
QuLa: Queue and Latency-aware service selection
and routing in Service-Centric Networking

Piet Smet, Pieter Simoens, Bart Dhoedt

Abstract: Due to an explosive growth in services running in differ-
ent datacenters, there is need for service selection and routing to de-
liver user requests to the best service instance. In current solutions,
it is generally the client that must first select a datacenter to for-
ward the request to before an internal load-balancer of the selected
datacenter can select the optimal instance. An optimal selection re-
quires knowledge of both network and server characteristics, mak-
ing clients less suitable to make this decision. Information-Centric
Networking (ICN) research solved a similar selection problem for
static data retrieval by integrating content delivery as a nativenet-
work feature.

We address the selection problem for services by extending
the ICN-principles for services. In this paper we present Queue
and Latency (QuLa), a network-driven service selection algorithm
which maps user demand to service instances, taking into account
both network and server metrics. To reduce the size of service
router forwarding tables, we present a statistical method to ap-
proximate an optimal load distribution with minimized router state
required. Simulation results show that our statistical routing ap-
proach approximates the average system response time of source-
based routing with minimized state in forwarding tables.

Index Terms: Service-Centric Networking, Information-Centric
Networking, Latency-aware selection, name-based routing, QuLa

I. INTRODUCTION

The Internet was designed as a communications network to
interconnect end-hosts and deliver data between end pointsin
the most efficient manner. However, current Internet usage con-
sists mostly of users retrieving the same content, which ledto
the development of Content Delivery Networks (CDNs). CDNs
cache content in the network edge and load-balance requests
over multiple replicas to reduce network latency, bandwidth and
congestion. While CDNs were originally developed for static
data retrieval, some CDNs (e.g. Akamai [1]) now have applica-
tion delivery networks that also support data-processing applica-
tions by considering both server load and network characteris-
tics when load-balancing. Research has shown that the Akamai
CDN can significantly outperform traditional web content distri-
bution that uses load-balancing server farms in a few datacenters
[2]. Research on CDN indicates that the long-term sustainabil-
ity of CDNs is jeopardized by technology heterogeneity, ineffi-

Piet Smet is part of the Department of Information Technology (INTEC),
Ghent University - iMinds, Gaston Crommenlaan 8 bus 201, B-9050 Ghent,
Belgium, email: piet.smet@intec.ugent.be.

Pieter Simoens is part of the Department of Information Technology (INTEC),
Ghent University - iMinds, Gaston Crommenlaan 8 bus 201, B-9050 Ghent,
Belgium, email: pieter.simoens@intec.ugent.be.

Bart Dhoedt is part of the Department of Information Technology (INTEC),
Ghent University - iMinds, Gaston Crommenlaan 8 bus 201, B-9050 Ghent,
Belgium, email: bart.dhoedt@intec.ugent.be.

cient resource utilization, poor reactivity and coarse granularity
in management operations [3].

Information-Centric Networking (ICN) [4] integrates content
delivery as a native network feature and solves the selection
problem by leveraging in-network caches and load-balancing.
In ICN, users are able to address objects by an identifier without
providing a destination locator. More specifically, users send
out an anycast-like message (i.e. one identifier can addressmul-
tiple replicas) to search for data, using object names instead of
IP addresses to identify the desired data; it is up to the routers to
forward requests to the closest data replica. This concept led to
various forwarding and caching optimizations to improve con-
tent delivery [5] [6] [7].

Existing solutions to optimize content delivery, such as ICN
architectures [8] [9] [10] [11] [12] and CDNs, are designed to
support static data retrieval and typically do not considercom-
plications introduced by services: caching is less evident, ser-
vices are prone to dynamic service times and often require input
data to consider. Currently, services often reside in datacenters
or cloud sites. Cloud Computing was developed to provide easy
access to computational services by facilitating resourcescal-
ing, resilience and security amongst others. At first, userscom-
municated with only a handful of cloud sites. One of the main
disadvantages of this cloud approach is the induced networkla-
tency and large bandwidth required between users and the cloud.
This made a centralized cloud approach unsuitable for real-time
data-processing services and motivated the development ofdis-
tributed clouds located in the network edge [13] [14] [15]. Edge
clouds optimize network traffic and reduce network latency by
bringing services closer to the users, similar to CDNs. When
several cloud sites host an instance of the same service, requests
must be processed by the instance which offers the best Quality
of Service (QoS) [16]. This is a more complex problem than
can be solved with generalized resource assignment algorithms
in individual cloud sites. Techniques to facilitate the distribu-
tion of real-time data-processing services are limited to specific
cloud infrastructures; they do not focus on fine-grained selection
of processing nodes in the network between the different cloud
sites.

The need for an ICN-like solution to support services led
to the development of Service-Centric Networking (SCN) [17].
SCN is designed to support efficient provisioning, discovery and
execution of services distributed over the network. Caching in
SCN is less evident because every service response is a reply
to a specific request with input data. Instead, SCN architec-
tures provide mechanisms to deploy service instances in thenet-
work and forward requests to the instance with the lowest re-
sponse time. Content requests can still make use of caching for
faster content delivery. Like ICN, SCN also enables location-

1229-2370/14/$10.00c© 2014 KICS

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55710468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

independent access to content and services using name-based
routing. SCN combines service instantiation and network rout-
ing at a fine granularity.

In this paper we present our contributions towards service
selection and network routing in Service-Centric Networking.
We focus on real-time data processing services which require
fast system response time for an acceptable Quality of Experi-
ence (QoE). Our goal is to provide more efficient service ac-
cess; users address services only by name and in-network load-
balancing techniques route requests towards service instances
such that the average response time as seen by the clients is opti-
mized. We argue that network metrics such as hop-count are not
sufficient for service selection and that load-balancing should be
done by service routers. We aggregate user demand at network
edge nodes and seek an optimal distribution of the request load
across the deployed instances. Service routers forward andload-
balance user demand over multiple service instances. Thereare
two key issues to solve; (1) distributing user demand over the
available service instances so that the average response time as
seen by the clients is minimized and (2) configuring the forward-
ing tables to reflect this selection in a scalable manner.

To tackle the first issue, we present a network-driven service
selection algorithm named Queue and Latency (QuLa). We im-
plement our current approach on a centralized broker which con-
tains knowledge of the network and server characteristics.This
approach can be extended to a hierarchy of brokers for improved
scalability and to avoid a single point of failure. We search
for an optimal distribution of user demand over the available
service instances while considering both network latency and
server queuing times. The result of this step is a load distribu-
tion matrix which maps user demand to service instances.

Connect to best service

instance of ‘serviceID’

= Service Router

= Execution Node

Centralized broker

Service

Selection

Populate

Forwarding

Tables

Name-based forwarding

Reduce state

Fig. 1. A centralized broker runs the QuLa service selectionalgorithm, re-
duces the required state to map this selection to the forwarding tables of
service routers and then populates these forwarding tables. Requests are
forwarded to a service instance by service routers using a name-based for-
warding scheme.

The second issue, populating forwarding tables, poses a scal-
ability challenge as we envision a large amount of services and
users in SCN, inducing large forwarding table sizes. Embed-
ding the load distribution (calculated by the QuLa selection al-
gorithm) in the forwarding tables of the service routers requires
service name and client source address as input (which we refer
to as source-based routing). However, source-based routing ex-
cludes the possibility of forwarding table aggregation, making
this approach less practical due to poor scaling behavior. There-

fore, we developed a statistical method to approximate the QuLa
load distribution without considering the client source address.
The result is a load distribution which tells each service router
how the incoming demand should be distributed over the outgo-
ing links, using only service name as input. However, eliminat-
ing the source address allows routing loops to occur at runtime.
This is prevented by forcing requests to follow the branchesof
a spanning tree. We studied the impact of source address elim-
ination on the average response time compared to source-based
routing. Simulation results show that our statistical routing ap-
proach (limited by a spanning tree) with minimized router state
is able to approximate the same results as source-based routing
(not limited by a spanning tree). Figure 1 illustrates the different
aspects of our research and an overview of the components.

The remainder of this paper is structured as follows. In sec-
tion II we describe related work on ICN, SCN and name-based
service selection and routing. We present our QuLa service se-
lection algorithm which minimizes the average response time
in section III. Section IV describes our proposed name-based
routing approach used to load-balance requests with only ser-
vice name as input. Our simulation results are presented in sec-
tion V, showing that QuLa is able to approximate benchmark
results with minimized router state. Finally, in section VIwe
present our conclusion and discuss future work.

II. RELATED WORK

QuLa is related to several areas of research as it addresses
service selection and routing in SCN. In this section we briefly
discuss work relevant to QuLa for the different aspects of our
design.

Service-Centric Networking. There are several design con-
siderations when extending ICN to SCN, described in [17]. One
of the main research challenges in SCN is setting up connections
between end-hosts for service sessions without prior knowledge
about the host addresses. Serval [18] proposes a Service Access
Layer to translate service names to instance addresses, while si-
multaneously setting up the TCP connection between both end-
hosts. Serval focuses on services running on mobile devicesand
aims to support late-binding and service migration to support
seamless relocation of both users and services. SCAFFOLD
[19] emphasizes on a flow-based anycast mechanism, allowing
multiple instances to be addressed by the same service name.
This approach relies on underlying virtualization and changes
to the existing network stack.

As service selection and routing in SCAFFOLD and Serval
are left open to the implementation, QuLa could be adopted to
manage both tasks in these frameworks.

Service selection. The Zoom-in-zoom-out algorithm [20]
performs server selection for a game service with certain de-
lay constraints. The key objective is to select a minimum setof
servers while still meeting the delay constraints. The algorithm
starts by assigning each client to the closest server and then iter-
atively assigns clients to the next server on the path to the cluster
center (the server with the lowest average latency to all clients).
The final selection for a client is found when the latency to the
next server on the path to the cluster center exceeds the latency
constraints. This approach avoids overprovisioning of comput-

ing resources. This is an interesting use case for QuLa as latency
constraints are the main focus for real-time services. However,
this algorithm only considers network delay and does not con-
sider the server load, making it less suitable to predict theentire
response time of a service.

DONAR [21] focuses on selection for cloud services and
presents a decentralized mapping scheme considering both
server load and client performance. DONAR describes a prob-
lem statement which supports partial load distribution of user
demand over service replicas, using a generic cost functiondur-
ing the selection process. QuLa adopts a similar approach and
implements the cost function to predict the average response
time. The service selection in QuLa will assign demand to repli-
cas with minimum cost, reducing the average response time as
seen by the clients.

In [22] service selection supports user-specific QoS in a
service-oriented architecture. The selection algorithm accounts
for response time, trust and monetary cost, although it doesnot
assign jobs to resources directly. Instead, it serves as an assistant
tool to recommend a number of suitable services based on the
user’s QoS requirements. With QuLa we avoid user interaction
after the request is made by selecting the best service instance
such that the average response time as seen by the clients is op-
timized during the forwarding process.

Selecting the best datacenter for a client is one problem, rout-
ing the response back to the user is the next challenge. In [23]
both problems are addressed at the same time using a distributed
algorithm based on alternating direction method of multipliers
(ADMM), minimizing cost (bandwidth, electricity) and max-
imizing performance (latency). However, this algorithm uses
end-to-end propagation delay as performance measurement and
assumes that link capacity is more restricting than server pro-
cessing capacity. In SCN, servers are placed at the network edge
on execution points which are likely to be smaller and less pow-
erful than large datacenters; this requires less bandwidthand
increases the importance of server processing capacity. InQuLa
we solve the selection and routing problem separately while
considering both network and server characteristics.

Name-based Routing. In IP anycast, one IP address can cor-
respond to several service replicas. However, native IP any-
cast redirects traffic to destinations based on the shortestpath
and does not consider server metrics. A proposal was made to
extend IP anycast to a load-aware anycast CDN [24], where a
centralized controller considers both network and server load to
drive the CDN redirection mechanism. An interesting aspectof
this research is the focus on minimizing the traffic disruption
when ongoing sessions are being re-mapped to alternative CDN
servers. Unfortunately, this approach is only feasible if the Au-
tonomous Systems (ASes) it targets have a large footprint inthe
country where they provide CDN services. Also, this approach
is focused on anycast routing in CDNs, which does not over-
come the limitations of CDN itself.

Akamai, one of the larger players on the CDN market, avoids
network hotspots by using its extensive network and server mon-
itoring to redirect clients to frequently changing Akamai edge
servers, lowering the client-perceived latency. It is shown that
using an Akamai-server as a one-hop detour (client to Akamai
edge server to destination) is more beneficial than using thedi-

rect client-destination path in more than 50% of the scenarios
[2]. This shows how traditional IP routing is not always op-
timal for traffic with low latency requirements. Therefore,we
adopt the forwarding scheme of the ICN framework Content
Centric Network / Named Data Networking (CCN/NDN) [8];
each router forwards requests to the next hop on path to the de-
sired data. This allows separate paths to be set up for differ-
ent services, even if multiple services run on the same destina-
tion. When hotspots are detected, the traffic distribution over the
outgoing links of service routers can be adjusted to steer traffic
away from the hotspots and improve overall performance.

In ICN, routers typically forward requests based on object IDs
rather than destination IP address.One approachis to extend
existing routing protocols for named-based requests, suchas
OSPF-N [25]. This approach extends the OSPF link-state rout-
ing protocol for IP networks to support name-based requests.
A second approachis to develop new forwarding schemes to
learn which interfaces requests should be forwarded on, such
as Greedy Ant Colony Forwarding (GACF) [26]. The GACF
forwarding algorithm uses Ant Colony Optimization, a proba-
bilistic optimization heuristic, to find the best paths to forward
requests on. However, this approach does not consider server
characteristics (e.g. load), rendering it less suited for SCN. A
third approachis to extend existing ICN platforms with rout-
ing protocols aimed to provide service access. One of these ap-
proaches is SoCCeR [27], a decentralized routing protocol for
services built on top of CCNx (an implementation of CCN).
Routing in SoCCeR uses Ant Colony Optimization to gather
latency and service load information which is used to config-
ure the Forwarding Information Base of CCNx nodes. SoCCeR
provides a plausible way to learn which instances provide the
fastest response time through continuous learning at runtime.
Rather than adjusting load-balancing probabilities at runtime,
QuLa finds an optimal distribution given a certain demand and
service placement, minimizing the activity of the routing plane.

In CCN/NDN, requests can be forwarded to several destina-
tions while only the first answer is accepted. As services gener-
ally consume more computational resources than data retrieval,
service selection is desired to provide one-to-one mappingbe-
tween service requests and service instances. Therefore, the
routing process presented in this paper is a combined effortof
the QuLa selection algorithm, which selects several acceptable
destinations for service requests of each user, and the service
routers which perform statistical load-balancing (based on ser-
vice name) to route each request to one of these destinationsin
a hop-based forwarding manner.

III. QULA: NETWORK-DRIVEN SERVICE
SELECTION

One of the key issues presented in this paper is to map user
demand to available service instances such that the averagere-
sponse time is minimized. In ICN, routers must find a path to
a location-independent name. In most standardized routingpro-
tocols, path selection is often based on network metrics (hop-
count, bandwidth, network latency ...) used in shortest path al-
gorithms such as Dijkstra’s algorithm [28]. We argue that ser-
vice selection in a service-centric network (1) should consider

both network and server characteristics and (2) benefits from
monitoring traffic patterns in real-time.

To address the first concern, we describe a problem statement
and present an objective function which considers both server
and network metrics to minimize the average response time as
perceived by the clients. In our model, each server has a queue
for incoming requests when the server is busy. We use the queue
size to represent the server load and consider latency as network
metric, which is why our objective function is called Queue and
Latency (QuLa). We implemented Simulated Annealing [29] to
perform service selection using the QuLa objective function and
compare this approach with (1) a greedy shortest path approach,
(2) assigning equal load to each server and (3) a dynamic assign-
ment of each request to the shortest queue upon request arrival.

The second concern is studied in section V-F where we show
the impact of performing service selection with less frequent
monitoring.

A. ASSUMPTIONS

The service selection algorithm maps user demand to avail-
able service instances. However, considering every user individ-
ually is not feasible when load-balancing must be done in real-
time. Therefore, we aggregate the load generated by a group of
users, located in a nearby geographical area, into an aggregated
load from client nodei. In the remainder of this paper we use the
term ’client node’ to refer to a node from which demand is gen-
erated that reflects the aggregated demand of a group of nearby
users. This allows us to reduce the size of the forwarding tables
in the service routers. The requests from all users in the geo-
graphical area represented by client nodei are forwarded by the
service routers according to the forwarding rules set for client
nodei. A server nodej represents a collection of computing re-
sources located in a nearby geographical area (e.g. datacenter or
cloud site), with a queue for incoming requests.

Next, we assume a fixed service placement and fixed user de-
mand in time; service instances are not migrated, added or re-
moved during experiments, and users may have different request
rates but these do not change over time. We made these assump-
tions as we wish to evaluate the performance of the initial solu-
tion. Changing service placement or user demand requires re-
distribution of load, which can be solved by simply performing
another run of the selection algorithm based on the new condi-
tions. The importance of varying request rate is investigated in
section V-F.

Last, we assume that service processing times are repro-
ducible and stable, and that client nodes are implemented such
that requests arrive with an average rate according to a Poisson
process. Therefore, we use M/G/1 queue to model the server
queuing time. If these conditions are not fulfilled, the same
approach as described in this paper can be adopted for other
queuing systems. Using an M/G/1 queue, datacenters running
several service instances can be modeled in QuLa by separate
servers with zero link delay to a common node, each running
one service instance.

B. PROBLEM STATEMENT

Consider a network graph containing edgesE, nodesN and
services S. The lambda valuesλ(i, s) represent the request rate
from nodei for services. Client nodes are denoted byNc ⊂ N .
Nodes hosting at least one instance of a services ∈ S belong
to the server nodesNS ⊂ N . The load distribution matrix
R(i,j,s)∈ [0, 1] denotes the fraction of load from client nodei for
services, to be processed on server nodej. Tj,s is the average
service time to process a request for services on server nodej,
not considering queue delay.

A generic objective to map user demand to service instances,
using demand fractions, is the following:

min
∑

i ∈ Nc

∑

j ∈ NS

∑

s ∈ S

cost(i, j, s) ∗R (i, j, s) ∗ λ(i, s) (1)

The objective in the current implementation is to optimize the
average response time given a fixed service placement and fixed
user demand. There are two major factors that affect the re-
sponse time of a service; the time spent in the network and the
time spent on the server. Servers processing a larger demand
have more impact on the average response time. Taking into
account the above, we find the following objective:

min

∑

i ∈ Nc

∑

j ∈ NS

∑

s ∈ S

(TLat.+ Tproc.)∗R(i,j,s)∗λ(i,s)

∑

i ∈ Nc

∑

s ∈ S

λ(i,s) (2)

The sum ofTLat. andTproc. represents the response time of
a single request, considering the network latency and the esti-
mated time spent on the server. The product ofR (i, j, s) and
λ(i, s) denotes the contribution to the average response time
when sending the fractionR (i, j, s) of demandλ(i, s) to the
services. Finally, we normalize the numerator by dividing by
the total user demand to get the response time, used as qual-
ity representation for service selection.TLat. is the Round
Trip Time (RTT) between the client nodei and server nodej.
Tproc. = f(R (i, j, s)) denotes the time spent on the server, in-
cluding queue delays and service time.

We illustrate this with an example assuming that our system

is an M/G/1 queuing system; i.e.Tproc. =

(

λ∗T 2
j,s

)

2∗(1−ρ) + Tj,s

(Pollaczek-Khinchin mean value formula) which is the sum of
the average queue delay and the average service time.ρ denotes
the total incoming request rate on nodej divided by the service
rate. Considering the influence ofR (i, j, s) we findρ = Tj,s ∗∑

i ∈ Nc
λ(i, s) ∗ R (i, j, s) with 1/Tj,s being the service rate.

To guarantee that the demand of each client node is com-
pletely satisfied, the objective is limited by the followingcon-
straint:

∀ i ∈ Nc, ∀ s ∈ S :
∑

j ∈ NS

R(i, j, s) = 1 (3)

Using Equation 2 as objective function, we now search for
an optimal load distribution to optimize the average response
time. However, the distribution matrix R in the objective func-
tion takes floating point numbers as element values, creating an

Parameter Value Description
T 10 000 The temperature decides the likelihood of accepting a solution worse than the current

best one. At higher temperatures Simulated Annealing is more likely to accept a worse
solution to continue exploring the search space.

Tstop 1 The temperature at which Simulated Annealing stops exploring the search space and
returns the best found solution.

repetitionCount 2 This variable determines how many solutions are explored atone temperature value.
coolingRate 0.01 The speed at which the temperature decreases.
Delta (∆) 0.1 Indicates the amount of change made to a solution when generating neighboring solu-

tions.

Table 1. parameters used forSA

infinitely large solution space. In the following sections we de-
scribe several alternative algorithms to find a load distribution
matrix R.

Algorithm SA Simulated Annealing
Input: Temperature T, repetitionCount, coolingRate
Output: SolutionSbest with highest energyEbest

1: Scurrent ← generateSolution()
2: Sbest ← Scurrent

3: Ebest ← Ecurrent ← Objective(Scurrent)
4: while T > Tstop do
5: for 1→ repetitionCount do
6: Snew ← createNeighborSolution(Scurrent)
7: Enew ← Objective(Snew)
8: /* Generate random∈ [0, 1[and calculate probability

to accept worse solution */
9: if acceptanceProbability(Ecurrent, Enew, T) >

Random() then
10: Scurrent ← Snew

11: Ecurrent ← Enew

12: end if
13: if Ecurrent > Ebest then
14: Sbest ← Scurrent

15: Ebest ← Ecurrent

16: end if
17: end for
18: T ← T ∗ (1− coolingRate)
19: end while

C. SIMULATED ANNEALING

We implemented Simulated Annealing (SA) to take into ac-
count both server load and network latency during service selec-
tion. SA is a search heuristic to explore a large solution space
in a short timeframe, inspecting multiple local minima in the
solution space, but does not guarantee to find an optimal solu-
tion in a finite amount of time. At high temperature values SA is
likely to accept a solution worse than the current best and covers
a large search space by escaping from local minima. When the
temperature lowers, the probability of accepting worse solutions
also decreases and SA starts focusing on a smaller search space
around the current best solution. Initial temperature values are

usually set high to allow the algorithm to explore any solution
before it starts inspecting local minima.

We performed a parameter sweep to evaluate starting tem-
peratures between T=[100,20000] with a step of 200. We con-
cluded that the starting temperature T has very little influence on
the quality of the final solution for our problem, but the calcu-
lation time is reduced by approximately 30% when the starting
temperature is reduced by a factor 10. For the topologies used in
our simulations we found a good solution with a starting temper-
ature of T = 10000. Since our static selection algorithm doesnot
need to run frequently, it is more important to find a good and
stable solution rather than reducing the execution time. Inour
simulations the execution time ofSAwas between 1 second for
our smallest topology and 60 seconds for our largest topology.
We discuss our simulation setup and topologies in section V-A.

The repetition count allows the annealing process to evaluate
several solutions at the same temperature, which covers a larger
search space but also increases execution time. For a more de-
tailed explanation of Simulated Annealing we refer to [29].The
pseudo code of SA is shown in AlgorithmSAand the parameters
used are described in Table 1.

In the following paragraph we present our implementation of
the significant steps in the Simulated Annealing process.

GenerateSolutionis used to generate an initial solution to start
exploring the search space. In section III-D we describe two
alternative algorithms which can be implemented ingenerateS-
olution to construct a solution although many approaches are
supported. All generated solutions must adhere to Equation3.

Algorithm createNeighborSolution()
Input: ∆, currentSolution
Output: Slightly altered load distribution matrixR
1: R← currentSolution
2: i← pick random client∈ Nc

3: for all s ∈ S do
4: x← pick random server∈ NS

5: R(i, x, s)← R(i, x, s) + ∆
6: for all j ∈ NS do
7: R(i, j, s)← R(i, j, s)/(1 + ∆)
8: end for
9: end for

For each iteration ofSAwe generate a new solution to further

explore the search space. These new solutions are generated
by making changes to the current solution; we refer to them
as neighboring solutions. In our implementation neighboring
solutions are generated by assigning more demand to one server
and removing the same amount from the remaining servers (cfr.
Equation 3).

We opted for∆ = 0.1 to explore a large search space in a short
timeframe, with relatively small deviation between neighboring
solutions.

After creating a neighboring solution,SAmust accept or re-
ject the new candidate solution. A candidate solution is always
accepted if it is better than the current solution. However,to es-
cape local optima, a candidate solution worse than the current
solution can be accepted using the acceptance probability:

e
(CurrentEnergy − newEnergy)

T (4)

where the energy represents the response time calculated with
Equation 2. Once either of the stop conditions is met, we return
the best solution encountered during the annealing process.

D. BENCHMARK ALGORITHMS

In this section we describe two alternative approaches to find
a load distribution, which are then used as benchmarks to eval-
uateSA.

1. Greedy Algorithm. We implement a greedy load dis-
tribution algorithm which prioritizes client-server pairs with the
smallest latency. Starting with the client-server pair inducing the
smallest network latency, user demand is assigned to that server
until either the client node’s demand is completely satisfied, or
the server capacity (maximum amount of requests processed per
time unit) is met. We iterate through client-server pairs until all
client node demand is satisfied.

Algorithm Greedy assign demand by prioritizing client-server
pairs with the lowest latency

Input: λ(i, s), Tj,s ∀i, j, s
Output: Load distribution matrixR
1: A (i, s)← λ(i, s), ∀i, s
2: C (j, s)← 1/Tj,s, ∀j, s
3: */ sort all (i,j,s)-triplets by increasing network latencybe-

tween i,j */
4: P ← sort (i, j, s)
5: for all i, j, s in P do
6: if A (i, s) > 0 andC (j, s) > 0 then
7: if A (i, s) /C (j, s) > 1 then
8: A (i, s)← A (i, s)− C (j, s)
9: R(i, j, s)← C (j, s) /λ(i, s)
10: C (j, s)← 0
11: else
12: C (j, s)← C (j, s)−A (i, s)
13: R(i, j, s)← A (i, s) /λ(i, s)
14: A (i, s)← 0
15: end if
16: end if
17: end for

This approach is very intuitive, assigning most demand to
the client-server pairs which induce the lowest response time.
We used this greedy distribution as starting solution forSA in
our simulations. However, by prioritizing a certain client-server
pair, we indirectly penalize other clients which do not get to
use this server’s full capacity anymore. This implies that anon-
greedy decision for client-server pairs with low latency can have
positive effects on the response time of several nearby clients. In
section V we present our results on this hypothesis.

2. Equal Share. Greedyalways induces high workload on
few servers while more distant servers remain idle most of the
time. An alternative is to give each server an equal share of
user demand (Equal), trading reduced workload for increased
network latency.

R (i, j, s) =
1

size (NS)
∀ i ∈ Nc, j ∈ NS , s ∈ S (5)

In section V we show that this approach is less sensitive to in-
creasing demand although it does induce more network latency.

3. Joint Shortest Queue (JSQ).The disadvantage of static
selection algorithms is the poor resilience to unexpected load
conditions. Small peaks could temporarily render a server less
suitable for request processing. When the service routers only
follow the static forwarding table configuration without consid-
ering actual server load upon request arrival, the performance
of that server could further decrease and impact the overallre-
sponse time.

Dynamic selection algorithms can mitigate this problem by
assigning requests to servers upon request arrival, based on mea-
sured metrics. However, this requires monitoring information to
be available when assigning a request to a server (in our case,
on the service routers). Gathering both network and server load
information on each service router is difficult to scale which
is why most dynamic selection algorithms only consider server
metrics or network metrics.

To evaluate the performance difference between a static con-
figuration and a dynamic selection algorithm, we implement
Joint Shortest Queue (JSQ), an often used selection algorithm
for server farms [30]. Upon request arrival, JSQ assigns each re-
quest to the server with the least number of unfinished requests
to minimize queue delays. This approach enables the system to
minimize the queue length and the mean response time on every
server [31].

However, unlike Equation 2, JSQ does not consider the net-
work latencies between client and server. In section V-D we
study the performance difference between a onetime static con-
figuration by solving Equation 2 withSA, and a dynamic selec-
tion with JSQ.

IV. CONFIGURING THE NAME-BASED
ROUTING PLANE

When demand is high, user requests must be load-balanced
over multiple service instances. This is reflected in the selection
algorithm by using a load distribution matrixR, assigning par-
tial demand to available instances. At runtime, service routers
load-balance user demand utilizing the fractions assignedin the

load distribution matrix. In this section we describe the configu-
ration process of statistical load-balancing in the service routers
to approximate the service selection.

We build on top of the hop-based forwarding scheme from
CCNx where each router knows only the address of the next hop
towards the service instance. Unlike the CCNx approach, ser-
vice selection prevents requests from being processed by mul-
tiple service instances as only one answer is accepted by the
client. For a perfect mapping of the service selection to the
forwarding tables, each service router should also consider the
source of the request (source-based routing). This approach is
illustrated in Figure 2. As this inflates the forwarding tables,
we seek to approximate the same results without considering
the source of a request. To tackle this problem, we propose a
statistical load-balancing method which is performed by each
service router on the path to a service instance. An important
research question is how much this approximation degrades the
overall average response time. In the next section we describe
both variants and we present our results in section V-C.

A. VARIANT 1: SOURCE-BASED ROUTING

We configure service routers with separate forwarding entries
for each source address to reflect the service selection. Consider
λ(i, s) the total demand from clienti for services, R(i, j, s) the
percentage of that demand to be processed on serverj, P in

k (i, s)
the incoming percentage ofλ(i, s) on service routerk, and
P out
kl (i, s) the percentage ofP in

k (i, s) forwarded to routerl on
routerk. Initially, all P in andP out are set to zero. The forward-
ing tables are configured as follows: (1) we stipulate a path for
each client-server pair (i,j) and a given services. (2) For each
routerk on that path,R(i, j, s) is added to bothP in

k (i, s) and
P out
kl (i, s), wherel is the next service router on path. (3) After

all pairs(i,j) are traversed for services, we expressP out
kl (i, s) as

fraction ofP in
k (i, s), to normalize all values in range [0,1].

Figure 2 shows a sample configuration: 40% of user 1’s de-
mand is sent to R5, which forwards 50% to R6 and 50% to R7.
Thus, 20% of user 1’s demand reaches zone B and 20% reaches
zone C, as per selection.

Server A

Server C

User 1

User 2

R1

R2

R3 R4

R6

Service Name Source Next Hop

Serv-facedetection U1 R6 (50%), R7 (50%)

Serv-facedetection U2 R6 (20%), R7 (80%)

Server B

RRR6666

R7

R5

60% 100%

100%

100%

Fig. 2. source-based routing enables accurate load-balancing but is prone to
large forwarding tables

To populate the forwarding table of service routerk we dis-
tributeP out

kl (i, s) for each pair (i,s) and each neighbor routerl.

B. VARIANT 2: WEIGHTED AVERAGE

An ideal mapping of the load distribution matrixR (i, j, s)
to the forwarding tables of service routers requires a source ad-
dress. To reduce the forwarding table sizes, we approximate
the average response time of source-based routing with statis-
tical load-balancing on service routers, without considering the
source of the request. The following paragraph describes our
statistical method to approximate the load distribution from the
selection result without considering source addresses, executed
on a centralized broker which contains the entire distribution
matrix. The outcome of this method, a load distribution which
does not contain source addresses, is then distributed to the ser-
vice routers.

Averaging the outgoing percentages
∑

i ∈ Nc
P out
kl (i, s) does

not suffice to reflect the service selection. We observe that out-
going demand on a service routerk is influenced by both larger
λ(i, s) andP in

k (i, s). Using the same configuration steps as
the source-based routing variant, we find the total incomingde-
mand for services on routerk, Din

k (i, s) =
∑

i ∈ Nc
λ(i, s) ∗

P in
k (i, s) , and the outgoing demand on the link to routerl,

Dout
kl (i, s) =

∑
i ∈ Nc

λ(i, s) ∗ P in
k (i, s) ∗ P out

kl (i, s). We
approximate

P out
kl (s) =

Dout
kl (s)

Din
k

(s)
=

∑

i ∈ Nc

λ(i,s)∗ P in
k (i,s)∗ P out

kl (i,s)

∑

i ∈ Nc

λ(i,s)∗ P in
k

(i,s)
(6)

whereP out
kl (s) denotes the new outgoing percentages using

only service name as input and not taking into account the
source of the request. OnlyP out

kl (s) is configured in the for-
warding tables, enabling service routers to load-balance requests
as stated per service selection without considering sourcead-
dress. P out

kl (s) approximates the same amount of traffic for-
warded on each edge as the source-based routing variant, induc-
ing approximately the same system response time.

The logic behind this method goes as follows: assuming
source-based routing, we calculate the incoming and outgoing
traffic load on every service router for all clients. Equation 6 is
used to find the outgoing traffic distribution for every edge on a
service router to approximate the same traffic load without con-
sidering source addresses. When the amount of traffic on each
edge approximates the load induced with source-based routing,
each server also receives approximately the same load as stated
by source-based routing. Due to service routers not considering
source addresses, it is possible for the actual load distribution to
deviate from the client-server mapping found by the algorithms
described in section III. Now consider a clienti inducing more
load on serverj than stated by the load distributionR (i, j, s)
because of our weighted average load-balancing. If the server
load remains unchanged, there must be another clientk induc-
ing less load on serverj and more load on another serverm than
stated byR (i, j, s). Due to the load-balancing performed on
each service router, requests are less likely to reach more distant
servers. Thus, an increased load on serverj indicates that server
j is likely to be located nearby clienti, improving the average
response time for clienti. Client k may now see a decrease or
increase in average response time depending on the locationof
serverm. However, not all clients can benefit from this distribu-

tion shift or elseR (i, j, s) would not be an optimal load distri-
bution. These clients experience an increased response time and
negate the improved response time of other clients (e.g. client
i), approximating the average system response time as predicted
with Equation 2. This effect is studied in section V-E.

Due to service routers load-balancing requests without con-
sidering source addresses in QuLa weighted average routing,
routing loops may occur if no further action is taken. There-
fore, allowed routing paths should be restricted to edges be-
longing to a minimum spanning tree of the network graph. A
minimum spanning tree of a network graph is a tree that con-
tains every vertex of the graph, where the total weight of all
the edges is minimized. To construct a spanning tree we use
Kruskal’s algorithm [32]. By using a suitable metric as edge
weight in Kruskal’s algorithm to construct a spanning tree,we
can prioritize edges which contribute most to the response time,
reducing the performance loss compared to using the full net-
work graph. In section V-E we study the effect of different edge
metrics in Kruskal’s algorithm on the average response time,
propose a metric derived from the load distribution and present
our simulation results. All results for weighted average routing
in section V-C are obtained by forcing requests to follow the
branches of a minimum spanning tree.

V. SIMULATION RESULTS

We evaluate the service selection algorithms from section III
in a simulator using several sample network topologies to de-
termine the most efficient selection approach. In section V-
A we describe our simulation setup and network characteris-
tics, followed by a discussion of the service selection perfor-
mance in section V-B. Next, we evaluate the two routing vari-
ants and the degradation in average response time induced by
QuLa weighted average routing in section V-C. In order to de-
termine the performance difference of a onetime static selection
approach and a dynamic selection algorithm, we evaluate the
impact of performing selection upon request arrival but with less
information than the static approach in section V-D. Not consid-
ering source-addresses allows routing loops to occur, which is
solved by using a spanning tree to determine allowed routes.In
section V-E we study the importance of the metric used to prior-
itize edges in Kruskal’s algorithm and its impact on the perfor-
mance of QuLa’s weighted average routing. We conclude our
evaluation by studying the necessity of demand monitoring and
dynamic adaptation in section V-F.

A. SIMULATION SETUP

In order to evaluate large network topologies we created a
simulation environment using CloudSim [33], a framework for
modeling and simulating cloud computing infrastructures and
services. We extended CloudSim’s datacenter objects to add
an internal service router and use each datacenter to host one
service instance per virtual machine. This approach avoidssev-
eral service instances affecting the service time on one virtual
machine. In our setup all servers are modelled by an M/D/1
queue, a special case of M/G/1 with deterministic service time

(T 2
j,s = Tj,s

2
). In this case the server processing time described

in section III-B can be written asTproc. = (2−ρ)
2∗(1−ρ) ∗ Tj,s.

In CloudSim an M/D/1 queue system is implemented by (1)
scheduling requests using CloudSim’s Space Shared Scheduler,
(2) configuring components so that each request has a fixed ser-
vice time, and (3) implementing a Poisson process on client ap-
plications.

SS50 SD50 LS200 LD200
#Service routers 50 50 200 200
#Clients 5 5 20 20
#Servers 3 3 3 3
Outgoing edge degree
per router

1 5 1 5

Avg diameter 12 6 19 8
Service time 25ms
Link latency distribution uniform [10,100]
Brite Model Waxman AS

Table 2. network configuration of each topology type used in simulations.

In order to evaluate the service selection and routing behav-
ior in different network environments, we generate four types of
network topologies using Brite [34] (Table 2): (1) small topolo-
gies with sparse connectivity (SS50), (2) small topologieswith
dense connectivity (SD50), (3) large topologies with sparse con-
nectivity (LS200) and (4) large topologies with dense connec-
tivity (LD200). For each topology type we generate 50 sample
networks, assign client-server roles, place service replicas, and
generate user demand patterns. Using the generated topologies
and fixed service placement, service selection is performedby
the algorithms described in section III which return the load dis-
tribution matrix. We implemented a centralized component,the
broker, to configure service routers residing in each datacenter
based on this load distribution matrix. In the final configuration
step, the broker deploys the service process on each server node,
ready to process requests. Using the average response time of
these simulations we obtain reliable data required to make acon-
fident assessment of the performance of each algorithm. All
simulations are performed on the iLab.t Virtual Wall [35] us-
ing a server with a Hexacore Intel E5645 (2.4GHz) CPU, 24GB
RAM, 1x 250GB hard disk and 1-5 gigabit network interface
cards.

B. SERVICE SELECTION PERFORMANCE

To compareSA, GreedyandEqual, Equation 2 is used to cal-
culate the expected response time for each solution. Figure3 il-
lustrates the performance of each algorithm, represented by the
(expected) average response time in milliseconds (Y-axis)for a
set of fixed load values (X-axis). Response times on the graphs
represent the average response time for each topology type,ob-
tained by sampling 50 topologies for fixed load values.

Consider Figure 3, for low system load the response time is
dominated by network latency, makingGreedyan optimal so-
lution as it prioritizes servers closest to the users.Equal does
not consider server location and network latency which renders
this solution less suitable for varying network latencies between

500

550

600

650

700

750

800

850

900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

s
p

o
n

s
e

 t
im

e
 (

in
 m

s
)

System load (total demand / total server capacity)

Simulated Annealing Greedy Equal Share

130

150

170

190

210

230

250

270

290

310

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
s

p
o

n
s
e

 t
im

e
 (

in
 m

s
)

System load (total demand / total server capacity)

Simulated Annealing Greedy Equal Share

(a) (b)

700

800

900

1000

1100

1200

1300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

sp
o

n
se

 t
im

e
 (

in
 m

s)

System load (total demand / total server capacity)

Simulated Annealing Greedy Equal Share

170

190

210

230

250

270

290

310

330

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
s

p
o

n
s
e

 t
im

e
 (

in
 m

s
)

System load (total demand / total server capacity)

Simulated Annealing Greedy Equal Share

(c) (d)

Fig. 3. comparison of the service selection solution qualityfor (a) a small topology with sparse connectivity, (b) a small topology with dense connectivity, (c) a
large topology with sparse connectivity and (d) a large topology with dense connectivity.

client-server couples. The service selection inGreedywill pri-
oritize the closest server until its maximum capacity is reached
before assigning requests to other servers. These servers oper-
ating near maximum capacity are the reason for the poor per-
formance ofGreedyfor high demand (at 90% in figure 3 a and
b, at 80% for c and d).SA is able to adapt to increasing load
by shifting away from a greedy approach and distribute load
over more server replicas, similar toEqual. When using these
approaches instead ofGreedy, servers only operate near max-
imum load when the total system load approaches 95%. This
increases system stability and allows for higher load values to
be processed on the network.

For average system load we observe that bothSAandEqual
perform better in dense graphs (Figure 3 b and d) than sparse
graphs (Figure 3 a and c). This is due to dense graphs contain-
ing more paths between the different client-server couples, low-
ering the average hop count and reducing the penalty of not con-
sidering network latency inEqual. SAperforms better in dense
graphs due to the network containing more available paths and
thus more load distribution solutions possible. A sparse graph
contains fewer and longer paths between client-server pairs, in-
creasing the latency penalty when forwarding requests to more
distant servers. This makesGreedyan efficient and near-optimal
approach for networks with sparse connectivity as it assigns as
much demand as possible to the nearest servers. In a sparse net-
work we observe a slightly better performance withSA, although
one could argue that the performance gained is not worth the
additional computing time and resources. Despite the increased

execution time, this approach still has the benefit of supporting
more system load thanGreedyin both dense and sparse net-
works.

C. QULA WEIGHTED AVERAGE VS. SOURCE-
BASED ROUTING

We investigate to what extent the QuLa weighted average ap-
proach (section IV-B) is able to approximate the response time
achieved through source-based routing (section IV-A), without
maintaining large source state in forwarding tables. To avoid
routing loops, weighted average routing was simulated on a min-
imized spanning tree as described in section IV-B.

Figure 4 shows the measured response times using source-
based routing (dashed) and the QuLa weighted average ap-
proach (solid) to configure the forwarding tables based on the
service selection obtained bySA, GreedyandEqual. Source-
based routing guarantees an exact mapping of the load distri-
bution into the routing configuration. Therefore, the response
times obtained through source-based routing simulations corre-
spond to the expected (theoretical) values illustrated in Figure 3
and are used as a benchmark for our weighted average approach.

For low load valuesEqualinduces a larger response time than
SAandGreedyas explained in section V-B. However, we ob-
serve that the performance of both source-based routing and
QuLa weighted average routing depends on the network con-
nectivity (sparse or dense). There are two key factors that con-
tribute to this phenomenon. First, inEqual users send equal

500

550

600

650

700

750

800

850

900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

s
p

o
n

s
e

 t
im

e
 (

in
 m

s
)

System load (total demand / total server capacity)

Source Routing - benchmark (SA) Weighted Average (SA)

Source Routing - benchmark (Greedy) Weighted Average (Greedy)

Source Routing - benchmark (Equal) Weighted Average (Equal)

JSQ

130

150

170

190

210

230

250

270

290

310

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
s
p

o
n

s
e
 t

im
e
 (

in
 m

s
)

System load (total demand / total server capacity)

Source Routing - benchmark (SA) Weighted Average (SA)

Source Routing - benchmark (Greedy) Weighted Average (Greedy)

Source Routing - benchmark (Equal) Weighted Average (Equal)

JSQ

(a) (b)

700

800

900

1000

1100

1200

1300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
s
p

o
n

s
e
 t

im
e
 (

in
 m

s
)

System load (total demand / total server capacity)

Source Routing - benchmark (SA) Weighted Average (SA)

Source Routing - benchmark (Greedy) Weighted Average (Greedy)

Source Routing - benchmark (Equal) Weighted Average (Equal)

JSQ

170

190

210

230

250

270

290

310

330

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
s
p

o
n

s
e
 t

im
e
 (

in
 m

s
)

System load (total demand / total server capacity)

Source Routing - benchmark (SA) Weighted Average (SA)

Source Routing - benchmark (Greedy) Weighted Average (Greedy)

Source Routing - benchmark (Equal) Weighted Average (Equal)

JSQ

(c) (d)

Fig. 4. response times using source-based routing and weighted average for (a) a small topology with sparse connectivity,(b) a small topology with dense
connectivity, (c) a large topology with sparse connectivity and (d) a large topology with dense connectivity.

load to each server using many edges in the network, while the
spanning tree used in QuLa weighted average routing only con-
tains a subset of those edges. For every edge no longer avail-
able in the spanning tree, requests are forced to take a longer
route than expected and the response time increases. Second,
service routers in QuLa’s weighted average routing performsta-
tistical load-balancing; service routers can forward requests to a
local server and the probability of requests reaching more dis-
tant servers decreases as more service routers are passed. The
spanning tree in QuLa weighted average routing contains longer
and fewer paths so that requests are less likely to reach distant
servers, similar to a greedy service selection. This reduces the
penalty of using a spanning tree as the average network latency
decreases when using QuLa weighted average. We describe this
effect in detail in section V-E.

Depending on the network characteristics, one of these two
effects will outweigh the other.Dense networkscontain many
different paths between two nodes and traffic is spread out over
several paths, inducing low traffic load on individual edges. As
the spanning tree only contains a small set of the most used
edges, the traffic must now follow longer paths than before and
thus the average network latency increases.In sparse networks
the penalty of losing edges by using a spanning tree is mini-
mized as the traffic is already concentrated on the few available

paths. This allows construction of a spanning tree containing
the most frequently used edges as stated by service selection.
Equalnow performs better with QuLa’s weighted average load-
balancing because servers closest to the users are prioritized, re-
ducing the network latency for requests compared to the source-
based routing approach.

Greedyis least affected by the use of a spanning tree; a greedy
service selection assigns maximum load to nearby servers and
generally requires a minimized set of edges. This greedy se-
lection results in high traffic load on few edges, which allows
Kruskal’s algorithm to construct a spanning tree containing all
used edges.SAis able to adapt to network characteristics by us-
ing a greedy load distribution when network latency is relatively
large, while using a more distributed approach when networkla-
tency decreases. This makesSAmore robust against the penalty
of losing edges by using a spanning tree, giving almost similar
result for both QuLa weighted average and source-based rout-
ing.

We observe that weighted average routing achieves a close
approximation of source-based routing when the spanning tree
contains all edges used by the service selection. This further
indicates that, assuming we obtain a suitable spanning tree,
the QuLa weighted average approach approximates the desired
benchmark results and enables route aggregation with minimal

0

20

40

60

80

100

120

0 200 400 600 800 1,000 1,200 1,400

C
u

m
u

la
ti

v
e
 p

e
rc

e
n

ta
g

e
 o

f
re

q
u

e
s
ts

b

e
lo

w
 r

e
s
p

o
n

s
e
 t

im
e

Response time (in ms)

SA vs JSQ - 50% load

SA

JSQ

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e
 p

e
rc

e
n

ta
g

e
 o

f
re

q
u

e
s
ts

b

e
lo

w
 r

e
s
p

o
n

s
e
 t

im
e

Response time (in ms)

SA vs JSQ - 90% load

SA

JSQ

(a) (b)

Fig. 5. response times using a static configuration found bySAand a dynamicJSQselection for a large topology with sparse connectivity (LS200) running (a)
stable at 50% load and (b) at 90% load with small peaks.

forwarding table state.
Because of the in-network load-balancing converging to a

greedy load distribution in sparse networks and trees, nearby
servers will operate near maximum capacity earlier than more
distant servers, possibly lowering the system stability. The
convergence to a greedy distribution explains the small perfor-
mance loss by weighted average routing compared to source-
based routing for high load values in Figure 4. However, we
observe thatSAalways produces the best response time, even
considering the performance loss induced by a spanning tree, il-
lustrated in Figure 4. This further indicates our statementfrom
section V-B thatSAis the best choice algorithm to perform ser-
vice selection, regardless of the network characteristics.

D. STATIC QULA WEIGHTED AVERAGE VS. DY-
NAMIC JSQ

We investigate to what extent the dynamic selection ofJSQ
can mitigate the performance lost by not considering network la-
tency (cfr. Equation 2). In our simulation setup, service routers
know the queue length of each server; when a client sends a re-
quest, the first hop service router looks up the least busy server
and assigns the request to it. The service request is then for-
warded on the lowest-latency path to that server. This setupis a
best-case scenario forJSQwhich we then compare to the static
selection results presented in section IV.

Using Figure 4, we compare the average response time
achieved through JSQ with the response time ofSA, which
was the best performing static algorithm in section V-C. The
load distribution found bySAis translated to the forwarding ta-
bles with QuLa weighted average, as discussed in section IV.
For sparse networks (Figure 4 a and c) we observe that the
response time ofSA is lower than the response time ofJSQ
selection. Sparse networks generally have longer and fewer
paths, resulting in a large network latency between client and
servers. However,JSQdoes not consider the network latency
and only attempts to minimize the time spent on server. As-
sumeTproc.(i) the time spent on server if we send the request
to the least busy serveri andTproc.(j) the processing time if we
send the request to the closest serverj (Tproc.(i) < Tproc.(j)).

TLat.(c, n) is the network latency between a clientc and a
servern (TLat.(c, j) < TLat.(c, i)). As long as the network la-
tencyTLat.(c, i)− TLat.(c, j) is larger than the processing time
Tproc.(j)− Tproc.(i), JSQperforms worse thanSA.

Figure 5 shows the response time distribution for bothSAand
JSQunder 50% and 90% server load. When the servers run at
50% load (Figure 5 a), a small peak in the expected demand
pattern will not heavily affect the server queuing time. As a
result, it is not worth sending requests to less loaded but more
distant servers usingJSQ. For 50% load users will experience
the lowest response times forSA. When servers run at 90% load
(Figure 5 b), a small peak in demand can overload the closest
serverj and result in large processing timesTproc.(j)−Tproc.(i).
Although 88% of the users still experience a higher response
time withJSQthan withSA, JSQmanages to keep the maximum
response time limited while theSAdistribution has a long tail of
users experiencing very large response times due to overloaded
servers.JSQwas able to keep the servers stable and makes up
for the additional network latencies.

However, as illustrated in Figure 4 b and d, dense networks
have shorter paths and lower network latency between client
and server, makingJSQa better choice for service selection in
these networks. For sparse networksJSQbecame a better choice
when the expected server load was above 90% while for dense
networks this already happens at 50-60% server load.

We conclude that our proposed static configuration technique
(cfr. section IV) results in a lower response time as long as
the network latency is not negligible compared to the expected
server processing times. Although our static algorithm is more
complex and requires more information thanJSQ, it only re-
quires a onetime configuration as long as the expected load con-
ditions do not change.

E. IN-NETWORK LOAD-BALANCING PERFOR-
MANCE

To avoid routing loops in QuLa weighted routing, requests
must be forwarded on edges belonging to a spanning tree, as
mentioned in section IV-B. Kruskal’s algorithm constructsa
minimal spanning tree using an edge metric to find the best set

of edges. In this section we study the effect of this edge metric
on the average response time and compare simulation resultsof
two alternative edge metrics.

We propose to use the expected traffic load as edge weight
metric, obtained through either source routing or the weighted
average variant. The traffic load is a result of the selectionpro-
cess which used Equation 2 as quality metric, thus already con-
sidering network latency, server load and the impact from indi-
vidual clients on the average response time. If expected traffic
load on an edge is high, that edge is likely to be heavily used,
and should be part of the minimum spanning tree. After invert-
ing the expected traffic load on each edge, Kruskal’s algorithm
is used to obtain a minimized spanning tree. This guaranteesno
routing loops can occur while still prioritizing edges which are
often used in the load distribution.

SAfinds a load distribution matrix using the network graph
as input, which is then mapped onto the service routing plane
using QuLa weighted average. To avoid routing loops, the load
distribution matrix is mapped onto the service routers following
the constructed spanning tree. A spanning tree narrows the set of
paths requests can follow and thus the degree of load-balancing
service routers can perform.

130

180

230

280

330

0 0.2 0.4 0.6 0.8 1

R
e
s
p

o
n

s
e
 t

im
e
 (

in
 m

s
)

System load (total demand / total server capacity)

Full Graph Theoretical

Delay-Tree Experiment

Qula-Tree Theoretical

Qula-Tree Experiment

Fig. 6. the influence of a spanning tree on the performance of QuLa weighted
average routing in SD50.

To demonstrate the importance of the edge metric used in
Kruskal’s algorithm, we run simulations using two different
spanning trees and compare both results. Next, we show that
QuLa weighted average routing is able to perform better than
predicted by deviating from the load distribution matrix due to
statistical load-balancing on each service router. Both effects
are illustrated in Figure 6 for a small network with dense con-
nectivity (SD50). The Full Graph curve represents the expected
response time when all graph edges are available during simula-
tion, calculated with Equation 2. The Delay-Tree and Qula-Tree
curves illustrate response times when only a subset of edgesis
available in the graph. We differentiate between the theoreti-
cal curves which indicate the expected average response time
calculated with Equation 2 and the experimental curves which
indicate measured response times during simulation.

First we tackle the importance of the edge metric in Kruskal’s
algorithm as illustrated in Figure 6; the Delay-Tree experimen-
tal curve represents the measured average response time of a
spanning tree constructed using the edge latency as weight in
Kruskal’s algorithm. Our second approach, the (dashed) Qula-
Tree experimental curve, uses the service selection resultto find

the most used edges and prioritizes these edges during the con-
struction of the spanning tree, as described in section IV-B.
We observe that the Qula-Tree, which only preserves the links
with the highest expected traffic (cfr. service selection result),
achieves a substantially better response time than the Delay-
Tree and performs almost as well as the theoretical benchmark
(which contains all edges).

Next, we observe in Figure 6 that the measured response time
of the QuLa-Tree (dashed experimental curve) during simula-
tion is lower than the expected response time (Qula-Tree The-
oretical curve). This is due to the in-network load-balancing
on service routers which reshape the load distribution matrix at
runtime. In section IV-B we explained how QuLa’s weighted
average approach preserves the amount of traffic on each link
while disregarding the source. Without considering sourcead-
dresses, service routers may distribute a client’s demand differ-
ently than stated by the load distribution matrix. In a spanning
tree requests will pass through more service routers as the traffic
is concentrated onto fewer but longer paths. Each service router
performs statistical load-balancing, reducing the probability of a
request reaching more distant servers as it passes more routers.
As a result, QuLa weighted average does not exactly follow the
load distribution matrix R(i,j,s). Instead, the traffic isreshaped
and requests stay closer to the users, while servers receive less
requests from more distant clients in the network. Thus, QuLa
weighted average load-balancing converges to a greedy loaddis-
tribution, reducing the penalty of using a spanning tree as fewer
edges are used. This explains why the measured average re-
sponse time (dashed QuLa-Tree experimental curve in Figure6)
is lower than the expected average response time (solid QuLa-
Tree Theoretical curve in Figure 6) which was calculated as-
suming that the load distribution matrix R(i,j,s) is respected at-
runtime.

This is illustrated in Figure 7; service selection dictatesthat
client 1 sends 49%, 31% and 20% of its demand to server 1,
2 and 3 respectively. However, due to service routers perform-
ing in-network load-balancing, over 80% of its traffic arrives at
server 1, which is located closest of all 3 servers to client 1.
Service routers load-balance fewer requests from other clients
to server 1, respecting the total amount of load generated on
each server as explained in section IV-B. This in-network load-
balancing is QuLa’s natural way of adapting to a suboptimal
environment to approach the desired benchmark.

0

10

20

30

40

50

60

70

80

90

100

S
e

rv
e

r
1

S
e

rv
e

r
2

S
e
rv

e
r

3

S
e

rv
e

r
1

S
e
rv

e
r

2

S
e

rv
e

r
3

S
e
rv

e
r

1

S
e

rv
e

r
2

S
e
rv

e
r

3

S
e

rv
e

r
1

S
e
rv

e
r

2

S
e

rv
e

r
3

S
e
rv

e
r

1

S
e

rv
e

r
2

S
e

rv
e

r
3

Client 1 Client 2 Client 3 Client 4 Client 5

L
o

a
d

 d
is

tr
ib

u
ti

o
n

Theoretical

Experiment

Fig. 7. service routers reshape the load distribution by load-balancing requests
at runtime. Results are obtained in a sample topology of SD50.

500

550

600

650

700

750

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
s
p

o
n

s
e
 t

im
e

 (
in

 m
s

)

System load (total demand / total server capacity)

Source Routing - benchmark (SA) Source Routing (30%)

Source Routing (50%) Source Routing (90%)

500

550

600

650

700

750

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
s
p

o
n

s
e
 t

im
e
 (

in
 m

s
)

System load (total demand / total server capacity)

Source Routing - benchmark (greedy) Source Routing (30%)

Source Routing (50%) Source Routing (90%)

(a) (b)

130

150

170

190

210

230

250

270

290

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e

s
p

o
n

s
e

 t
im

e
 (

in
 m

s
)

System load (total demand / total server capacity)

Source Routing - benchmark (SA) Source Routing (30%)

Source Routing (50%) Source Routing (90%)

130

150

170

190

210

230

250

270

290

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
s
p

o
n

s
e
 t

im
e
 (

in
 m

s
)

System load (total demand / total server capacity)

Source Routing - benchmark (greedy) Source Routing (30%)

Source Routing (50%) Source Routing (90%)

(c) (d)

Fig. 8. the importance of measuring the actual demand for (a)SAin a sparse network, (b)Greedyin a sparse network, (c)SAin a dense network and (d)Greedyin
a dense network.

F. ADAPTATION TO DYNAMIC LOAD CONDI-
TIONS

User demand can vary over time, rendering the current for-
warding table configuration less suitable. Reconfiguring the for-
warding tables of service routers for the new demand can im-
prove the response time but monitoring demand patterns and
system load can be an expensive operation. Therefore we inves-
tigated the performance gained by performing service selection
using measured demand patterns, compared to service selection
which assumes a fixed demand value. We first measure the ac-
tual demand and configure the service routers according to the
service selection result. These results are illustrated bythe solid
curves in Figure 8. We then run three new simulations but this
time we configure the service routers for fixed demand patterns
(30%, 50% and 90% load respectively), while letting the ac-
tual demand vary from 10% up to 100%. The average response
times obtained by configuring the network for a fixed demand
are illustrated by the dashed curves in Figure 8. We evaluated
the adaptation to dynamic load conditions for both sparse and
dense networks usingSAandGreedy. Figure 8 a and Figure 8
b illustrate the simulation results for a network with sparse con-
nectivity usingSAandGreedyrespectively, while Figure 8 c and
Figure 8 d are obtained through a network with dense connec-
tivity for SAandGreedyrespectively.

All graphs on Figure 8 show that configuring routers for fixed
demand is only feasible when the actual demand does not exceed
that pre-determined value; configuring a network for 50% load
causes this network to overload when actual load exceeds that

value. However, consider the results obtained from a network
with dense connectivity (Figure 8 c and d); configuring service
routers for 90% load improves the average response time when
actual load is lower (50-80%). This shows thatSA is not al-
ways able to find the best solution in a finite time, although it
does manage to find a feasible solution (Figure 8 c). Configur-
ing service routers for 90% load when the actual load is lower
causesGreedy(Figure 8 d) to over-provision and assign more
demand than required to distant servers. However, due to the
dense nature of the network, the additional network latencyand
hops to be traversed towards the more distant servers are small,
allowing over-provisioning to have positive effects on theaver-
age response time. This is essentially whatSAattempts to do;
by increasing the response time for one client (e.g. due to se-
lecting a more distant server) we can reduce the response time
of several other clients and possibly reduce the overall average
response time. This explains why theSA results (Figure 8 c)
are similar to the 90% over-provisioning effect on Figure 8 d.
However, assigning requests to more distant servers has dras-
tic consequences for the average response time when network
latency and hop-count become the more dominant factors. Fig-
ure 8 a and Figure 8 b show that when the network latency or
average hop-count increases, the average response time consid-
erably increases when the actual demand deviates from the ex-
pected value.

We demonstrate the performance loss when only reconfigur-
ing routers when the change in demand exceeds a threshold (e.g.
from 30% load to 50% load), compared to measuring the actual

demand during simulation and reconfiguring the routers for ev-
ery change. Using Figure 8 a we can measure a maximum per-
formance loss of 10% response time by configuring the routers
for 90% load when the measured load reaches 50%.

We conclude that accurate monitoring of user demand be-
comes more important when the cost of using more distant
servers increases (due to higher network latency, more hopsto
traverse, smaller server queue times ...). Therefore, depending
on the characteristics of the network, the use of actual demand
patterns is a very decisive factor of the system performance.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented service selection algorithms to
seek an optimal distribution of user demand across the deployed
service instances, considering both server load and network la-
tency. We described how this selection result can be mapped
to the service router forwarding tables using source-basedrout-
ing and QuLa weighted average routing. Next, we studied the
impact on the average response time when service routers load-
balance requests without considering the source of a request. To
demonstrate the impact of the edge priority metric when con-
structing a spanning tree, we ran simulations using different
metrics to construct the spanning tree. Last, we measured the
effect on the response time when configuring routers for actual
load and for estimated load values.

As conclusion we can say that the QuLa weighted average
routing configuration is able to approximate benchmark results
with minimal router state. Upon request arrival, service routers
contain all the information needed to load-balance that request
to the instance with the fastest response time, without having to
query a resolution service (e.g. DNS) or maintain large state.
Also, usingSAwe are able to find an optimal service selection
independent of the network characteristics, whereas alternative
approaches are more sensitive to changing network characteris-
tics.

While we are able to access services with minimal response
time using name-based requests, the current service selection
algorithm can only handle static demand patterns. When com-
paring our static configuration to a dynamic assignment through
JSQ, we observe that the latter is able to keep the response time
stable under peak load but only outperforms a static selection
when service times heavily outweigh network latency. The next
step in our research is to create scalable dynamic placementand
selection algorithms which consider both network and server
metrics. Currently, all demand is assumed fixed, and the service
selection algorithm searches for the best possible load distribu-
tion given a fixed set of instances. When user demand changes,
the previous selection is subject to change, requiring reconfigu-
ration of the network. A naive approach runs the static selection
algorithm each time user demand changes. This approach is
prone to oscillation (over-reacting to changes) and in a worst
case scenario the system keeps returning to a previous state,
only to repeat this pattern. To avoid circulating previous con-
figurations and to become less sensitive to oscillation, feedback
is necessary. We plan on developing a self-learning algorithm
and implement control loop feedback. This allows use of pre-
diction algorithms and trend detection, giving the routersa solid

foundation to build decisions on.

VII. ACKNOWLEDGEMENTS

This project was partly funded by the UGent BOF-GOA
project "‘Autonomic Net- worked Multimedia Systems"’, by the
FWO-V project "‘SPEC: Intelligent SuPer-Elastic Clouds"’and
by the 7th Framework Programme of the European Commission
through the FUSION project under grant agreement no. 318205.

REFERENCES

[1] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network:a platform
for high-performance internet applications,”ACM SIGOPS Operating Sys-
tems Review, vol. 44, no. 3, pp. 2–19, 2010.

[2] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante, “Drafting
behind akamai (travelocity-based detouring),”ACM SIGCOMM Computer
Communication Review, vol. 36, no. 4, pp. 435–446, 2006.

[3] G. Carofiglio, G. Morabito, L. Muscariello, I. Solis, andM. Varvello,
“From content delivery today to information centric networking,” Com-
puter Networks, vol. 57, no. 16, pp. 3116–3127, 2013.

[4] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B.Ohlman, “A
survey of information-centric networking,”Communications Magazine,
IEEE, vol. 50, no. 7, pp. 26–36, 2012.

[5] Y. Xu, Y. Li, T. Lin, Z. Wang, W. Niu, H. Tang, and S. Ci, “A novel
cache size optimization scheme based on manifold learning in content cen-
tric networking,”Journal of Network and Computer Applications, vol. 37,
no. 0, pp. 273 – 281, 2014.

[6] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache less formore in
information-centric networks (extended version),”Computer Communica-
tions, vol. 36, no. 7, pp. 758 – 770, 2013.

[7] C. Dannewitz, M. D’Ambrosio, and V. Vercellone, “Hierarchical dht-
based name resolution for information-centric networks,”Computer Com-
munications, vol. 36, no. 7, pp. 736 – 749, 2013.

[8] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters,
B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos,et al., “Named data
networking (ndn) project,”Relatório Técnico NDN-0001, Xerox Palo Alto
Research Center-PARC, 2010.

[9] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing infor-
mation networking further: From psirp to pursuit,” inBroadband Commu-
nications, Networks, and Systems, pp. 1–13, Springer, 2012.

[10] W. K. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang, G. de Blas, F. Ramon-
Salguero, L. Liang, S. Spirou, A. Beben, and E. Hadjioannou,“Curl-
ing: Content-ubiquitous resolution and delivery infrastructure for next-
generation services,”Communications Magazine, IEEE, vol. 49, pp. 112–
120, March 2011.

[11] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network archi-
tecture,”SIGCOMM Comput. Commun. Rev., vol. 37, pp. 181–192, Aug.
2007.

[12] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and
H. Karl, “Network of information (netinf): An information-centric net-
working architecture,”Computer Communications, vol. 36, no. 7, pp. 721
– 735, 2013.

[13] OGF, “Open cloud computing interface | open standard | open community,”
2013.

[14] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-
based cloudlets in mobile computing,”Pervasive Computing, IEEE, vol. 8,
no. 4, pp. 14–23, 2009.

[15] A.-F. Antonescu, A. Gomes, P. Robinson, and T. Braun, “Sla-driven pre-
dictive orchestration for distributed cloud-based mobile services,” inCom-
munications Workshops (ICC), 2013 IEEE International Conference on,
pp. 738–743, June 2013.

[16] Q. Yu, “Cloudrec: a framework for personalized service recommendation
in the cloud,”Knowledge and Information Systems, pp. 1–27, 2014.

[17] T. Braun, V. Hilt, M. Hofmann, I. Rimac, M. Steiner, and M. Varvello,
“Service-centric networking,” inCommunications Workshops (ICC), 2011
IEEE International Conference on, pp. 1–6, 2011.

[18] M. Freedman, M. Arye, P. Gopalan, S. Ko, E. Nordstrom, J. Rexford, and
D. Shue, “Serval: An end-host stack for service-centric networking,” in
Proc. USENIX NSDI, 2012.

[19] M. J. Freedman, M. Arye, P. Gopalan, S. Y. Ko, E. Nordstrom,J. Rex-
ford, and D. Shue, “Service-centric networking with scaffold,” Princeton
University, September, 2010.

[20] K.-W. Lee, B.-J. Ko, and S. Calo, “Adaptive server selection for large scale
interactive online games,”Computer Networks, vol. 49, no. 1, pp. 84–102,
2005.

[21] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford, “Donar: decen-
tralized server selection for cloud services,” inACM SIGCOMM Computer
Communication Review, vol. 40, pp. 231–242, ACM, 2010.

[22] L. Zhao, Y. Ren, M. Li, and K. Sakurai, “Flexible serviceselection with
user-specific qos support in service-oriented architecture,” Journal of Net-
work and Computer Applications, vol. 35, no. 3, pp. 962 – 973, 2012.
Special Issue on Trusted Computing and Communications.

[23] H. Xu and B. Li, “Joint request mapping and response routing for
geo-distributed cloud services,” inINFOCOM, 2013 Proceedings IEEE,
pp. 854–862, IEEE, 2013.

[24] H. A. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, andJ. Van der
Merwe, “Anycast cdns revisited,” inProceedings of the 17th international
conference on World Wide Web, pp. 277–286, ACM, 2008.

[25] L. Wang, A. Hoque, C. Yi, A. Alyyan, and B. Zhang, “Ospfn:An ospf
based routing protocol for named data networking. university of memphis
and university of arizona,” tech. rep., Tech. Rep, 2012.

[26] C. Li, K. Okamura, and W. Liu, “Ant colony based forwarding method
for content-centric networking,” inAdvanced Information Networking and
Applications Workshops (WAINA), 2013 27th International Conference on,
pp. 306–311, March 2013.

[27] S. Shanbhag, N. Schwan, I. Rimac, and M. Varvello, “Soccer: Services
over content-centric routing,” inACM SIGCOMM Information-Centric
Networking (ICN) workshop, Toronto, Canada, 2011.

[28] E. W. Dijkstra, “A note on two problems in connexion with graphs,”Nu-
merische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[29] K. A. Dowsland and C. Reeves, “Modern heuristic techniques for com-
binatorial problems,”Simulated Annealing. In Reevees, CR, Editor, John
Wiley and Sons, NY, USA, no. 2, 1993.

[30] S. Abimannan, K. Durai, A. Jeyakumar,et al., “Join-the-shortest queue
policy in web server farms,”Global Journal of Computer Science and
Technology, vol. 10, no. 4, 2010.

[31] V. Gupta, M. H. Balter, K. Sigman, and W. Whitt, “Analysis of join-the-
shortest-queue routing for web server farms,”Performance Evaluation,
vol. 64, no. 9-12, pp. 1062 – 1081, 2007. Performance 2007 26thInterna-
tional Symposium on Computer Performance, Modeling, Measurements,
and Evaluation.

[32] J. Kruskal, Joseph B., “On the shortest spanning subtree of a graph and the
traveling salesman problem,”Proceedings of the American Mathematical
Society, vol. 7, no. 1, pp. pp. 48–50, 1956.

[33] “The clouds lab: Flagship projects - gridbus and cloudbus,” 2013.
[34] “Brite: Boston university representative internet topology generator,”

2013.
[35] “ilab.t virtual wall | internet based communication networks and services,”

2013.

Piet Smet received his M.Sc degree in Informatics
(2012) from Hogeschool Ghent, Belgium. He wrote a
thesis on the development of a large-data social media
game during his Masters degree. In August 2012 he
started a Ph.D. degree on ’Service-Centric Network-
ing’ at Ghent University, supervised by B.Dhoedt and
P. Simoens. Currently, Piet Smet is active as a re-
searcher on the European research project H2020 FU-
SION.

Pieter Simoensreceived his M.Sc. degree in Elec-
tronic Engineering (2005) and Ph.D. degree (2011)
from the Ghent University, Belgium. During his Ph.D.
research, he was funded by the Fund for Scientific
Research Flanders (FWO-V). In 2012, he was a vis-
iting researcher at the School of Computer Science
of Carnegie Mellon University, USA. Currently, he
is assistant professor affiliated with the Department
of Information Technology of the Ghent University
and with iMinds. His main research interests include
mobile cloud offloading, service-oriented networking,

edge/fog computing paradigms, and service engineering for advanced mobile
applications. In these fields, he is author and co-author of more than 70 papers

published in international journals or in the proceedings of international con-
ferences. He has also been involved in several national and European research
projects (FP6 MUSE, FP7 MobiThin, H2020 FUSION).

Bart Dhoedt received a Masters degree in Electro-
technical Engineering (1990) from Ghent University.
His research, addressing the use of micro-optics to re-
alize parallel free space optical interconnects, resulted
in a Ph.D. degree in 1995. After a 2-year post-doc in
opto-electronics, he became Professor at the Depart-
ment of Information Technology. He is author or co-
author of more than 300 publications in international
journals or conference proceedings.

