1,865 research outputs found

    Digital servo control of random sound test excitation

    Get PDF
    A digital servocontrol system for random noise excitation of a test object in a reverberant acoustic chamber employs a plurality of sensors spaced in the sound field to produce signals in separate channels which are decorrelated and averaged. The average signal is divided into a plurality of adjacent frequency bands cyclically sampled by a time division multiplex system, converted into digital form, and compared to a predetermined spectrum value stored in digital form. The results of the comparisons are used to control a time-shared up-down counter to develop gain control signals for the respective frequency bands in the spectrum of random sound energy picked up by the microphones

    Hardware for digitally controlled scanned probe microscopes

    Get PDF
    The design and implementation of a flexible and modular digital control and data acquisition system for scanned probe microscopes (SPMs) is presented. The measured performance of the system shows it to be capable of 14-bit data acquisition at a 100-kHz rate and a full 18-bit output resolution resulting in less than 0.02-Å rms position noise while maintaining a scan range in excess of 1 µm in both the X and Y dimensions. This level of performance achieves the goal of making the noise of the microscope control system an insignificant factor for most experiments. The adaptation of the system to various types of SPM experiments is discussed. Advances in audio electronics and digital signal processors have made the construction of such high performance systems possible at low cost

    Multiscale Gaussian Random Fields for Cosmological Simulations

    Get PDF
    This paper describes the generation of initial conditions for numerical simulations in cosmology with multiple levels of resolution, or multiscale simulations. We present the theory of adaptive mesh refinement of Gaussian random fields followed by the implementation and testing of a computer code package performing this refinement called GRAFIC2. This package is available to the computational cosmology community at http://arcturus.mit.edu/grafic/ or by email from the author.Comment: 38 pages. Submitted to ApJ Supplemen

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-µm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86º, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    Streamsurface Smoke Effect for Visualizing Dragon Fly CFD Data in Modern OpenGL with an Emphasis on High Performance

    Get PDF
    Visualizing 3D, time dependent velocity vector fields is a difficult topic. Streamlines can be used to visualize 3D vector fields. A smoke effect where the streamline is faded out as time progresses can provide a better visualization of a time dependent flow. This work uses modern OpenGL to create a smoke trail effect with streamsurfaces in the dragon fly data set. Many aspects affecting performance are tested to determine the best options or approach

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-µm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86º, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    Conversion from linear to circular polarization in FPGA

    Full text link
    Context: Radio astronomical receivers are now expanding their frequency range to cover large (octave) fractional bandwidths for sensitivity and spectral flexibility, which makes the design of good analogue circular polarizers challenging. Better polarization purity requires a flatter phase response over increasingly wide bandwidth, which is most easily achieved with digital techniques. They offer the ability to form circular polarization with perfect polarization purity over arbitrarily wide fractional bandwidths, due to the ease of introducing a perfect quadrature phase shift. Further, the rapid improvements in field programmable gate arrays provide the high processing power, low cost, portability and reconfigurability needed to make practical the implementation of the formation of circular polarization digitally. Aims: Here we explore the performance of a circular polarizer implemented with digital techniques. Methods: We designed a digital circular polarizer in which the intermediate frequency signals from a receiver with native linear polarizations were sampled and converted to circular polarization. The frequency-dependent instrumental phase difference and gain scaling factors were determined using an injected noise signal and applied to the two linear polarizations to equalize the transfer characteristics of the two polarization channels. This equalization was performed in 512 frequency channels over a 512 MHz bandwidth. Circular polarization was formed by quadrature phase shifting and summing the equalized linear polarization signals. Results: We obtained polarization purity of -25 dB corresponding to a D-term of 0.06 over the whole bandwidth. Conclusions: This technique enables construction of broad-band radio astronomy receivers with native linear polarization to form circular polarization for VLBI.Comment: 11 pages 8 figure
    • …
    corecore