483 research outputs found

    QuLa: service selection and forwarding table population in service-centric networking using real-life topologies

    Get PDF
    The amount of services located in the network has drastically increased over the last decade which is why more and more datacenters are located at the network edge, closer to the users. In the current Internet it is up to the client to select a destination using a resolution service (Domain Name System, Content Delivery Networks ...). In the last few years, research on Information-Centric Networking (ICN) suggests to put this selection responsibility at the network components; routers find the closest copy of a content object using the content name as input. We extend the principle of ICN to services; service routers forward requests to service instances located in datacenters spread across the network edge. To solve this problem, we first present a service selection algorithm based on both server and network metrics. Next, we describe a method to reduce the state required in service routers while minimizing the performance loss caused by this data reduction. Simulation results based on real-life networks show that we are able to find a near-optimal load distribution with only minimal state required in the service routers

    A greedy ant colony forwarding algorithm for Named Data Networking

    Get PDF
    The Named Data Networking (NDN) is a newly proposed Internet architecture based on Content-Centric Networking, which transforms data, instead of hosts, into a first-class entity. However, one of the major challenges is supporting intelligent forwarding of Interests over multiple paths while allowing an unbounded name space. To address this challenge, this paper proposes a Greedy Ant Colony Forwarding (GACF) algorithm which uses the ISP-based aggregation to reduce the content naming space. There are two kinds of ants in GACF. One is Hello Ant which is used to discover the all possible paths and optimize them; the other is Normal Ant which is used to get data and reinforce the optimization of the paths simultaneously. The GACF algorithm is a Quality of Service aware forwarding algorithm. It adaptively reduces the impacts incited by the dynamic complex network

    QuLa: queue and latency-aware service selection and routing in service-centric networking

    Get PDF
    Due to an explosive growth in services running in different datacenters, there is need for service selection and routing to deliver user requests to the best service instance. In current solutions, it is generally the client that must first select a datacenter to forward the request to before an internal load-balancer of the selected datacenter can select the optimal instance. An optimal selection requires knowledge of both network and server characteristics, making clients less suitable to make this decision. Information-Centric Networking (ICN) research solved a similar selection problem for static data retrieval by integrating content delivery as a native network feature. We address the selection problem for services by extending the ICN-principles for services. In this paper we present Queue and Latency, a network-driven service selection algorithm which maps user demand to service instances, taking into account both network and server metrics. To reduce the size of service router forwarding tables, we present a statistical method to approximate an optimal load distribution with minimized router state required. Simulation results show that our statistical routing approach approximates the average system response time of source-based routing with minimized state in forwarding tables

    Green network protocols and algorithms

    Full text link
    Lloret, J.; Ghafoor, KZ.; Rawat, DB.; Nasser, Y. (2015). Green network protocols and algorithms. Journal of Network and Computer Applications. 58:192-193. https://doi.org/10.1016/j.jnca.2015.11.004S1921935

    A NEURAL NETWORK BASED TRAFFIC-AWARE FORWARDING STRATEGY IN NAMED DATA NETWORKING

    Get PDF
    Named Data Networking (NDN) is a new Internet architecture which has been proposed to eliminate TCP/IP Internet architecture restrictions. This architecture is abstracting away the notion of host and working based on naming datagrams. However, one of the major challenges of NDN is supporting QoS-aware forwarding strategy so as to forward Interest packets intelligently over multiple paths based on the current network condition. In this paper, Neural Network (NN) Based Traffic-aware Forwarding strategy (NNTF) is introduced in order to determine an optimal path for Interest forwarding. NN is embedded in NDN routers to select next hop dynamically based on the path overload probability achieved from the NN. This solution is characterized by load balancing and QoS-awareness via monitoring the available path and forwarding data on the traffic-aware shortest path. The performance of NNTF is evaluated using ndnSIM which shows the efficiency of this scheme in terms of network QoS improvementof17.5% and 72% reduction in network delay and packet drop respectively

    An intelligent content prefix classification approach for quality of service optimization in information-centric networking

    Get PDF
    This research proposes an intelligent classification framework for quality of service (QoS) performance improvement in information-centric networking (ICN). The proposal works towards keyword classification techniques to obtain the most valuable information via suitable content prefixes in ICN. In this study, we have achieved the intelligent function using Artificial Intelligence (AI) implementation. Particularly, to find the most suitable and promising intelligent approach for maintaining QoS matrices, we have evaluated various AI algorithms, including evolutionary algorithms (EA), swarm intelligence (SI), and machine learning (ML) by using the cost function to assess their classification performances. With the goal of enabling a complete ICN prefix classification solution, we also propose a hybrid implementation to optimize classification performances by integration of relevant AI algorithms. This hybrid mechanism searches for a final minimum structure to prevent the local optima from happening. By simulation, the evaluation results show that the proposal outperforms EA and ML in terms of network resource utilization and response delay for QoS performance optimization
    corecore