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Abstract—The amount of services located in the network has
drastically increased over the last decade which is why more
and more datacenters are located at the network edge, closer to
the users. In the current Internet it is up to the client to select
a destination using a resolution service (Domain Name System,
Content Delivery Networks ...). In the last few years, research
on Information-Centric Networking (ICN) suggests to put this
selection responsibility at the network components; routers find
the closest copy of a content object using the content name as
input.

We extend the principle of ICN to services; service routers
forward requests to service instances located in datacenters
spread across the network edge. To solve this problem, we first
present a service selection algorithm based on both server and
network metrics. Next, we describe a method to reduce the state
required in service routers while minimizing the performance
loss caused by this data reduction. Simulation results based on
real-life networks show that we are able to find a near-optimal
load distribution with only minimal state required in the service
routers.

Keywords-Service-Centric Networking, Information-Centric
Networking, Latency-aware selection, name-based routing, QuLa

1. INTRODUCTION

Over the last decade Internet usage has developed from
data delivery between end-hosts to data distribution from one
source to multiple destinations (e.g. many users watching
the same video). To meet the requirements of the increasing
user demand, Content Delivery Networks (CDNs) were de-
veloped to reduce network latency, bandwidth and congestion
by caching content in the network edge and load-balancing
requests over multiple replicas. While CDNs were originally
developed for static content retrieval, certain implementations
such as Akamai [1] also put a great deal of focus into
support for data-processing applications. However, the long-
term sustainability of CDNs is endangered by technology
heterogeneity, poor reactivity, inefficient resource utilization
and coarse granularity in management operations, as shown
in recent research [2].

Another approach to optimize content delivery, Information-
Centric Networking (ICN) [3] [4] [5] [6] [7] [8], allows users
to send out an anycast-like message (i.e. one identifier can
address multiple replicas) to search for data, using object
names instead of IP addresses to identify the desired data.
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The responsibility to find the nearest content replica and
load-balance requests resides with the network components.
The concept of ICN led to several forwarding and caching
optimizations to improve content delivery [9] [10] [11].

Both CDN and ICN are developed to support static data
retrieval and do not consider complications introduced by
services: services are prone to dynamic service times, service
requests often need to consider input data and user-specific
requests can’t be cached. Currently, services often reside
in datacenters or cloud sites, although the induced network
latency and large bandwidth required between users and the
cloud is often not desired for data-processing applications.
Similar to how CDNs and ICN bring content closer to the user,
we can also move services to clouds located in the network
edge [12] [13] [14]. However, current solutions to facilitate the
distribution of real-time data-processing services are limited
to specific cloud infrastructures; an ICN-like solution could
overcome this problem.

This led to the development of Service-Centric Networking
(SCN) [15] which expands the principles of ICN to allow
efficient provisioning, discovery and execution of services
in the network. Requests are processed by service routers
and forwarded to the instance with the lowest response time.
Similar to ICN, SCN also uses object names to identify the
desired services.

In this paper we present a static service selection algorithm
which minimizes the average system response time in Service-
Centric Networking. Our proposed algorithm, Queue and La-
tency (QuLa), considers both network latency and server pro-
cessing times while calculating the optimal load distribution.
Our selection algorithm runs on a centralized broker which
contains knowledge of both server and network metrics. The
outcome of this algorithm is a load distribution matrix which
maps the demand generated by the users to the service instance
replicas deployed in the network. Using this load distribution
matrix, a service router is able to forward requests to the
nearest replica based on the client source location and the
requested service name (source-based routing). As we envision
a large amount of services and users in a SCN network, the
state maintained in service routers poses a scalability problem.
To overcome this problem, we present a weighted average
method to reduce the amount of state required in the service

cps™

Conference Publishing Services


https://core.ac.uk/display/55733134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

router forwarding tables while minimizing the performance
loss caused by this data reduction. This concept has already
been proposed in a prior publication [16] using artificial
networks for preliminary results. To verify the benefit of our
selection algorithm and weighted average forwarding approach
in more practical environments, we performed simulations on
real-life network topologies which are presented in this paper.
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Fig. 1. Users send demand on the network which is forwarded to a service
instance by service routers using a name-based forwarding scheme.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of related work on ICN, SCN and
name-based service selection and routing. The QuLa service
selection algorithm is presented in section III. Section IV
explains the weighted average method to eliminate the client
source from the forwarding process. Our simulation results
show that QuLa is able to approximate benchmark results with
minimized router state, as presented in section V. Finally, in
section VI we present our conclusion and discuss future work.

II. RELATED WORK

In this section we briefly discuss related work to the
different aspects of QuLa. Although there is much related
work on architectural designs for SCN (e.g. Serval [17] and
SCAFFOLD [18]), we will focus on service selection and
name-based routing in this paper.

Service selection. Service selection is responsible for find-
ing the best instance for each request based on a certain
objective. In case of the Zoom-in-zoom-out algorithm [19]
the objective is to select a minimum set of servers while
keeping the experienced delays below a certain threshold.
A more generic approach such as DONAR [20] uses a
generic cost function during the selection process which needs
to be minimized. While Zoom-in-zoom-out only considers
network delays, DONAR also takes server processing times
into consideration. QulLa considers both network and server
metrics while minimizing the average system response time
as experienced by the users. Unlike DONAR, which suggests
a decentralized mapping scheme, QulLa runs as a one-time
centralized selection algorithm for a certain service placement
and request pattern.

Name-based Routing. As described in the principles of
SCN, the network components are responsible for forwarding a
request to a service instance without using a destination locator
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such as an IP address. This means that the final destination
is unknown during the forwarding process, similar to native
IP anycast where one address can correspond with several
destinations. IP anycast is limited to the use of only network
metrics when forwarding a request. Related work such as a
load-aware anycast CDN [21] attempted to overcome these
limitations by introducing a centralized CDN controller which
considers both network and server metrics in the redirection
mechanism. However, this solution was focused on CDNs and
does not overcome the limitations of CDN itself.

Research shows that the use of an additional selection
component such as an Akamai-server is more beneficial than
IP routing in more than 50% of the scenarios [22]. Therefore,
our work uses a similar forwarding scheme to the ICN frame-
work Content Centric Network / Named Data Networking
(CCN/NDN) [4]; each router forwards a request to the next
router based on the requested service name. This allows the
network to quickly set up alternative paths when network
hotspots are detected, even if multple services are located on
the same destination.

There are multiple ways to populate the forwarding tables. 4
first approach is to modify existing protocols to support name-
based requests (e.g. OSPF-N [23]). A second approach is to
populate the forwarding tables at runtime by learning which
interfaces receive the fastest response (e.g. Greedy Ant Colony
Forwarding (GACF) [24] and CCN/NDN [4]). Another popu-
lar and third method is to combine the previous two approaches
by modifying existing ICN approaches, focused on static
content retrieval, to support service requests. SoCCeR [25]
is a decentralized routing protocol which adopts this method
by building on top of CCNx (an implementation of CCN)
and uses Ant Colony Optimization to gather both network and
server metrics to configure the Forwarding Information Base
of CCNx nodes. While SoCCeR is a plausible way to populate
the forwarding tables at runtime by learning the best interfaces
to forward on, QuLa aims to find the best load distribution and
maps this to the forwarding tables in one iteration, minimizing
the activity of the routing plane at runtime.

An important implication of expanding ICN/CCN principles
to services is that processing costs of services are generally
much higher than retrieving a static content object. In contrary
to static data retrieval techniques such as ICN/CCN where each
request can be answered by multiple destinations and only the
fastest is accepted, each service request in SCN should be
processed by only one service instance to avoid unnecessary
use of computing resources. Therefore, the QuLa selection
mapping and the forwarding components presented in this
paper will assign each request to exactly one service instance.

III. QULA: FINDING THE BEST LOAD DISTRIBUTION

The main goal of our selection algorithm is to minimize
the average system response time, which depends on both
the time spent on server and the time a request travels in
the network. Using standarized routing protocols would be
insufficient to get a realistic prediction of the response time



as they usually only consider network metrics (e.g. hop-
count, bandwidth, network latency ...) which are often used in
shortest path algorithms such as Dijkstra’s algorithm [26]. To
find the response time resulting from a certain load distribution
we use the queue size to calculate the average time a request
will spend on a server and we use network latency for the
Round Trip Time (RTT) of each request. This is why our
algorithm is called Queue and Latency (QuLa).

Our implementation of QuLa is based on Simulated Anneal-
ing [27] and as a benchmark we adopted (1) a greedy shortest
path approach, (2) assigning equal load to each server and (3)
a dynamic assignment of each request to the shortest queue
upon request arrival. In this section we present the problem
statement solved by the QuLa selection algorithm and provide
a more detailed description of the implemented algorithms.

A. Assumptions

Mapping user demand to a service instance for each user on
the network individually is not feasible when load-balancing
must be done in real-time. To overcome this scalability
problem, we aggregate the demand of all users in a nearby
geographical area to one demand node, which we will refer
to as client node i. Using this approach our selection becomes
more coarse-grained but is more scalable as it induces less
state to be kept in the forwarding tables. We use server node
J to refer to a collection of computing resources located in a
nearby geographical area (e.g. datacenter or cloud site).

Next, we assume that each server node has a queue for
incoming requests and produces stable, reproducible process-
ing times. In our experiments the demand coming from users
arrives with an average rate ressembling a Poisson process.
We model the server queuing times using an M/G/1 queue,
although the principles of this paper apply to any other queue
as well.

Last, we assume that the given service placement is fixed
for the duration of the experiment; no service instances are
deployed, migrated or stopped during our experiments to focus
on the selection quality. The user demand pattern also does
not change over time; each user may have a different request
rate but the average of each user is fixed throughout our
experiment. If any of these fixed values were to change over
time, a new selection should be made to maintain an optimal
load distribution.

B. Problem statement

To solve the selection problem we consider a network graph
containing edges £, nodes N and services S. The request rate
from node 7 for service s is denoted as the lambda value A(7, s).
All client nodes belong to the collection N, C N. Server
nodes Ng C N are nodes which host at least one instance of a
service s € §. The outcome of the service selection is a load
distribution matrix R(i,j,s) € [0, 1] which maps a fraction of
load from client node i for service s to a server node j which
hosts at least one instance of 5. The time to process a request
for service s on server node j after it leaves the server queue
is called the average service time, denoted as 7.
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The cost to minimize is the average response time, which is
largely affected by the time spent in the network and the time
spent on the server. The more demand a server must process,
the longer new requests must spend in queue before they get
processed. This leads to the following objective function:

zs( Tra+ Tproc. J¥R(i.j5)*A(is)

i € Nej € Ngs €
S A
i€ Nes e S

min (1)

Taking the sum of T, and T),,.,. gives us the response
time of a single request. 77, is the network Round Trip
Time (RTT) between client node i and server node j. The total
time spent on a server, including queue delay and the service
processing time, is denoted as Tp... = f(R(i,J,s)). Since
we’re only sending a fraction R (i, j, s) of demand A(i, s) to the
service s on server j, we must only consider that fraction of the
response time for each request in the total sum. Therefore, we
multiply the response time of each request with R (i, j, s) and
A(i, s). In each iteration of our sum, we consider the response
time generated by assigning a fraction of demand to a server
node. In order to find the average system response time for
all users and services combined, we normalize the numerator
by dividing by the total user demand.

Calculating the time spent on server depends on the ex-
pected queue size and processing time. Using a M/G/1 queuing
system as an example and assuming that we have found a

load distribution matrix, the expected processing time can

«T2

be calculated as follows; Tproe. = ;(I—Tip) + K (Pollaczek-
Khinchin mean value formula) which is the sum of the
average queue delay and the average service time. We use
p to represent the total incoming request rate on node j
divided by the service rate. Now consider that we are only
assigning a fraction R (i, j, s) of demand to service instances,
wefind p =T 3,;cn A(i,s)* R(i,j,5) where l/m is
the service rate.

We add a constraint to guarantee that the demand of each

client node is fully satisfied:

VieN, VseS: » Rjs) =1
J € Ns

@)

Our goal is to find a load distribution matrix R which
minimizes the average system response time and we use (1)
to measure the quality of a load distribution. However, as we
assign fractions of demand to servers we also create a infinitely
large solution space of floating numbers. Therefore we present
a search heuristic to find a solution in a plausible time.

C. Simulated Annealing

Simulated Annealing (SA) is a search heuristic to scan a
large solution space and return the best found solution in a
finite time. The principle of SA is to explore many possible
solutions at the start, even if the new solution is worse than
the previous one, while towards the ending SA focuses on a
smaller search space around the current best solution.

The higher the starting temperature, the more solution space
we explore before converging to local minima. However,



TABLE 1
PARAMETERS USED FOR SA

Parameter Value Description

T 10 000 | The temperature decides the likelihood of accepting a solution worse than the current best one. At higher
temperatures SA is more likely to accept a worse solution to continue exploring the search space.

Tsi0p 1 The temperature at which SA stops exploring the search space and returns the best found solution.

repetitionCount | 2 This variable determines how many solutions are explored at one temperature value.

coolingRate 0.01 The speed at which the temperature decreases.

Delta (A) 0.1 Indicates the amount of change made to a solution when generating neighboring solutions.

the starting temperature along with the cooling rate heavily
influence the execution time before a solution is returned.
Therefore, we performed a parameter sweep to evaluate the
performance increase when running SA for a longer time and
found a suitable parameter set for our experiments, presented
in Table I. For the topologies used in our experiments, the
execution time of SA is between 1 second for a small topology
and 60 seconds for the largest topologies. The characteristics
of these topologies are described in more detail in section V-B.

For a more detailed explanation of Simulated Annealing we
refer to [27].

D. Benchmark algorithms

To evaluate the performance of our S4 implementation, we
implement two static selection approaches and one dynamic
selection algorithm, presented in the paragraphs below.

1. Greedy Algorithm. User demand is assigned to servers
by prioritizing client-server pairs with the smallest latency.
This selection approach starts with the client-server pair in-
ducing the smallest network latency and assigns that user’s
demand to the respective server until either the server capacity
(maximum amount of requests processed per time unit) is met,
or until all client demand has been fully assigned. Although
intuitively we expect this approach to induce the least latency,
our results show cases where the overall response time would
benefit from a non-greedy selection by prioritizing certain
client-server pairs with slightly higher network latency. We
discuss these results in section V.

2. Equal Share. As Greedy fully utilizes nearby servers
before using a more distant server, we also investigate the
performance of an equal distribution (Equal) where each server
is assigned an equal amount of demand.

3. Joint Shortest Queue (JSQ). Any static selection algo-
rithm is sensitive to unexpected load conditions. A dynamic
selection approach allows components (in our case, the service
routers) to react to changing network and server conditions
at runtime but requires both accurate measurements to be
available when assigning a request to a server. To avoid
scalability problems, most dynamic algorithms only consider
a smaller amount of metrics when assigning a request. One
of these dynamic algorithms, Joint Shortest Queue (JSQ), is
an often used selection algorithm for server farms [28] which
only considers the server queue size. When a request arrives
on a selection component it is assigned to the server with the
least requests in its queue to minimize the mean response time
on every server [29].
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Contrary to (1), JSQ does not consider any network metrics.
In section V-D we study whether or not the additional network
metrics considered in the static SA selection algorithm can
outperform the dynamic responsiveness of JSQ.

IV. POPULATING THE SERVICE ROUTER FORWARDING TABLES

The QuLa service selection algorithm returns a load distri-
bution matrix R which maps fractions of all user demand to
service instances. The goal is for the service routers to forward
requests exactly as dictated by the load distribution matrix
and induce the same response time as predicted with (1). We
foresee a scalability problem if each forwarding table must
consider both the source of the request as well as the desired
service name (we refer to this method as source-based routing,
illustrated in Fig. 2). Similar to the hop-based forwarding
scheme from CCNx, we propose that service routers only
consider the desired service name when selecting the next hop
to forward a request to.

In this section we present a statistical load-balancing method
used by each service router on the path to a service in-
stance, without considering the source of the request. We
claim that this approach induces almost the same overall
average response time as induced by source-based routing
when accurately following the QuLa load distribution matrix.
As our load-balancing technique is based on taking a weighted
average of the QuLa load distribution, we refer to this as the
QulLa weighted average approach. In section V-C we evaluate
the performance degradation caused by using approximated
values in QuLa weighted average compared to source-based
routing.

A. VARIANT 1: SOURCE-BASED ROUTING

Using this approach, each service router is configured with
a separate forwarding table for each client node as dictated by
the QuLa load distribution matrix. As described in our problem
statement, A(i, s) is the total demand from client i for service s
and R(i, j, s) is the fraction of that demand assigned to server
Jj. Now consider P}'(i,s) the incoming percentage of A(i,s)
on service router k, and PZ;”(i, s) the percentage of P;;”(i, )
forwarded to router / on router k. Initially, all values of P and
P are set to zero. We now configure the forwarding tables as
follows: (1) for each client-server pair (i,j) and a given service
s, find the path with lowest network latency between i and ;.
(2) For each router k£ on the selected path, add the value of
R(i, j, s) to both ij(i, s) and P{'(i,s), with  being the next
service router on the path to j. (3) Once we iterated through



each pair (i,j) for service s, we write P{;"(i,s) as fraction of
P/(i,s) to normalize all values in range [0,1].

We illustrate a sample configuration in Fig. 2: 40% of user
1’s demand is sent to R5, which in turn forwards 50% to R6
and 50% to R7. As dictated by the service selection, 20% of
user 1’s demand reaches zone B and 20% reaches zone C.

The forwarding table of a service router k is populated by
setting P?/(i, s) as outgoing fraction for each pair (i,s) and

each neighbor router /.
‘ Server A
‘ Server B

‘ Server C

60% e 100%

User2 100%

R R
[ rvcetome | soure | orion |

u1 R6 (50%), R7 (50%)
v2 R6 (20%), R7 (80%)

R2

Serv-facedetection

Serv-facedetection

Fig. 2. Source-based routing visualized.

B. Variant 2: Weighted Average

To overcome the scalability challenge caused by the large
amount of state required in source-based routing, we propose a
new forwarding table configuration method which does not re-
quire the request source to be considered. We take a weighted
average of the values calculated in the previous paragraph to
eliminate the source address from the equation. By keeping the
amount of traffic on each link close to the predicted values we
aim to minimize the performance degradation caused by this
averaged approximation.

Consider the values P}'(i, s) and P{(i,s) which represent
the fraction of demand from client i for service s expected
to arrive at router k and the outgoing percentage on each link
respectively. Using A(i, s) as the amount of traffic generated by
client i for service s, we find the total incoming demand for
service s on router k to be D} (i,s) = X; ¢ w, A(i,s)* P{'(i,s) ,
and the outgoing demand on the link to router /, D" (i, s) =
e n, A, 8)* P’”(z s)x PY'(i, s). Taking the welghted average
to eliminate the source address, we get
> Ads)* P’”(t sy Po(i,s)

i€ Ne

> Ali,s)* P;:’(I,S)
i € N¢

Duur( v)
Dm ( s)

P(s) = 3)

where P{"(s) now represents outgoing percentages while
considering only the service name as input. Forwarding tables
are populated with the service names as input and the respec-
tive values of P7j’(s) as output. Using the newly calculated
values of P¢/(s), the amount of traffic on each link and
thus the load induced on each server approximates the same
load distribution as source-based routing, keeping the system
response time near the expected value.
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To avoid routing loops after eliminating the source address
from the forwarding tables, traffic should only follow links
belonging to a minimum spanning tree of the network graph.
A minimum spanning tree is constructed with a minimal subset
of edges which has the lowest overall edge weight to connect
every vertex of a graph. We use Kruskal’s algorithm [30]
to construct a spanning tree and as edge weight we use the
inverted amount of expected traffic on each edge, based on
the service selection load distribution. Using this metric as
edge weight, we ensure that edges which are important for an
efficient load distribution are included in the spanning tree.

V. SimuLaTION RESULTS

In this section we present our results on the performance of
our service selection algorithms achieved through simulations
on several network topologies. First, we describe the different
network topologies used in our simulations in section V-A.
Next, in section V-B we describe our simulation setup followed
by a comparison of both source-based routing and QulLa
weighted average in section V-C. Last, in section V-D we study
the performance of the static QuLa algorithm which runs once
but uses both network and server metrics, in comparison with
the dynamic JSQ algorithm based on only server queue size.

Fig. 3.

A visualization of the simulated DSL-inspired networks.

A. Network topology

Our simulations are performed on variations of two network
topologies: (1) Digital subscriber line (DSL) networks and (2)
the European GTS CE topology. In a Digital subscriber line
(DSL) network, clients are wired to one regional connection
point and a ring of connection points is used to connect all
the users on the network. We simulate this by connecting all
servers to a ring and each server is the root of a network
tree where the clients are located at the leafs. This type
of network is illustrated in Fig. 3. The European GTS CE
topology is a real-life topology available in the dataset of the
Topology Zoo [31], an ongoing project to collect data network
topologies from around the world. To approximate the edge
latency between nodes in the GTS CE topology we used the
Haversine distance and assumed that information travels at the
speed of light.
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For both topologies, we generate 50 sample networks with
different client-server placement and load distributions. The
characteristics of each sample network are identical, as shown
in Table II.

TABLE II
NETWORK CONFIGURATION OF SIMULATED TOPOLOGIES.

DSL GTS CE
#Service routers 200 130
#Clients 10 10
#Servers 3 3
Router edge degree 2 2
Avg diameter 8 10
Link latency distribution uniform [10,100] | Haversine
Service time 25ms

B. Simulation setup

Our simulations are based on an extension of CloudSim
[32], a framework for modeling and simulating cloud comput-
ing infrastructures and services. We extended each CloudSim
datacenter object with a forwarding table and exactly one
virtual machine for each service hosted on that datacenter so
that multiple services do not influence the service time. In
our implementation, client applications are implemented as a
Poisson process, requests are handled in order of arrival and
with a deterministic service time (sz.’s = mz). This allows
us to model our servers as an M/D/1 queue, a special case of
M/G/1. In this case, the server processing time described in
section III-B can be written as 7. = % * T

The service selection algorithms described in section III run
on a centralized broker which contains the demand patterns
and network characteristics prior to the simulation start. The
load distribution matrix is mapped to the forwarding tables
as described in section IV. Next we run the simulation using
the known demand pattern and measure the average system
response time as quality representation of each algorithm. All
simulations are performed on the iLab.t Virtual Wall [33] using
a server with a Hexacore Intel E5645 (2.4GHz) CPU, 24GB
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response times using source-based routing and weighted average for (a) a DSL inspired network and (b) the European GTS CE topology.

RAM, 1x 250GB hard disk and 1-5 gigabit network interface
cards.

C. QuLa weighted average vs. source-based routing

We study the performance of the different service selection
algorithms presented in section III using the average response
time as quality measurement. Using source-based routing we
are able to map the selection to service routers and achieve
the desired response time. However, to reduce the router state
scalability problem we investigate the performance degrada-
tion of QulLa weighted average which attempts to achieve
the same average response time as source-based routing but
with less state required. To avoid routing loops, weighted
average routing was simulated on a minimized spanning tree
as described in section IV-B.

Consider Fig. 4, the measured response times (Y-axis) for
a set of fixed load values (X-axis) are illustrated for both
source-based routing (dashed) and the QuLa weighted aver-
age approach (solid). Each curve color represents a different
service selection used to obtain the load distribution. For each
topology type we generated 50 sample networks and averaged
the response times to obtain the values shown in Fig. 4.

First, we study the dashed curves (source-based routing) to
compare the performance of the selection algorithms without
taking the performance degradation of QuLa weighted average
into account. A Greedy selection works well under low load
conditions as it minimizes the network latency while the
servers run stable. However, Greedy assigns demand to a
server until it reaches its maximum capacity before sending
requests to a more distant server, making it more sensitive
to peaks at high system load and resulting in high response
times (above 80% in Fig. 4). Equal is the opposite of Greedy,
it assigns load equally to all servers from the beginning and
does not consider network latency. Equal does not fully utilize
nearby servers, inducing higher response time for low load
conditions, but is able to keep the system stable when load
increases (servers only operate near maximum load when
the total system load approaches 95%). With a good set of



parameters, S4 will lean more towards a greedy selection
for low load conditions and converges towards an equal
distribution at high load values. JSQ performs similar to Equal
but is able to make a more fine-grained decision by examining
the measured queue sizes at runtime. We discuss JSQ in more
detail in section V-D.

Next, consider the solid curves representing the perfor-
mance of the QulLa weighted average forwarding approach.
Compared to source-based routing we can no longer assume
that the measured system response time equals the expected
response time, as the network is now limited to a minimal
spanning tree and the forwarding tables contain reduced state
with approximated values. Using QuLa weighted average with
a minimal spanning concentrates the traffic flow on fewer and
longer paths towards the servers. Each server can decide to
process a request or to forward it to the next server. The more
servers located on a path towards another server, the higher the
chances that a request is processed by one of the intermediate
routers. Using Equal, a percentage of requests assigned to the
furthest servers will be processed by the intermediate servers
on the path, making this a more greedy approach which favors
the network latency. This greedy effect is visible in Fig. 4
where Equal performs better with Qula weighted average than
with source-based routing for load values below 80%, as the
network latency is most important in that area.

The small deviation between source-based routing and
QuLa weighted average at high load values can be explained
by the use of a spanning tree which will force traffic to
pass more intermediate servers than expected. Because of this,
nearby servers will operate at maximum capacity before more
distant servers reach their maximum, which can reduce their
availability and increase the response time. For other load
cases we observe that the QuLa weighted average approach
is able to approximate the average system response time of
source-based routing but with reduced state in the service
router forwarding tables.

D. Static QuLa weighted average vs. dynamic JSQ

In this section we determine the performance trade-off
between our static QuLa selection algorithm which runs once
prior to the simulation start and the dynamic JSQ algorithm.
To evaluate JSQ we consider the best case scenario where
each service router knows the server queue sizes upon request
arrival and forwards each request on the lowest latency path
to the server with the smallest queue.

Using Fig. 4 we observe that JSQ has a similar pattern
to Equal as both algorithms tend to keep the server load
equally distributed. JSQ generally performs better than Equal
due to load-balancing at runtime with an exact knowledge of
queue sizes upon request arrival. This performance difference
becomes more visible for higher system load as more precision
is required and thus JSQO’s runtime information becomes more
valuable. Compared to SA, we notice that JSO generally
performs worse as it does not consider network latency which
is an important factor for low to average system load. When
the systems are under high load and the time spent on server
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becomes more critical, JSQ is the better performing algorithm
(90% mark in Fig. 4).

Consider the response time distribution for both S4 and JSQ
in Fig. 5 for (a) 50% and (b) 90% server load. When the system
runs stable at 50% load, small peaks in user demand will
not heavily affect server queuing times, making the network
latency an important factor to consider. For these scenarios,
SA is able to deliver a better response time for all the users in
the network (Fig. 5 a). As the load increases it becomes more
important to load-balance requests across multiple servers to
avoid overloading the closest instances. For these higher load
values we observe that 80% of the users experience a lower
response time with SA4 than with JSQ. However, the remaining
20% of users in SA experience large response times due to
overloaded servers, up to 2-3 seconds. JSQ keeps the servers
stable and therefore guaranteed a maximum response time of
1 second to 99% of it’s users (Fig. 5 b).

Assuming that the network latency is not negligible com-
pared to the server queuing times, we conclude that our pro-
posed SA selection algorithm, in combination with the QulLa
weighted average configuration approach (cfr. section 1V),
results in a lower response time than obtained through JSQ.
Although JSQ requires less information monitoring than S4,
our static selection only requires one run for a given setup
while JSQ must make a selection upon each request arrival.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a name-based forwarding ap-
proach to forward requests to service instances so that the
average response time is minimized. First, we described a
service selection algorithm which maps user demand to service
instances based on both server and network characteristics. To
avoid scalability problems, we use QuLa weighted average to
reduce the state required in service routers. Next, we studied
the performance degradation of this reduced state compared
to source-based routing. Last, we study the performance dif-
ference between our static selection algorithm and a dynamic
selection at runtime.

We conclude that our weighted average approach is able to
approximate the same response time as source-based routing
but with less state required. Our service selection algorithm
implemented as SA4 is able to find a near-optimal load distri-
bution regardless of the network characteristics or amount of
user demand. However, for high load values we conclude that
the dynamic JSQ algorithm performs better due to its ability
to keep the server load equally distributed at runtime, whereas
the approximation of S4 makes the system less stable.

In future work we focus on the placement of resources
across the network. There is plenty of existing research on
placement algorithms when the location and demand pattern
of users is known. However, this problem becomes more
complicated when users can come online from any location
and still desire a response below a certain threshold. We will
focus on the deployment of resources across the network so
that a minimum service quality can be guaranteed to users,
regardless of their location or demand.
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