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Abstract 

In this research, we leverage the emerging concept of network slicing to enable the end-

to-end integrated Information-Centric Networking (ICN) and Content Delivery 

Network (CDN) for 5th generation mobile networks (5G) networking infrastructure. 

While CDN is deployed to cache content at the optimal server corresponding to the 

content and geographical location, this paper aims to focus on verifying the efficiency 

of the ICN slice for the regional content distribution via the in-network caching and 

name-based forwarding scheme. Specifically, the ICN slice can be established by the 

Orchestrator by following the current Software-Defined Network (SDN) and Network 

Function Virtualization (NFV) standard. Then the slice stitching process will be 

performed to interconnect two slices after their establishments via the Orchestrator. We 

also implement an OpenStack-based virtual node which supports both IP and ICN 

protocols and acts as the ICN-Gateway. The joint testbed evaluations conducted 

between Japanese side (ICN slice) and European side (CDN slice) show that the 

deployment of ICN Gateway and the proposed Node ID-based ICN naming structure 

can improve network performance and avoid network congestion. Typically, by 

providing content as close as possible to the end-users in the ICN slice, content users 

in Japanese region can retrieve video contents from Finland with shorter response time, 

shorter download time, less E2E (End to End) hops and higher throughput.

Keywords: Information-Centric Networking (ICN), CDN (Content Delivery Network), 

network slicing, ICN/CDN, Video streaming, NFV/SDN.
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Chapter 1 Introduction

In this section, we introduce the literature review and the research purpose.

1.1 Literature Review

The technology of video streaming has been developing for a long time. According to 

Fig. 1, in the video streaming development’s Phase 1 (1995 - 2004), for the first-time 

people can enjoy video contents via internet. Then in Phase 2, web browsers have 

become the tool for VoD (Video on Demand) service. In the meantime, RTMP (Real-

Time Messaging Protocol) allow service providers using streaming protocol to expend 

the service range of video streaming. Also, due to the surge in users requesting for video 

contents, CDN and P2P technology came out as the distributed method to optimize the 

download time (on users’ side) and traffic congestion problem. In recent years (Phase 

3), more technologies came to increase video streaming’s function and QoE such as 

RTSP (Real-Time Streaming Protocol), SDN/NFV (Software-Defined 

Networking/Network Functions Virtualization) and so on. So far, video streaming has 

taken an important role during people’s life, and the related technologies are in constant 

revolution. 

In this study, we have used current video streaming technology such as CDN and 

SDN/NFV, to meet needs from users’ side. 

Fig. 1. The Development of Video Streaming
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1.2 Research purpose

Nowadays, to match the huge demand for content distribution, we need a new network 

paradigm shift from IP-based services into information-based services. In this way, we 

can transfer information in a wide range of services efficiently, especially in the case of 

High-definition video transmission with high bitrate/speed requirement. In fact, video 

content has become a major part of the total Internet traffic, and mobile/wireless data 

traffic is a notable trend for content accesses in the future. According to Cisco’s report 

(Fig. 2), IP video traffic occupied 75 percent of the whole Internet in 2017, and this 

number will increase to 82 percent by 2022 in which the mobile devices will carry 44 

percent of the total IP data traffic [1]. Thus, ensuring mobile user’s VoD (Video on 

Demand) experience is a key to realize efficient content the distribution model for the 

Internet.

In this context, ICN (Information-Centric Networking) [2] was proposed as a 

promising future network approach since 2005 [3]. The key features of ICN include in-

network caching and using named data instead of IP addresses for forwarding and 

routing content. However, ICN still has implementation issues [4] because all the 

content nodes in ICN need to have the memory storage for content caching then make 

them consume more power compared to the IP routers [5]. Also, the default caching 

mechanism in ICN [6] produces high cache redundancy by wasting cache space for 

storing on-path content duplicates as analyzed in our prior work [7].

Currently, many video service providers have selected CDN (Content Delivery 

Network) as their solution for serving the vast video traffic. The idea of CDN is placing 

suitable dedicated caches as distributed servers at the edge of various network domains 

or geographical regions to reduce network load and response time. However, 

considering the high cost of the cache servers and the video resources, CDN still has 

the feasibility issue for deployment.

Thus, in this study, we have proposed to integrate CDN and ICN as a 5G network 

slice for efficient video streaming service which will be detailed in the next sections.
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Fig. 2. Video Traffic in Network Traffic
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Chapter 2 Related Work

In this section, we introduce the major concepts that are related to our proposal.

2.1 Content-Centric Networking (CCN)

Content-Centric Networking (CCN) [2] is a notable ICN platform that enables users to 

obtain desired content through its name instead of its location as defined in the existing 

IP-based Internet architecture. CCN is also implemented using ICN routers with 

caching function rather than IP-routers to realize efficient content dissemination.

In CCN, there are two types of the packet which are Interest and Data packets. 

Interests consist of a content name, which is requested by the consumer. Data packets 

carry content data and act as response for content requests, i.e., Interests. The data 

transmission unit in CCN is chunk, i.e., a content is split into a number of equally sized 

chunks.

For the content distribution process, firstly, Interests will be sent by the consumer. 

Then, the Interests will be broadcasted throughout the whole network. This step can be 

regarded as a searching strategy: Once a user sends an Interest, it will be sent to the 

nearest node to minimize the transmission time. Besides, users who are in the same area 

may express the Interests for the same content so that they can get the desired content 

from the suitable intermediate ICN nodes without the need of downloading it from the 

content provider (server).

For the data retrieval process (Fig. 3), the content name prefix will be searched in 

the cache memory of the CCN routers, called Content Store (CS). If Interest matches 

the prefix, data will be returned to the consumer via the corresponding face (network 

interface). Otherwise, Interest will continue finding the content in Pending Interest 

Table (PIT) [2]. If the required content exists, content data is sent back by the reverse 

path of Interest and a new entry of Interest will be added to PIT. If the content still 

cannot be found, that information will also be recorded in PIT. Then, Interest will be 

forwarded according to Forwarding Information Base (FIB) [2] for the forwarding 

procedure [8]. 
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Fig. 3. Forwarding Stratagy in CCN

Besides the name-based forwarding strategy, another key feature of CCN is in-

network caching. Different from TCP/IP design, CCN node has its cache memory so 

that it can store downloaded contents dynamically. In other words, once the content has 

been downloaded, it will be cached by the CCN node. Hence, the total content 

downloading time and E2E (End to End) hop count can be reduced. 

It should be noted that in this project/study, in order to implement CCN protocol, 

we choose using CCNx software as the codebase (Fig. 4) to emulate CCN’s caching 

and naming feature above TCP/IP network. By using this emulator, we have the basic 

condition/environment to demonstrate and evaluate our proposed system in ICN part. 

Fig. 4. Projects in ICN 

2.2 Content Delivery Network (CDN)

Recently, CDN has been widely implemented to serve the content-based services, 

represented by the well-known CDN operators, e.g., Netflix, Akamai. CDN deploys 

edge servers which contain contents from the original content producers/servers. In this 

way, the data traffic of the original server can be split to multiple mirror cache servers, 

which leads to relieving the burden of the source server. Additionally, based on users’ 
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geometric information (such as IP addresses), the DNS (Domain Name System) server 

can identify which edge server is the nearest one to users. Thus, it can allocate the most 

appropriate server to the user and the downloading time on the user side can be reduced 

considerably. Hence, the users’ QoE (Quality of Experience) can be improved as well. 

Also, CDN users from different ISPs (Internet Service Provider) and regions can gain 

similar bitrate experience [9]. 

However, CDN still has its disadvantages. Firstly, due to the high cost of deploying 

CDN mirror edge servers, CDN users are requested to pay an additional fee for the 

premier services. Next, the content updating process (i.e., pushing new video contents 

to the edge servers) takes time and may not be suitable for every scenario. In general, 

CDN is primarily used for VoD (Video on Demand) or downloading services. However, 

in some specific scenarios, users do not need all the cached contents then some of the 

valuable cache memory is being wasted. Thirdly, though deploying CDN servers can 

reduce and separate data traffic from the core server, bottleneck sometimes can still 

happen. 

Specifically, when users’ requests become huge in one specific area, the data traffic 

between users and this area’s CDN edge cache servers can cause the network bottleneck. 

In order to prevent this situation, the service providers and CDN operator should 

increase the number of available CDN caches, which might lead to a higher cost. 

2.3 SDN/NFV (Software-Defined Networking/Network Functions 

Virtualization)

Due to the increasingly diverse need from the user side, ISPs are currently in need of 

adaptive services to meet users’ various demands. However, different from allocating a 

single service, customizing multiple types of service via physical network resource 

configuration is challenging. For example, nowadays, FHD (Full High-Definition) or 

even UHD (Ultra High-Definition) video streaming service and VoIP (Voice over IP) 

service are among the most popular applications of network service, but they have 

different optimized network resource configurations. Particularly, HD/UHD video 

streaming service requires high bandwidth and throughput while VoIP service requires 
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a stable network environment and low-latency. Moreover, it takes time and a high cost 

to set up and tune each network service. The introduction of NFV (Network Functions 

Virtualization) and SDN (Software-Defined Networking) in recent years then aims to 

satisfy the strong demand of "dynamic network configuration”. 

NFV uses virtualization technology to split network applications in a simple and 

adaptive manner. A general NFV architecture usually includes VNFs (Virtualized 

Network Functions), Hardware resources, Virtualization Layer, NFVI (NFV 

Infrastructure), NFV Management and Orchestration (NFVM and NFVO). Specifically, 

NFVI is the key to manage the hardware resources and change the physical hardware 

into virtualization resources pool so that the computing components can be managed 

flexibly and conveniently. The VNFs can install and provide service applications. Also, 

the VNFM and NFVO are responsible for managing and orchestrating the NFV’s whole 

resources and processes [10].

As NFV offers the solution for making physical network resource virtual, SDN is 

the other technology needed for link virtualization. The most crucial feature of SDN is 

that it separates the network connection into control-plane and data-plane. By 

separating the two planes, network control becomes more convenient and flexible since 

control-plane requires flexibility whereas data-plane requires low-latency. For instance, 

the processes such as switching routing protocols and generating routing table can be 

implemented on one control-plane. To complete the separation, a protocol named 

OpenFlow would be used [11].

2.4 Network Slicing

Network Slicing is a virtualization technology based on NFV/SDN. It enables running 

multiple logical networks on one common shared-physical network infrastructure to 

maximize the flexibility and maintainability (Fig. 5). Besides, the network resources 

are split dynamically so that each logical network’s parameter such as capacity, 

bandwidth, and delay can be customized corresponding to the user requests and network 

status. 

Network slicing plays an essential role as a key concept in the upcoming 5G 
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network to realize various high-speed network applications, e.g., IoT (Internet of 

Things) and 8K streaming services [12]. Particularly, the ISPs could manage and 

customize each network slice simply and comfortably by defining each network service 

as one dynamic network slice and separate them logically [13].  

Therefore, ISP’s services in general 5G network should be separated into 3 major 

parts, which are eMBB (Enhanced Mobile Broadband), uRLLC (Ultra-reliable and 

Low-latency Communications) and mMTC (Massive Machine Type Communications) 

as shown in Fig. 5. Commonly, eMBB refers to services that should occupy high 

bandwidth and large compacity, such as 8K video streaming or even VR (Virtual Reality) 

in high FPS (frame per second) and high resolution. Thereafter, currently uRLLC is 

seen as the most popular services type in future mobile network. By shorten the 

transmission’s failure rate and latency, more services which require those features are 

possible to be realized. For example, remote control and autonomous driving may 

become common services in the future due to the 5G network’s low latency. Finally, 

mMTC can broaden devices in mobile network. This feature can make enormous IoT 

and cell phone devices operating normally in the same network. This study concentrates 

on the design and the implement of ICN/CDN video streaming service as a type of 

eMBB slicing.

In this research, we apply the emerging concepts of ICN, CDN, and SDN/NFV 

technologies to realize a network slicing design for efficient content delivery over 

different multiple geographical locations. 

Fig. 5. Network Slicing
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Chapter 3 System Design

In this section, we introduce the concept and mechanism of the proposed CDN/ICN 

content delivery system.

3.1 The Proposed ICN/CDN System

In this research, we combine CDN with ICN to enable an efficient contents delivery 

network system with low congestion rate. Besides, to meet the future mobile network’s 

needs, we have also proposed using our system as one 5G service slice in the context 

of the project “5G! Pagoda”, a collaborative Europe-Japan research project for 

softwarized 5G network evolutions [14].

The benefits of integrating ICN and CDN are three-fold as follows:

Firstly, using CDN and ICN can drastically reduce the congestion ratio of the 

whole network. Particularly, as aforementioned in Section 2, CDN can reduce the data 

traffic of the core/original server by deploying multiple edge mirror cache servers in 

various regions. However, when the number of users becomes large enough in one 

region, the congestion would occur at the edge servers. Therefore, by adding ICN nodes 

linked to the CDN edge servers, we aim to substantially diminish data traffics of CDN 

edge cache servers, thanks to the ICN’s in-network caching feature [15].

The second benefit is increasing the users’ QoE (delay time), especially for 

contents with high popularity level. By using CDN’s cache server for dynamic and 

optimized content allocations, the download time for the requested content can be 

reduced considerably [16]. Specifically, this improvement is realized by the efficient 

retrieval process from the CDN slice to the ICN slice via the appropriate CDN cache 

and the ICN Gateway.

Additionally, as ICN is a potential future network design at the initial deployment 

stage and CDN has been a successful content-based business model, by combining 

CDN and ICN, we can take advantage the merits of both networking models: CDN is 

used for optimal content allocations at suitable CDN caches nearby the clients while 

ICN is used for quickly distribute content to users via the ICN nodes with the built-in 
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dynamic in-network caching feature.  

3.2 System Overview

To show that our ICN/CDN system can provide an efficient and realistic video 

delivery model in real-world, we configure the whole system across different continents. 

Specifically, the system has been implemented to transfer content objects (videos) 

published in Finland (Europe EU) to Japan (JP, Asia). In this way, we are expecting to 

model and realize a promising and practical video streaming system deployment, e.g., 

Netflix or YouTube videos.

Fig. 6 demonstrates the integrated ICN/CDN system configuration. In our design, 

the system includes two major parts which are CDN slice for contents provider side 

(“EU Side”) and ICN slice for content distribution to users (“Japanese Side”). Typically, 

on the EU region, the original CDN content server deployed at Aalto University, 

Finland (Aalto server) has been set up to publish video contents. Also, we assume that 

users will request their desired video contents from the Japan region. Thus, CDN cache 

mirror server and ICN nodes are deployed on the Japan side. 

Since our whole work is to realize the 5G network slicing concept, each network 

slice is implemented based on SDN/NFV technology. It is also necessary to define a 

regional Orchestrator to manage every VNF instance dynamically. Typically, the EU 

Orchestrator is responsible for managing each instance and resource pool on the EU 

side while Aalto servers represent the CDN publishers/providers. 
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Fig. 6. ICN/CDN System Configuration

The ICN slice configuration is shown in Fig. 7 in which ICN nodes are 

implemented by JP Orchestrator (Hitachi Orchestrator) using CCN platform on the 

Japanese side. Firstly, the video contents are stored in the ICN Gateway (an OpenStack 

based CDN/ICN edge video cache server on the Japan side). Then, we add ICN 

Gateway FIB entries to CCN nodes for the efficient forwarding process in ICN. Hence, 

the video content information from the ICN cache can be shared through the Japan 

domain via the CCN nodes in ICN slice. To reduce the network load and congestion, 

we use multiple ICN-enabled edge nodes (with transient caches and substantial lower 

cache storage compared to CDN caches) to separate the content traffic of the ICN 

Gateway from the other ICN intermediate nodes. 
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Fig. 7. ICN Slice Configuration

3.3 Virtual Fundamentation of the System

In this part, we will introduce tools that have been used in this study to setup the 

research environment.

 

3.3.1 OpenStack 

In order to satisfy the SDN/NFV standard, we chose using OpenStack as the IaaS 

(Infrastructure as a Service) platform of the ICN-Gateway and CDNaaS (CDN as a 

service, developed by MOSAIC lab at Aalto Univ.) on the Japan side. The merits of 

using OpenStack are its flexibility and cost. Flexibility means that users are able to 

establish their own server environment based on their needs, such as how many vCPU 

they are planning to use or how many GB storage they will need. Thus, with IaaS 

technology such as OpenStack, a server environment can be customized based on users’ 

requirements, and the computing source can be saved as well. Speaking of cost, usually 

service providers should set up the hardware machine. However, if service providers 

need a large number of servers, it will be quite costly, especially considering the price 

for server machines and space. By using IaaS technology, this high cost can be avoided. 

During this project/study, the detailed hardware configuration of our OpenStack 

system is shown in Table 1 and Table 2. It should be noticed that due to the OpenStack 
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requirement of at least two hardware machines (one controller node, one compute node), 

we have listed two tables to present the configuration. 

Table 1. Configuration of the controller node

Table 2. Configuration of the compute node

3.3.2 Docker/Containerization 

In recent years, Docker has been standing out as a popular containerization technology 

in SDN/NFV field. Usually, when users aim to configure a test or staging environment 

with different OS (operating system), a traditional way is to install a VM (virtual 

machine) software such as VirtualBox or VMware etc. However, if the test environment 

or server does not require GUI function (command line only). Containerization is a wise 

choice because it has lower cost and lighter system requirements. Docker is widely 

being used as one type of the containerization solution. The biggest reason why Docker 

is being widely used is its light resource cost and development support. The second 

point (development support) is that every service can be saved as an image, so that 

when the service (server) is needed, simply by downloading the image and build it as 

containers, users can establish their test environment/server in a few seconds. This 

speed can show more advantages, especially when service in large scale. Thus, Docker 

is a reasonable choice in slicing technology, since slicing technology requires fast 

service booting speed and low computing resource cost. 

In “5G! Pagoda” project, the Docker image in ICN slice has been built with CCNx 

software and related tools based on Ubuntu 14.04 environment. 
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3.3.3 VirtualBox 

VirtualBox is a VM software which is free and open source. It is able to create x86 

Guest OS on the mainstream Host OS (Windows, Mac OS etc.) using Oracle’s xVM 

virtual platform. Though the system performance is not as smooth as other VM tools, 

the compatibility of VirtualBox is superior. 

In the system design, since our UE’s hardware is operated with Windows OS, and 

our preferred OS should based on Linux OS (with GUI), I decide on using VirtualBox 

(VM tool) as our “UE” to steaming video contents.

3.4 End-to-End (E2E) Content Delivery 

In this part, we briefly present a complete E2E content delivery procedure of the 

proposed ICN/CDN system. It contains four major steps which are slice establishment, 

slice stitching, content request, and content delivery. 

Firstly, in the “slice establishment” stage, all the CDN and ICN NFV instances are 

initiated and allocated virtually. During this stage, both JP and EU’ Orchestrators will 

create and configure each instance with a suitable virtual configuration dynamically. 

Then, “slice stitching” stage will be executed. After ICN and CDN instances have 

been established, JP Orchestrator will inform ICN Coordinator and provide the 

Coordinator the FIB entries of ICN Gateway so that ICN nodes can determine the 

suitable routing path. After the ICN nodes add the FIB entries of ICN gateway, the slice 

stitching process is completed.

Next, the user sends the content request, and the content delivery process will be 

performed. Upon the slice stitching's completion and the video service is triggered at 

the CDN slice, the user receives the table of contents which lists all of the available 

video contents’ “exact name” (which will be detailed in Section 3.4) with resolution, 

video name, bitrate and the corresponding CDN cache from CDN coordinator. The user 

then can choose which video they want to watch. When the user selects the desired 

video content, the system will generate an ICN Interest to ICN Gateway to check 

whether this content is already cached in ICN slice or not. If it has been cached, then 

the target content will be renamed as CCN “exact name” format and sent back to the 
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User Equipment (UE). When the UE receives the exact content name and acknowledge 

it, the content transmission can start. Otherwise, if the user selects the desired content 

and the ICN Gateway does not have the content that the user asked, this Interest will be 

converted as a content request to the suitable CDN server with respective content. The 

CDN server then pushes the requested content to ICN Gateway. In this way, users can 

receive the content in the ICN slice when the same content Interests are received again. 

Besides, if users require enjoy video contents via the ICN/CDN video streaming system, 

I also designed a Python based program to show items of video contents. Therefore, 

users are able to receive contents by click video items via GUI, which can provide a 

better user experience. 

3.5 Naming Strategy in ICN

One key feature of ICN is that its information route is based on the content name instead 

of an IP address. Specifically, each ICN content has its own unique ICN name without 

the need of name resolution via the DNS (Domain Name Server) system as of the 

TCP/IP architecture. However, since in our ICN/CDN video streaming system, both 

ICN (CCN platform) and IP (CDN) are co-existed, the suitable way to transfer and 

convert the content name format from IP to CCN is worth to be considered so that UEs 

in Japan side can receive the desired data efficiently via the Gateway in the ICN slice 

[17].

Firstly, the initial content name on the CDN side consists of an article name, 

resolution, bitrate, and video package format. For example, on the Aalto CDN server, a 

Demo video content is named as “Demo-1920*1080-3000kbps.avi”. 

Normally, a CCN name should contain two base parts which are “Content Source” 

and “Pattern Parameter”. However, since we want to let the user know which ICN node 

is involved in serving a specific content, we decide to implement another naming format 

by adding a “Node ID”. “Node ID” represents the caching node with the requested 

content name for content distribution in ICN from CDN slice. Thus, in the simplified 

case, the “Node ID” will be “ICN Gateway”. Besides, we add the content source with 

location before “Node ID” (left-most position) in the content naming structure. As 
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“Finland, EU” (Aalto University) is the content publisher's location in our system 

design, and refers to Fig. 8, the CCN name should be “/ICN-

Gateway/EU/Finland/Aalto-University/Demo-1920*1080-3000kbps.avi”. By using 

this naming format, the user can be aware of the content transmission so that they can 

decide whether to receive the content or not. Since the naming format in CCN is 

Longest-Prefix Match (LPM) for forwarding and routing procedure, we define the 

proposed CCN name structure as the content “exact name”. 

Another advantage of putting the Node ID in front of the exact name is to increase 

the interest-matching possibility. By signing the Node ID to the exact name, as long as 

Japan users’ requests (interests) start with “/<Node_ID>”, because of LPM forwarding 

strategy in CCN, it is possible to increase the interests’ hitting rate. 

Lastly, as for the exact name’s design, Node ID (or routable-prefix) can be 

considered as a “interest direction identifier” in one specific area. Node ID stands for a 

probable direction of contents retrieval path. Contents’ publisher (“ICN-slice owner” in 

this case) can specify the “interest direction”, that it is considered as a reasonably short 

data-path for users. Moreover, if the requested content has been cached once by the ICN 

slice, users are able to get faster download time and shorter latency. In this way, the 

QoE can be increased based on this naming strategy. 

Fig. 8. Naming Structure in CCN Name Format 

3.6 ICN Gateway

As shown in Fig. 6 and Fig. 7, between the ICN slice and the CDN slice, we have 

deployed an additional OpenStack-based node and named it as “ICN-Gateway”. The 

ICN-Gateway enables both CCN and TCP/IP protocol so that the video content from 

the CDN cache server can be cached inside the CCN’s repository. From ICN-Gateway, 

cached contents would be stored at ICN intermediate nodes then transfer to users for 

minimizing the latency of subsequent content accesses. 
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Meanwhile, ICN-Gateway takes responsibility for converting content name from 

CDN naming format into the proposed CCN’s “exact name”. 

3.7 Demonstration of the Testbed’s Environment

As a part in Project “5G! Pagoda”, moving Waseda’s FLARE environment to U-Tokyo 

Testbed is necessary for the main demo. Since we have uploaded the ICN slice’s docker 

image on the private Dockerhub, by simply pulling the ICN Docker image, the time of 

building ICN slice in the testbed can be minimized, especially compared with building 

a new docker container. 

In the demo, as shown in Fig. 9, a similar Waseda ICN slice has been built at the 

testbed (with FLARE manager and Hitachi Orchestrator’s collaboration). With FIB 

entry’s setup and slice stitching (with CDN slice), our testbed’s environment 

preparation has been completed of ICN slice’s creation and stitching. The video 

contents retrieve path is explained in the next paragraph. 

Firstly, as it is shown as dotted green arrow in the Fig, from Japanese side, we 

expect video contents has been stored inside ICN-Gateway. Then, contents are 

transferred to FLARE1. Thirdly, contents should go through and cached in FLARE2. 

Finally, UE could enjoy video contents with Internet connection. Thus, according to the 

test from the UE side, we can enable VoD service on the testbed. 

Fig. 9. ICN Slice’s Network Topology of the Testbed
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Chapter 4 System Evaluations

In this part, we design the test environment and evaluate our system’s performance.

  

4.1 FLARE-based ICN Nodes

Regarding the proposed ICN/CDN system implementation, we build the joint test-bed 

based E2E content delivery at Waseda University in which the virtual content nodes 

image and configuration setting are installed in deeply programmable nodes, namely 

FLARE, developed by the University of Tokyo. We select FLARE as it enables an Open 

Deeply Programmable Switch/Network Node Architecture to verify the merits of the 

proposal over multi-domain test-bed with multi-core processors toward 5G slicing [18]. 

As shown in Fig. 10 (refers to red line as “ssh” control line and blue line for transmitting 

data between FLAREs), FLARE also realizes resource isolation with lightweight 

control plane and data plane programmability. We then implemented ICN Based 

Virtualization nodes on FLARE, and the hardware configuration of FLARE is shown 

in Table 3. Specifically, we use Docker as the container technology to implement ICN 

nodes’ virtualization over FLAREs.

Fig. 10. Architecture of ICN Slices on FLARE
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Also, since Hitachi. Ltd. acts as the Orchestrator of the Japan domain (Fig. 6), ICN 

nodes can be established and managed dynamically so that the ICN slice follows the 

network slicing standardization [19]. 

Table 3. FLARE’s detailed configuration.  

Parameter Value

Spec 72 core EZ-Chip Network processor

SFP+ 2 ports, up to 128GB memory / 1TB SSD

GbE 24 ports and 10 GbE

Power Redundant Power supply

4.2 The Proposed System Configuration

Note that in this research, we focus on the ICN Slice design for content distribution 

when the content objects are already stored at the ICN Gateway from the CDN Slice, 

i.e., suppose that Optimal VNFs Placement in CDN Slicing over Multi-domain is 

already performed. Then, this paper is different from our prior work in the same 

research theme which presented the overall integrated ICN/CDN system design [16].

For the experiment evaluation, we set up an ICN slice configuration as shown in 

Fig. 11. Particularly, at first, an OpenStack based ICN-Gateway caches the test video 

content. Then, upon receiving the message from Orchestrator (Hitachi Orchestrator), 

the ICN coordinator can receive the FIB entry of ICN-Gateway. By using this 

information, FLARE-ICN Node 1 can be set up and make a connection with ICN-

Gateway in CCN protocol (slice stitching procedure). Next, two ICN nodes are 

connected, and finally, on the UE side, UE 1 connect with ICN Node 1 while UE 2 

makes a connection with ICN Node 2 via the CCN protocol (followed by orange arrows 

in Fig. 11). Also, it should be noted that, UE 1 and UE 2 do not stand for two single 

devices, but two type of UEs in two different areas (UEs in area 1 and UEs in area 

2 ).We use this system configuration as the evaluation scenario model to verify the 

benefit of using CCN nodes with in-network caching feature so that the video contents 

with high popularity in a geographical domain can be transmitted to the user side 

efficiently with minimized response time [20].
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Fig. 11. FLARE-based Testbed Configuration 

4.3 Test Scenarios

After the slice stitching procedure is completed by the Orchestrator at the Japan side 

via information exchanges from Gateway at ICN slice, we perform the test scenarios 

using the above testbed configuration. In particular, we conduct four different test 

scenarios to verify the efficiency of the proposed ICN/CDN system for content 

distribution in which the content delivery is conducted twice for each scenario as 

follows: 

• Scenario 1: Firstly, the content request is sent from UE1. Then, for the second time, 

the content request (for the same content) is also sent by UE1.

• Scenario 2: First content request is sent from UE2, and a second-time request is 

from UE1 for the same content. 

• Scenario 3: The first-time request is from UE1, and then UE2 will send Interest for 

the same content.

• Scenario 4: Both requests are sent by UE2.

It should be noted that the test content file in each Scenario has the same size 

(either 1 MB or 10 MB). Then, we have evaluated ICN slice performance by measuring 
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downloading time, E2E hops count, throughput, and Round-Trip Time (RTT) [21] 

which will be detailed in the next subsection.

4.4 The Integrated ICN/CDN System Performance Evaluations and 

Discussion

The four above network metrics are evaluated as follows:

4.4.1 Downloading Time 

Downloading time means spending time since a user sends the first content Interest 

until the requested file’s last chunk is transmitted to the user. Shorter download time 

refers to a higher transmission rate. As shown in Fig. 12 and Fig. 13, we have measured 

downloading time using the 1 MB and 10 MB sized file and, in both cases, the second 

time request’s download time is much smaller than the first time. Thus, as long as the 

content has been cached by ICN nodes once (i.e., the requested content is stored in ICN 

slice), the buffering time for streaming service on the user side can be reduced 

considerably. As a result, QoE can be ensured, especially in the case of popular content 

[22].

Fig. 12. Download time with 1 MB file
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Fig. 13. Download time with 10 MB file

4.4.2 E2E Hop Counts 

Similarly, when measuring the number of hops counts between UEs and the content 

source, we realize that the second time request’s hops are always less than that of the 

first time (Fig. 14). The reason is that appreciates to the merits of in-network caching 

feature in ICN, for all the four test scenarios, the contents will be cached at the nearest 

ICN nodes after the first request.

Fig. 14. End-to-End Hop Counts
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4.4.3 Round-trip Time (RTT) 

RTT measures the period since a packet is sent until it is responded. As shown in Fig. 

15, RTT gets smaller after the first Interest when we test a content file in CCN’s default 

chunk size (4 KB). As the requested content is stored at the nearest nodes (ICN node 1 

or ICN node 2) after the first request, the subsequent requests for the same content 

become smoother, i.e., a reduced RTT shows better QoE on the user side. 

Fig. 15. Round-Trip Time

4.4.4 Throughput 

Throughput is a key performance of the network, and the same tendency can be realized 

when measuring throughput in both cases of 1 MB and 10 MB test contents (Fig. 16 

and Fig. 17). Specifically, in scenario 2 and scenario 3, the second time requests always 

get higher throughput compared to the first time. However, in scenario 1 and scenario 

4, the throughput performance is decreased. The reason is that since our UEs are also 

equipped with CCN protocol, UEs will cache content into their repository with the 

built-in in-network caching feature as long as they retrieve the content once. This result 

explains why when users send the same Interest as the first time, they do not have a 

high throughput via their network interfaces. This deployment then also leads to less 

heavy data traffics for a stable network with low congestion rate.
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Fig. 16. Throughput with 1 MB file

Fig. 17. Throughput with 10 MB file

Overall, the above scenarios show that our proposed system can improve the 

network performance efficiently right after a requested content is stored in the ICN slice.
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Chapter 5 Conclusion 

In this study, we have proposed, designed, implemented, and evaluated the combined 

ICN/CDN architecture as a video streaming service. The joint-testbed evaluations 

between Japan and Europe show that this approach can reduce the download time 

effectively, especially when transmitting contents with high popularity. This realizes a 

potential and feasible network design for efficient video streaming service by 

leveraging SDN/NFV technologies and combining the benefits of both ICN and CDN 

for video content distribution.

The concept and design of function chaining design for optimal VNF allocation in 

network slicing of the integrated ICN/CDN will be the focus of our future work.
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Appendix

Script of Docker File (on Cent OS 6.4)

1. ################

2. # Pull base image

3. # You can find other versions of Ubuntu by command below.

4. # $ curl -

s https://registry.hub.docker.com/v1/repositories/ubuntu/tags | sed 's/,/\n/

g' | grep name | cut -d '"' -f 4

5. ################

6. FROM centos:6

7.

8. RUN yum update -y

9. ################

10. # Install packages for building ndnx

11. ################

12. RUN yum groupinstall -y 'development tools' &&\

13. yum install -

y https://repos.fedorapeople.org/repos/openstack/EOL/openstack-

icehouse/epel-6/iproute-2.6.32-130.el6ost.netns.2.x86_64.rpm &&\

14. yum install -y expat-devel sqlite-devel boost-devel openssl-devel &&\

15. yum install -y libpcap-devel &&\

16. yum install -y java-1.7.0-openjdk java-1.7.0-openjdk-devel &&\

17. yum install -y sudo libxml2 net-tools asciidoc

18.

19. ENV JAVA_HOME /usr/lib/jvm/java-1.7.0-openjdk.x86_64

20.

21. ################

22. # Build pkg-config

23. ################

24. RUN yum install -y wget &&\

25. wget https://pkg-config.freedesktop.org/releases/pkg-config-

0.29.tar.gz &&\

26. tar xvf pkg-config-0.29.tar.gz

27. WORKDIR /pkg-config-0.29

28. RUN ./configure --with-internal-glib && make && make install

29.

30. ################

31. # Build ndnx

32. ################

33. WORKDIR /
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34. RUN wget http://ftp.yz.yamagata-

u.ac.jp/pub/network/apache/ant/binaries/apache-ant-1.9.11-bin.tar.gz &&\

35. tar zxvf apache-ant-1.9.11-bin.tar.gz

36. ENV PATH $PATH:/apache-ant-1.9.11/bin

37. RUN yum install -y git-core

38. RUN git clone https://github.com/named-data/ndnx.git

39. WORKDIR /ndnx

40. RUN git checkout master

41. RUN ./configure &&\

42. yum install -y make &&\

43. make &&\

44. wget http://repos.fedorapeople.org/repos/dchen/apache-maven/epel-

apache-maven.repo -O /etc/yum.repos.d/epel-apache-maven.repo &&\

45. yum install -y apache-maven &&\

46. mvn clean package &&\

47. make test &&\

48. mkdir -p /usr/local/man/man1 &&\

49. make install &&\

50. (cd javasrc; ./jrun; make install)

51. ################

52. # Run ndnx

53. # Docker container changes own status to "stopped" if no foreground process

is running.

54. # "tail -

f /dev/null" command keeps running in foreground and container status "runni

ng".

55. ################

56. #CMD ndndstart && ndnr &

57. #ENTRYPOINT ["ndndstart", " && ", "ndnr", "&"]

Script of Docker File (on Ubuntu 16.04)

1. ################

2. # Pull base image

3. # You can find other versions of Ubuntu by command below.

4. # $ curl -

s https://registry.hub.docker.com/v1/repositories/ubuntu/tags | sed 's/,/\n/

g' | grep name | cut -d '"' -f 4

5. ################

6. From ubuntu:16.04

7.

8. ################

9. # Install packages for building ndnx

10. ################
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11. RUN apt-get -y update &&\

12. apt-get -y install git &&\

13. apt-get -y install build-essential libcrypto++-dev libsqlite3-

dev libboost-all-dev libssl-dev &&\

14. apt-get -y install pkg-config libpcap-dev &&\

15. apt-get -y install default-jre default-jdk &&\

16. apt-get -y install sudo libxml2-utils net-tools

17. ################

18. # Build ndnx

19. ################

20. RUN git clone -b master https://github.com/named-data/ndnx.git

21. WORKDIR ndnx

22. RUN ./configure &&\

23. apt-get -y install make &&\

24. make &&\

25. apt-get -y install maven &&\

26. mvn clean package &&\

27. make test &&\

28. mkdir -p /usr/local/man/man1 &&\

29. make install

30.

31. ################

32. # Run ndnx

33. # Docker container changes own status to "stopped" if no foreground process

is running.

34. # "tail -

f /dev/null" command keeps running in foreground and container status "runni

ng".

35. ################

36. CMD ndndstart && ndnr &

UE Program – “Contents Table” (in Python)

1. #!/usr/bin/env python3

2. # -*- coding:utf-8 -*-

3.

4. import tkinter

5. from tkinter import messagebox, scrolledtext

6. import subprocess

7. import select

8. import os

9. import signal

10.

11. WINDOW_SIZE = "600x400"
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12.

13. # Run Button

14. btn_upd_1 = None

15. btn_upd_2 = None

16. # Output textbox

17. txt_out = None

18. # current script job/process

19. cur_process = None

20. # mark if Tk is closing

21. close_flag = False

22. # Tk root

23. root = tkinter.Tk()

24.

25.

26. def disable_allbtn():

27. global close_flag

28. global btn_upd_1

29. global btn_upd_2

30. if close_flag:

31. return

32. btn_upd_1.configure(state=tkinter.DISABLED)

33. btn_upd_2.configure(state=tkinter.DISABLED)

34.

35. def enable_allbtn():

36. global close_flag

37. global btn_upd_1

38. global btn_upd_2

39. if close_flag:

40. return

41. btn_upd_1.configure(state=tkinter.NORMAL)

42. btn_upd_2.configure(state=tkinter.NORMAL)

43.

44. def cb_runbash_withoutput(script):

45. global cur_process

46. global txt_out

47. global root

48. global close_flag

49. # clear output

50. txt_out.delete(1.0, tkinter.END)

51. # create subprocess

52. process = subprocess.Popen(script, shell=True, preexec_fn=os.setsid,

53. stderr=subprocess.PIPE, stdout=subprocess.PIPE)

54. # read subprocess stderr/stdout in non-blocking

55. outpoll = select.poll()
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56. errpoll = select.poll()

57. outpoll.register(process.stdout, select.POLLIN)

58. errpoll.register(process.stderr, select.POLLIN)

59. # store current subprocess

60. cur_process = process

61. while True:

62. output = ""

63. errput = ""

64. # poll stdout, timeout 2ms

65. if outpoll.poll(2):

66. output = process.stdout.readline().decode()

67. # insert stdout to txt_out

68. if output and not close_flag:

69. txt_out.insert(tkinter.INSERT, output)

70. # poll stderr, timeout 2ms

71. if errpoll.poll(2):

72. errput = process.stderr.readline().decode()

73. # insert stderr to txt_out

74. if errput and not close_flag:

75. txt_out.insert(tkinter.INSERT, errput)

76. # scroll text if have output

77. if (output or errput) and not close_flag:

78. txt_out.see(tkinter.END)

79. # do eventloop when not closing

80. if not close_flag:

81. root.update()

82. # process end

83. if output == "" and process.poll() is not None:

84. break

85. # get process return code

86. code = process.poll()

87. # reset current subprocess

88. cur_process = None

89. return code

90.

91. # callback

92. def cb_update_1():

93. global close_flag

94. disable_allbtn()

95. code = cb_runbash_withoutput("./table.sh /satolab/demo.mp4")

96. # exit when closing

97. if close_flag:

98. return

99. if code != 0:
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100. messagebox.showerror(title="Error", message="run bash script failed

")

101. else:

102. messagebox.showinfo(title="Info", message="run bash script success"

)

103. enable_allbtn()

104.

105. def cb_update_2():

106. global close_flag

107. disable_allbtn()

108. code = cb_runbash_withoutput("./table.sh /satolab/demo.mp4")

109. # exit when closing

110. if close_flag:

111. return

112. if code != 0:

113. messagebox.showerror(title="Error", message="run bash script failed

")

114. else:

115. messagebox.showinfo(title="Info", message="run bash script success"

)

116. enable_allbtn()

117.

118.

119. def on_closing():

120. global cur_process

121. global root

122. global close_flag

123. # if cur_process still running

124. if cur_process:

125. if messagebox.askokcancel("Quit", "There is task running, do you wa

nt to quit?"):

126. # kill subprocess

127. os.killpg(os.getpgid(cur_process.pid), signal.SIGTERM)

128. cur_process = None

129. else:

130. return

131. # mark closing

132. close_flag = True

133. # close window

134. root.destroy()

135.

136. root.title("Video-Contents-Table")

137. root.geometry(WINDOW_SIZE)

138. # register cloing event callback
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139. root.protocol("WM_DELETE_WINDOW", on_closing)

140.

141. btn_upd_1 = tkinter.Button(root, text="Content-1", command = cb_update_1)

142. btn_upd_1.pack(fill=tkinter.X, pady=10)

143. btn_upd_2 = tkinter.Button(root, text="Content-2", command = cb_update_2)

144. btn_upd_2.pack(fill=tkinter.X, pady=10)

145.

146. txt_out = scrolledtext.ScrolledText(root)

147. txt_out.pack(fill=tkinter.BOTH, expand=True, padx=20, pady=20)

148.

149. tkinter.mainloop()

Table.sh

1. #!/bin/bash

2. name=$1

3. vlc ccnx://$name


