439 research outputs found

    Phonological Level wav2vec2-based Mispronunciation Detection and Diagnosis Method

    Full text link
    The automatic identification and analysis of pronunciation errors, known as Mispronunciation Detection and Diagnosis (MDD) plays a crucial role in Computer Aided Pronunciation Learning (CAPL) tools such as Second-Language (L2) learning or speech therapy applications. Existing MDD methods relying on analysing phonemes can only detect categorical errors of phonemes that have an adequate amount of training data to be modelled. With the unpredictable nature of the pronunciation errors of non-native or disordered speakers and the scarcity of training datasets, it is unfeasible to model all types of mispronunciations. Moreover, phoneme-level MDD approaches have a limited ability to provide detailed diagnostic information about the error made. In this paper, we propose a low-level MDD approach based on the detection of speech attribute features. Speech attribute features break down phoneme production into elementary components that are directly related to the articulatory system leading to more formative feedback to the learner. We further propose a multi-label variant of the Connectionist Temporal Classification (CTC) approach to jointly model the non-mutually exclusive speech attributes using a single model. The pre-trained wav2vec2 model was employed as a core model for the speech attribute detector. The proposed method was applied to L2 speech corpora collected from English learners from different native languages. The proposed speech attribute MDD method was further compared to the traditional phoneme-level MDD and achieved a significantly lower False Acceptance Rate (FAR), False Rejection Rate (FRR), and Diagnostic Error Rate (DER) over all speech attributes compared to the phoneme-level equivalent

    On the cyber security issues of the internet infrastructure

    Get PDF
    The Internet network has received huge attentions by the research community. At a first glance, the network optimization and scalability issues dominate the efforts of researchers and vendors. Many results have been obtained in the last decades: the Internet’s architecture is optimized to be cheap, robust and ubiquitous. In contrast, such a network has never been perfectly secure. During all its evolution, the security threats of the Internet persist as a transversal and endless topic. Nowadays, the Internet network hosts a multitude of mission critical activities. The electronic voting systems and financial services are carried out through it. Governmental institutions, financial and business organizations depend on the performance and the security of the Internet. This role confers to the Internet network a critical characterization. At the same time, the Internet network is a vector of malicious activities, like Denial of Service attacks; many reports of attacks can be found in both academic outcomes and daily news. In order to mitigate this wide range of issues, many research efforts have been carried out in the past decades; unfortunately, the complex architecture and the scale of the Internet make hard the evaluation and the adoption of such proposals. In order to improve the security of the Internet, the research community can benefit from sharing real network data. Unfortunately, privacy and security concerns inhibit the release of these data: its suffices to imagine the big amount of private information (e.g., political preferences or religious belief) it is possible to get while reading the Internet packets exchanged between users and web services. This scenario motivates my research, and represents the context of this dissertation which contributes to the analysis of the security issues of the Internet infrastructures and describes relevant security proposals. In particular, the main outcomes described in this dissertation are: • the definition of a secure routing protocol for the Internet network able to provide cryptographic guarantees against false route announcement and invalid path attack; • the definition of a new obfuscation technique that allow the research community to publicly release their real network flows with formal guarantees of security and privacy; • the evidence of a new kind of leakage of sensitive informations obtained hacking the models used by sundry Machine Learning Algorithms

    Automatic Screening of Childhood Speech Sound Disorders and Detection of Associated Pronunciation Errors

    Full text link
    Speech disorders in children can affect their fluency and intelligibility. Delay in their diagnosis and treatment increases the risk of social impairment and learning disabilities. With the significant shortage of Speech and Language Pathologists (SLPs), there is an increasing interest in Computer-Aided Speech Therapy tools with automatic detection and diagnosis capability. However, the scarcity and unreliable annotation of disordered child speech corpora along with the high acoustic variations in the child speech data has impeded the development of reliable automatic detection and diagnosis of childhood speech sound disorders. Therefore, this thesis investigates two types of detection systems that can be achieved with minimum dependency on annotated mispronounced speech data. First, a novel approach that adopts paralinguistic features which represent the prosodic, spectral, and voice quality characteristics of the speech was proposed to perform segment- and subject-level classification of Typically Developing (TD) and Speech Sound Disordered (SSD) child speech using a binary Support Vector Machine (SVM) classifier. As paralinguistic features are both language- and content-independent, they can be extracted from an unannotated speech signal. Second, a novel Mispronunciation Detection and Diagnosis (MDD) approach was introduced to detect the pronunciation errors made due to SSDs and provide low-level diagnostic information that can be used in constructing formative feedback and a detailed diagnostic report. Unlike existing MDD methods where detection and diagnosis are performed at the phoneme level, the proposed method achieved MDD at the speech attribute level, namely the manners and places of articulations. The speech attribute features describe the involved articulators and their interactions when making a speech sound allowing a low-level description of the pronunciation error to be provided. Two novel methods to model speech attributes are further proposed in this thesis, a frame-based (phoneme-alignment) method leveraging the Multi-Task Learning (MTL) criterion and training a separate model for each attribute, and an alignment-free jointly-learnt method based on the Connectionist Temporal Classification (CTC) sequence to sequence criterion. The proposed techniques have been evaluated using standard and publicly accessible adult and child speech corpora, while the MDD method has been validated using L2 speech corpora

    RADIC Voice Authentication: Replay Attack Detection using Image Classification for Voice Authentication Systems

    Get PDF
    Systems like Google Home, Alexa, and Siri that use voice-based authentication to verify their users’ identities are vulnerable to voice replay attacks. These attacks gain unauthorized access to voice-controlled devices or systems by replaying recordings of passphrases and voice commands. This shows the necessity to develop more resilient voice-based authentication systems that can detect voice replay attacks. This thesis implements a system that detects voice-based replay attacks by using deep learning and image classification of voice spectrograms to differentiate between live and recorded speech. Tests of this system indicate that the approach represents a promising direction for detecting voice-based replay attacks

    Apraxia World: Deploying a Mobile Game and Automatic Speech Recognition for Independent Child Speech Therapy

    Get PDF
    Children with speech sound disorders typically improve pronunciation quality by undergoing speech therapy, which must be delivered frequently and with high intensity to be effective. As such, clinic sessions are supplemented with home practice, often under caregiver supervision. However, traditional home practice can grow boring for children due to monotony. Furthermore, practice frequency is limited by caregiver availability, making it difficult for some children to reach therapy dosage. To address these issues, this dissertation presents a novel speech therapy game to increase engagement, and explores automatic pronunciation evaluation techniques to afford children independent practice. Children with speech sound disorders typically improve pronunciation quality by undergoing speech therapy, which must be delivered frequently and with high intensity to be effective. As such, clinic sessions are supplemented with home practice, often under caregiver supervision. However, traditional home practice can grow boring for children due to monotony. Furthermore, practice frequency is limited by caregiver availability, making it difficult for some children to reach therapy dosage. To address these issues, this dissertation presents a novel speech therapy game to increase engagement, and explores automatic pronunciation evaluation techniques to afford children independent practice. The therapy game, called Apraxia World, delivers customizable, repetition-based speech therapy while children play through platformer-style levels using typical on-screen tablet controls; children complete in-game speech exercises to collect assets required to progress through the levels. Additionally, Apraxia World provides pronunciation feedback according to an automated pronunciation evaluation system running locally on the tablet. Apraxia World offers two advantages over current commercial and research speech therapy games; first, the game provides extended gameplay to support long therapy treatments; second, it affords some therapy practice independence via automatic pronunciation evaluation, allowing caregivers to lightly supervise instead of directly administer the practice. Pilot testing indicated that children enjoyed the game-based therapy much more than traditional practice and that the exercises did not interfere with gameplay. During a longitudinal study, children made clinically-significant pronunciation improvements while playing Apraxia World at home. Furthermore, children remained engaged in the game-based therapy over the two-month testing period and some even wanted to continue playing post-study. The second part of the dissertation explores word- and phoneme-level pronunciation verification for child speech therapy applications. Word-level pronunciation verification is accomplished using a child-specific template-matching framework, where an utterance is compared against correctly and incorrectly pronounced examples of the word. This framework identified mispronounced words better than both a standard automated baseline and co-located caregivers. Phoneme-level mispronunciation detection is investigated using a technique from the second-language learning literature: training phoneme-specific classifiers with phonetic posterior features. This method also outperformed the standard baseline, but more significantly, identified mispronunciations better than student clinicians

    A Unified Framework for Modality-Agnostic Deepfakes Detection

    Full text link
    As AI-generated content (AIGC) thrives, deepfakes have expanded from single-modality falsification to cross-modal fake content creation, where either audio or visual components can be manipulated. While using two unimodal detectors can detect audio-visual deepfakes, cross-modal forgery clues could be overlooked. Existing multimodal deepfake detection methods typically establish correspondence between the audio and visual modalities for binary real/fake classification, and require the co-occurrence of both modalities. However, in real-world multi-modal applications, missing modality scenarios may occur where either modality is unavailable. In such cases, audio-visual detection methods are less practical than two independent unimodal methods. Consequently, the detector can not always obtain the number or type of manipulated modalities beforehand, necessitating a fake-modality-agnostic audio-visual detector. In this work, we introduce a comprehensive framework that is agnostic to fake modalities, which facilitates the identification of multimodal deepfakes and handles situations with missing modalities, regardless of the manipulations embedded in audio, video, or even cross-modal forms. To enhance the modeling of cross-modal forgery clues, we employ audio-visual speech recognition (AVSR) as a preliminary task. This efficiently extracts speech correlations across modalities, a feature challenging for deepfakes to replicate. Additionally, we propose a dual-label detection approach that follows the structure of AVSR to support the independent detection of each modality. Extensive experiments on three audio-visual datasets show that our scheme outperforms state-of-the-art detection methods with promising performance on modality-agnostic audio/video deepfakes.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Women in Artificial intelligence (AI)

    Get PDF
    This Special Issue, entitled "Women in Artificial Intelligence" includes 17 papers from leading women scientists. The papers cover a broad scope of research areas within Artificial Intelligence, including machine learning, perception, reasoning or planning, among others. The papers have applications to relevant fields, such as human health, finance, or education. It is worth noting that the Issue includes three papers that deal with different aspects of gender bias in Artificial Intelligence. All the papers have a woman as the first author. We can proudly say that these women are from countries worldwide, such as France, Czech Republic, United Kingdom, Australia, Bangladesh, Yemen, Romania, India, Cuba, Bangladesh and Spain. In conclusion, apart from its intrinsic scientific value as a Special Issue, combining interesting research works, this Special Issue intends to increase the invisibility of women in AI, showing where they are, what they do, and how they contribute to developments in Artificial Intelligence from their different places, positions, research branches and application fields. We planned to issue this book on the on Ada Lovelace Day (11/10/2022), a date internationally dedicated to the first computer programmer, a woman who had to fight the gender difficulties of her times, in the XIX century. We also thank the publisher for making this possible, thus allowing for this book to become a part of the international activities dedicated to celebrating the value of women in ICT all over the world. With this book, we want to pay homage to all the women that contributed over the years to the field of AI

    Second language acquisition of Japanese orthography

    Get PDF

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 17th International Annual Conference on Cyber Security, CNCERT 2021, held in Beijing, China, in AJuly 2021. The 14 papers presented were carefully reviewed and selected from 51 submissions. The papers are organized according to the following topical sections: ​data security; privacy protection; anomaly detection; traffic analysis; social network security; vulnerability detection; text classification

    Robust Anomaly Detection with Applications to Acoustics and Graphs

    Get PDF
    Our goal is to develop a robust anomaly detector that can be incorporated into pattern recognition systems that may need to learn, but will never be shunned for making egregious errors. The ability to know what we do not know is a concept often overlooked when developing classifiers to discriminate between different types of normal data in controlled experiments. We believe that an anomaly detector should be used to produce warnings in real applications when operating conditions change dramatically, especially when other classifiers only have a fixed set of bad candidates from which to choose. Our approach to distributional anomaly detection is to gather local information using features tailored to the domain, aggregate all such evidence to form a global density estimate, and then compare it to a model of normal data. A good match to a recognizable distribution is not required. By design, this process can detect the "unknown unknowns" [1] and properly react to the "black swan events" [2] that can have devastating effects on other systems. We demonstrate that our system is robust to anomalies that may not be well-defined or well-understood even if they have contaminated the training data that is assumed to be non-anomalous. In order to develop a more robust speech activity detector, we reformulate the problem to include acoustic anomaly detection and demonstrate state-of-the-art performance using simple distribution modeling techniques that can be used at incredibly high speed. We begin by demonstrating our approach when training on purely normal conversational speech and then remove all annotation from our training data and demonstrate that our techniques can robustly accommodate anomalous training data contamination. When comparing continuous distributions in higher dimensions, we develop a novel method of discarding portions of a semi-parametric model to form a robust estimate of the Kullback-Leibler divergence. Finally, we demonstrate the generality of our approach by using the divergence between distributions of vertex invariants as a graph distance metric and achieve state-of-the-art performance when detecting graph anomalies with neighborhoods of excessive or negligible connectivity. [1] D. Rumsfeld. (2002) Transcript: DoD news briefing - Secretary Rumsfeld and Gen. Myers. [2] N. N. Taleb, The Black Swan: The Impact of the Highly Improbable. Random House, 2007
    • …
    corecore