2,532 research outputs found

    Predictive maintenance of induction motors using ultra-low power wireless sensors and compressed recurrent neural networks

    Get PDF
    In real-world applications - to minimize the impact of failures - machinery is often monitored by various sensors. Their role comes down to acquiring data and sending it to a more powerful entity, such as an embedded computer or cloud server. There have been attempts to reduce the computational effort related to data processing in order to use edge computing for predictive maintenance. The aim of this paper is to push the boundaries even further by proposing a novel architecture, in which processing is moved to the sensors themselves thanks to decrease of computational complexity given by the usage of compressed recurrent neural networks. A sensor processes data locally, and then wirelessly sends only a single packet with the probability that the machine is working incorrectly. We show that local processing of the data on ultra-low power wireless sensors gives comparable outcomes in terms of accuracy but much better results in terms of energy consumption that transferring of the raw data. The proposed ultra-low power hardware and firmware architecture makes it possible to use sensors powered by harvested energy while maintaining high confidentiality levels of the failure prediction previously offered by more powerful mains-powered computational platforms

    Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus

    Get PDF
    The online monitoring of a high voltage apparatus is a crucial aspect for a predictive maintenanceprogram. Partialdischarges(PDs)phenomenaaffecttheinsulationsystemofanelectrical machine and\u2014in the long term\u2014can lead to a breakdown, with a consequent, signi\ufb01cant economic loss; wind turbines provide an excellent example. Embedded solutions are therefore required to monitor the insulation status. The paper presents an online system that adopts unsupervised methodologies for assessing the condition of the monitored machine in real time. The monitoring process does not rely on any prior knowledge about the apparatus; nonetheless, the method can identify the relevant drifts in the machine status. In addition, the system is speci\ufb01cally designed to run on low-cost embedded devices

    Classification of Time-Series Images Using Deep Convolutional Neural Networks

    Full text link
    Convolutional Neural Networks (CNN) has achieved a great success in image recognition task by automatically learning a hierarchical feature representation from raw data. While the majority of Time-Series Classification (TSC) literature is focused on 1D signals, this paper uses Recurrence Plots (RP) to transform time-series into 2D texture images and then take advantage of the deep CNN classifier. Image representation of time-series introduces different feature types that are not available for 1D signals, and therefore TSC can be treated as texture image recognition task. CNN model also allows learning different levels of representations together with a classifier, jointly and automatically. Therefore, using RP and CNN in a unified framework is expected to boost the recognition rate of TSC. Experimental results on the UCR time-series classification archive demonstrate competitive accuracy of the proposed approach, compared not only to the existing deep architectures, but also to the state-of-the art TSC algorithms.Comment: The 10th International Conference on Machine Vision (ICMV 2017

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Learning models of plant behavior for anomaly detection and condition monitoring

    Get PDF
    Providing engineers and asset managers with a too] which can diagnose faults within transformers can greatly assist decision making on such issues as maintenance, performance and safety. However, the onus has always been on personnel to accurately decide how serious a problem is and how urgently maintenance is required. In dealing with the large volumes of data involved, it is possible that faults may not be noticed until serious damage has occurred. This paper proposes the integration of a newly developed anomaly detection technique with an existing diagnosis system. By learning a Hidden Markov Model of healthy transformer behavior, unexpected operation, such as when a fault develops, can be flagged for attention. Faults can then be diagnosed using the existing system and maintenance scheduled as required, all at a much earlier stage than would previously have been possible

    Statistical and deep learning methods for geoscience problems

    Get PDF
    Machine learning is the new frontier for technology development in geosciences and has developed extremely fast in the past decade. With the increased compute power provided by distributed computing and Graphics Processing Units (GPUs) and their exploitation provided by machine learning (ML) frameworks such as Keras, Pytorch, and Tensorflow, ML algorithms can now solve complex scientific problems. Although powerful, ML algorithms need to be applied to suitable problems conditioned for optimal results. For this reason ML algorithms require not only a deep understanding of the problem but also of the algorithm’s ability. In this dissertation, I show that Simple statistical techniques can often outperform ML-based models if applied correctly. In this dissertation, I show the success of deep learning in addressing two difficult problems. In the first application I use deep learning to auto-detect the leaks in a carbon capture project using pressure field data acquired from the DOE Cranfield site in Mississippi. I use the history of pressure, rates, and cumulative injection volumes to detect leaks as pressure anomaly. I use a different deep learning workflow to forecast high-energy electrons in Earth’s outer radiation belt using in situ measurements of different space weather parameters such as solar wind density and pressure. I focus on predicting electron fluxes of 2 MeV and higher energy and introduce the ensemble of deep learning models to further improve the results as compared to using a single deep learning architecture. I also show an example where a carefully constructed statistical approach, guided by the human interpreter, outperforms deep learning algorithms implemented by others. Here, the goal is to correlate multiple well logs across a survey area in order to map not only the thickness, but also to characterize the behavior of stacked gamma ray parasequence sets. Using tools including maximum likelihood estimation (MLE) and dynamic time warping (DTW) provides a means of generating quantitative maps of upward fining and upward coarsening across the oil field. The ultimate goal is to link such extensive well control with the spectral attribute signature of 3D seismic data volumes to provide a detailed maps of not only the depositional history, but also insight into lateral and vertical variation of mineralogy important to the effective completion of shale resource plays

    Anomaly Detection in Industrial Machinery using IoT Devices and Machine Learning: a Systematic Mapping

    Full text link
    Anomaly detection is critical in the smart industry for preventing equipment failure, reducing downtime, and improving safety. Internet of Things (IoT) has enabled the collection of large volumes of data from industrial machinery, providing a rich source of information for Anomaly Detection. However, the volume and complexity of data generated by the Internet of Things ecosystems make it difficult for humans to detect anomalies manually. Machine learning (ML) algorithms can automate anomaly detection in industrial machinery by analyzing generated data. Besides, each technique has specific strengths and weaknesses based on the data nature and its corresponding systems. However, the current systematic mapping studies on Anomaly Detection primarily focus on addressing network and cybersecurity-related problems, with limited attention given to the industrial sector. Additionally, these studies do not cover the challenges involved in using ML for Anomaly Detection in industrial machinery within the context of the IoT ecosystems. This paper presents a systematic mapping study on Anomaly Detection for industrial machinery using IoT devices and ML algorithms to address this gap. The study comprehensively evaluates 84 relevant studies spanning from 2016 to 2023, providing an extensive review of Anomaly Detection research. Our findings identify the most commonly used algorithms, preprocessing techniques, and sensor types. Additionally, this review identifies application areas and points to future challenges and research opportunities
    corecore