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Abstract. This paper investigates the mean square exponential synchronization problem for
complex dynamical networks with stochastic disturbances and hybrid time-varying delays, both
internal delay and coupling delay are considered in the model. At the same time, the coupled time-
delay is also probabilistic in two time interval. Impulsive control method is applied to force all
nodes synchronize to a chaotic orbit, and impulsive input delay is also taken into account. Based
on the theory of stochastic differential equation, an impulsive differential inequality, and some
analysis techniques, several simple and useful criteria are derived to ensure mean square exponential
synchronization of the stochastic dynamical networks. Furthermore, pinning impulsive strategy is
studied. An effective method is introduced to select the controlled nodes at each impulsive constants.
Numerical simulations are exploited to demonstrate the effectiveness of the theory results in this
paper.

Keywords: stochastic dynamical networks, hybrid time-delay, impulsive input delay, probabilistic
time-delay.

1 Introduction

A complex network consists of some nodes and edges, which provides complex systems
in real world with great convenience. Complex networks, such as neural networks, genetic
regulatory networks, traffic networks, social networks, etc., have been infiltrated into
science, social, biology, and so on [5,17,20,36]. In past decades, complex networks have
attracted many people from various fields, among which, the synchronization behavior
has lots of applications in communication system, distributed real-time systems, pattern
recognition, and so on [2, 11, 13, 18, 19, 32]. Consequently, synchronization of complex
networks aroused people’s great interest.
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Note that some networks cannot be synchronized through time and space evolution by
their intrinsic structure. Synchronization control problem has been a hot research topic in
recently years. One can divide control strategies into two variants: continuous control and
discontinuous control. Compared with continuous control method, discontinuous control
can reduce transmit data in the network. As an important discontinuous control method,
impulsive control just add controlled quantity at some discrete moments, which got a wide
application. Some results have also been obtained for impulsive synchronization. In [35],
the function projective synchronization for a class of time-delay chaotic system via im-
pulsive control method has been studied. The problem of impulsive synchronization for
discrete-time delayed neural networks has been investigated in [7]. Synchronization of
complex networks via impulsive pinning control has been described in [25]. More results
can be found in [10, 21, 28, 34].

However, input delay has not been considered in above impulsive control results.
Actually, for a complex network under impulsive control, it is significant to take time
delay into impulsive controllers when modeling the transmission of signals, especially
in a networked environment. There were just few results about impulsive models, which
considered impulsive delay. In [31], the stochastic synchronization problem has been stud-
ied for a class of delayed dynamical networks under delayed impulsive control. Global
exponential synchronization of nonlinear time-delay Lur’e systems via delayed impulsive
control has been investigated in [6]. A delayed impulsive control strategy is introduced
for synchronization of discrete-time complex networks with distributed delays in [14].
More recently, exponential synchronization of coupled stochastic memristor-based neural
networks with impulsive delay has been discussed in [1].

For many networks in real world, all nodes’ dynamics would be effected by time-
delay. Furthermore, communication delays among a network are also needed to be con-
sidered. There are some results, which have take transmission delay and inner delay
into the dynamical networks models, one can see [3, 9, 16, 26]. Most of which have
identical transmission delay for all nodes. In a real-world signal transmission process,
however, the delay may affect both the nodes own state and neighbors state, and self
delay may be different from neighboring delay. Heterogeneous constant delays have been
considered in some previous results [22, 27, 30]. Just a few results have been reported
on the synchronization of dynamical networks with different transmission time-varying
delays and internal time-varying delays, despite their importance in modeling realistic
dynamical networks [4]. Time delays in networks are often stochastic, and their proba-
bilistic characteristics can be obtained easily by statistical methods [1, 12, 15, 24]. In real
networks, the probability of large delay is often very small. Under these circumstances, it
is significant to consider probabilistic time-varying delay.

On the other hand, stochastic disturbances cannot be neglected in real systems [8,
23, 33]. Motivated by the above discussions, this paper is concerned with mean square
exponential synchronization of complex dynamical networks with hybrid time-delays
and stochastic disturbances. Probabilistic heterogeneous time-varying delays have been
studied. Impulsive control has been applied, impulsive input delay also has been consid-
ered. Some synchronization criterions have been derived. Then pinning impulsive con-
trol strategy has been used, and a specific pinning method has been given. Numerical
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examples are finally given to demonstrate the effectiveness of the proposed impulsive
strategy.

The rest of the paper is organized as follows: In Section 2, we introduce some defini-
tions and some lemmas, which are necessary for presenting our results in the following.
The main results about synchronization control problem will be presented in Section 3.
Then some examples are given to demonstrate the effectiveness of our results in Section 4.
Conclusions are finally drawn in Section 5.

Notations. Let R be the set of real numbers. Rn and Rn1×n2 refer to the n-di-
mensional real vector and n1 × n2 real matrices. The superscript “T” denotes matrix
transposition. In denotes the n-dimensional identify matrix. For a vector x ∈ Rn, ‖x‖ is
defined as ‖x‖ =

√
xTx. For P ∈ Rn×n, λmax(P ) represents the maximum eigenvalue

of P . ⊗ denotes Kronecker product. P{·} is the probability of the event {·}, and the ex-
pected value operator is E{·}. C([−τ̂ , 0];Rn) denotes the family of piecewise continuous
functions from [−τ̂ , 0] to Rn. Moreover, let (Ω,F , {Ft}t>0,P) be complete probability
space with filtration {Ft}t>0 satisfying the usual conditions (i.e., the filtration contains all
P-null sets and is right continuous).

2 Preliminaries and problem formulation

Consider a network consisting of N nodes, and let xi(t) be the state of the ith node. The
dynamics of each node is defined as follows:

dxi(t) =

(
f
(
t, xi(t), xi

(
t− τ0(t)

))
+ c1

N∑
j=1, j 6=i

aijΓ1

(
xj(t)− xi(t)

)
+ c2

N∑
j=1,j 6=i

bijΓ2

(
xj
(
t− τ1(t)

)
− xi

(
t− τ2(t)

)))
dt

+ g
(
t, xi(t), xi

(
t− τ0(t)

))
dω(t). (1)

xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn (i = 1, 2, . . . , N ) is the state variables
of the ith node. f : R × Rn × Rn → Rn is a continuously vector value function.
τ0(t) ∈ [0, τ0] represents the internal delay occurring inside the node; τ1(t) ∈ [0, τ1],
τ2(t) ∈ [0, τ2] denote the transmission delay for signal sent from jth node to ith node;
here τ0, τ1, τ2 are known constants. ω(t) is an n-dimensional Wiener process defined on
(Ω,F , {Ft}t>0,P), and g : R+×Rn×Rn → ×Rn×n is noise function matrix. Γ1, Γ2 ∈
Rn×n are diagonal matrices with positive diagonal elements. A = (aij) ∈ RN×N and
B = (bij) ∈ RN×N are the weight configuration matrices with aij > 0 and bij > 0 when
i 6= j. The diagonal elements of matrix A and B are defined by

aii = −
N∑

j=1,j 6=i

aij , bii = −
N∑

j=1,j 6=i

bij . (2)

The initial values associated with system (1) are xi(t) = φi(t) ∈ C([−τ̂ , 0];Rn)
(i = 1, 2, . . . , N ), where τ̂ = max{τ0, τ1, τ2}.
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The transmission time-varying delays τk(t) (k = 1, 2) satisfy the following assump-
tions:

Assumption 1. The τk(t) (k = 1, 2) obey the following probability distribution: P{0 6
τk(t) 6 τ lk(t)} = βk, P{τ lk(t) < τk(t) 6 τuk (t)} = 1 − βk, where 0 6 βk 6 1 are
constants.

Then define a random variable βk(t) as follows:

βk(t) =

{
1, 0 6 τk(t) 6 τ lk(t),

0, τ lk(t) < τk(t) 6 τuk (t).

According above assumption, we have

P
{
βk(t) = 1

}
= P

{
0 6 τk(t) 6 τ lk(t)

}
= E

{
βk(t)

}
= βk,

P
{
βk(t) = 0

}
= P

{
τ lk(t) < τk(t) 6 τuk (t)

}
= E

{
1− βk(t)

}
= 1− βk.

Based on the stochastic variables βk(t), system (1) can be rewritten as

dxi(t) =

(
f
(
t, xi(t), xi

(
t− τ0(t)

))
+ c1

N∑
j=1,j 6=i

aijΓ1

(
xj(t)− xi(t)

)
+ c2

N∑
j=1,j 6=i

bijΓ2

(
β1(t)xj

(
t− τ l1(t)

)
− β2(t)xi

(
t− τ l2(t)

))
+ c2

N∑
j=1,j 6=i

bijΓ2

((
1− β1(t)

)
xj
(
t− τu1 (t)

)
−
(
1− β2(t)

)
xi
(
t− τu2 (t)

)))
dt+ g

(
t, xi(t), xi

(
t− τ0(t)

))
dω(t),

where τ lk(t) and τuk (t) (k = 1, 2) are defined as

τk(t) =

{
τ lk(t), 0 6 τk(t) 6 τ lk(t),

τuk (t), τ lk(t) < τk(t) 6 τuk (t).

After some simple calculation based on (2), one has

dxi(t) =

(
f
(
t, xi(t), xi

(
t− τ0(t)

))
+ c1

N∑
j=1

aijΓ1xj(t)

+ c2β1(t)

N∑
j=1

bijΓ2xj
(
t− τ l1(t)

)
+ c2

(
1− β1(t)

) N∑
j=1

bijΓ2xj
(
t− τu1 (t)

)
− c2biiΓ2

(
β1(t)xi

(
t− τ l1(t)

)
− β2(t)xi

(
t− τ l2(t)

))
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− c2biiΓ2

((
1− β1(t)

)
xi
(
t− τu1 (t)

)
−
(
1− β2(t)

)
xi
(
t− τu2 (t)

)))
dt

+ g
(
t, xi(t), xi

(
t− τ0(t)

))
dω(t).

Remark 1. The model of dynamical networks described by (1) is a generalization of
most of exists results. Without the disturbances and probabilistic time-varying delays, the
model would degradation to the model in [4]. Let τ1(t) = τ2(t) = τ(t), the model would
change to the model in [1]. Noting that the transmission delay in network (1) are all time-
varying and different from each other, which may lead a different synchronized state, one
can see the following analysis.

Definition 1. Synchronization manifold S = {(xT1 (t), xT2 (t), . . . , xTN (t)) ∈ RnN |
xi(t) = xj(t)} for i, j = 1, 2, . . . , N , where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn
(i = 1, 2, . . . , N ) are the state variables of the ith node.

Once network (1) reaches complete synchronization, i.e., xi(t)=s(t), i=1, 2, . . . , N,
the following synchronized state equation can be derived:

ds(t) =
(
f
(
t, s(t), s

(
t− τ0(t)

))
− c2biiΓ2

(
β1(t)s

(
t− τ l1(t)

)
− β2(t)s

(
t− τ l2(t)

))
− c2biiΓ2

((
1− β1(t)

)
s
(
t− τu1 (t)

)
−
(
1− β2(t)

)
s
(
t− τu2 (t)

)))
dt

+ g
(
t, s(t), s

(
t− τ0(t)

))
dω(t). (3)

Note that the synchronized goal is system (3), instead of the isolated node’s state.
However, system (3) may be nonidentical due to different bii, i = 1, 2, . . . , N . We
should assume that b11 = b22 = · · · = bNN , which is difficult to a square matrix B.
Fortunately, bii cannot effect the dynamic of system (1), which just need satisfied (2). In
this paper, the method to design matrix B proposed in [4] would be adopted, in which: let
b̃ij = Gij/

∑N
j=1,j 6=iGij when i 6= j, where G = (Gij)N×N is any weighted matrix for

the network with Gij > 0 when there is a connection from node i to node j, otherwise,
Gij = 0. Then let bij = θb̃ij when i 6= j. It is obviously that bii = −θ for i =
1, 2, . . . , N . Different θ will cause different synchronized trajectories. Consequently, the
synchronized state could be identical and formed as follows:

ds(t) =
(
f
(
t, s(t), s

(
t− τ0(t)

))
+ c2θΓ2

(
β1(t)s

(
t− τ l1(t)

)
− β2(t)s

(
t− τ l2(t)

))
+ c2θΓ2

((
1− β1(t)

)
s
(
t− τu1 (t)

)
−
(
1− β2(t)

)
s
(
t− τu2 (t)

)))
dt

+ g
(
t, s(t), s

(
t− τ0(t)

))
dω(t).

Remark 2. When all nodes are synchronized, the nodes cannot force to the isolated orbit
determined by ds(t) = (f(t, s(t), s(t− τ0(t))) + g(t, s(t), s(t− τ0(t))) dω(t) due to the
different transmission delay τ1(t) and τ2(t). A similar situation has been studied in [1],
in which the coupled matrix B is assumed to satisfied b11 = b22 = · · · = bNN . It is
obviously that B in this paper became less conservative than in [1].
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Let ei(t) = xi(t) − s(t) be synchronization errors, then, based on (2), the error
dynamical system is described by:

dei(t) =

(
f̄
(
t, ei(t), ei

(
t− τ0(t)

))
+ c1

N∑
j=1

aijΓ1ej(t)

+ c2β1(t)

N∑
j=1

bijΓ2ej
(
t− τ l1(t)

)
+ c2

(
1− β1(t)

) N∑
j=1

bijΓ2ej
(
t− τu1 (t)

)
+ c2θΓ2

(
β1(t)ei

(
t− τ l1(t)

)
− β2(t)ei

(
t− τ l2(t)

))
+ c2θΓ2

((
1− β1(t)

)
ei
(
t− τu1 (t)

)
−
(
1− β2(t)

)
ei
(
t− τu2 (t)

)))
dt

+ ḡ
(
t, ei(t), ei

(
t− τ0(t)

))
dω(t),

where f̄(t, ei(t), ei(t − τ0(t))) = f(t, xi(t), xi(t − τ0(t))) − f(t, s(t), s(t − τ0(t))),
ḡ(t, ei(t), ei(t− τ0(t))) = g(t, xi(t), xi(t− τ0(t)))− g(t, s(t), s(t− τ0(t))).

In order to achieve the control objective, the impulsive controllers are designed, then
the following errors systems can be derived:

dei(t) =

(
f̄
(
t, ei(t), ei

(
t− τ0(t)

))
+ c1

N∑
j=1

aijΓ1ej(t)

+ c2β1(t)

N∑
j=1

bijΓ2ej
(
t− τ l1(t)

)
+ c2

(
1− β1(t)

) N∑
j=1

bijΓ2ej
(
t− τu1 (t)

)
+ c2θΓ2

(
β1(t)ei

(
t− τ l1(t)

)
− β2(t)ei

(
t− τ l2(t)

))
+ c2θΓ2

((
1− β1(t)

)
ei
(
t− τu1 (t)

)
−
(
1− β2(t)

)
ei
(
t− τu2 (t)

)))
dt

+ ḡ
(
t, ei(t), ei

(
t− τ0(t)

))
dω(t),

∆
(
ei
(
t+k
))

= ei
(
t+k
)
− ei

(
t−k
)

= ηei
(
t−k
)

+ µei
(
t−k − τ3

(
t−k
))
.

(4)

where η ∈ (−2, 0] and µ ∈ (−∞, 0] are constants, which denote the impulsive strength
for ith node; the time series {t1, t2, . . . } is a strictly increasing impulsive instants sat-
isfying limk→∞ tk = +∞. Without loss of generality, in this paper, we assume that
xi(t

+
k ) = xi(tk). δ(·) is the Dirac impulsive function, and τ3(t−k ) is impulsive input

time-varying delay at impulsive instant tk. We assume that 0 6 τ3(t−k ) 6 τ3, where τ3 is
a positive scalar.

Remark 3. Impulsive control method has got lots of results, but just few results have
considered impulsive input delay. Indeed, the input delay τ3(t−k ) is very meaningful for
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two reasons in a network environment: Firstly, data from controllers to actuators must
have a time delay due to a finite speed of transmission; Secondly, as impulsive controllers,
the state xi(t+k ) also effected by both xi(t−k ) and some state before. Thus, the τ3(t−k ) could
effect synchronization performance, at the same time, it may also steer synchronization.

Assumption 2. For the vector-valued function f(t, x(t), x(t−τ1(t))), suppose that there
exists positive constants f1 > 0 and f2 > 0 such that, for any x(t), y(t) ∈ Rn,(

x(t)− y(t)
)T(

f
(
t, x(t), x

(
t− τ1(t)

))
− f

(
t, y(t), y

(
t− τ1(t)

)))
6 f1

∥∥x(t)− y(t)
∥∥2 + f2

∥∥x(t− τ1(t)
)
− y
(
t− τ1(t)

)∥∥2.
Assumption 3. Assume that for the noise intensity function matrix g, there exist nonneg-
ative constants g1 and g2 such that

trace
[(
g(t, x1, y1)− g(t, x1, y1)

)T(
g(t, x1, y1)− g(t, x1, y1)

)]
6 g1‖x1 − x2‖2 + g2‖y1 − y2‖2,

where x1, x2, y1, y2 ∈ Rn and t ∈ R.

Lemma 1. If x and y are real matrices with appropriate dimensions, then there exists
a positive constant ε > 0 such that

xTy = yTx =
1

2

(
xTy + yTx

)
6
ε

2
xTx+

1

2ε
yTy.

Lemma 2. For matrices A, B, C and D with appropriate dimensions, the Kronecker
product ⊗ satisfies

(A+B)⊗ C = A⊗ C +B ⊗ C; (A⊗B)(C ⊗D) = (AC)⊗ (BD);(
AT ⊗BT

)
= (A⊗B)T; λmax(A⊗B) = λmax(A)λmax(B).

Lemma 3. (See [29].) Consider the following impulsive differential inequalities:

D+v(t) 6 av(t) + b1
[
v(t)

]
τ1

+ b2
[
v(t)

]
τ2

+ · · ·+ bm
[
v(t)

]
τm
,

t 6= tk, t > t0,

v
(
t+k
)
6 pkv

(
t−k
)

+ q1k
[
v
(
t−k
)]
τ1

+ q2k
[
v(t−k )

]
τ2

+ · · ·+ qmk
[
v
(
t−k
)]
τm
,

k ∈ N+,

v(t) = ϕ(t), t ∈ [t− τ, t0],

where a, b, pk, qik and τi are constants, i = 1, 2, . . . ,m, and v(t) > 0. [v(t)]τi =
supt−τi6s6t v(s), [v(tk)]τi = suptk−τi(tk)6s6tk v(s), ϕ(t) is continous on [t − τ, t0],
and v(t) is continuous except at tk, k ∈ N+, where there are jump discontinuities. The
time series {t1, t2, . . . } is a strictly increasing impulsive instants satisfying limk→∞ tk =
+∞. Suppose that pk +

∑m
i=1 q

i
k < 1 and a +

∑m
i=1 bi/(pk +

∑m
j=1 q

j
k) + ln(pk +∑m

j=1 q
j
k)/(tk+1 − tk) < 0, then there exist constants β > 1 and λ > 0 such that

v(t) 6 ‖ϕ‖τβeλ(t−t0), where ‖ϕ‖τ = supt0−τ6s6t ‖ϕ(s)‖ and τ = maxi=1,2,...,m{ti}.

Nonlinear Anal. Model. Control, 23(1):63–81
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3 Main results

In this section, the impulsive control synchronization criterions are derived at first, then,
based a effective pinned method, some pinning impulsive criterions are also derived to
ensure the mean square exponential synchronization of stochastic dynamical networks (1).

3.1 Impulsive control synchronization

Theorem 1. Under assumptions mentioned in last section, network (1) can be exponen-
tially synchronized to s(t) with convergence rate ρ2 if there exist positive constants ε1−ε6
such that

(i) ρ1 + ρ2 < 1, (ii) ζ1 +

∑6
k=2 ζk

ρ1 + ρ2
+

ln(ρ1 + ρ2)

tk+1 − tk
< 1, (5)

where ρ1 = (1 + η)2 + µ(1 + η), ρ2 = µ2 + µ(1 + η), ζ1 − ζ6 are defined as follows:

ζ1 = f1 +
g1
2

+
c2θβ1ε1

2
+
c2θβ2ε2

2
+
c2θ(1− β1)ε3

2
+
c2θ(1− β2)ε4

2

+ λmax(A⊗ Γ1) +
c1c2β1ε5

2
λmax

(
BBT

)
λmax

(
Γ2Γ

T
2

)
+
c1c2(1− β1)ε6

2
λmax

(
BBT

)
λmax

(
Γ2Γ

T
2

)
,

ζ2 = f2 +
g2
2
, ζ3 =

c2θβ1λmax(ΓT
2 Γ2)

2ε1
+
c1c2β1
ε5

,

ζ4 =
c2θ(1− β1)λmax(ΓT

2 Γ2)

2ε3
+
c1c2(1− β1)

ε6
,

ζ5 =
c2θβ2λmax(ΓT

2 Γ2)

2ε2
, ζ6 =

c2θ(1− β2)λmax(ΓT
2 Γ2)

2ε4
.

Proof. Consider the following Lyapunov function:

V (t) =
1

2

N∑
i=1

eTi (t)ei(t).

Using the weak infinitesimal operatorL on the function V (t) along solution (4) for t 6= tk,
one has:

LV (t) =

N∑
i=1

eTi (t)

(
f̄
(
t, ei(t), ei

(
t− τ0(t)

))
+ c1

N∑
j=1

aijΓ1ej(t)

+ c2β1(t)

N∑
j=1

bijΓ2ej
(
t− τ l1(t)

)
+ c2

(
1− β1(t)

) N∑
j=1

bijΓ2ej
(
t− τu1 (t)

)
+ c2θΓ2

(
β1(t)ei

(
t− τ l1(t)

)
− β2(t)ei

(
t− τ l2(t)

))
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+ c2θΓ2

((
1− β1(t)

)
ei
(
t− τu1 (t)

)
−
(
1− β2(t)

)
ei
(
t− τu2 (t)

)))

+
1

2

N∑
i=1

trace
[
ḡT
(
t, ei(t), ei

(
t− τ0(t)

))
ḡ
(
t, ei(t), ei

(
t− τ0(t)

))]
. (6)

According to Assumptions 2 and 3, the following inequalities can be derived:
N∑
i=1

eTi (t)f̄
(
t, ei(t), ei

(
t− τ0(t)

))
6 f1

N∑
i=1

eTi (t)ei(t) + f2

N∑
i=1

eTi
(
t− τ0(t)

)
ei
(
t− τ0(t)

)
,

1

2

N∑
i=1

trace
[
ḡT
(
t, ei(t), ei

(
t− τ0(t)

))
ḡ
(
t, ei(t), ei

(
t− τ0(t)

))]
6

1

2
g1

N∑
i=1

eTi (t)ei(t) +
1

2
g2

N∑
i=1

eTi
(
t− τ0(t)

)
ei
(
t− τ0(t)

)
.

(7)

Based on Lemma 1, for any positive constants ε1, ε2, ε3, ε4, the following inequalities
can be obtained:

c2θβ1(t)

N∑
i=1

eTi (t)Γ2ei
(
t− τ l1(t)

)
6
c2θβ1(t)

2

{
ε1

N∑
i=1

eTi (t)ei(t) +
1

ε1

N∑
i=1

eTi
(
t− τ l1(t)

)
ΓT
2 Γ2ei

(
t− τ l1(t)

)}

6
c2θβ1(t)ε1

2

N∑
i=1

eTi (t)ei(t)

+
c2θβ1(t)λmax(ΓT

2 Γ2)

2ε1

N∑
i=1

eTi
(
t− τ l1(t)

)
ei
(
t− τ l1(t)

)
, (8)

−c2θβ2(t)

N∑
i=1

eTi (t)Γ2ei
(
t− τ l2(t)

)
6
c2θβ2(t)

2

{
ε2

N∑
i=1

eTi (t)ei(t) +
1

ε2

N∑
i=1

eTi
(
t− τ l2(t)

)
ΓT
2 Γ2ei

(
t− τ l2(t)

)}

6
c2θβ2(t)ε2

2

N∑
i=1

eTi (t)ei(t)

+
c2θβ2(t)λmax(ΓT

2 Γ2)

2ε2

N∑
i=1

eTi
(
t− τ l2(t)

)
ei
(
t− τ l2(t)

)
, (9)
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c2θ
(
1− β1(t)

) N∑
i=1

eTi (t)Γ2ei
(
t− τu1 (t)

)
6
c2θ(1− β1(t))

2

{
ε3

N∑
i=1

eTi (t)ei(t) +
1

ε3

N∑
i=1

eTi
(
t− τu1 (t)

)
ΓT
2 Γ2ei

(
t− τu1 (t)

)}

6
c2θ(1− β1(t))ε3

2

N∑
i=1

eTi (t)ei(t)

+
c2θ(1− β1(t))λmax(ΓT

2 Γ2)

2ε3

N∑
i=1

eTi
(
t− τu1 (t)

)
ei
(
t− τu1 (t)

)
, (10)

c2θ
(
1− β2(t)

) N∑
i=1

eTi (t)Γ2ei
(
t− τu2 (t)

)
6
c2θ(1− β2(t))

2

{
ε4

N∑
i=1

eTi (t)ei(t) +
1

ε4

N∑
i=1

eTi
(
t− τu2 (t)

)
ΓT
2 Γ2ei

(
t− τu2 (t)

)}

6
c2θ(1− β2(t))ε4

2

N∑
i=1

eTi (t)ei(t)

+
c2θ(1− β2(t))λmax(ΓT

2 Γ2)

2ε4

N∑
i=1

eTi
(
t− τu2 (t)

)
ei
(
t− τu2 (t)

)
. (11)

According to properties of the Kronecker product, which are listed in Lemma 2, and
Lemma 1, for any positive constants ε5, ε6, one has:

c1

N∑
i=1

eTi (t)

N∑
j=1

aijΓ1ej(t)

= c1e
T(t)(A⊗ Γ1)e(t) 6 λmax(A⊗ Γ1)

N∑
i=1

eTi (t)ei(t), (12)

c1c2β1(t)

N∑
i=1

eTi (t)

N∑
j=1

bijΓ2ej
(
t− τ l1(t)

)
= c1c2β1(t)eT(t)(B ⊗ Γ2)e

(
t− τ l1(t)

)
6
c1c2β1(t)

2

{
ε5e

T(t)
(
BBT ⊗ Γ2Γ

T
2

)
e(t) +

eT(t− τ l1(t))(IN ⊗ In)e(t− τ l1(t))

ε5

}
6
c1c2β1(t)ε5

2
λmax

(
BBT

)
λmax

(
Γ2Γ

T
2

) N∑
i=1

eTi (t)ei(t)

+
c1c2β1(t)

ε5

N∑
i=1

eTi
(
t− τ l1(t)

)
ei
(
t− τ l1(t)

)
, (13)
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c1c2
(
1− β1(t)

) N∑
i=1

eTi (t)

N∑
j=1

bijΓ2ej
(
t− τu1 (t)

)
= c1c2β1(t)eT(t)(B ⊗ Γ2)e

(
t− τu1 (t)

)
6
c1c2(1− β1(t))

2

{
ε6e

T(t)
(
BBT ⊗ Γ2Γ

T
2

)
e(t)

+
eT(t− τu1 (t))(IN ⊗ In)e(t− τu1 (t))

ε6

}
6
c1c2(1− β1(t))ε6

2
λmax

(
BBT

)
λmax

(
Γ2Γ

T
2

) N∑
i=1

eTi (t)ei(t)

+
c1c2(1− β1(t))

ε6

N∑
i=1

eTi
(
t− τu1 (t)

)
ei
(
t− τu1 (t)

)
. (14)

Then, considering (6)–(14), one can derive

LV (t) =

{
f1 +

g1
2

+
c2θβ1(t)ε1

2
+
c2θβ2(t)ε2

2
+
c2θ(1− β1(t))ε3

2

+
c2θ(1− β2(t))ε4

2
+ λmax(A) +

c1c2β1(t)ε5
2

λmax

(
BBT

)
λmax

(
Γ2Γ

T
2

)
+
c1c2(1− β1(t))ε6

2
λmax

(
BBT

)
λmax

(
Γ2Γ

T
2

)} N∑
i=1

eTi (t)ei(t)

+

{
f2 +

g2
2

} N∑
i=1

eTi
(
t− τ0(t)

)
ei
(
t− τ0(t)

)
+

{
c2θβ1(t)λmax(ΓT

2 Γ2)

2ε1
+
c1c2β1(t)

ε5

} N∑
i=1

eTi
(
t− τ l1(t)

)
ei
(
t− τ l1(t)

)
+

{
c2θ(1− β1(t))λmax(ΓT

2 Γ2)

2ε3
+
c1c2(1− β1(t))

ε6

}
×

N∑
i=1

eTi
(
t− τu1 (t)

)
ei
(
t− τu1 (t)

)
+
c2θβ2(t)λmax(ΓT

2 Γ2)

2ε2

N∑
i=1

eTi
(
t− τ l2(t)

)
ei
(
t− τ l2(t)

)
+
c2θ(1− β2(t))λmax(ΓT

2 Γ2)

2ε4

N∑
i=1

eTi
(
t− τu2 (t)

)
ei
(
t− τu2 (t)

)
. (15)

Based on Ito’s formulation, one has

dV (t) = LV (t) dt+

N∑
i=1

eTi (t)ḡ
(
t, ei(t), ei

(
t− τ0(t)

))
dω(t).
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Taking the mathematical expectation of both sides of the above inequality combined
with (15), one gets that

dE(V (t))

dt
6

{
f1 +

g1
2

+
c2θβ1ε1

2
+
c2θβ2(t)ε2

2
+
c2θ(1− β1)ε3

2

+
c2θ(1− β2)ε4

2
+ λmax(A) +

c1c2β1ε5
2

λmax

(
BBT

)
λmax

(
Γ2Γ

T
2

)
+
c1c2(1− β1)ε6

2
λmax

(
BBT

)
λmax

(
Γ2Γ

T
2

)} N∑
i=1

eTi (t)ei(t)

+

{
f2 +

g2
2

} N∑
i=1

eTi
(
t− τ0(t)

)
ei
(
t− τ0(t)

)
+

{
c2θβ1λmax(ΓT

2 Γ2)

2ε1
+
c1c2β1
ε5

} N∑
i=1

eTi
(
t− τ l1(t)

)
ei
(
t− τ l1(t)

)
+

{
c2θ(1− β1)λmax(ΓT

2 Γ2)

2ε3
+
c1c2(1− β1)

ε6

}
×

N∑
i=1

eTi
(
t− τu1 (t)

)
ei
(
t− τu1 (t)

)
+
c2θβ2λmax(ΓT

2 Γ2)

2ε2

N∑
i=1

eTi
(
t− τ l2(t)

)
ei
(
t− τ l2(t)

)
+
c2θ(1− β2)λmax(ΓT

2 Γ2)

2ε4

N∑
i=1

eTi
(
t− τu2 (t)

)
ei
(
t− τu2 (t)

)
6 ζ1E

(
V (t)

)
+ ζ2E

(
V
(
t− τ0(t)

))
+ ζ3E

(
V
(
t− τ l1(t)

))
+ ζ4E

(
V
(
t− τu1 (t)

))
+ ζ5E

(
V
(
t− τ l2(t)

))
+ ζ6E

(
V
(
t− τu2 (t)

))
.

For any k ∈ N, noting that η ∈ (−2, 0) and µ ∈ (−1, 0), we yield

E
(
V
(
t+k
))

=
1

2

N∑
i=1

eTi
(
t+k
)
ei
(
t+k
)

=
1

2

N∑
i=1

(
(1 + η)ei

(
t−k
)

+ µei
(
t−k − τ3

(
t−k
)))T

×
(
(1 + η)ei

(
t−k
)

+ µei
(
t−k − τ3

(
t−k
)))

6
(
(1 + η)2 + µ(1 + η)

)
E
(
V
(
t−k
))

+
(
µ2 + µ(1 + η)

)
E
(
V
(
t−k − τ3

(
t−k
)))

.

According to Lemma 3, if (5) is satisfied, there exist constants ρ1 > 1 and ρ2 > 0 such
that E(V (t)) 6 ‖ϕ‖τρ1e−ρ2(t−t0) for t > 0, where τ = max{τ0, τ l1, τu1 , τ l2, τu2 , τ3}.
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Hence, the complex dynamical network (1) can synchronize exponentially to s(t), this
completes our proof.

3.2 Pinning synchronization strategy

All nodes are controlled in the above result, which needs a high cost. Now, let us select
a fraction of the whole nodes to add impulsive controller. Without controlling, there must
be different orbits among nodes. Naturally, the farthest nodes from the goal orbit should
be controlled first. Therefore, those nodes with a big synchronized errors will be selected
in the following result. At impulsive moment tk, the index set of pinning nodes P(tk) is
defined as follow: for the vectors e1(tk), e2(tk), . . . , eN (tk), one can reorder the states
of the nodes such that ‖ep1(tk)‖ > ‖ep2(tk)‖ > · · · > ‖epN (tk)‖. Suppose that we
choose l (l < N ) nodes of network (1) for controlling, then the index set of l controlled
nodes P(tk) is defined as P(tk) = {p1, p2, . . . , pl}. Let (tk)ג = min{‖ei(tk)‖2: i ∈
P(tk)} and k(tk) = max{‖ei(tk)‖2: i 6∈ P(tk)}. It is easy to find that k(tk) 6 (tk)ג
according to our pinning strategy. Then the following pinning synchronization criteria can
be derived:

Theorem 2. Under assumptions mentioned in last section, network (1) can be expo-
nentially synchronized to s(t) with convergence rate ρ2 if there exist positive constants
ε1, . . . , ε6 such that:

(i) ρ0 + ρ2 < 1, (ii) ζ1 +

∑6
k=2 ζk

ρ0 + ρ2
+

ln(ρ0 + ρ2)

tk+1 − tk
< 1,

where ρ0 = 1 + [(1 + η)(1 + η + µ)− 1]/N , ρ2 = µ2 + µ(1 + η), ζ1 − ζ6 are same as
them in Theorem 1.

Proof. It is similar to the proof for Theorem 1 when t 6= tk. At impulsive moment, one
has the following results:

E
(
V (t+k )

)
=

1

2

N∑
i=1

eTi
(
t+k
)
ei
(
t+k
)

=
1

2

∑
i∈P(tk)

eTi
(
t+k
)
ei
(
t+k
)

+
1

2

∑
i 6∈P(tk)

eTi
(
t−k
)
ei
(
t−k
)

=
1

2

∑
i∈P(tk)

(
(1 + η)ei

(
t−k
)

+ µei
(
t−k − τ3

(
t−k
)))T(

(1 + η)ei
(
t−k
)

+ µei
(
t−k − τ3

(
t−k
)))

+
1

2

∑
i 6∈P(tk)

eTi
(
t−k
)
ei
(
t−k
)

6
1

2

(
(1 + η)2 + µ(1 + η)

) ∑
i∈P(tk)

eTi
(
t−k
)
ei
(
t−k
)

+
1

2

∑
i 6∈P(tk)

eTi
(
t−k
)
ei
(
t−k
)

+
1

2

(
µ2 + µ(1 + η)

) ∑
i∈P(tk)

eTi
(
t−k − τ3

(
t−k
))
ei
(
t−k − τ3

(
t−k
))
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6
1

2

(
(1 + η)2 + µ(1 + η)

) ∑
i∈P(tk)

eTi
(
t−k
)
ei
(
t−k
)

+
1

2

∑
i 6∈P(tk)

eTi
(
t−k
)
ei
(
t−k
)

+
(
µ2 + µ(1 + η)

)
E
(
V
(
t−k − τ3

(
t−k
)))

.

Note that ρ0 = 1 + [(1 + η)(1 + η + µ)− 1]/N , thus

(1− ρ0)
∑

i 6∈P(tk)

eTi
(
t−k
)
ei
(
t−k
)

6 (1− ρ0)(N − l)k(tk) = l
(
ρ0 − (1 + η)(1 + η + µ)

)
k(tk)

6 l
(
ρ0 − (1 + η)(1 + η + µ)

)
(tk)ג

6
(
ρ0 − (1 + η)(1 + η + µ)

) ∑
i∈P(tk)

eTi
(
t−k
)
ei
(
t−k
)
.

Then one has

E
(
V
(
t+k
))

6 ρ0E
(
V
(
t−k
))

+
(
µ2 + µ(1 + η)

)
E
(
V
(
t−k − τ3

(
t−k
)))

.

Then, it is easy to obtain the result based on the conditions in Theorem 2 and the proof of
Theorem 1. This completes our proof.

Remark 4. According to above results, some corollaries could be obtained easily. For
example, let g(t, xi(t), xi(t − τ0(t))) = 0In, then system (1) is no disturbance, g1 =
g2 = 0, one can get exponential synchronization for the dynamical network (1). Similarly,
let β1(t) = β2(t) ≡ 0, which means that transmission time-delays are not assumed
to probabilistic, corresponding results also can be derived by some simple derivations.
Those trivial results are not listed here.

Remark 5. There were some results concerns about impulsive input delay [23, 29, 31],
compared with them, this paper has studied a coupled network with different transmission
delays among nodes. On the other hand, the pinning impulsive method has also been
investigated in this paper. Furthermore, the coupled time-delays are also probabilistic in
two time interval. In general, the model in this paper contains lots of exists results.

4 Numerical simulations

In this section, some examples will be given to check our theoretical result. A isolated
dynamic behaviors described by a chaotic delayed neural networks at first. Then, syn-
chronization of the network under impulsive controllers will be shown.

4.1 The synchronized state s(t)

Suppose that the isolated dynamic behaviors can be described by the following delayed
neural network:

ẋi(t) = f
(
t, xi(t), xi

(
t−τ1(t)

))
= Cxi(t) +B1g1

(
xi(t)

)
+B2g1

(
xi
(
t−τ1(t)

))
,
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Figure 1. Chaotic attractor of s(t) with θ = 2.

where xi(t) = (xi1(t), xi2(t))T ∈ R2, τ1 = 1, g1(xi(t)) = g2(xi(t)) = (tanh(xi1(t)),
tanh(xi2(t)))T, and

C =

(
−1 0
0 −1

)
, B1 =

(
2 −0.1
−5 4.5

)
, B2 =

(
−1.5 −0.1
−0.2 −4

)
.

Consider the following parameters in system (3):

c2 = 0.1, θ = 2, β1 = 0.6, β2 = 0.5,

τ l1 = 0.25 + 0.25 sin t, τu1 = 0.75 + 0.25 sin t,

τ l2 = 0.2 + 0.2 sin t, τu2 = 0.7 + 0.3 sin t, Γ2 = diag{1, 1.1},

g
(
t, s(t), s

(
t− τ0(t)

))
= 0.1

(∥∥s(t)∥∥+
∥∥s(t− τ0(t)

)∥∥)I2.
Then s(t) has a chaotic attractor shown in Fig. 1 with initial condition φs(t) = [0.2, 0.5]T

for t ∈ [−1, 0].
Let us proof that f(t, x(t), x(t−τ0(t))) conforms with Assumption 1. In fact, for any

x(t), y(t) ∈ Rn,(
x(t)− y(t)

)T(
f
(
t, x(t), x

(
t− τ0(t)

))
− f

(
t, y(t), y

(
t− τ0(t)

)))
=
(
x(t)− y(t)

)T(
C
(
x(t)− y(t)

)
+B1

(
g1
(
x(t)

)
− g1

(
y(t)

))
+B2

(
g2
(
x(t− τ0)

)
− g2

(
y(t− τ0)

)))
=
(
x(t)− y(t)

)T(C + CT

2

)(
x(t)− y(t)

)
+
(
x(t)− y(t)

)T
B1

(
g1
(
x(t)

)
− g1

(
y(t)

))
+
(
x(t)− y(t)

)T
B2

(
g2
(
x(t− τ0)

)
− g2

(
y(t− τ0)

))
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6

(
C + CT

2
+

(
‖B1‖+

ε‖B2‖
2

)
I2

)(
x(t)− y(t)

)T(
x(t)− y(t)

)
+
‖B1‖

2

(
g1
(
x(t)

)
− g1

(
y(t)

))T(
g1
(
x(t)

)
− g1

(
y(t)

))
+
‖B2‖

2ε

(
g2
(
x(t− τ0)

)
− g2

(
y(t− τ1)

))T(
g2
(
x(t)

)
− g2

(
y(t)

))
6 λmax

(
C + CT

2
+

(
‖B1‖+

ε‖B2‖
2

)
I2

)(
x(t)− y(t)

)T(
x(t)− y(t)

)
+
‖B2‖

2ε

(
x(t− τ0)− y(t− τ0)

)T(
x(t− τ0)− y(t− τ0)

)
.

Let ε=2.005, then f1 = λmax((C + CT)/2 + (‖B1‖ + ε‖B2‖/2)I2) = 9.9288 and
f2 = ‖B2‖/(2ε) = 1, then Assumption 2 can be guaranteed.

Remark 6. The chaotic attractor has been shown in Fig. 1 is under θ = 2, indeed, the
different values θ may lead different chaotic behavior. However, the synchronized goal of
lots related results are determined. The main reason is the different transmission delays
τ1(t) and τ2(t). It is obviously that when τ1(t) = τ2(t), the θ(−bii) would not affect the
chaotic behaviors.

4.2 Synchronization behavior among a small-world network under impulsive con-
trol with impulsive input delay

In this subsection, let us consider a small-world network, which is generated by taking
initial neighboring nodes k = 8 and the edge adding probability P = 0.1. The coupled
matrix G is determined by the network. aij = Gij and bij = θGij/

∑N
j=1, j 6=iGij when

i 6= j. aii and bii can be calculated by (2). Other parameters are given as c1 = 0.1,
Γ1 = I2. Without control, the nodes’ state have been shown in Fig. 2, it is obviously that
they cannot synchronized to s(t).

Consider the impulsive control with tk+1 − tk = 0.02 and η = −0.9. The impulsive
input delay τ3(t) = 0.5 cos t and µ = −0.14. According Theorem 2, we selected 29 nodes
to control. The other parameters in Theorems 1 and 2 are given as follow:

ε1 = 3, ε2 = 1.2, ε3 = 3, ε4 = 6,

ε5 = 0.5, ε6 = 0.6, g1 = 0.1, g2 = 0.1.

By some simple calculation, one has

ζ1 = 16.1221,

6∑
i=2

ζi = 1.1796, ρ0 = 0.7088, ρ2 = 0.0056,

ρ0 + ρ2 = 0.7144 < 1, ζ1 +

∑6
k=2 ζk

ρ0 + ρ2
+

ln(ρ0 + ρ2)

tk+1 − tk
= 0.9603 < 1.

Then all conditions can be satisfied in Theorem 2. The results can be seen in Figs. 3 and 4.
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Figure 2. Time evolution of nodes’ states xi1(t),
xi2(t), i = 1, 2, . . . , 100, and s(t) without
control.

Figure 3. Time evolution of nodes’ states xi1(t),
xi2(t), i = 1, 2, . . . , 100, and s(t) under
pinning impulsive control.

Figure 4. Time evolution of errors’ states
ei1(t), ei2(t), i = 1, 2, . . . , 100, under pinning
impulsive control.

5 Conclusion

In this paper, a general hybrid-coupled network model with both the internal delay and
coupling delay is investigated, stochastic disturbances also have been taken into consider-
ation, and the impulsive synchronization of such delayed dynamical network is intensively
studied. The delayed coupling term considered here includes the transmission delay and
self-feedback delay, transmission time-varying delay is assumed probabilistic. Impulsive
control input delays have been considered, furthermore, pinning impulsive strategy has
been studied. Numerical examples are also given to demonstrate the effectiveness of our
proposed control strategy.
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