Metadata, citation and similar papers at core.ac.uk

a. Jucuc adllu alc V-a/\Val € wi Y, C C
and routing in Service-Centric Networking

Piet Smet, Pieter Simoens, Bart Dhoedt

Abstract: Due to an explosive growth in services running in differ- cient resource utilization, poor reactivity and coarsenglarity
ent datacenters, there is need for service selection and routingtle- in management operations [3].

liver user requests to the best service instance. In current solions,
it is generally the client that must first select a datacenter to for-
ward the request to before an internal load-balancer of the selded

Information-Centric Networking (ICN) [4] integrates cent
delivery as a native network feature and solves the selectio
datacenter can select the optimal instance. An optimal selectiorer problem by leveraging in-network gaches and.load.-l.)alzgncm
quires knowledge of both network and server characteristics, mia In IC_N_’ users are_ abl_e to address objects by _a_n identifieowtth
ing clients less suitable to make this decision. Information-Centric Providing a destination locator. More specifically, usezads
Networking (ICN) research solved a similar selection problem for OuUt an anycast-like message (i.e. one identifier can addreks
static data retrieval by integrating content delivery as a nativenet- tiple replicas) to search for data, using object names aaisté
work feature. IP addresses to identify the desired data; it is up to thesreud

We address the selection problem for services by extending forward requests to the closest data replica. This coneejptiol

the ICN-principles for services. In this paper we present Queue various forwarding and caching optimizations to improve-co
and Latency (QuLa), a network-driven service selection algoritm tent delivery [5] [6] [7].

which maps user demand to service instances, taking into account Existi luti i timi tent deli h ablIC
both network and server metrics. To reduce the size of service Xisting solutions to optimiz€ content delivery, such a

router forwarding tables, we present a statistical method to ap- archltecture_s 8] [9] [10_] [11] [12] ar_1d CDNs, are des_lgned t
proximate an optimal load distribution with minimized router state ~ SUPPOrt static data retrieval and typically do not consiuEm-
required. Simulation results show that our statistical routing ap- Plications introduced by services: caching is less evideert
proach approximates the average system response time of sogec ViCes are prone to dynamic service times and often requingtin
based routing with minimized state in forwarding tables. data to consider. Currently, services often reside in ési@cs
or cloud sites. Cloud Computing was developed to providg eas
Index Terms: Service-Centric Networking, Information-Centric access to computational services by facilitating resosoag-
Networking, Latency-aware selection, name-based routing, Qui ing, resilience and security amongst others. At first, users-
municated with only a handful of cloud sites. One of the main
disadvantages of this cloud approach is the induced netlaork
l. INTRODUCTION tency and large bandwidth required between users and thd.clo

The Internet was designed as a communications networkTrc])IS made a centralized cloud approach unsuitable fortieal-

. ; .~ data-processing services and motivated the developmelis-of
interconnect end-hosts and deliver data between end paints . :
o ributed clouds located in the network edge [13] [14] [15dlgE
the most efficient manner. However, current Internet usage ¢ . '
. Do . clouds optimize network traffic and reduce network latengy b
sists mostly of users retrieving the same content, whichided finging services closer to the users. similar to CDNs. When
the development of Content Delivery Networks (CDNSs). CDN% ging ; '

cache content in the network edge and load-balance requésset\éeral cloud sites host an instance of the same serviagsst

over multiple replicas to reduce network latency, bandiwaitd must be. processed by the |_ns_tance which offers the besttQuali
. . - of Service (QoS) [16]. This is a more complex problem than
congestion. While CDNs were originally developed for static / ; : .
. . ._can be solved with generalized resource assignment digugit
data retrieval, some CDNs (e.g. Akamai [1]) now have applica . ~. . 4 . e
. . L Ih individual cloud sites. Techniques to facilitate thetidlsi-
tion delivery networks that also support data-processipljea-y o
. S ; tion of real-time data-processing services are limitedotecgic
tions by considering both server load and network chariseter

. . - cloud infrastructures; they do not focus on fine-grainedctain
tics when load-balancing. Research has shown that the Akam) . .

Co " . of processing nodes in the network between the differentdclo
CDN can significantly outperform traditional web contersttdi

bution that uses load-balancing server farms in a few datare Sites.) _ _
[2]. Research on CDN indicates that the long-term sustdinab The need for an ICN-like solution to support services led

ity of CDNs is jeopardized by technology heterogeneityffine 0 the development of Service-Centric Networking (SCN){17
SCN is designed to support efficient provisioning, discgaerd

Piet Smet is part of the Department of Information TechnologyTEC), execution of services distributed over the network. Caglirin

Ghent University - iMinds, Gaston Crommenlaan 8 bus 201, B39G5ent, gCN s less evident because every service response is a reply
Belgium, email: piet.smet@intec.ugent.be.

Pieter Simoens is part of the Department of Information Tedhmo(INTEC), O @ Specific request with input data. Instead, SCN architec-
Ghent University - iMinds, Gaston Crommenlaan 8 bus 201, B39G5ent, tures provide mechanisms to deploy service instances imgtie

Belgium, emall: pietersimoens@intec.ugent.be. work and forward requests to the instance with the lowest re-
Bart Dhoedt is part of the Department of Information TechnpldNTEC), ti Content t till k f caching f

Ghent University - iMinds, Gaston Crommenlaan 8 bus 201, B39G&ent, sponse time. On_en req_ues S can stll make use ot ca mg

Belgium, email: bart.dhoedt@intec.ugent.be. faster content delivery. Like ICN, SCN also enables locatio

1229-2370/14/$10.0@ 2014 KICS

https://core.ac.uk/display/55710468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

independent access to content and services using name-b&se, we developed a statistical method to approximate thieaQ
routing. SCN combines service instantiation and netwout-ro load distribution without considering the client sourceliaass.
ing at a fine granularity. The result is a load distribution which tells each servicgteo
In this paper we present our contributions towards servibew the incoming demand should be distributed over the cutgo
selection and network routing in Service-Centric Netwogki ing links, using only service name as input. However, elatin
We focus on real-time data processing services which requiing the source address allows routing loops to occur atmenti
fast system response time for an acceptable Quality of Expérhis is prevented by forcing requests to follow the brandbfes
ence (QoE). Our goal is to provide more efficient service aa-spanning tree. We studied the impact of source address elim
cess; users address services only by name and in-netwatk ldaation on the average response time compared to souregtbas
balancing techniques route requests towards servicenitesa routing. Simulation results show that our statistical nogiiap-
such that the average response time as seen by the cliepts is proach (limited by a spanning tree) with minimized routeitest
mized. We argue that network metrics such as hop-count dre isoable to approximate the same results as source-baseagout
sufficient for service selection and that load-balancirguithbe (not limited by a spanning tree). Figure 1 illustrates thHtedent
done by service routers. We aggregate user demand at netvasjects of our research and an overview of the components.
edge nodes and seek an optimal distribution of the requadt lo The remainder of this paper is structured as follows. In sec-
across the deployed instances. Service routers forwartbadel tion Il we describe related work on ICN, SCN and name-based
balance user demand over multiple service instances. Hnereservice selection and routing. We present our QuLa seréee s
two key issues to solve; (1) distributing user demand over tkection algorithm which minimizes the average response tim
available service instances so that the average responses in section Ill. Section IV describes our proposed name-hase
seen by the clients is minimized and (2) configuring the fadwva routing approach used to load-balance requests with omly se
ing tables to reflect this selection in a scalable manner. vice name as input. Our simulation results are presenteecin s
To tackle the first issue, we present a network-driven servition V, showing that QuLa is able to approximate benchmark
selection algorithm named Queue and Latency (QuLa). We imesults with minimized router state. Finally, in section Wé
plement our current approach on a centralized broker whdoh ¢ present our conclusion and discuss future work.
tains knowledge of the network and server characterislibgs
approach can be extended to a hierarchy of brokers for inggrov
scalability and to avoid a single point of failure. We search Il. RELATED WORK

for an optimal distribution of user demand over the avagabl QyLa is related to several areas of research as it addresses
service instances while considering both network lateney aservice selection and routing in SCN. In this section weflyrie
server queuing times. The result of this step is a load Bistri giscuss work relevant to QuLa for the different aspects of ou
tion matrix which maps user demand to service instances. gesign.

Service-Centric Networking. There are several design con-
siderations when extending ICN to SCN, described in [17]e On
of the main research challenges in SCN is setting up cororecti
between end-hosts for service sessions without prior kedgé
about the host addresses. Serval [18] proposes a Servies#\cc
Layer to translate service names to instance addressds,sithi
multaneously setting up the TCP connection between both end
hosts. Serval focuses on services running on mobile deaites
aims to support late-binding and service migration to suppo
seamless relocation of both users and services. SCAFFOLD
[19] emphasizes on a flow-based anycast mechanism, allowing
Name-based forwarding multiple instances to be addressed by the same service name.

This approach relies on underlying virtualization and ajem

Fig. 1. A centralized broker runs the QuLa service seleciilyorithm, re- to the existing network stack.

duces the required state to map this selection to the formgurigibles of As service selection and routing in SCAFEOLD and Serval
service routers and then populates these forwarding taliResjuests are

forwarded to a service instance by service routers usingrerizased for- are left open to the .implementation, QuLa could be adopted to
warding scheme. manage both tasks in these frameworks.

Service selection The Zoom-in-zoom-out algorithm [20]
The second issue, populating forwarding tables, posed-a sgerforms server selection for a game service with certain de
ability challenge as we envision a large amount of serviogs aay constraints. The key objective is to select a minimuno$et
users in SCN, inducing large forwarding table sizes. Embeskrvers while still meeting the delay constraints. The r@tigm
ding the load distribution (calculated by the QuLa selettb starts by assigning each client to the closest server andttre
gorithm) in the forwarding tables of the service routersuiess atively assigns clients to the next server on the path toltistar
service name and client source address as input (which we refenter (the server with the lowest average latency to ahtd)).
to as source-based routing). However, source-based goexin The final selection for a client is found when the latency ® th
cludes the possibility of forwarding table aggregationking next server on the path to the cluster center exceeds thmejate
this approach less practical due to poor scaling behavimré- constraints. This approach avoids overprovisioning of o

&5 = Service Router

‘ = Execution Node

ing resources. This is an interesting use case for QuLaersdat rect client-destination path in more than 50% of the scesari
constraints are the main focus for real-time services. Wewe [2]. This shows how traditional IP routing is not always op-
this algorithm only considers network delay and does not catimal for traffic with low latency requirements. Thereforee
sider the server load, making it less suitable to predicetitee adopt the forwarding scheme of the ICN framework Content
response time of a service. Centric Network / Named Data Networking (CCN/NDN) [8];
DONAR [21] focuses on selection for cloud services angiach router forwards requests to the next hop on path to the de
presents a decentralized mapping scheme considering kgited data. This allows separate paths to be set up for differ
server load and client performance. DONAR describes a praiit services, even if multiple services run on the samerdesti
lem statement which supports partial load distribution séru tion. When hotspots are detected, the traffic distributicer tive
demand over service replicas, using a generic cost fundtion outgoing links of service routers can be adjusted to stedfidr
ing the selection process. QuLa adopts a similar approagh @way from the hotspots and improve overall performance.
implements the cost function to predict the average respons In ICN, routers typically forward requests based on objBet |
time. The service selection in QuLa will assign demand téi+eprather than destination IP addresSne approachs to extend
cas with minimum cost, reducing the average response timeeassting routing protocols for named-based requests, sisch
seen by the clients. OSPF-N [25]. This approach extends the OSPF link-state rout
In [22] service selection supports user-specific QoS iniag protocol for IP networks to support name-based requests
service-oriented architecture. The selection algoriticopants A second approacks to develop new forwarding schemes to
for response time, trust and monetary cost, although it does learn which interfaces requests should be forwarded orh suc
assign jobs to resources directly. Instead, it serves assiastant as Greedy Ant Colony Forwarding (GACF) [26]. The GACF
tool to recommend a number of suitable services based on teevarding algorithm uses Ant Colony Optimization, a preba
user's QoS requirements. With QuLa we avoid user interactibilistic optimization heuristic, to find the best paths tovard
after the request is made by selecting the best servicenrestarequests on. However, this approach does not considerrserve
such that the average response time as seen by the cliepts icbaracteristics (e.g. load), rendering it less suited fOBNSA
timized during the forwarding process. third approachis to extend existing ICN platforms with rout-
Selecting the best datacenter for a client is one probleunt; roing protocols aimed to provide service access. One of these a
ing the response back to the user is the next challenge.]n [280aches is SoCCeR [27], a decentralized routing protamol f
both problems are addressed at the same time using a disttibgervices built on top of CCNx (an implementation of CCN).
algorithm based on alternating direction method of mikigl Routing in SoCCeR uses Ant Colony Optimization to gather
(ADMM), minimizing cost (bandwidth, electricity) and max-latency and service load information which is used to config-
imizing performance (latency). However, this algorithnesis ure the Forwarding Information Base of CCNx nodes. SoCCeR
end-to-end propagation delay as performance measurementRfovides a plausible way to learn which instances provide th
assumes that link capacity is more restricting than server pfastest response time through continuous learning atmenti
cessing capacity. In SCN, servers are placed at the netwigek eRather than adjusting load-balancing probabilities atine,
on execution points which are likely to be smaller and less-poQuLa finds an optimal distribution given a certain demand and
erful than large datacenters; this requires less bandvedth Service placement, minimizing the activity of the routirigne.
increases the importance of server processing capacifulma In CCN/NDN, requests can be forwarded to several destina-
we solve the selection and routing problem separately whtiens while only the first answer is accepted. As serviceggen
considering both network and server characteristics. ally consume more computational resources than datavatrie
Name-based Routing In IP anycast, one IP address can cogervice selection is desired to provide one-to-one mappeig
respond to several service replicas. However, native IR ariy/een service requests and service instances. Therefwe, t
cast redirects traffic to destinations based on the shqueht routing process presented in this paper is a combined effort
and does not consider server metrics. A proposal was madéh® QulLa selection algorithm, which selects several aetépt
extend IP anycast to a load-aware anycast CDN [24], wherélgstinations for service requests of each user, and thecserv
centralized controller considers both network and sexad ko routers which perform statistical load-balancing (baseder-
drive the CDN redirection mechanism. An interesting aspéct Vice hame) to route each request to one of these destinations
this research is the focus on minimizing the traffic disropti @ hop-based forwarding manner.
when ongoing sessions are being re-mapped to alternatie CD
servers. Unfortunately, this approach is only feasiblaéf Au-
tonomous Systems (ASes) it targets have a large footprihein . QULA: NETWORK-DRIVEN SERVICE
country where they provide CDN services. Also, this appnoac SELECTION
is focused on anycast routing in CDNs, which does not over-One of the key issues presented in this paper is to map user
come the limitations of CDN itself. demand to available service instances such that the avezage
Akamai, one of the larger players on the CDN market, avoidponse time is minimized. In ICN, routers must find a path to
network hotspots by using its extensive network and serggr-m a location-independent name. In most standardized ropting
itoring to redirect clients to frequently changing Akamdie tocols, path selection is often based on network metricp-(ho
servers, lowering the client-perceived latency. It is shdihat count, bandwidth, network latency ...) used in shortest pit
using an Akamai-server as a one-hop detour (client to Akangarithms such as Dijkstra’s algorithm [28]. We argue that se
edge server to destination) is more beneficial than usinglithe vice selection in a service-centric network (1) should @ers

both network and server characteristics and (2) benefita frd. PROBLEM STATEMENT

monitoring traffic patterns in real-time. Consider a network graph containing edggsodesN and

To address the first concern, we describe a problem statemgsiVices S. The lambda valugéi, s) represent the request rate
and present an objective function which considers botheseryrom nodei for services. Client nodes are denoted By, ¢ N.
and network metrics to minimize the average response timenasdes hosting at least one instance of a seryiee S belong
perceived by the clients. In our model, each server has aequesi the server noded’s C N. The load distribution matrix
for incoming requests when the server is busy. We use theequeyi,j,s)c [0, 1] denotes the fraction of load from client nader
size to represent the server load and consider latency@smet services, to be processed on server ngdd; , is the average
metric, which is why our objective function is called Quewela service time to process a request for sergam server nodg,
Latency (QuLa). We implemented Simulated Annealing [29] tRot considering queue delay.
perform service selection using the QuLa objective fumcéiod A generic objective to map user demand to service instances,
compare this approach with (1) a greedy shortest path apiproasing demand fractions, is the following:

(2) assigning equal load to each server and (3) a dynamigrassi
ment of each request to the shortest queue upon request arriv

The second concern is studied in section V-F where we shownin Y, Y > cost(i,j,s) * R (i, j,s) * A(i,s) (1)
the impact of performing service selection with less fradque i€Ncj€NsseS
monitoring.

The objective in the current implementation is to optimize t
average response time given a fixed service placement arld fixe
user demand. There are two major factors that affect the re-
A. ASSUMPTIONS sponse time of a service; the time spent in the network and the

time spent on the server. Servers processing a larger demand

The service selection algorithm maps user demand to avéihve more impact on the average response time. Taking into
able service instances. However, considering every udeith account the above, we find the following objective:
ually is not feasible when load-balancing must be done if rea
time. Therefore, we aggregate the load generated by a gifoup o o _
users, located in a nearby geographical area, into an aajgoeg 2 GZNS o 2 Trat.t Toroc JxR(i,j,8)xA,5)
load from client nodé. In the remainder of this paper we use the ™™ T T AGs) (2)
term 'client node’ to refer to a node from which demand is gen- PENenes
erated that reflects the aggregated demand of a group ofynearbrhe sum of7 ;. andT,,... represents the response time of
users. This allows us to reduce the size of the forwardinig$aba single request, considering the network latency and ttie es
in the service routers. The requests from all users in the geRated time spent on the server. The producRdf, j, s) and
graphical area represented by client nodee forwarded by the)\(;, s) denotes the contribution to the average response time
service routers according to the forwarding rules set f@ntl when sending the fractio® (i,7,s) of demand\(i, s) to the
nodei. A server nodg represents a collection of computing reservices. Finally, we normalize the numerator by dividing by
sources located in a nearby geographical area (e.g. d&acen the total user demand to get the response time, used as qual-
cloud site), with a queue for incoming requests. ity representation for service selectioril;.;. is the Round

Next, we assume a fixed service placement and fixed user d&p Time (RTT) between the client nodeand server nodg
mand in time; service instances are not migrated, added-or Froc. = f(R (i, 4, s)) denotes the time spent on the server, in-
moved during experiments, and users may have differenegtqueluding queue delays and service time.
rates but these do not change over time. We made these assumy/e illustrate this with an example assuming that our system
tions as we wish to evaluate the performance of the initiki-so . TZ,

AxT'2 —
tion. Changing service placement or user demand requilfeslslgan M/G/1 queuing system; i.€Tpro.. = (2*(11;2 + Tis
distribution of load, which can be solved by simply perfongi (ollaczek-Khinchin mean value formula) which is the sum of

another run of the selection algorithm based on the new eontolﬂe average queue delay and the average service itenotes

tions. The importance of varying request rate is investidian e total incoming rquest rate on nq_dﬁwded_by the service
section V-F. rate. Considering the influence &f(4, j, s) we findp = Tj , *

_ o icn, i s)x R(i,j,s) with 1/T; being the service rate.
Last, we assume that service processing times are reprorg guarantee that the demand of each client node is com-
ducible and stable, and that client nodes are implement&tl Syjetey satisfied, the objective is limited by the followingn-
that requests arrive with an average rate according to &6iSgyint:

process. Therefore, we use M/G/1 queue to model the server

gueuing time. If these conditions are not fulfilled, the same VieN. Vses: R(i.i 1 3
approach as described in this paper can be adopted for other ! e 7 ' Z (27) 3
queuing systems. Using an M/G/1 queue, datacenters running _ o _
several service instances can be modeled in QuLa by separatdsing Equation 2 as objective function, we now search for

servers with zero link delay to a common node, each runnig§ optimal load distribution to optimize the average resgon
one service instance. time. However, the distribution matrix R in the objectivenfu

tion takes floating point numbers as element values, cigatin

jE€Ns

Parameter Value | Description

T 10 000 | The temperature decides the likelihood of accepting aismlutorse than the curren
best one. At higher temperatures Simulated Annealing i€nikely to accept a worse
solution to continue exploring the search space.

—

Tstop 1 The temperature at which Simulated Annealing stops exmgidthie search space and
returns the best found solution.

repetitionCount| 2 This variable determines how many solutions are exploretatemperature value,

coolingRate 0.01 The speed at which the temperature decreases.

Delta (A) 0.1 Indicates the amount of change made to a solution when géngreeighboring solu-
tions.

Table 1. parameters used BA

infinitely large solution space. In the following sectione de- usually set high to allow the algorithm to explore any salati
scribe several alternative algorithms to find a load distidn before it starts inspecting local minima.

matrix R. We performed a parameter sweep to evaluate starting tem-
peratures between T=[100,20000] with a step of 200. We con-
Algorithm SA Simulated Annealing cluded that the starting temperature T has very little imfageon
Input: Temperature T, repetitionCount, coolingRate the quality of the final solution for our problem, but the eaglc
Output: SolutionSy..; with highest energyzy. lation time is reduced by approximately 30% when the stgrtin
1. Seurrent — generateSolution() temperature is reduced by a factor 10. For the topologiedinse
20 Spost < Seurrent our simulations we found a good solution with a starting terp
3. Epest < Eeurrent < Objective(Seyrrent) ature of T = 10000. Since our static selection algorithm dmes
4. while T > Ty, do need to run frequently, it is more important to find a good and
5: for 1 — repetitionCount do stable solution rather than reducing the execution timeouin
6: Spew — createNeighborSolution(S,yrrent) simulations the execution time &Awas between 1 second for
7: Erew — Objective(Spew) our smallest topology and 60 seconds for our largest togolog
s I* Generate randong [0, 1] and calculate probability We discuss our simulation setup and topologies in sectidn V-
to accept worse solution */ The repetition count allows the annealing process to etalua
9: if acceptanceProbability(Eeyrrent, Enew, T) > Several solutions at the same temperature, which covergerla
Random() then search space but also increases execution time. For a more de
10: Scurrent < Snew tailed explanation of Simulated Annealing we refer to [ZEfje
11 Ecurrent < Fnew pseudo code of SA is shown in Algorith&Aand the parameters
12: end if used are described in Table 1.
13: if Ecurrent > Epest then In the following paragraph we present our implementation of
14: Shest < Scurrent the significant steps in the Simulated Annealing process.
15: Eyest < Eeurrent GenerateSolutiois used to generate an initial solution to start
16: end if exploring the search space. In section IlI-D we describe two
17: end for alternative algorithms which can be implementedémerateS-
18: T < T = (1 — coolingRate) olution to construct a solution although many approaches are
19: end while supported. All generated solutions must adhere to Equation

Algorithm createNeighborSolution()

Input: A, currentSolution
C. SIMULATED ANNEALING Output: Slightly altered load distribution matrik

. . . . 1. R+ currentSolution
We implemented Simulated Annealing (SA) to take into ac: pick random client N,

count both server load and network latency during servileese 3 forall s € S do

tion. SA is a search heuristic to explore a large solution:epa4: 2 < pick random servee N
in a short timeframe, inspecting multiple local minima ire th : R(i,z,5) « R(i,z,s) + A
solution space, but does not guarantee to find an optimal soiu for éII’j € Ng d(; ’

tion in a finite amount of time. At high temperature values SA 17 R(i,j,5) ¢ R(i,j,)/(1 + A)

likely to accept a solution worse than the current best andrso end f(;r ’ -

a large search space by escaping from local minima. When aye end for

temperature lowers, the probability of accepting worsatsmhs

also decreases and SA starts focusing on a smaller seaih spa

around the current best solution. Initial temperatureeslare For each iteration cBAwe generate a new solution to further

explore the search space. These new solutions are generatdthis approach is very intuitive, assigning most demand to
by making changes to the current solution; we refer to thetime client-server pairs which induce the lowest response.ti
as neighboring solutions In our implementation neighboringWe used this greedy distribution as starting solutionSérin
solutions are generated by assigning more demand to orer seourr simulations. However, by prioritizing a certain cliesgrver
and removing the same amount from the remaining servets (pfir, we indirectly penalize other clients which do not get t
Equation 3). use this server’s full capacity anymore. This implies thaba-

We opted forA = 0.1 to explore a large search space in a sha@yteedy decision for client-server pairs with low latency bave
timeframe, with relatively small deviation between neighibg positive effects on the response time of several nearbiytslién
solutions. section V we present our results on this hypothesis.

After creating a neighboring solutioSAmust accept or re- 2. Equal Share. Greedyalways induces high workload on
ject the new candidate solution. A candidate solution isagsv few servers while more distant servers remain idle most ef th
accepted if it is better than the current solution. Howetees- time. An alternative is to give each server an equal share of
cape local optima, a candidate solution worse than the murréser demandEqual), trading reduced workload for increased
solution can be accepted using the acceptance probability: network latency.

(CurrentEnergy — newEnergy)
T

(4)

where the energy represents the response time calculated wi
Equation 2. Once either of the stop conditions is met, wermetu |n section V we show that this approach is less sensitive-to in
the best solution encountered during the annealing process creasing demand although it does induce more network hatenc
3. Joint Shortest Queue (JSQ)The disadvantage of static
selection algorithms is the poor resilience to unexpeoted |
D. BENCHMARK ALGORITHMS conditions. Small peaks could temporarily render a seess |

In this section we describe two alternative approaches tb fiuitable for request processing. When the service routdys on

a load distribution, which are then used as benchmarks te eV&!low the static forwarding table configuration withoutrsid-
uateSA ering actual server load upon request arrival, the perfooma

1. Greedy Algorithm. We implement a greedy load dis-Of that server could further decrease and impact the overall

tribution algorithm which prioritizes client-server paiwith the SPOnse time. _ . - _

smallest latency. Starting with the client-server paiticidgthe ~ Pynamic selection algorithms can mitigate this problem by
smallest network latency, user demand is assigned to thatrseSSIgning requests to servers upon request arrival, baseea-

until either the client node’s demand is completely satisfez Sured metrics. However, this requires monitoring infoiioTato

the server capacity (maximum amount of requests procegsed}f available when assigning a request to a server (in ouy case
time unit) is met. We iterate through client-server pairtilail On the service routers). Gathering both network and seoaef |
client node demand is satisfied. information on each service router is difficult to scale vbhic

is why most dynamic selection algorithms only consider serv
Algorithm Greedy assign demand by prioritizing client-servefMetrics or network metrics. _ _
pairs with the lowest latency _ To e_valuate the performance d_|fference _between a static con
— figuration and a dynamic selection algorithm, we implement
Input: A(i, 5), T Vi, j, s , Joint Shortest Queudd$Q, an often used selection algorithm
Output: Load distribution matrix? for server farms [30]. Upon request arrival, JSQ assigns e&ac
L A(s) < Ai,8), Vi, s quest to the server with the least number of unfinished résues

€ 1
R(i,js)= ———— Yi€N,, jEN
(1,7,8) size (N3) Vi€ N, j€ Ng,s€S (5

% 9 (J,8) < 1/Tjs, Vjps _ to minimize queue delays. This approach enables the system t

& %/ sot .a.II (i.s)-triplets by increasing network latenbg- minimize the gueue length and the mean response time on every
tween i, */ . server [31].

4 P sort (i,],s) However, unlike Equation 2, JSQ does not consider the net-

5. forall i,j,sinPdo work latencies between client and server. In section V-D we

6. if A(i,5)>0andC(j,s) > 0then study the performance difference between a onetime static c

r if A(i,s)/C(j,s) > 1then figuration by solving Equation 2 witS8A and a dynamic selec-

8: Aliys) « A(i,s) — C(4,9) tion with JSQ

9: R(i,7,8) < C(j,5) /A(3, 9)

10: C(j,s)« 0

11: else IV. CONFIGURING THE NAME-BASED

12: C(j,s) < C(j,s)— A(i,s) ROUTING PLANE

13: R(i,j, 5) < A(i,5) /i, 5) When demand is high, user requests must be load-balanced

L4 A .(Z’ 5) <0 over multiple service instances. This is reflected in thec&n

15 eqd i algorithm by using a load distribution matrix assigning par-

ig’: en?jnfgrlf tial demand to available instances. At runtime, serviceesu

load-balance user demand utilizing the fractions assigméte

load distribution matrix. In this section we describe thafigu- B. VARIANT 2: WEIGHTED AVERAGE
ration process of statistical load-balancing in the servatiters A iqeal mapping of the load distribution matri (, j, s)

0 appro>f|mate the service selection. , to the forwarding tables of service routers requires a soad:

We build on top of the hop-based forwarding scheme frofj}ess 1o reduce the forwarding table sizes, we approximate
CCNx where each router knows only the address of the next YR 5yerage response time of source-based routing witis-stat
towards the service instance. Unlike the CCNx approach, Sgta| joad-balancing on service routers, without consitgthe
vice selection prevents requests from being processed by My, rce of the request. The following paragraph describes ou
tiple service instances as only one answer is accepted by {gistical method to approximate the load distributiamrthe
client. For a perfect mapping of the service selection 10 g ection result without considering source addressesued
forwarding tables, each service router should also con$ige , 5 centralized broker which contains the entire distidiout
source of the requessgurce-based routing This approach i arix The outcome of this method, a load distribution vahic
lllustrated in Figure 2. As this inflates the forwarding &l g not contain source addresses, is then distributee ð
we seek to approximate the same results without considerifige routers.

the source of a reque_st. To tackle th_is p_roblem, We Propose gyeraging the outgoing percentagky . . Pi(i,s) does
statistical load-balancing method which is performed bgheay,q; o ffice to reflect the service selection. We observe thiat o

service router on the path to a service instance. An impbriap,ing demand on a service routeis influenced by both larger
research question is how much this approximation degrémes {(i,5) and Pin(i,s). Using the same configuration steps as

overall average response time. In the next section we #schie source-based routing variant, we find the total incordieg
both variants and we present our results in section V-C. mand for services on routerk, Di™ (i,s) = >, ¢ . A(i,s) *

P{™(i,s) , and the outgoing demand on the link to router

A. VARIANT 1: SOURCE-BASED ROUTING DR (i,8) = 35 ¢ v, Aliys) x Pit(iys) « Pgi'(iys). We
i) . _ approximate
We configure service routers with separate forwarding esitri

for each source address to reflect the service selectiorsicn
(4, s) the total demand from clientfor services, R(i, j, s) the
percentage of that demand to be processed on se®gt (i, s)
the incoming percentage of(i,s) on service routek, and
P2 (i, s) the percentage aP" (i, s) forwarded to routet on where P*(s) denotes the new outgoing percentages using
routerk. Initially, all P andP°“* are set to zero. The forward-only service name as input and not taking into account the
ing tables are configured as follows: (1) we stipulate a path fsource of the request. Onl¢“(s) is configured in the for-
each client-server paii,) and a given service. (2) For each warding tables, enabling service routers to load-balaegeests
routerk on that path,R(i, j, s) is added to bothP"(i,s) and as stated per service selection without considering scatee
P2 (i, s), wherel is the next service router on path. (3) Afteidress. P2 (s) approximates the same amount of traffic for-
all pairs(i,j) are traversed for servi@we express’* (i, s) as warded on each edge as the source-based routing variant; ind
fraction of P}" (i, s), to normalize all values in range [0,1]. ing approximately the same system response time.

Figure 2 shows a sample configuration: 40% of user 1's de-The logic behind this method goes as follows: assuming
mand is sent to R5, which forwards 50% to R6 and 50% to RSource-based routing, we calculate the incoming and outgoi
Thus, 20% of user 1's demand reaches zone B and 20% reaah&ffic load on every service router for all clients. Equatis
zone C, as per selection. used to find the outgoing traffic distribution for every edgeso

service router to approximate the same traffic load without c
sidering source addresses. When the amount of traffic on each
‘ Server A

: ppitey o g, Mise)r PGy P i)
Pi(s) = By = S AGs)x P (is) ©)
i € N¢

edge approximates the load induced with source-basedgyuti
60% ﬁ 100% ﬁ each server also rece_ives approximat_ely the same Ioad_ta_d sta
3 P by source-based routing. Due to service routers not consgle
source addresses, it is possible for the actual load digitvitoto
deviate from the client-server mapping found by the alhong

| 100% Rs \Rﬁe described in section Ill. Now consider a cligrihducing more
R7 ’

User2 100% R ! . load on servej than stated by the load distributid® (i, 7, s)
Server C

Server B

[serviceName | Source | Nexthop | load remains unchanged, there must be another dtiémduc-
serv-facedetection UL R6(50%), R7 (50%) ing less load on servgrand more load on another servethan
Serv-facedetection) R6 (20%), R7 (80%) stated byR (i,7,s). Due to the load-balancing performed on

each service router, requests are less likely to reach nistent
Fig. 2. source-based routing enables accurate load-batabat is prone to servers. Thus, an increased load on serimticates that server
large forwarding tables j is likely to be located nearby cliemt improving the average
response time for client Clientk may now see a decrease or

To populate the forwarding table of service routewe dis- increase in average response time depending on the loaztion

tribute P2 (i, s) for each pair (i,s) and each neighbor rodter servem. However, not all clients can benefit from this distribu-

' because of our weighted average load-balancing. If theeserv

tion shift or elseR (4, j, s) would not be an optimal load distri- in section IlI-B can be written a},,,.. = 25‘2(1_)p) * Tjs

bution. These clients experience an increased responsa@tith In CloudSim an M/D/1 queue System is |mplemented by 1)

negate the improved response time of other clients (e.@ntcli scheduling requests using CloudSim’s Space Shared Sefnedul

i), approximating the average system response time as edig¢2) configuring components so that each request has a fixed ser

with Equation 2. This effect is studied in section V-E. vice time, and (3) implementing a Poisson process on clignt a
Due to service routers load-balancing requests without cqslications.

sidering source addresses in QuLa weighted average routing

routing loops may occur if no further action is taken. There- SS50] SD50 1 LS200 | LD200
fore, allowed routing paths should be restricted to edges b&Sgrvice routers 50 50 200 200
longing to a minimum spanning tree of the network graph. Axclients 5 5 20 20
minimum spanning tree of a network graph is a tree that cONzggryvers 3 3 3 3
tains every vertex of the graph, where the total weight of ““Outgoing edge degree 1 5 1 5
the edges is minimized. To construct a spanning tree we us&er router

Kruskal's algorithm [32]. By using a suitable metric as ed eAvg diameter 1 3 19 8

weight in Kruskal’s algorithm to construct a spanning tree,

can prioritize edges which contribute most to the respa t Service time 25ms
redchJ;in the e?formance loss compared to usin tphenﬁl n)j.ink latency distribution uniform [10,100]
9 P b 9 " Brite Model Waxman AS

work graph. In section V-E we study the effect of differenged

metrics in Kruskal's algorithm on the average response,timeTable 2. network configuration of each topology type usedniukations.

propose a metric derived from the load distribution and gmées

our simulation results. All results for weighted averagetimy

in section V-C are obtained by forcing requests to follow the |n order to evaluate the service selection and routing behav

branches of a minimum spanning tree. ior in different network environments, we generate fouetypf

network topologies using Brite [34] (Table 2): (1) small tdg

V. SIMULATION RESULTS gies with sparse connectivity (SS50), (2) small tqpolog\i/iib
dense connectivity (SD50), (3) large topologies with spam-

We evaluate the service selection algorithms from section hectivity (LS200) and (4) large topologies with dense canne
in a simulator using several sample network topologies to d@ity (LD200). For each topology type we generate 50 sample
termine the most efficient selection approach. In section Wetworks, assign client-server roles, place serviceeagliand
A we describe our simulation setup and network characterggenerate user demand patterns. Using the generated t@mlog
tics, followed by a discussion of the service selection grerf and fixed service placement, service selection is perforioyed
mance in section V-B. Next, we evaluate the two routing vanine algorithms described in section lll which return thedldés-
ants and the degradation in average response time inducedripyution matrix. We implemented a centralized compont,
QulLa weighted average routing in section V-C. In order to deroker, to configure service routers residing in each datace
termine the performance difference of a onetime statictiel® based on this load distribution matrix. In the final confidiona
approach and a dynamic selection algorithm, we evaluate thep, the broker deploys the service process on each seder n
impact of performing selection upon request arrival buhuéss ready to process requests. Using the average responseftime o
information than the static approach in section V-D. Notsidn these simulations we obtain reliable data required to makaa
ering source-addresses allows routing loops to occur, wisic fident assessment of the performance of each algorithm. All
solved by using a spanning tree to determine allowed rolrtes.simulations are performed on the iLab.t Virtual Wall [35} us
section V-E we study the importance of the metric used tapridng a server with a Hexacore Intel E5645 (2.4GHz) CPU, 24GB
itize edges in Kruskal’s algorithm and its impact on the perf RAM, 1x 250GB hard disk and 1-5 gigabit network interface
mance of QuLa’s weighted average routing. We conclude ogHirds.
evaluation by studying the necessity of demand monitorind) a
dynamic adaptation in section V-F.

B. SERVICE SELECTION PERFORMANCE

A SIMULATION SETUP To comparesSA Greedyanqu_uaL Equation 2 is _used to_cal—
culate the expected response time for each solution. FRjire

In order to evaluate large network topologies we createdigtrates the performance of each algorithm, representeieb
simulation environment using CloudSim [33], a framework foiexpected) average response time in milliseconds (Y-&ais}
modeling and simulating cloud computing infrastructures a set of fixed load values (X-axis). Response times on the graph
services. We extended CloudSim’s datacenter objects to a@gresent the average response time for each topologydipe,
an internal service router and use each datacenter to hest @ihed by sampling 50 topologies for fixed load values.
service instance per virtual machine. This approach a&®is Consider Figure 3, for low system load the response time is
eral service instances affecting the service time on ortealir gominated by network latency, makif@reedyan optimal so-
machine. In our setup all servers are modelled by an M/Dyi}tion as it prioritizes servers closest to the useEsual does
queue, a speC|aI case of M/G/1 with deterministic servit®ti not consider server location and network latency which eend
(T]2 =Tjs) In this case the server processing time describéus solution less suitable for varying network latenciesteen

—e—Simulated Annealing Greedy Equal Share —+—Simulated Annealing Greedy Equal Share

310

290
® 270
£

750 £250

© ©
o o
S o

£}

©
=
S

£
£
o 3
£
£ 700 E 230
o @
a @210
S 650 3
& @190
)
o
o 600 170
550 150
] /
500 130
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
System load (total demand / total server capacity) System load (total demand / total server capacity)
() (b)

1300 —e—Simulated Annealing Greedy Equal Share 330 ~4—Simulated Annealing Greedy Equal Share
|

310
1200
@ 290

230
—
— 210
—

— 190 //'

m

1100

(

N
N
o

1000

N
a
S

Response time (in ms)

©
=}
S}

Response time (in

%
S
S

~
=3
S
J
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
System load (total demand / total server capacity) System load (total demand / total server capacity)

() (d)

Fig. 3. comparison of the service selection solution quddity(a) a small topology with sparse connectivity, (b) a smaidlogy with dense connectivity, (c) a
large topology with sparse connectivity and (d) a large kogpwith dense connectivity.

client-server couples. The service selectioiGireedywill pri- execution time, this approach still has the benefit of sujomepr
oritize the closest server until its maximum capacity i<hesl more system load tha@reedyin both dense and sparse net-
before assigning requests to other servers. These sepers ovorks.

ating near maximum capacity are the reason for the poor per-

formance ofGreedyfor high demand (at 90% in figure 3 a and

b, at 80% for ¢ and d)SAis able to adapt to increasing loadC- QULA WEIGHTED AVERAGE VS. SOURCE-
by shifting away from a greedy approach and distribute load BASED ROUTING

over more server replicas, similar Egual When using these
approaches instead &reedy servers only operate near max-
imum load when the total system load approaches 95%. T
increases system stability and allows for higher load \@atoe
be processed on the network.

We investigate to what extent the QuLa weighted average ap-
roach (section 1V-B) is able to approximate the resporse ti
thieved through source-based routing (section IV-A)heuit
maintaining large source state in forwarding tables. Tddavo
routing loops, weighted average routing was simulated oima m

For average system load we observe that I®AtandEqual imized spanning tree as described in section IV-B.
perform better in dense graphs (Figure 3 b and d) than spars€&igure 4 shows the measured response times using source-
graphs (Figure 3 a and c). This is due to dense graphs contdigsed routing (dashed) and the QuLa weighted average ap-
ing more paths between the different client-server coypides proach (solid) to configure the forwarding tables based en th
ering the average hop count and reducing the penalty of mat cservice selection obtained §A Greedyand Equal Source-
sidering network latency iEqual SAperforms better in densebased routing guarantees an exact mapping of the load-distri
graphs due to the network containing more available pattls dsution into the routing configuration. Therefore, the rewo
thus more load distribution solutions possible. A sparsglyr times obtained through source-based routing simulationge
contains fewer and longer paths between client-serves,gair spond to the expected (theoretical) values illustratedgare 3
creasing the latency penalty when forwarding requests tem@nd are used as a benchmark for our weighted average approach
distant servers. This mak&eedyan efficient and near-optimal For low load valueg&qualinduces a larger response time than
approach for networks with sparse connectivity as it assagn SAand Greedyas explained in section V-B. However, we ob-
much demand as possible to the nearest servers. In a sparseseeve that the performance of both source-based routing and
work we observe a slightly better performance vy although QulLa weighted average routing depends on the network con-
one could argue that the performance gained is not worth thectivity (sparse or dense). There are two key factors that ¢
additional computing time and resources. Despite the &se@ tribute to this phenomenon. First, Bqual users send equal

= = Source Routing - benchmark (SA) - \\eighted Average (SA) = = Source Routing - benchmark (SA) — Weighted Average (SA)

Source Routing - benchmark (Greedy) Weighted Average (Greedy) Source Routing - benchmark (Greedy) Weighted Average (Greedy)
Source Routing - benchmark (Equal) Weighted Average (Equal) Source Routing - benchmark (Equal) Weighted Average (Equal)
JsQ JsQ
900
I ! 310 1
1 1
850) 290
@ 800 1 —
g l g 270
£ 750 £ 250
g £
= 700 & 230
i 8 210
5 650 8
@ § 19
600
& & 170
550 150 = -
500 - 130
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
System load (total demand / total server capacity) System load (total demand / total server capacity)
(@) (b)
= = Source Routing - benchmark (SA) — Weighted Average (SA) = = Source Routing - benchmark (SA) = \\eighted Average (SA)
Source Routing - benchmark (Greedy) Weighted Average (Greedy) Source Routing - benchmark (Greedy) Weighted Average (Greedy)
Source Routing - benchmark (Equal) Weighted Average (Equal) Source Routing - benchmark (Equal) Weighted Average (Equal)
JsQ JsQ
1300 330 T
310 !
1200 v /’
- / @ 290 /
S oo - : ’
£ 7 £ 270 7
3 7 o
E
.E. 1000 22 = 250 4
@ 4 o
0 n =
s 5 230 =7
2 900 e T
o - o -
L2 = 210 == =
800 - —-
- 190 P
700 170
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
System load (total demand / total server capacity) System load (total demand / total server capacity)
(©) (d)

Fig. 4. response times using source-based routing and weeigivierage for (a) a small topology with sparse connectiffity,a small topology with dense
connectivity, (c) a large topology with sparse connegtigind (d) a large topology with dense connectivity.

load to each server using many edges in the network, while theths. This allows construction of a spanning tree comgini
spanning tree used in QuLa weighted average routing only cdhe most frequently used edges as stated by service salectio
tains a subset of those edges. For every edge no longer av&flualnow performs better with QuLa’s weighted average load-
able in the spanning tree, requests are forced to take arlonigalancing because servers closest to the users are pedrite-
route than expected and the response time increases. Secduading the network latency for requests compared to thecseur
service routers in QuLa’s weighted average routing perfetan based routing approach.

tistical load-balancing; service routers can forward esisito a Greedyis least affected by the use of a spanning tree; a greedy
local server and the probability of requests reaching mae d

1 service selection assigns maximum load to nearby servers an
tant servers decreases as more service routers are paseed.qlnera|ly requires a minimized set of edges. This greedy se-
spanning tree in QuLa weighted average routing Contairgson jg ion results in high traffic load on few edges, which aliow

and fewer_ pgths so that request.f, are Iess_likely tc_) reacintlisi¢ skal's algorithm to construct a spanning tree contajraf
servers, similar to a greedy service selection. This reslthe |50 edgesSAis able to adapt to network characteristics by us-
penalty of using a spanning tree as the average networlclatep, 5 greedy load distribution when network latency is fetdy

decreases when using QuLa weighted average. We descsbe,tliye "\yhile using a more distributed approach when netiesrk
effect in detail in section V-E. tency decreases. This mak&&more robust against the penalty
Depending on the network characteristics, one of these t¥b/0SiNg edges by using a spanning tree, giving almost amil
effects will outweigh the otherDense networksontain many "esult for both QuLa weighted average and source-basee rout
different paths between two nodes and traffic is spread cert ol/'9-
several paths, inducing low traffic load on individual edgés We observe that weighted average routing achieves a close
the spanning tree only contains a small set of the most ussgproximation of source-based routing when the spannewy tr
edges, the traffic must now follow longer paths than befork anontains all edges used by the service selection. Thisdurth
thus the average network latency increagessparse networks indicates that, assuming we obtain a suitable spanning tree
the penalty of losing edges by using a spanning tree is mitire QuLa weighted average approach approximates the desire
mized as the traffic is already concentrated on the few alailabenchmark results and enables route aggregation with rainim

SAvs JSQ - 50% load SA vs JSQ -90% load

N
o
N
o

o
o

|

o]
o
@
o

JsQ

IS
<)

below response time
IN o
o o
[
@
o)

N
o

Cumulative percentage of requests
below response time
(2]
o
Cumulative percentage of requests
N
o

o
o

0 200 400 600 800 1,000 1,200 1,400 0 500 1000 1500 2000 2500
Response time (in ms) Response time (in ms)

(@) (b)

Fig. 5. response times using a static configuration foun&Agpnd a dynamidSQselection for a large topology with sparse connectivityZ08) running (a)
stable at 50% load and (b) at 90% load with small peaks.

forwarding table state. Trat.(c,n) is the network latency between a clieatand a
Because of the in-network load-balancing converging tosg@rvem (T'q:.(c, j) < Trat.(c,4)). As long as the network la-
greedy load distribution in sparse networks and trees,byeatencyTrq:.(c, i) — Tras.(c, j) is larger than the processing time
servers will operate near maximum capacity earlier thanemdfproc.(j) — Tproc. (i), JSQperforms worse thaBA
distant servers, possibly lowering the system stabilityhe T Figure 5 shows the response time distribution for i#and
convergence to a greedy distribution explains the smafbper JSQunder 50% and 90% server load. When the servers run at
mance loss by weighted average routing compared to sour68% load (Figure 5 a), a small peak in the expected demand
based routing for high load values in Figure 4. However, waattern will not heavily affect the server queuing time. As a
observe thaBAalways produces the best response time, evegsult, it is not worth sending requests to less loaded buemo
considering the performance loss induced by a spanningittreedistant servers usingSQ For 50% load users will experience
lustrated in Figure 4. This further indicates our statenfienth the lowest response times f8A When servers run at 90% load
section V-B thatSAis the best choice algorithm to perform ser{Figure 5 b), a small peak in demand can overload the closest
vice selection, regardless of the network characteristics servelj and result in large processing timBs.oc. (7) —Tproc. (7).
Although 88% of the users still experience a higher response
time withJSQthan withSA JSQmanages to keep the maximum
D. STATIC QULA WEIGHTED AVERAGE VS. DYresponse time limited while tH@Adistribution has a long tail of
NAMIC JSQ users experiencing very large response times due to odedoa
servers.JSQwas able to keep the servers stable and makes up
for the additional network latencies.
However, as illustrated in Figure 4 b and d, dense networks
t’@_/e shorter paths and lower network latency between client

quest, the first hop service router looks up the least busayeserand server, makingSQa better choice for service selectior_1 in
and assigns the request to it. The service request is then fFSe Networks. For sparse netwajsQbecame a better choice

warded on the lowest-latency path to that server. This setap when the expected server load was above 90% while for dense

best-case scenario fd5Qwhich we then compare to the Staticnetworks this already happens at 50'6_0% se.rver Iqad. .
selection results presented in section IV. We conclude that our proposed static configuration teckniqu

Using Figure 4, we compare the average response tikger- section 1V) re;ults in a Ipvyer response time as long as
achieved through JSQ with the response timeSéf which the network Iatgncy_ is not negligible compa_lred to t_he e)_ep:éct
was the best performing static algorithm in section V-C. ThHeETVer processing fumes. AIthpugh our static algprlthm aem
load distribution found bySAis translated to the forwarding ta-COF"p'eX andl requires more information thasq it only re-
bles with QuLa weighted average, as discussed in section fpires a onetime configuration as long as the expected laad co
For sparse networks (Figure 4 a and c) we observe that {Hgons do not change.
response time oBAis lower than the response time 38Q
selection. Sparse networks generally have longer and fewer
paths, resulting in a large network latency between cliewt a
servers. However)JSQdoes not consider the network latency
and only attempts to minimize the time spent on server. As-To avoid routing loops in QuLa weighted routing, requests
sumeT),,... (i) the time spent on server if we send the requestust be forwarded on edges belonging to a spanning tree, as
to the least busy serveandT),...(j) the processing time if we mentioned in section IV-B. Kruskal's algorithm construets
send the request to the closest sefV@,,...(i) < Tproc.(j)). Minimal spanning tree using an edge metric to find the best set

We investigate to what extent the dynamic selectiod®8
can mitigate the performance lost by not considering nethaor
tency (cfr. Equation 2). In our simulation setup, servicateos
know the queue length of each server; when a client sends a

IN-NETWORK LOAD-BALANCING PERFOR-
MANCE

of edges. In this section we study the effect of this edgeimetthe most used edges and prioritizes these edges duringrthe co
on the average response time and compare simulation regultstruction of the spanning tree, as described in section.IV-B
two alternative edge metrics. We observe that the Qula-Tree, which only preserves the link
We propose to use the expected traffic load as edge weiglith the highest expected traffic (cfr. service selecticsulg,
metric, obtained through either source routing or the wigigh achieves a substantially better response time than theyDela
average variant. The traffic load is a result of the seleqtimn Tree and performs almost as well as the theoretical ben¢dhmar
cess which used Equation 2 as quality metric, thus already cgwhich contains all edges).
sidering network latency, server load and the impact frodirin Next, we observe in Figure 6 that the measured response time
vidual clients on the average response time. If expectdiictraof the QuLa-Tree (dashed experimental curve) during simula
load on an edge is high, that edge is likely to be heavily useibn is lower than the expected response time (Qula-Tree The
and should be part of the minimum spanning tree. After inveidretical curve). This is due to the in-network load-balagci
ing the expected traffic load on each edge, Kruskal’s algrit on service routers which reshape the load distributionimatr
is used to obtain a minimized spanning tree. This guarameesruntime. In section IV-B we explained how QuLa’s weighted
routing loops can occur while still prioritizing edges whiare average approach preserves the amount of traffic on each link
often used in the load distribution. while disregarding the source. Without considering soaate
SAfinds a load distribution matrix using the network graplresses, service routers may distribute a client’'s deméfed-d
as input, which is then mapped onto the service routing plaeetly than stated by the load distribution matrix. In a spagn
using QuLa weighted average. To avoid routing loops, thd lo&ree requests will pass through more service routers asdffie t
distribution matrix is mapped onto the service routerofsihg is concentrated onto fewer but longer paths. Each servigero
the constructed spanning tree. A spanning tree narrowgttod s performs statistical load-balancing, reducing the prdhgiof a
paths requests can follow and thus the degree of load-bhatanaequest reaching more distant servers as it passes mosgsout
service routers can perform. As a result, QuLa weighted average does not exactly follav th
load distribution matrix R(i,j,s). Instead, the trafficreshaped
and requests stay closer to the useshile servers receive less
requests from more distant clients in the network. Thus, QuL
weighted average load-balancing converges to a greedylisad
tribution, reducing the penalty of using a spanning treecagf
edges are used. This explains why the measured average re-

330

N
@
o

= Full Graph Theoretical

Delay-Tree Experiment

Response time (in ms)
&
o

Quia-Tree Theoretical sponse time (dashed QuLa-Tree experimental curve in F@ure
180 Qula-Tree Experiment is lower than the expected average response time (solid -QuLa
Tree Theoretical curve in Figure 6) which was calculated as-
130 suming that the load distribution matrix R(i,j,s) is resigecat-
0 0.2 0.4 0.6 0.8 1 .
System load (total demand / total server capacity) runtime.

This is illustrated in Figure 7; service selection dictatteest
Fig. 6. the influence of a spanning tree on the performance ca@eighted client 1 sends 49%, 31% and 20% of its demand to server 1,
average routing in SD50. 2 and 3 respectively. However, due to service routers perfor
ing in-network load-balancing, over 80% of its traffic ag$/at
To demonstrate the importance of the edge metric useds@rver 1, which is located closest of all 3 servers to client 1
Kruskal's algorithm, we run simulations using two diffetenService routers load-balance fewer requests from othentsli
spanning trees and compare both results. Next, we show tltaserver 1, respecting the total amount of load generated on
QuLa weighted average routing is able to perform better th@ach server as explained in section IV-B. This in-netwoddto
predicted by deviating from the load distribution matrixedio balancing is QulLa’s natural way of adapting to a suboptimal
statistical load-balancing on each service router. Bothced environment to approach the desired benchmark.
are illustrated in Figure 6 for a small network with dense-con
nectivity (SD50). The Full Graph curve represents the etquec | 100
response time when all graph edges are available durindasimt =~ %
tion, calculated with Equation 2. The Delay-Tree and QuieeT s
curves illustrate response times when only a subset of édge!
c

60

available in the graph. We differentiate between the thieore z 5

cal curves which indicate the expected average response ti g *°

Load distribution

Theoretical
. . . . 30 .

calculated with Equation 2 and the experimental curves fwhit = 2 ® Experiment

indicate measured response times during simulation. " Hanm | I | l |
. . .. 0

First we tackle the importance of the edge metric in Kruskal Neol |cao clae caol o N
i i in Fi . - - gle 222 geg g2e 22
algorithm as illustrated in Figure 6; the Delay-Tree expem 55 585 388 553 858
tal curve represents the measured average response time cient1 | | client2 | | clients | | clienta | | Clients

spanning tree constructed using the edge latency as weight1

Kruskal's algorithm. Our second approach, the (dashed®-QuFig. 7. service routers reshape the load distribution bgoalancing requests
Tree experimental curve, uses the service selection resfirid at runtime. Results are obtained in a sample topology of SD50.

Source Routing - benchmark (SA) Source Routing (30%)

Source Routing - benchmark (greedy) Source Routing (30%)
Source Routing (50%) = = Source Routing (90%) Source Routing (50%) = = Source Routing (90%)
750 750

700 700

650

@
@
S

600

@
1=}
15}

Response time (in ms)
Response time (in ms)

550 550

500 500
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
System load (total demand / total server capacity) System load (total demand / total server capacity)

(@) (b)

= Source Routing - benchmark (SA) Source Routing (30%) = Source Routing - benchmark (greedy) Source Routing (30%)
Source Routing (50%) = = Source Routing (90%) Source Routing (50%) = = Source Routing (90%)

270

Response time (in ms)
N
o

Response time (in ms)
N
5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
System load (total demand / total server capacity) System load (total demand / total server capacity)

(©) (d)

Fig. 8. the importance of measuring the actual demand fd8 @) a sparse network, (I3reedyin a sparse network, (§Ain a dense network and (Greedyin
a dense network.

F ADAPTATION TO DYNAMIC LOAD CONDI-value. However, consider the results obtained from a nétwor
TIONS with dense connectivity (Figure 8 ¢ and d); configuring seavi

o . .
User demand can vary over time, rendering the current fOrtr)_uters for 90% load improves the average response time when

) . . . N actual load is lower (50-80%). This shows ti&Ais not al-
warding table configuration less suitable. Reconfigurirmgftin- , o L .

. . .ways able to find the best solution in a finite time, although it
warding tables of service routers for the new demand can im-

prove the response time but monitoring demand patterns éjoo?s manage to find a feasible solution (Figure 8 c). Configur-

. 7 - _1ng service routers for 90% load when the actual load is lower
system load can be an expensive operation. Therefore we-inve

tigated the performance gained by performing service gelec causesGreedy(Figure 8 d) to over-provision and assign more

. o emand than required to distant servers. However, due to the
using measured demand patterns, compared to serviceigelec

which assumes a fixed demand value. We first measure the Ae.—© hature of the network, the additional network latemay

tual demand and configure the service routers accordingeto Ops to be traversed towards the more distant servers atk sma

service selection result. These results are illustratettiégolid allowing over-provisioning to have positive effects on tiver—.
age response time. This is essentially wBatattempts to do;

curves in Figure 8. We then run three new simulations but tkb increasing the response time for one client (e.g. due-o se

time we configure the service routers for fixed demand patterfy . :)
. . : lecting a more distant server) we can reduce the response tim
(30%, 50% and 90% load respectively), while letting the acs . i
of several other clients and possibly reduce the overalaae
tual demand vary from 10% up to 100%. The average response : : . .
. . oo : response time. This explains why tB& results (Figure 8 c)
times obtained by configuring the network for a fixed deman - T .
re similar to the 90% over-provisioning effect on Figure.8 d

are illustrated by the dashed curves in Figure 8. We evajua% o .
. s . owever, assigning requests to more distant servers has dra
the adaptation to dynamic load conditions for both sparse an

dense networks usingAandGreedy Figure 8 a and Figure 8 ic consequences for the average response t!me when netw_ork
. : . . latency and hop-count become the more dominant factors. Fig
b illustrate the simulation results for a network with sgaren-

o . . - ure 8 a and Figure 8 b show that when the network latency or
nectivity usingSAandGreedyrespectively, while Figure 8 c and . o
)) . average hop-count increases, the average response tisid-con

Figure 8 d are obtained through a network with dense connec- . :
s ; érably increases when the actual demand deviates from the ex
tivity for SAandGreedyrespectively. ected value

All graphs on Figure 8 show that configuring routers for fier '
demand is only feasible when the actual demand does not&xceeWe demonstrate the performance loss when only reconfigur-
that pre-determined value; configuring a network for 50%loang routers when the change in demand exceeds a threshgld (e.

causes this network to overload when actual load exceeds tham 30% load to 50% load), compared to measuring the actual

demand during simulation and reconfiguring the routersYer efoundation to build decisions on.

ery change. Using Figure 8 a we can measure a maximum per-

formance loss of 10% response time by configuring the routers

for 90% load when the measured load reaches 50%. VIL. ACKNOWLEDGEMENTS

We conclud.e that accurate monitoring of user deman_d behis project was partly funded by the UGent BOF-GOA
comes more important Wh_en the cost of using more dIStaFﬂIOject "Autonomic Net- worked Multimedia Systems™, Hyet
servers increases (due to higher network latency, more #opg\y .-y project “SPEC: Intelligent SuPer-Elastic Cloudatid
traverse, smaller server queue times ...). Therefore,ri@pe |,y he 7th Framework Programme of the European Commission

on the characteristics of the network, the use of actual démay, 4 ,gh the FUSION project under grant agreement no. 318205
patterns is a very decisive factor of the system performance

REFERENCES

VI. CONCLUSION AND FUTURE WORK [1] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai netwaatform
for high-performance internet applicationCM SIGOPS Operating Sys-

In this paper we presented service selection algorithms [%) }f";sge"li)e\goéﬁ“f'fno' 3Ap£- 2-19, 2010. i E. Bustaratrafi
. . . . ~J.oou, DR, ofnes, A. Kuzmanovic, an . E. Bustarmaarnrarting
seek an optimal distribution of user demand across the geglo behind akamai (travelocity-based detouring)CM SIGCOMM Computer

service instances, considering both server load and nktaeor Communication Reviewol. 36, no. 4, pp. 435-446, 2006.
tency. We described how this selection result can be mapgéd G. Carofiglio, G. Morabito, L. Muscariello, I. Solis, arid. Varvello,

. . . “From content delivery today to information centric netwiok” Com-
to the service router forwarding tables using source-basetd puter Networksvol. 57, no. 16, pp. 3116-3127, 2013.

ing and QuLa weighted average routing. Next, we studied tf»# B. Ahigren, C. Dannewitz, C. Imbrenda, D. Kutscher, andJBiman, “A
impact on the average response time when service routets loa survey of information-centric networkingCommunications Magazine,

. L IEEE, vol. 50, no. 7, pp. 26-36, 2012,
balance requests without considering the source of a regiees 5] Y. Xu, Y. Li, T. Lin, Z. Wang, W. Niu, H. Tang, and S. Ci, “A nel

demonstrate the impact of the edge priority metric when con- cache size optimization scheme based on manifold learningitenbcen-
structing a spanning tree, we ran simulations using differe tric networking,”Journal of Network and Computer Applicationsl. 37,

. . no. 0, pp. 273 — 281, 2014.
metrics to construct the spanning tree. Last, we measured W. K. Chai. D. He. I. Psaras, and G. Pavlou, “Cache lessriore in

effect on the response time when configuring routers foradctu information-centric networks (extended versioiggmputer Communica-
load and for estimated load values. tions vol. 36, no. 7, pp. 758 — 770, 2013.

. . 7]. C. Dannewitz, M. D’Ambrosio, and V. Vercellone, “Hierdnical dht-
As conclusion we can say that the QuLa We'ghted averabla based name resolution for information-centric networkgmputer Com-

routing configuration is able to approximate benchmarkltesu municationsvol. 36, no. 7, pp. 736 — 749, 2013.
with minimal router state. Upon request arrival, servicateos [8] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. ThorpirK. Smetters,

. . . B. Zhang, G. Tsudik, D. Massey, C. Papadopouttsal., “Named data
contain all the information needed to load-balance thanest networking (ndn) project,Relatério Técnico NDN-0001, Xerox Palo Alto

to the instance with the fastest response time, withoutrigetd Research Center-PARQ010.
guery a resolution service (e.g. DNS) or maintain Iargeestai9] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos,V&eping infor-

Al inaSA ble to find timal - lecti mation networking further: From psirp to pursuit,”Broadband Commu-
SO, usingsAwe are able 10 1ind an optimal service selection nications, Networks, and Systemp. 1-13, Springer, 2012.

independent of the network characteristics, whereasnalt®e [10] W.K. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang, G. desRF. Ramon-

approaches are more sensitive to changing network chasacte ~ Salguero, L. Liang, S. Spirou, A. Beben, and E. Hadjioanri@url-

fi ing: Content-ubiquitous resolution and delivery infrasture for next-

ICS.) .) o generation servicesCommunications Magazine, IEE#ol. 49, pp. 112—
While we are able to access services with minimal response 120, March 2011.

time using name-based requests, the current service iselecfl] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H.irK,

. . S. Shenker, and |. Stoica, “A data-oriented (and beyondjyart archi-
algorithm can only handle static demand patterns. When com- iectyre "SIGCOMM Comput. Commun. Ram(ll 37, pg. 132’_192’ Aug.

paring our static configuration to a dynamic assignmentitino 2007. _
JSQ, we observe that the latter is able to keep the response fit2] C. Dannewitz, D. Kutscher, B. Ohiman, S. Farrell, B. Ately, and

. . H. Karl, “Network of information (netinf): An information-cgric net-
stable under peak load but only outperforms a static selecti \yorking architecture,Computer Communicationsol. 36, no. 7, pp. 721

when service times heavily outweigh network latency. Tha ne -735,2013. o '
step in our research is to create scalable dynamic placeanent [12] S open cloud computing interface | open standaré:h@emmunity,”

selection algorithms which consider both network and Servgs) w. satyanarayanan, P. Bahl, R. Caceres, and N. Daviéw tase for vm-
metrics. Currently, all demand is assumed fixed, and thecgerv based cloudlets in mobile computing&rvasive Computing, IEEEO!. 8,

selection algorithm searches for the best possible loadhiis no. 4, pp. 14-23, 2009. . L
. . fixed fi Wh d dch élsé A.-F. Antonescu, A. Gomes, P. Robinson, and T. Brauna-Biven pre-
tion given a fixed set ot Instances. €n user demana changes, gictive orchestration for distributed cloud-based mobdlevces,” inCom-

the previous selection is subject to change, requiringntgo- munications Workshops (ICC), 2013 IEEE International @oerfice on
ration of the network. A naive approach runs the static sielec pp. 738-743, June 2013. . . .

| ith h ti d d ch Thi I[|16% Q. Yu, “Cloudrec: a framework for personalized servieeammendation
algorithm ea? _'me user em?—” changes. IS qpproac IS in the cloud,”"Knowledge and Information Systerpp. 1-27, 2014.
prone to oscillation (over-reacting to changes) and in astvo[17] T. Braun, V. Hilt, M. Hofmann, I. Rimac, M. Steiner, and Mak/ello,

case scenario the system keeps returning to a previous state “Service-centric networking,” iCommunications Workshops (ICC), 2011
Y P 9 P N |IEEE International Conference opp. 1-6, 2011.

only to repeat this pattern. To avoid circulating previooSC [1g) m. Freedman, M. Arye, P. Gopalan, S. Ko, E. Nordstrom, Xfe, and
figurations and to become less sensitive to oscillatiorddaek D. Shue, “Serval: An end-host stack for service-centriavoeking,” in
is necessary. We plan on developing a self-learning alyorit Proc. USENIX NSDI2012.

di | t control loop feedback. This allows use of r%_9] M. J. Freedman, M. Aryg, P. Gopalan, S. Y Ko,'E. Nordstrc_imRex-
a_n) Imp em.en p AvRe 8 p ford, and D. Shue, “Service-centric networking with schffoPrinceton
diction algorithms and trend detection, giving the routesslid University, Septembg2010.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

K.-W. Lee, B.-J. Ko, and S. Calo, “Adaptive server sélmefor large scale published in international journals or in the proceedinginternational con-
interactive online gamesComputer Networks/ol. 49, no. 1, pp. 84-102, ferences. He has also been involved in several national anmpBan research
2005. projects (FP6 MUSE, FP7 MobiThin, H2020 FUSION).

P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexfordnd»: decen-
tralized server selection for cloud services,A@6M SIGCOMM Computer
Communication Reviewol. 40, pp. 231-242, ACM, 2010.

L. Zhao, Y. Ren, M. Li, and K. Sakurai, “Flexible serviselection with
user-specific qos support in service-oriented archite¢tdournal of Net-
work and Computer Applicationwol. 35, no. 3, pp. 962 — 973, 2012.
Special Issue on Trusted Computing and Communications.

H. Xu and B. Li, “Joint request mapping and response ngutfor
geo-distributed cloud services,” INFOCOM, 2013 Proceedings IEEE
pp. 854-862, IEEE, 2013.

H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, ahdvan der
Merwe, “Anycast cdns revisited,” iRroceedings of the 17th international
conference on World Wide Wgtp. 277-286, ACM, 2008.

L. Wang, A. Hoque, C. Yi, A. Alyyan, and B. Zhang, “Ospfin ospf
based routing protocol for named data networking. univerdimemphis
and university of arizona,” tech. rep., Tech. Rep, 2012.

C. Li, K. Okamura, and W. Liu, “Ant colony based forwardimethod
for content-centric networking,” iAdvanced Information Networking and
Applications Workshops (WAINA), 2013 27th Internationahf@rence on
pp. 306311, March 2013.

S. Shanbhag, N. Schwan, |. Rimac, and M. Varvello, “Sac&ervices
over content-centric routing,” iMCM SIGCOMM Information-Centric
Networking (ICN) workshop, Toronto, Canad011.

E. W. Dijkstra, “A note on two problems in connexion withaghs,”Nu-
merische mathematikol. 1, no. 1, pp. 269-271, 1959.

K. A. Dowsland and C. Reeves, “Modern heuristic tecleis| for com-
binatorial problems,'Simulated Annealing. In Reevees, CR, Editor, John
Wiley and Sons, NY, USAo. 2, 1993.

S. Abimannan, K. Durai, A. Jeyakumagt al, “Join-the-shortest queue
policy in web server farms,Global Journal of Computer Science and
Technologyvol. 10, no. 4, 2010.

V. Gupta, M. H. Balter, K. Sigman, and W. Whitt, “Analysig join-the-
shortest-queue routing for web server farmiBérformance Evaluatign
vol. 64, no. 9-12, pp. 1062 — 1081, 2007. Performance 2007I1286ma-
tional Symposium on Computer Performance, Modeling, Measurene
and Evaluation.

J. Kruskal, Joseph B., “On the shortest spanning salatfa graph and the
traveling salesman problenProceedings of the American Mathematical
Societyvol. 7, no. 1, pp. pp. 48-50, 1956.

“The clouds lab: Flagship projects - gridbus and claug/b2013.

“Brite: Boston university representative interneppodogy generator,”
2013.

“ilab.t virtual wall | internet based communication netks and services,”
2013.

Piet Smetreceived his M.Sc degree in Informatics
(2012) from Hogeschool Ghent, Belgium. He wrote a
thesis on the development of a large-data social media
game during his Masters degree. In August 2012 he
started a Ph.D. degree on 'Service-Centric Network-
ing’ at Ghent University, supervised by B.Dhoedt and
P. Simoens. Currently, Piet Smet is active as a re-
searcher on the European research project H2020 FU-
SION.

Pieter Simoensreceived his M.Sc. degree in Elec-
tronic Engineering (2005) and Ph.D. degree (2011)
from the Ghent University, Belgium. During his Ph.D.
research, he was funded by the Fund for Scientific
Research Flanders (FWO-V). In 2012, he was a vis-
iting researcher at the School of Computer Science
of Carnegie Mellon University, USA. Currently, he
is assistant professor affiliated with the Department
of Information Technology of the Ghent University
and with iMinds. His main research interests include
mobile cloud offloading, service-oriented networking,

edge/fog computing paradigms, and service engineering feareed mobile
applications. In these fields, he is author and co-author gértitan 70 papers

Bart Dhoedt received a Masters degree in Electro-
technical Engineering (1990) from Ghent University.
His research, addressing the use of micro-optics to re-
alize parallel free space optical interconnects, resulted
in a Ph.D. degree in 1995. After a 2-year post-doc in
opto-electronics, he became Professor at the Depart-
ment of Information Technology. He is author or co-
author of more than 300 publications in international
journals or conference proceedings.

