2λ2

2
4λ2

max
and 0 < β

2

α2
−

(
λ2
λmax

)2
α2

α2
< 1, one has 0 < min{h(k1)} < α2.

On the other hand, assuming h(k1) = α2,

λ2
maxk

2
1 − 2αλ2k1 + β

2 − α2 = 0. (3.22)

Furthermore, it has ∆1 = 4(α2λ2
2 − λ

2
maxβ

2 + α2λ
2
max). Based on Assumption 1, ∆1 ≥ 0. Thus, (3.22) has

two roots

k11 =
αλ2 −

√
α2λ2

2 − λ
2
maxβ

2 + α2λ2
max

λ2
max

, (3.23)

k12 =
αλ2 +

√
α2λ2

2 − λ
2
maxβ

2 + α2λ2
max

λ2
max

. (3.24)

Case 1: When αλ2 <
√
α2λ2

2 − λ
2
maxβ

2 + α2λ2
max; that is, α2 > β

2, let k
′

11 = 0.

Case 2: When αλ2 ≥

√
α2λ2

2 − λ
2
maxβ

2 + α2λ2
max; that is, α2 ≤ β

2, let k
′

11 = k11.

Thus when k
′

11 < k1 < k12, one has λ2
maxk

2
1 − 2αλ2k1 + β

2 ≤ α2; that is, h(k1) ≤ α2.
According to (3.3) and (3.4), ℑ2(tk) ≤ V(tk) = ℑ1(tk). Combined with (3.20), we can obtain that

V(t + 1) ≤ α2V(t) for t ∈ [tk, sk). Since ℑ2(t + 1) = α2ℑ2(t), one obtains V(t+1)
V(t) ≤ α2 =

ℑ2(t+1)
ℑ2(t) ; that is,

V(t+1)
V(t) ≤

ℑ2(t+1)
ℑ2(t) , and

|V(t + 1) − V(t)| ≥ |ℑ2(t + 1) − ℑ2(t)|.

Next, according to (3.3), ℑ2(t+1)
ℑ2(t) = α2 < α1 =

ℑ1(t+1)
ℑ1(t) ; that is, ℑ2(t+1)

ℑ2(t) <
ℑ1(t+1)
ℑ1(t) , which yields

|ℑ2(t + 1) − ℑ2(t)| ≥ |ℑ1(t + 1) − ℑ1(t)|.

Therefore, |V(t + 1) − V(t)| ≥ |ℑ2(t + 1) − ℑ2(t)| ≥ |ℑ1(t + 1) − ℑ1(t)| and ℑ2(t) < V(t) < ℑ1(t) for
t ∈ [tk, sk). Thus, there exists a instant sk such that V(sk) ≤ ℑ2(sk) for t > tk.

For t ∈ [sk, tk+1), the controller is closed, and the proof is similar to Theorem 1. Thus, it is omitted
here.
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Remark 5. In continuous-time systems, there is V(t) < ℑ1(t) for t ∈ [tk, sk), but this paper considers
discrete-time MASs; thus, the equal sign may not be valid. For instance, there exists a point s ∈ N
such that V(s) < ℑ1(s), but V(s + 1) > ℑ1(s + 1). That is to say, the point s + 1 is the next trigger point
tk+1 after the previous stop time sk. In other words, since the s + 1, the controller begins to perform the
control function, and the function V(t) gradually decreases; that is, there exists V(s + y) ≤ ℑ1(s + y),
y ∈ N. Similarly, the case of V(s) > ℑ2(s) as t ∈ [sk, tk+1).

3.2. Consensus of linear time-varying systems with I-ETIC

For the discrete-time MASs, the ETIC protocol adopted in the above section of this paper has been
optimized and improved to a great extent compared with the previous control strategies. However, the
control phase of the protocol is still continuous control. Thus, in order to further reduce communica-
tion, this section considers the improved ETIC protocol whose control phase is event-triggered control,
i.e., I-ETIC.

Next, the following form of distributed control input is given to achieve state consensus of agents.

ui(t) =

−k2
∑

j∈Ni
ai j(x̂i(t) − x̂ j(t)), t ∈ [tk, sk),

0, t ∈ [sk, tk+1),
(3.25)

where k2 > 0. x̂i(t) implies the last broadcast state of agent i at time step t, which can be described as

x̂i(t) = xi(ti
h), t ∈ [ti

h, t
i
h+1), (3.26)

where ti
0, t

i
1, · · · , t

i
h, · · · refers to the event-triggered time series of each agent i, ti

h ∈ N.
Denote ti

h+1 as the next event-triggered time instant after ti
h, which is described as

ti
h+1 = inf

{
t > ti

h : ∥ei(t)∥2 > ς∥δi(t)∥2q̂i(t) +ϖ∥δi(t)∥2
}
, (3.27)

where the measurement error is defined as ei(t) = x̂i(t) − xi(t) and the threshold is the sum of two
variables with respect to t. The control parameters are ς > 0 and ϖ > 0 and q̂i(t) is represented by

q̂i(t) = min
{∑

j∈Ni

ai j∥x̂i(t) − x̂ j(t)∥2,M
}
, (3.28)

where M is a positive constant, which guarantees that q̂i(t) is limited by M. It is not difficult to find
that the threshold value in (3.27) will become larger when the consensus error and the state errors of
the agent and the neighbors are larger, which subtly reduces the event-triggered instants while ensuring
the convergence performance.

Let the two positive definite decreasing to zero functions ℑ1(t) and ℑ2(t), which satisfyℑ3(t + 1) = α1ℑ3(t) + Ξ3(t), ℑ3(0) = θ1∥δ(0)∥2 + Ξ3(0),
ℑ4(t + 1) = α2ℑ4(t) + Ξ4(t), ℑ4(0) = θ2∥δ(0)∥2 + Ξ4(0),

(3.29)

where 0 < α2 < α1 < 1, 0 < θ2 < 1 < θ1, Ξ3(t) < (1 − α1)ℑ3(t), Ξ4(t) < (1 − α1)ℑ4(t).sk = {inf t|t > tk, δ
T (t)δ(t) ≤ ℑ4(t)},

tk+1 = {inf t|t > sk, δ
T (t)δ(t) ≥ ℑ3(t)},

(3.30)

where k ∈ N and t0 = 0.
The following shows the structure of the I-ETIC strategy as shown in Figure 2 and Algorithm 2.
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Figure 2. Structure diagram of I-ETIC method.

Algorithm 2 The control process under the I-ETIC protocol.
1: The related parameters and initial states of all agents are given.
2: for t = 1 to n do
3: ℑ3(t + 1) = α1ℑ3(t) + Ξ3(t).
4: ℑ4(t + 1) = α2ℑ4(t) + Ξ4(t).
5: if V(t) ≥ ℑ3(t) then
6: xi(t + 1) = A(t)xi(t) + ui(t).
7: if the trigger condition is satisfied for the i th agent, then
8: x̂i(t + 1) = xi(t + 1).
9: else

10: x̂i(t + 1) = x̂i(t).
11: if V(t − 1) < ℑ3(t − 1) then
12: tk = tk + 1.
13: else if V(t) ≤ ℑ4(t) then
14: xi(t + 1) = A(t)xi(t).
15: if V(t − 1) > ℑ4(t − 1) then
16: sk = sk + 1.
17: Get the value of V(t + 1).
18: end for

Remark 6. It is important to note that the ETIC protocol proposed in this section is different
from that in the previous section. The event trigger conditions in the above section determine when
intermittent control is exercised and for how long. On the basis of the above control, this section
introduces another event-triggered control, which will determine how and when to update the controller
during the control phase of intermittent control.

Theorem 3. Suppose that Assumptions 1 and 2 hold, then the MASs (2.1) will achieve consensus
through I-ETIC (3.25) with event triggering mechanism (3.30) if the control parameters satisfy

ε > 0, ϖ > 0, 0 < ς <
1 − α1

M
(
λ2

maxk
2
2 +

k2
2+k2

ε

)
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and k2 satisfies one of the following conditions.

1) If β2 < α2, ℘ > 0 and min h(k2) > 0, then k2 ∈ (0, k24),

2) If β2 < α2, ℘ > 0 and min h(k2) < 0, then k2 ∈ (0, k21) ∪ (k22, k24),

3) If β2 < α2 and ℘ < 0, then k2 ∈ (0, k24),

4) If β2 > α2, ℘ > 0 and min h(k2) > 0, then k2 ∈ (k23, k24),

5) If β2 > α2, ℘ > 0 and min h(k2) < 0, then k2 ∈ (k23, k21) ∪ (k22, k24),

where ℘ =
2αλ2−ελ

2
maxβ

2−ϖε
2(ελ4

max+(ϖ+1)λ2
max+

ϖ
ε ) , k21 =

2αλ2−ελ
2
maxβ

2−ϖε −
√
∆2

2(ελ4
max+(ϖ+1)λ2

max+
ϖ
ε ) , k22 =

2αλ2−ελ
2
maxβ

2−ϖε +
√
∆2

2(ελ4
max+(ϖ+1)λ2

max+
ϖ
ε ) ,, k23 =

2αλ2−ελ
2
maxβ

2−ϖε −
√
∆3

2(ελ4
max+(ϖ+1)λ2

max+
ϖ
ε ) , and k24 =

2αλ2−ελ
2
maxβ

2−ϖε +
√
∆3

2(ελ4
max+(ϖ+1)λ2

max+
ϖ
ε ) .

Proof. Consider the Lyapunov function of the following form

V(t) = δT (t)δ(t). (3.31)

For t ∈ [tk, sk), the controller is actuated. Combining (2.1) and (3.25), one has

xi(t + 1) =A(t)xi(t) + ui(t)

=A(t)xi(t) − k2

∑
j∈Ni

ai j(x̂i(t) − x̂ j(t))

=A(t)xi(t) − k2

N∑
j=1

ai j(ei(t) + xi(t) − e j(t) − x j(t))

=A(t)xi(t) − k2

N∑
j=1

ai j(ei(t) − e j(t)) − k2

N∑
j=1

ai j(xi(t) − x j(t))

=A(t)xi(t) − k2

N∑
j=1

li jx j(t) − k2

N∑
j=1

li je j(t). (3.32)

Furthermore, one obtains

x(t + 1) = (IN ⊗ A(t) − k2(L ⊗ In))x(t) − k2(L ⊗ In)e(t). (3.33)

According to δ(t) = (Ψ ⊗ In)x(t), it yields

δ(t + 1) =(Ψ ⊗ In)x(t + 1)
=(Ψ ⊗ In)

[
(IN ⊗ A(t) − k2(L ⊗ In))x(t) − k2(L ⊗ In)e(t)

]
=(Ψ ⊗ A(t) − k2ΨL ⊗ In)x(t) − k2(ΨL ⊗ In)e(t)
=
[
(IN ⊗ A(t))(Ψ ⊗ In) − k2(L ⊗ In)(Ψ ⊗ In)

]
x(t) − k2(L ⊗ In)e(t)

=
(
IN ⊗ A(t) − k2L ⊗ In

)
(Ψ ⊗ In)x(t) − k2(L ⊗ In)e(t)

=
(
IN ⊗ A(t) − k2L ⊗ In

)
δ(t) − k2(L ⊗ In)e(t). (3.34)
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Since V(t) = δT (t)δ(t), it follows that

V(t + 1) =δT (t + 1)δ(t + 1)
=[(IN ⊗ A(t) − k2L ⊗ In)δ(t) − k2(L ⊗ In)e(t)]T [(IN ⊗ A(t)
− k2(L ⊗ In))δ(t) − k2(L ⊗ In)e(t)]
=[δT (t)(IN ⊗ AT (t) − k2L ⊗ In) − k2eT (t)(L ⊗ In)][(IN ⊗ A(t)
− k2(L ⊗ In))δ(t) − k2(L ⊗ In)e(t)]
=δT (t)(IN ⊗ AT (t) − k2L ⊗ In)(IN ⊗ A(t) − k2(L ⊗ In))δ(t)
− k2δ

T (t)(IN ⊗ AT (t) − k2L ⊗ In)(L ⊗ In)e(t)
− k2eT (t)(L ⊗ In)(IN ⊗ A(t) − k2(L ⊗ In))δ(t)
+ k2

2eT (t)(L2 ⊗ In)e(t). (3.35)

Based on Assumption 1, the first term on the righthand side of (3.35) can be written as

δT (t)(IN ⊗ AT (t) − k2L ⊗ In)(IN ⊗ A(t) − k2(L ⊗ In))δ(t)
≤(β2 − 2αλ2k2 + λ

2
maxk

2
2)∥δ(t)∥2. (3.36)

The following equation can be obtained by further sorting out the second and third items at the right of
(3.35)

− k2δ
T (t)(IN ⊗ AT (t) − k2L ⊗ In)(L ⊗ In)e(t) − k2eT (t)(L ⊗ In)

(IN ⊗ A(t) − k2L ⊗ In)δ(t)
=2k2

2eT (t)(L2 ⊗ In)δ(t) − 2k2eT (t)(L ⊗ A(t))δ(t). (3.37)

According to Young’s inequality: aT b ≤ 1
2ε∥a∥

2 + ε2∥b∥
2, it has

2k2
2eT (t)(L2 ⊗ In)δ(t) ≤2k2

2

( 1
2ε

N∑
i=1

∥ei(t)∥2 +
ε

2

N∑
i=1

λ4
i ∥δi(t)∥2

)
≤

k2
2

ε

N∑
i=1

∥ei(t)∥2 + εk2
2λ

4
max

N∑
i=1

∥δi(t)∥2. (3.38)

Similarly,

−2k2eT (t)(L ⊗ A(t))δ(t) ≤2k2

( 1
2ε

N∑
i=1

∥ei(t)∥2 +
ε

2
∥A(t)∥2max

N∑
i=1

λ2
i ∥δi(t)∥2

)
≤

k2

ε

N∑
i=1

∥ei(t)∥2 + εk2β
2λ2

max

N∑
i=1

∥δi(t)∥2. (3.39)

By substituting (3.38) and (3.39) into (3.37), one has

− k2δ
T (t)(IN ⊗ AT (t) − k2L ⊗ In)(L ⊗ In)e(t) − k2eT (t)(L ⊗ In)

(IN ⊗ A(t) − k2L ⊗ In)δ(t)
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=2k2
2eT (t)(L2 ⊗ In)δ(t) − 2k2eT (t)(L ⊗ A(t))δ(t)

≤
k2

2

ε

N∑
i=1

∥ei(t)∥2 + εk2
2λ

4
max

N∑
i=1

∥δi(t)∥2

+
k2

ε

N∑
i=1

∥ei(t)∥2 + εk2β
2λ2

max

N∑
i=1

∥δi(t)∥2

=
(k2 + k2

2

ε

) N∑
i=1

∥ei(t)∥2 + ελ2
maxk2(β2 + k2λ

2
max)

N∑
i=1

∥δi(t)∥2. (3.40)

For the last term to the right of (3.35), one obtains

k2
2eT (t)(L2 ⊗ In)e(t) ≤ k2

2λ
2
max

N∑
i=1

∥ei(t)∥2. (3.41)

Combined with (3.36), (3.40) and (3.41), (3.35) can be further written as

V(t + 1) ≤(β2 − 2αλ2k2 + λ
2
maxk

2
2)∥δ(t)∥2 + k2

2λ
2
max

N∑
i=1

∥ei(t)∥2

+
(k2 + k2

2

ε

) N∑
i=1

∥ei(t)∥2 + ελ2
maxk2(β2 + k2λ

2
max)

N∑
i=1

∥δi(t)∥2

=(β2 − 2αλ2k2 + λ
2
maxk

2
2 + ελ

2
maxβ

2k2 + εk2
2λ

4
max)

N∑
i=1

∥δi(t)∥2

+ (λ2
maxk

2
2 +

k2
2 + k2

ε
)

N∑
i=1

∥ei(t)∥2. (3.42)

From (3.27) and (3.28), one has

V(t + 1) ≤(β2 − 2αλ2k2 + λ
2
maxk

2
2 + ελ

2
maxβ

2k2 + εk2
2λ

4
max)

N∑
i=1

∥δi(t)∥2

+ (λ2
maxk

2
2 +

k2
2 + k2

ε
)
[
Mς

N∑
i=1

∥δi(t)∥2 +ϖ
N∑

i=1

∥δi(t)∥2
]

=
[
(ελ4

max + (ϖ + 1)λ2
max +

ϖ

ε
)k2

2 + (ελ2
maxβ

2 − 2αλ2 +
ϖ

ε
)k2 + β

2]V(t) + Ξ(t)

≤α2V(t) + Ξ(t), (3.43)

where ϖ > 0 and Ξ(t) = (λ2
maxk

2
2 +

k2
2+k2

ε
)Mς

∑N
i=1 ∥δi(t)∥2 with k2 > 0, ς > 0.

Let h(k2) = (ελ4
max + (ϖ+ 1)λ2

max +
ϖ
ε

)k2
2 + (ελ2

maxβ
2 − 2αλ2 +

ϖ
ε

)k2 + β
2. On the one hand, assuming

h(k2) = 0,

(ελ4
max + (ϖ + 1)λ2

max +
ϖ

ε
)k2

2 + (ελ2
maxβ

2 − 2αλ2 +
ϖ

ε
)k2 + β

2 = 0. (3.44)
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To solve (3.44), one has

k21 =
2αλ2 − ελ

2
maxβ

2 − ϖ
ε
−
√
∆2

2(ελ4
max + (ϖ + 1)λ2

max +
ϖ
ε

)
, k22 =

2αλ2 − ελ
2
maxβ

2 − ϖ
ε
+
√
∆2

2(ελ4
max + (ϖ + 1)λ2

max +
ϖ
ε

)
,

where ∆2 = (ελ2
maxβ

2 − 2αλ2 +
ϖ
ε

)2 − 4β2(ελ4
max + (ϖ + 1)λ2

max +
ϖ
ε

).
On the one hand, assuming h(k2) = α2,

(ελ4
max + (ϖ + 1)λ2

max +
ϖ

ε
)k2

2 + (ελ2
maxβ

2 − 2αλ2 +
ϖ

ε
)k2 + β

2 − α2 = 0. (3.45)

To solve (3.45), one has

k23 =
2αλ2 − ελ

2
maxβ

2 − ϖ
ε
−
√
∆3

2(ελ4
max + (ϖ + 1)λ2

max +
ϖ
ε

)
, k24 =

2αλ2 − ελ
2
maxβ

2 − ϖ
ε
+
√
∆3

2(ελ4
max + (ϖ + 1)λ2

max +
ϖ
ε

)
,

where ∆3 = (ελ2
maxβ

2 − 2αλ2 +
ϖ
ε

)2 − 4(β2 − α2)(ελ4
max + (ϖ + 1)λ2

max +
ϖ
ε

).
Next, the discussion is divided into several scenarios. To simplify writing, write ℘ =

2αλ2−ελ
2
maxβ

2−ϖε
2(ελ4

max+(ϖ+1)λ2
max+

ϖ
ε ) .

1) β2 < α2,

a) If ℘ > 0,

Case 1: If min h(k2) > 0, that is 4β2(ελ4
max + (ϖ + 1)λ2

max +
ϖ
ε

) > (ελ2
maxβ

2 − 2αλ2 +
ϖ
ε

)2.

When 0 < k2 < k24, then V(t + 1) < α2V(t).

Case 2: If min h(k2) < 0, that is 4β2(ελ4
max + (ϖ + 1)λ2

max +
ϖ
ε

) < (ελ2
maxβ

2 − 2αλ2 +
ϖ
ε

)2.

When 0 < k2 < k21 or k22 < k2 < k24, then V(t + 1) < α2V(t).

b) If ℘ < 0,

Case 3: When 0 < k2 < k24, then V(t + 1) < α2V(t).

2) β2 > α2,

A) If ℘ > 0,

Case 4: If min h(k2) > 0, that is 4β2(ελ4
max + (ϖ + 1)λ2

max +
ϖ
ε

) > (ελ2
maxβ

2 − 2αλ2 +
ϖ
ε

)2.

When k23 < k2 < k24, then V(t + 1) < α2V(t).

Case 5: If min h(k2) < 0, that is 4β2(ελ4
max + (ϖ + 1)λ2

max +
ϖ
ε

) < (ελ2
maxβ

2 − 2αλ2 +
ϖ
ε

)2.

When k23 < k2 < k21 or k22 < k2 < k24 then V(t + 1) < α2V(t).

B) If ℘ < 0,

In this case, no matter what the value of k2 is, the condition V(t + 1) < α2V(t) cannot be satisfied.

Note that Ξ(t) has little effect on the rate of decline of V(t), similarly Ξ3(t) and Ξ4(t). Ξ(t), Ξ3(t) and
Ξ4(t) have almost the same rate of decline for V(t),ℑ3(t) andℑ4(t), respectively; thus, V(t+1) < α2V(t),
ℑ3(t + 1) < α1ℑ3(t) and ℑ4(t + 1) < α2ℑ4(t) are mainly considered next. Based on the above analysis,
V(t + 1) < α2V(t) when k2 meets the above conditions.
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According to (3.29) and (3.30), ℑ4(tk) ≤ V(tk) = ℑ3(tk). Combined with (3.35), we can obtain that
V(t + 1) ≤ α2V(t) for t ∈ [tk, sk), and because ℑ4(t + 1) = α2ℑ4(t), one has V(t+1)

V(t) ≤ α2 =
ℑ4(t+1)
ℑ4(t) ; that is,

V(t+1)
V(t) ≤

ℑ4(t+1)
ℑ4(t) , and it follows that

|V(t + 1) − V(t)| ≥ |ℑ4(t + 1) − ℑ4(t)|.

Next, according to (3.29), ℑ4(t+1)
ℑ4(t) = α2 < α1 =

ℑ3(t+1)
ℑ3(t) ; that is, ℑ4(t+1)

ℑ4(t) <
ℑ3(t+1)
ℑ3(t) , and

|ℑ4(t + 1) − ℑ4(t)| ≥ |ℑ3(t + 1) − ℑ3(t)|.

Thus |V(t + 1) − V(t)| ≥ |ℑ4(t + 1) −ℑ4(t)| ≥ |ℑ3(t + 1) −ℑ3(t)| and ℑ4(t) < V(t) < ℑ3(t) for t ∈ [tk, sk).
Therefore, there exists an instant sk such that V(sk) ≤ ℑ4(sk) for t > tk.

For t ∈ [sk, tk+1), the controller is closed, and the proof is similar to Theorem 1. Thus, it is omitted
here.

Remark 7. This section introduces the event-triggered control strategy in the control phase of in-
termittent control. Compared with the previous section, it is obvious that some more conservative
conditions for achieving consensus have been obtained. This shows that with the improvement of the
control strategy, it also increases the complexity of some theoretical analysis. How to balance the
relationship between them is worth further discussion.

Remark 8. It is worth noting that the exclusion of zero behavior is not proved in the analysis in
this paper, because it does not exist in discrete-time systems. In addition, from the practical point
of view, although the system itself is a continuous process in a large number of practical application
scenarios, due to the limited bandwidth of the channel in the communication system, the controller
can only apply the sampled data obtained at discrete moments. From the theoretical point of view,
compared with the continuous system, the discrete-time system does not have to exclude zero behavior
in theoretical analysis, which simplifies many complexities. Therefore, it is of great practical value to
study the consensus of discrete-time MASs.

Remark 9. The problem of asymptotic consensus in discrete-time MASs is considered in this paper.
From the perspective of time, asymptotic convergence takes a long time, which will result in a waste of
some resources. Therefore, how to achieve consensus in discrete-time MASs within preassigned time
is a difficult problem to be overcome, and for consideration of this challenge, see [53] and [54].

4. Simulation example

In this section, some numerical simulation examples are given to demonstrate the feasibility of the
two proposed algorithms and the validity of the theoretical analysis.

Example 1. First, consider an undirected connected graph G = (V,E,A), in which the four agents
in the network are shown in Figure 3, and their initial states are given as

x1(0) =
[
−0.6
0.8

]
, x2(0) =

[
0.4
1.7

]
, x3(0) =

[
−0.2
0.3

]
, x4(0) =

[
0.2
−0.9

]
.
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Figure 3. Network topology.

Second, consider the system matrice of each agent has the form

A(t) =
(
1 − e−2t −e−2t

1 − e−3t 1 − e−3t

)
.

In the simulation, choose design parameters α = 1.3, β = 1.5. It should be noted that the values of
the above parameters and the initial states of the agents are randomly selected under the conditions of
satisfying Theorems 1–3, which has certain practicability from a practical point of view.
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Figure 4. Evolution of the first component of xi(t), i = 1, 2, 3, 4.
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Figure 6. Evolutions of V(t), ℑ1(t) and ℑ2(t).

Consider the case where no control is performed. According to Figures 4 and 5, it can be found that
the state trajectories of these agents cannot agree as time t increases when control is not performed.
Figure 6 shows that the function V(t) is also divergent, i.e., the consensus error is also nonzero.

Case 1. Consider the dynamics with the general ETIC, i.e., the controller is in the form of (3.1)
where i = 1, 2, 3, 4. The control gain in (3.1) is k1 = 0.3. For the two auxiliary functions in (3.3), take
the corresponding parameters α1 = 0.98, α2 = 0.93, θ1 = 1.2 and θ2 = 0.8. Next, scatter plots of the
first and second dimensional state trajectes of the four agents can be obtained according to (2.1) and
(3.1), as shown in Figures 7 and 8, respectively.
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It can be seen from the above figure that all agents in the network can achieve consensus. Mean-
while, as shown in Figure 9, the function V(t) related to consensus error is limited by the monotone
decreasing function ℑ1(t) under the intermittent control of event triggering; thus, when t approaches
infinity, the function V(t) asymptotically converges to zero. Through the analysis of Figure 10, it can
be seen that the k th control trigger point and the k th stop control trigger point are very close, indi-
cating that the controller proposed in this paper has a strong control function. In addition, the distance
between the k th stop control trigger point and the k + 1 th control trigger point is far, which indicates
that the control method proposed in this paper can effectively reduce the communication load in the
whole process of achieving consensus.
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Figure 10. Evolutions of tk and sk.

Case 2. Consider the dynamics with the I-ETIC, i.e., the controller is in the form of (3.25) where
i = 1, 2, 3, 4. Similarly, the control gain and design parameters in the numerical simulation are k2 =

0.045, ς = 0.6,ϖ = 0.298, ε = 0.2 and M = 0.2, respectively. For the two auxiliary functions in (3.29),
take the corresponding parameters α1 = 0.95, α2 = 0.93, θ1 = 1.5 and θ2 = 0.6. Observing Figures 11
and 12, it is found that the states of all agents can still achieve consensus but are different from Figures
7 and 8, which is because the controller is event-triggered controlled rather than continuous controlled
in the control phase.
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Figure 12. Evolution of the second component of xi(t), i = 1, 2, 3, 4.
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Moreover, according to Figure 13, in general, the trajectory of function V(t) is very close to that of

Mathematical Biosciences and Engineering Volume 21 , Issue 1, 415–443.



437

Case 1, which indicates that the introduction of event triggering mechanism in the control stage of the
controller of Example 1 does not affect the convergence of function V(t); that is, the state trajectories
of these agents can still achieve consensus. Similarly, Figure 14 shows the trajectory diagram for the
stop control point sk and the start control point tk under controller (3.25). Combined with Figures 10
and 14, it can be seen that compared with the control method in Example 1, the k th start control point
tk and the k th stop control point sk appear more slowly under the I-ETIC action in the same time,
indicating that this control strategy can further reduce communication.
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Figure 14. Evolutions of tk and sk.
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Figure 15. Event-triggering sampling time instants of all agents.

Finally, the corresponding event-triggered sampling time series of each agent is given in Figure
15. Through observation and analysis, the controller update of each agent is asynchronous, and it is
obvious that the event-triggered control strategy can effectively reduce the communication between the
agent and its neighbors. Moreover, according to Figures 11 and 16, it can be found that when all agent
states reach consensus, the distributed control input ui1(t) gradually approaches zero.
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5. Conclusions

This paper discussed the consensus problem of time-varying linear MASs within discrete-time us-
ing ETIC strategies. First, utilizing a class of auxiliary functions, two different ETIC protocols were
designed. It was found that these two ETIC protocols are distinct and the latter has the advantage of
further reducing the communication load compared with the former. Second, by constructing an error
dynamical system and applying stability theory, we obtained some sufficient conditions for all agents
to achieve consensus. Finally, two numerical simulation examples were provided to validate the effec-
tiveness of the proposed algorithms and the feasibility of the theoretical analysis. It is an interesting
and challenging topic to study distributed optimization problems with ETIC strategies within discrete
time-varying linear MASs; thus, this will be a problem for further consideration in our future work.
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