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Abstract

There are four sorts of men:
He who knows not and knows not that he knows not:
He is a fool—shun him;
He who knows not and knows that he knows not:
He is simple—teach him;
He who knows and knows not that he knows:
He is asleep—wake him;
He who knows and knows that he knows:
He is wise—follow him.

—Arabic proverb

Our goal is to develop a robust anomaly detector that can be incorporated into

pattern recognition systems that may need to be taught, but will never be shunned.

The ability to know what we do not know is a concept often overlooked when devel-

oping classifiers to discriminate between different types of normal data in controlled

experiments. We believe that an anomaly detector should be used to produce warn-

ings in real applications when operating conditions change dramatically, especially

when other classifiers only have a fixed set of bad candidates from which to choose.

Our approach to distributional anomaly detection is to gather local information

using features tailored to the domain, aggregate all such evidence to form a global
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ABSTRACT

density estimate, and then compare it to a model of normal data. A good match

to a recognizable distribution is not required. By design, this process can detect

the “unknown unknowns” [1] and properly react to the “black swan events” [2] that

can have devastating effects on other systems. We demonstrate that our system is

robust to anomalies that may not be well-defined or well-understood even if they have

contaminated the training data that is assumed to be non-anomalous.

In order to develop a more robust speech activity detector, we reformulate the

problem to include acoustic anomaly detection and demonstrate state-of-the-art per-

formance using simple distribution comparison techniques that can be performed at

high speeds. We begin by demonstrating our approach when training on purely nor-

mal conversational speech and then remove all annotation from our training data and

demonstrate that our techniques can robustly accommodate anomalous training data

contamination. When comparing continuous distributions in higher dimensions, we

develop a novel method of discarding portions of a semi-parametric model to form

a robust estimate of the Kullback-Leibler divergence. Finally, we demonstrate the

generality of our approach by using the divergence between distributions of vertex

invariants as a graph distance metric and achieve state-of-the-art performance when

detecting graph anomalies with neighborhoods of excessive or negligible connectivity.

Primary Reader: Gerard G. L. Meyer

Secondary Reader: Hynek Hermansky
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Chapter 1

Introduction

Imagine a girl growing up in the West learning about different types of produce.

She knows that apples, oranges, and bananas are fruits and that lettuce, carrots, and

celery are vegetables. Suppose that she is then presented with a noni (Figure 1.1) and

asked whether it is a fruit or vegetable. Noni (Morinda citrifolia) are yellowish-green

and “have an unpleasant odor resembling cheese” [6]. They are edible, but mostly

tasteless, and have been used as a botanical remedy by Polynesians for over 2000 years

to fight cancer [7], infection [8], arthritis, asthma, hypertension, and pain [9, 10].

If the girl has never seen a noni before, she might consider it an anomaly since it

“deviates markedly” [11] from the produce that is familiar to her. She could guess

the type of produce if pressured, but she would be aware of her uncertainty and could

voice it. The noni is actually a multiple fruit called a syncarp formed from several

flowers that combine into a single fleshy mass. This category would probably be new

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Noni fruit (Morinda cirifolia) developing by Eric Guinther, June 2, 2005,
Creative Commons Attribution-Share Alike.

to the girl and she might actively request to see other multiple fruit (e.g. pineapples

and figs). The child’s ability to know what she does not know is a concept often

overlooked when developing pattern recognition systems.

In addition to novel object detection, another marvel of the human visual system

is that it enables the girl to recognize known objects despite changes in viewing

conditions. Recent psychophysical experiments suggest that this is done through

view combination, which is a form of evidence aggregation that uses information

derived from multiple views [12–14]. These multiple views can come from object

rotations or observer movements [15] and subsequent recognition likely follows after a

normalization process that compensates for moderate changes in perspective [16–18].

If we consider each image of an object that enters the girl’s visual system as a

single complex unit of information, her motion or that of the object allows her visual

system to acquire many such units of information from slightly different perspectives

as a temporally bound sample derived from the same physical scenario [19]. This

2
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sample is a subset of the overall population of all images that could be amassed by

observing all viewpoints of the object under all viewing conditions.

We want to mimic these robust capabilities that are inherent in human perception

and develop automated methods of robust anomaly detection using evidence aggre-

gation. This will allow us to perform a more holistic comparison between data that

we want to classify and data that we know is normal1. In order to do this we will

model the population of measurements from a finite sample and then estimate the

statistical divergence between populations.

1.1 Machine Learning

Distinguishing fruits from vegetables provides an example of a task common to

many fields of study including machine learning, data mining, pattern recognition,

statistics, medicine, and operations research. The goal is to infer the type of produce

given some measurements such as its size, shape, weight, color, or texture. The

machine learning community would consider this a binary classification task, where

the goal is to train a classifier that can decide between two labels. They would

recommend that some features be chosen which characterize each piece of produce

and hopefully are useful for the task at hand. Since vegetables are often green and

fruit are often vibrant shades of red, orange, or yellow, we could begin by measuring

1To avoid confusion, we will use the term “normal” to mean non-anomalous and “Gaussian”
when referring to the statistical distribution.
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the color of each piece of produce. In order to get a machine to learn from this data,

we need a set of training data providing each item along with its feature (color) and

label (type) as shown in Table 1.1. Large data sets often used in machine learning

tasks can have millions of such examples, but we will use this toy data set for the

purpose of this introduction to key concepts and nomenclature.

After we have trained our classifier on the information in Table 1.1, we could

present it with some test data that we want it to label. We would expect that

our system would label a yellow lemon and green asparagus as fruit and vegetable,

respectively. The two yellow items in its training data are fruit and seven out of

eight green items are vegetables. However, the yellowish-green noni is a color that

we have not explicitly seen before and therefore it is unclear how our classifier should

proceed. If we had a metric to estimate the distance between colors, perhaps by using

the color’s hue instead of treating it like a categorical attribute, we might be able to

better generalize from our training data and recognize that yellowish-green is “close”

to both yellow and green. However, if we did so and determined that yellowish-green

is equally distant from both yellow and green, how should we proceed? We have

learned that yellow produce are fruit and green produce are mostly vegetables and

we have an item to label that is somewhere in between. We can imagine that our

confidence of a piece of produce being a fruit changes smoothly along the spectrum

starting very high at yellow and ending up quite low at green (Figure 1.2). We know

that somewhere along the path our confidence is exactly 50%, which represents the

4
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Table 1.1: Produce colors and types

Data Product Color Hue ∈ [−60, 300] Type
T

ra
in

in
g

apple red -7.9 fruit

cherry red -5.7 fruit

raspberry red -3.9 fruit

strawberry red 0.0 fruit

carrot orange 15.2 vegetable

orange orange 25.0 fruit

lemon yellow 39.4 fruit

banana yellow 44.9 fruit

broccoli green 70.0 vegetable

celery green 75.4 vegetable

artichoke green 79.4 vegetable

lettuce green 82.2 vegetable

lime green 88.8 fruit

asparagus green 90.0 vegetable

spinach green 101.4 vegetable

cucumber green 109.7 vegetable

Test
noni yellowish-green 59.3 ???

blue crab blue 200.8 ???
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domain (i.e. animals), which our produce detector was not trained to recognize or

ignore. When we look outside the scope of our training data to the full range of color

hues (Figure 1.3), we can see that due to its limited domain knowledge, our classifier

will label all green objects as vegetables and everything else as fruit even if the item

is not produce. While that may sound like a pleasant coincidence given our motivat-

ing reason for using color, it can lead to disastrous unintended consequences. Since

the blue crab is far away from a decision boundary, our confidence estimation that

assumed all input was produce led our classifier to be nearly certain that a blue crab

is a fruit. The challenge is how to recognize this phenomena in higher dimensions

that we cannot easily visualize.

To deal with that difficulty, we propose using an anomaly detector in parallel with

any discriminative classifier trained on a finite amount of labeled examples (Figure

1.4). This anomaly detector should be able to learn from a random sample of un-

labeled data, which is mostly normal assuming that anomalies are rare. Such an

approach will ensure that other pattern recognizers can be relied upon and nothing

drastic has changed in the data at-large. Viewing the problem this way naturally

leads us to model the distribution of the entire population, even if we have taken

great care to build other pattern recognizers whose job is to differentiate between

various subpopulations. When we want to determine whether or not the data has

drastically changed, we will estimate the statistical divergence between the current

population and that on which it was trained.
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Classifier

Warning

Labels
Output

Measurements
Input

Anomaly
Detector

Discriminative

Messages

Figure 1.4: Robust pattern recognition system.

When operating in a streaming environment, where all the data cannot be saved

and decisions must be made in near real-time despite statistical drift, such a system

could periodically sample new data to re-learn what constitutes normal. Alternatively,

the fixed set of training data used for other pattern recognizers could also be used

for the anomaly detector. This would allow it to detect when the data has changed

enough that the other pattern recognizers need to be retrained.

When classifying produce, we could estimate the distribution of color hue for

each item using many measurements, rather than relying on a single sample which

could be noisy. An anomaly detector could then estimate the statistical divergence

between each item and other data that we know is normal for produce. We have done
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this for photographs of a strawberry, lettuce, noni, and blue crab in Figure 1.5. By

aggregating evidence, we can see another attribute that could not be detected with

a single measurement. While the strawberry, lettuce, and noni have a single peak in

their distribution of color hue, the blue crab has two distinct peaks from its blue legs

and orange claws. Such an attribute is unusual for a single piece of produce, which

would be easy to detect with a distributional anomaly detector.

1.2 Controlled Experiments vs.

Real Applications

Recently, there has been considerable excitement in the machine learning commu-

nity about the use of deep neural networks. Hinton and others [21–23] have achieved

unprecedented performance on challenging benchmarks in computer vision [24, 25]

and speech recognition [26–30] using new methods to train these artificial neural net-

works with many hidden layers. Before deep neural networks came of age [31], other

breakthroughs in statistical learning were achieved using support vector machines [32]

and ensemble classifiers, such as boosting [33], bagging [34], and random forests [35].

Such highly sophisticated techniques have led to significant advances in pattern recog-

nition theory and unprecedented performance in controlled experiments. However,

Hand [36] notes that improvements seen in controlled experiments may not yield suc-

cess in a real application if they are “swamped by other sources of variation”. This
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variation can be the result of commonly made implicit or explicit assumptions that

may not hold in real applications [37]:

1. Training and test data are drawn randomly from the same population.

2. The distribution of the data does not change over time.

3. The classes are well defined.

4. There are no errors in the labels of the training or test data.

5. The costs of making different types of classification errors are known accurately.

6. Measurement error, missing data, and mislabeled examples are equally repre-

sented in the controlled experiment and real application.

7. The criteria used to evaluate the performance of the classifier in the controlled

experiment are derived from requirements known to produce operational impact

in the real application.

These assumptions are well-intentioned and usually made to improve the tractabil-

ity of difficult problems. As Box famously wrote, “essentially, all models are wrong,

but some are useful” [38]. This work is devoted to verifying the first two assumptions,

while being robust to the third, fourth, and sixth, in order to address the fifth and

seventh.

12
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1.2.1 Robust Statistics

The term “robustness” was first coined by Box when he noted that statistical tests

of equal means work well for non-Gaussian data, unlike tests of equal variance [39].

Robust statistics provide alternatives to classical statistical methods without being

severely impacted by outliers or slightly inaccurate assumptions. For robust estimates

of central tendency, Tukey [40] and others proposed the trimmed and Winsorized

means, which remove a fraction of the smallest and largest samples and either discard

them or replace them with the maximal remaining values. Shortly thereafter, Huber

observed that classical estimators were not robust due to their inherent Gaussian

assumptions and reliance on least squares estimation [41]. He developed a general

theory of robust statistics and showed the mean, median, and maximum likelihood

(ML) estimates all to be special cases of M-estimators that minimize some function

of the error between the samples and the estimator.

In order to quantify robustness, Hampel defined the “breakdown point” of an

estimator to be the smallest proportion of contamination that can cause it to take on

“arbitrarily large aberrant values” [42]. The mean is not robust with breakdown point

0, since a single outlier can arbitrarily affect the estimate, whereas the α-trimmed

mean is robust with breakdown point α, and the median with breakdown point 1
2
.

We will use robust statistics to ensure that our approaches to anomaly detection can

learn from normal data that might be contaminated with some anomalies (Section

1.2.2). We will also test to see if our methods can robustly detect anomalies that were

13
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not observed in the training data, but should be expected when deploying a pattern

recognition system in the real world.

1.2.2 Noisy Labels

The fourth assumption in our list (Section 1.2) is that the labels in the training

data are correct. While this is usually the case for the vast majority of data carefully

annotated by expert professionals [43], developing such corpora is an expensive and

time consuming process. To avoid this, researchers often use methods that require

less labeled data or seek alternative sources of annotation.

One popular method of getting labeled data at little cost is relying on some under-

lying structure or metadata that is typically outside the scope of the machine learning

algorithm. Google’s PageRank [44, 45] is one famous example that does not require

additional annotation. Rather than collecting human judgments about the subjec-

tive importance of each Web page in order to help rank search results, PageRank uses

the underlying structure of the Web to infer the importance of each page objectively

based on how other pages link to it. Another common example of cheap labeled data

on the Web is using the URL [46] or ISO 639-3 language code [47] for training text

language identification systems.

Games that produce annotations as a side effect are another innovative source of

free labeled data. Von Ahn pioneered some of the early work in this area of “gami-

fication”, developing the ESP Game to collect image descriptions [48], Verbosity for
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common-sense facts [49], and DuoLingo for web translations [50]. Yahoo! Answers2

takes a slightly different approach to human computation in a question-answering fo-

rum and rewards members who provide the best answers with positive reinforcement

and points that increase their status in the community.

Monetary-based crowdsourcing platforms such as Amazon’s Mechanical Turk3 and

CrowdFlower4 are increasingly being used [51] as cheap, fast, but noisy sources of

annotation [52] for a variety of media including text, image, audio, and video [53–56].

While these platforms provide a low-cost, scalable labor force ideal for performing

small tasks that require human intelligence, crowdworkers typically do not have any

specialized training and have higher disagreement rates than professional annotators

for a variety of reasons [57]. Although quality control should be carefully monitored

and cheating addressed, the majority of crowdworkers complete their effort in good

faith and for some tasks [53,57] their annotations can be nearly as effective for training

machine learners as those produced by experts.

Returning to our produce example, if we were to decide on the type of each piece

of produce using labels provided by crowdworkers, then it is likely that we would

see a fair amount of noisy labels. Ambiguities are one source of noisy labels that

might lead to a low rate of inter-annotator agreement, such as the differences in the

botanical and cultural definitions of fruit and vegetables. For example, we might

find that the majority of the crowdworkers consider tomatoes to be vegetables, while

2http://answers.yahoo.com
3http://mturk.com
4http://crowdflower.com
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those in the scientific community consider them fruits. Though this example was

specifically chosen to illustrate a challenging task without a correct answer, human-

produced labels are rarely in unanimous agreement [58,59]. This type of error, where

data is close to a decision boundary, is difficult for even humans to resolve and is not

the focus of our work. When this does occur, we choose to let the data “speak for

themselves” [60] and we will not concern ourselves with the age-old debate about the

proper classification of a tomato5.

On the other hand, unambiguous mistakes in labeling can be due to a variety

of reasons. For example, a poorly designed human intelligence task (HIT) can be

exploited by crowdworkers for monetary gain. Cheating and collusion [62] have been

seen on Mechanical Turk and are usually combated with pre-screening or occasional

performance verification tests [57, 63]. If we are not so careful, we might find that

some crowdworkers cheat and make purposefully erroneous decisions to finish the

task as quickly as possible, such as labeling all produce as fruit. If we are not using

crowdsourcing, we could rely on assumptions about the data or natural partitions

thereof, such as assuming that all produce at a salad bar are vegetables. We could

similarly assume that any sweet produce eaten as a desert are fruit. While these

assumptions will not be entirely correct, they would allow us to quickly attain many

labeled examples at minimal cost.

Our focus will be on these types of unambiguous mistakes. They are likely to be

5The United States Supreme Court ruled unanimously in Nix vs. Hedden [61] that the tomato
is a vegetable for the purposes of taxation, while granting that it is a botanical fruit.
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correctable at some cost, but we assume that we are unable or unwilling to pay it

and we will use robust machine learning techniques to accommodate any assumptions

that are only mostly correct.

1.2.3 Statistical vs. Egregious Errors

When the costs of different types of errors are discussed in the literature, it is

often in reference to misses versus false alarms, but there are other subtle and more

subjective error conditions in real applications. For example, when using an algo-

rithm to place advertisements on websites, it is easy to imagine how inappropriate

advertisements could end up on a website about sexual harassment in the workplace.

What is the cost of harming a company’s reputation and how could that be factored

into an optimization technique without knowing all the different ways that it could

happen?

Returning again to our example in Section 1.1, if our classifier is presented with

produce that is red, orange, yellow, or green, then we can hopefully rely on it to

make reasonable decisions. The classifier will probably still make some statistical

errors such as incorrectly labeling a lime as a vegetable, but this can be studied

ahead of time allowing for appropriate performance expectations to be set. There

are many reasons for this type of error, such as the inherent difficulty of the task or

biases in the training data. Most users of automated systems will accept such errors,

especially if they appreciate the difficulty of the task and gain some benefit from the
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automated solution.

However, egregious errors are often viewed more harshly and quickly lead to the

distrust of pattern recognition systems. If our produce classifier repeatedly decides

that a Chesapeake blue crab is a fruit, then it may be considered unreliable and

might stop being used altogether. While our classifier was not trained to recognize

animals or distinguish them from plants, an intelligent system should be able to

recognize such a drastic abnormality and act accordingly. We want to develop a

robust anomaly detector that can flag such items as unusual and warn us when other

pattern recognizers are likely to make egregious errors because we are operating in a

region of uncertainty [64].

Even though we want to detect anomalies, we do not want to learn about them by

studying specific examples for several reasons. First, anomalies are rare and difficult

to find, so collecting data about them can be prohibitively expensive. Second, unlike

normal data, anomalies can result from many different causes and learning from a few

easy to find examples could lead to poor generalization and result in egregious errors.

Therefore, we seek to learn only from mostly normal data and identify anything that

deviates markedly from that as anomalous.

1.2.4 Criteria Other Than Accuracy

As each new machine learning technique improves on the previous state-of-the-

art, there are fewer errors to correct. This is especially true for problems where the
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best systems are approaching the Bayes error rate, which is a theoretical bound on

how well any method can perform given a certain set of measurements [65]. Often,

the biggest strides are made early on in the application of machine learning to a

given problem. Hand found that for many different problems, 90% of the predictive

power of the best methods can be achieved using the simplest models [37]. After

some initial progress has been made, “if large improvements are [still] possible, they

are more likely to come from a reformulation of the problem” [66]. Common ways of

reformulating a problem include developing new features and using large amounts of

unlabeled data. Criteria other than accuracy must also be considered when choosing

a classification method for a real application [66]:

1. What prior knowledge does the researcher already have about the technical and

application domains?6

2. Is a validated implementation of the algorithm readily available?

3. What expertise is required to use the algorithm and tune its parameters?

4. Is parameter tuning automatic? Does it require separate data?

5. How much labeled data is available? Can the algorithm take advantage of large

amounts of unlabeled data?

6. Does the algorithm automatically increase model complexity as additional train-

ing data is available?

6Both are critical!
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7. Can the algorithm handle different types of data? Can it cope with measurement

error? missing data? mislabeled examples? statistical drift?

8. Do complex feature combinations need to be supplied as input or can those be

learned by the algorithm?

9. What is the speed and cost of making each measurement, pre-processing the

data, training the algorithm, and applying the classification rule?

10. Can the learning and classification be done on-line in a streaming fashion or

does the data have to be processed in batches?

11. Can the researcher interpret or visualize what the model learns about the train-

ing data or why a decision is made for a particular example?

In summary, the real question a researcher generally wants to ask is “which clas-

sification method is best for me to use on my problem with my data” [67]. The only

answer is that “different classifiers suit different problems” [66] and the best approach

is simply to get started. Our goal is to develop an anomaly detector that can learn

from noisy labels and be used as part of a robust pattern recognition system to avoid

making egregious errors while remaining computationally efficient.
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1.3 Dissertation Contributions

• In the interest of developing a robust speech activity detector, we reformulate

the problem to include acoustic anomaly detection and demonstrate state-of-

the-art performance using simple distribution comparison techniques that can

be performed at high speeds.

• In the interest of robustly comparing two distributions in a high dimensional

space, we develop a novel method of discarding portions of a semi-parametric

model when estimating the Kullback-Leibler divergence.

• In the interest of robustly detecting any type of anomalous graph, we refor-

mulate the problem of assessing graph similarity by comparing distributions of

local measurements. We demonstrate superior performance to available state-of-

the-art approaches against a specific type of anomaly and further demonstrate

superior generalization to entire classes of graph anomalies.

1.4 Structure of Dissertation

In Chapter 2, we discuss the preliminaries necessary for our approach of estimat-

ing the statistical divergence between populations. We begin our focus on acoustics in

Chapter 3 and demonstrate our approach when training on purely normal conversa-

tional speech. Then, in Chapters 4 and 5 we remove all annotation from our training
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data and demonstrate that our techniques using histograms and trimmed Gaussian

mixture models, respectively, can be used to robustly accommodate anomalous train-

ing data contamination. In Chapter 6, we demonstrate how our approach can gen-

eralize to other domains by introducing our second application focus on graphs. We

discuss the change from temporally focused acoustic features to vertex-centric graph

features and evaluate our best performing histogram techniques. Finally, Chapter 7

summarizes our findings and proposes ideas for future research.
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Statistical Inference

In Chapter 1, we described our goal of developing an anomaly detector using robust

statistics (Section 1.2.1) which can accommodate noisy labels (Section 1.2.2) and be

used as part of a robust pattern recognition system (Figure 1.4) that can avoid making

egregious errors (Section 1.2.3) while remaining computationally efficient (Section

1.2.4). In this chapter, we will discuss the statistical inference paradigms of density

estimation and machine learning required to do so.

Probability distributions provide a framework to succinctly characterize observa-

tions and enable statistical inference. Their use abounds in science and mathematics,

from the measurements and errors that we assume are Gaussian1 to the Poisson

approximation2 of the sum of independent Bernoulli trials. Even when empirical ob-

1Like many modeling assumptions this is often wrong, but mathematically useful [38].
2In a classic twist of eponymy, while Poisson invented the Cauchy distribution, it is likely that

credit for the general formula bearing his own namesake actually belongs to de Moivre, although it
was Bortkiewicz who first recognized its significance [68].
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servations are not characterized by a typical size or “scale”, their distribution can still

be modeled using power laws [69] such as Pareto’s distribution of wealth [70], Zipf’s

law of word frequencies [71], Lotka’s distribution of scientific productivity [72], and

Mandelbrot’s study of price changes [73] with infinite variance3. With experience and

enough exposure to samples drawn from these distributions we can develop an intu-

ition about which observations seem reasonable and which do not. Thus, we “know”

that the probability of a man being nine feet tall4 is nearly zero, and find it reasonable

that the word “the” is found about once every twenty words in English [76]. While no

finite set of real data obeys any of these laws exactly, they provide useful mechanisms

to succinctly characterize the underlying processes.

Unlike many pattern recognition systems which make local decisions, we will ex-

plore methods of recognizing deviations from these global distributions. Local mea-

surements are those nearby in some space which will depend on the application. We

will use time for acoustic processing and vertex-centric neighborhoods when work-

ing on graphs. We will show that our global approach can detect the Rumsfel-

dian“unknown unknowns” [1] and Talebian “black swan events” [2] that can cause

pattern recognition systems to produce egregious errors whose cost can far exceed

the expected statistical errors when operating in new domains.

3Price changes over a fixed time period may follow a Lévy distribution with infinite variance,
which is not necessarily incompatible with price changes being Gaussian for a fixed number of
transactions since the number of transactions in any given period of time is random [74].

4Robert Wadlow was the world’s tallest man standing 8 feet 11.1 inches tall as a result of an
overactive pituitary gland [75].
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2.1 Density Estimation Paradigms

Density estimation is the act of estimating the probability that a member of

a certain category will be found to have particular features [77]. In our produce

example from Chapter 1, this could be used to find the most likely color hue observed

for a piece of produce (Figure 1.3) given a distribution estimate derived from many

measurements (Figure 1.5). Only after modeling the entire distribution of color hue

for individual items, did we discover the difference between the unimodal color hue

distributions of produce and the anomalous bi-modal distribution of a blue crab with

orange claws.

We will generally rely on Wasserman [78] and Bickel and Doksum [79] for notation

and theory. Formally, let X be a random variable yielding observation x = X(ω) ∈ R

for a particular experiment ω in sample space Ω. If X has distribution F , denoted

X ∼ F , then F (x) = P (X ≤ x) represents the probability that X ≤ x. If its density

p is absolutely continuous, then F (x) =
∫ x
−∞ p(t)dt for all x. In our multivariate

setting, X = (X1, . . . , XD)T is a random vector made up of multiple random variables

X1, . . . , XD, where a particular experiment ω ∈ Ω yields an observation vector x =

X(ω) ∈ RD.
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2.1.1 Parametric Models

Density estimates can be described as either parametric, semi-parametric, or non-

parametric [80]. Parametric models make strong assumptions about the data gen-

erating process, and are so named because they use a fixed number of parameters

θ = (θ1, . . . , θk)
T to characterize a family

P = {p̂(x;θ) : θ ∈ Θ} , (2.1)

where Θ ⊂ Rk is the parameter space. We say that the model is correct when the true

density p is an element of the family P . When this is true we can accurately estimate

the parameters with relatively little data. Perhaps the most well-known multivariate

parametric model is the multivariate Gaussian distribution where the probability of

an input x ∈ RD is

p(x;θ) ∼ N (µ,Σ) =
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(2π)d/2 |Σ|1/2

, (2.2)

where the model parameters θ = (µ,Σ) are comprised of a mean vector µ and

covariance matrix Σ.

2.1.2 Semi-Parametric Models

Semi-parametric density estimation “enlarges” the model family for greater flexi-

bility, while maintaining a fixed number of parameters regardless of sample size. One
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common form of this is a mixture model

P =

{
p̂(x;θ) =

m∑
i=1

wi · p(x; ti) : ti ∈ T i

}
, (2.3)

where each component p(x; ti) has its own parameter space T i ⊂ Rki and weight

wi > 0, such that Σm
i=1wi = 1 for i = 1, . . . ,m. The mixture model parameters

θ = (w1, t1, . . . , wm, tm) are the superset of each component’s parameters, which often

belong to the same sub-family. One classic example presented in Dempster, Laird,

and Rubin’s seminal paper on the expectation-maximization (EM) algorithm [81] is

the Gaussian mixture model (GMM)

p(x;θ) =
m∑
i=1

wi · N (µi,Σi) (2.4)

with parameters θ = (w1,µ1,Σ1, . . . , wm,µm,Σm).

2.1.3 Non-Parametric Models

Non-parametric models enable even greater flexibility, although it is hard to pre-

cisely define what constitutes a non-parametric density estimate. Scott [80] states that

a heuristic definition is that non-parametric density estimates “work”5 for a “large”

class of true densities. Silverman says that they make “less rigid assumptions” about

the distribution and let the data “speak for themselves” [60]. Terrell and Scott [82]

have an elegant definition which states that the influence of an individual example

should vanish asymptotically for non-parametric estimates, which is often not true

5More precisely, they must be consistent in the mean square.
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for parametric or semi-parametric models6. In other words, non-parametric density

estimates should be asymptotically local and robust to outliers, which we discussed

in Section 1.2.1. Technically, it is a slight misnomer to call them “non-parametric”

because they do have parameters, but their number often grows with the sample size

or is theoretically infinite [83].

One common non-parametric model is the kernel density estimate [84,85]. Given

a sample of independent and identically distributed draws x1, . . . ,xn, where xi =

(x
(1)
i , . . . , x

(D)
i )T ∈ RD, the multivariate product kernel density [80]

p(x;θ) =
1

nh1 · · ·hD

n∑
i=1

{
D∏
j=1

K

(
x(j) − x(j)

i

hj

)}
(2.5)

is essentially a mixture model with “kernel” function K centered at each sample.

Therefore, the parameters θ = (h1, . . . , hD,x1, . . . ,xn) include all the samples and

smoothing parameters hj > 0 for each dimension j = 1, . . . , D. While a Gaussian

or uniform kernel is often used for visualization purposes, Epanechnikov [86] demon-

strated that the optimal kernel is

K(y) =
3

4
(1− y2)1 (|y| < 1) (2.6)

regardless of the true probability density, sample size, and dimensionality.7

A histogram8 is another non-parametric density estimate where a continuous space

is sub-divided into regions within which the probability distribution is assumed to be

6We have devoted Chapter 5 to overcoming this limitation for GMMs.
71(·) is the indicator function, which is 1 or 0 depending on whether the condition is true or false.
8The term histogram was originally coined by Pearson [87] to describe a “historical diagram”

that was useful for visualizing the “reigns of sovereigns or periods of different prime ministers”.
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uniform. To this day, histograms “remain the most widely applied and most intuitive

non-parametric estimator” [80]. Histograms can use adaptive bins with non-uniform

sizes or they can use fixed bin sizes over the entire space.

Techniques using fixed bins come in two varieties: The entire feature space can

be divided up into regular intervals or the saved bin locations can be derived after

clustering the data. A histogram with fixed bins at regular intervals can be defined by

parameters θ = (b1, c1, . . . , bm, cm) comprised of bin centroids bj with corresponding

counts

cj =
n∑
i=1

1
(
j = arg min

k
d(bk,xi)

)
(2.7)

using the Euclidean distance d, for samples xi for i = 1, . . . , n. We convert this to a

density estimate using add-one smoothing,

p(x;θ) =
cj + 1

m

(
∑m

k=1(ck)) + 1
, (2.8)

where j = arg mink d(bk,x) for a histogram with m cells.

2.2 Learning Paradigms

The goal of pattern recognition is to learn a mapping from input measurements

to output labels. In the 1920’s, Fisher [88] formulated the classical solution to this

problem, which begins by using input measurements to estimate the most likely pa-

rameters of a parametric model that could have generated the data. The equations
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governing these data generating processes can then be used to derive a decision rule,

but there are two drawbacks to this approach.

First, it requires a priori knowledge about the type of distribution that generated

the data. While this was often the case when Fisher was designing small sample

experiments in agricultural and genetic studies, a century’s increase in computational

power has led to the common practice of opportunistic data mining in high dimen-

sional, heterogeneous measurement spaces. These complex measurement spaces are

often not well understood making accurate model creation difficult.

Second, solving the intermediate problem of explaining the data generating pro-

cesses can be more difficult than addressing the original goal of learning a decision

rule to apply labels. In statistical learning theory, Vapnik [32] took a more direct

approach. Through a process known as structural risk minimization, he suggests

learning how to best discriminate between different types of input while balancing

model complexity. However, since these discriminative classifiers (discussed further

in Section 2.2.5) lack a model of the data generating processes, they also lack the

ability to detect if those processes have fundamentally changed. For pattern recog-

nition systems that will be used in real applications, we believe a crucial secondary

goal is recognizing if such a change has occurred9.

It is both Fisher’s quest for fundamental understanding and Vapnik’s consider-

ation of use that form the cornerstone of the use-inspired basic research [89] that

9Verifying Assumption 1 in Section 1.2.
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we will conduct in this dissertation. Our overall strategy is to employ both method-

ologies in parallel (Figure 1.4), allowing us to use powerful discriminative classifiers

when operating on normal data while also having an anomaly detector warn us when

anything is out of the ordinary.

2.2.1 Supervised Classification

Supervised binary classification is the prediction of binary class labels from a set of

training data. Formally, let X : Ω→ RD be a random vector and Y : Ω→ {0, 1} be

a random variable yielding observations x = X(ω) ∈ RD and y = Y (ω) ∈ {0, 1} for a

particular experiment ω in the sample space Ω. X represents the input measurements

and Y represents the output label. Depending on the field of study, the input can

also be referred to as a feature vector, observations, or explanatory variables and the

output as a decision, class, category, or dependent variable.

We are interested in learning a decision rule g : RD → {0, 1} so we can accurately

categorize unlabeled data. When performing supervised learning, training data is re-

quired which consists of a set of paired observations and labels {(x1, y1), . . . , (xn, yn)}

which we assume are independent and identically distributed observations drawn from

p(x, y). We will refer to x as a positive or negative example when y = 1 or y = 0,

respectively.

To constrain the problem, statistical learning theory suggests [32] specifying the

family of mapping functions G to be investigated using a parameter vector α ∈ Λ
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so that G = {g(x,α),α ∈ Λ}. We also must choose a loss function, L (y, g(x,α))

between the label y and our mapping g(x,α). Vapnik suggests [90] using the in-

dicator function 1(y 6= g(x,α)) when performing binary classification. The goal of

supervised classification can now be formally stated as choosing the mapping function

to minimize the risk, or expected value of the loss function,

g(x,α0) = arg min
α

∫
L (y, g(x,α)) dp(x, y). (2.9)

However, because learning p(x, y) is a challenging problem which often requires large

amounts of labeled data that may not be available, Vapnik suggests [32] choosing the

mapping function which minimizes the empirical risk,

g(x,αemp) = arg min
α

1

n

n∑
i=1

L(yi, g(xi,α)). (2.10)

For small sample sizes, the goal of structural risk minimization is to minimize

empirical risk while controlling complexity by defining a structured set of mapping

functions [91]. In order to achieve this, support vector machines (SVMs) employ a

strategy of keeping the empirical risk fixed while minimizing complexity [90].

In practice, SVMs project the data into a higher-dimensional space and then find

an optimal separating hyperplane. When only considering classification accuracy

(Section 1.2.4), properly tuned SVMs perform quite well, but they often require non-

trivial tuning and a fair amount of expertise on the part of the researcher. They also

lack the ability to detect if the data generating processes have changed.
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2.2.2 Unsupervised Learning

Unsupervised methods are used to learn from unlabeled observations {x1, . . . ,xn},

and these methods often involve clustering data into groups by similarity. One reason

to do this is to infer an unknown naturally occurring structure, or in other words

to “carve nature at the joints” [66] for the purpose of better understanding. The

interest may lie in estimating the number of classes present in the data, assigning

each observation to a class, or both. Hierarchical clustering is a common example

used to better understand complex data and its natural, but hidden, structure.

Another reason for unsupervised learning is to divide up data for the sake of con-

venience [66], often for dimensionality reduction or density estimation. An example

of this that we will use heavily in this work is mixture modeling. While the induced

class labels may not be important to the task at hand, the overall divide-and-conquer

strategy is useful for semi-parametric density estimation (Section 2.1.2).

We will use unsupervised learning in Chapters 4 and 5 to train a binary classifier

by assuming that most of the training data is normal and labeling anything unusual as

anomalous. A similar example in Section 1.2.2 would be assuming that most produce

at a salad bar are vegetables and labeling anything unusual as fruit. This anomaly

detection strategy will be explored further in Section 2.3.
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2.2.3 Semi-Supervised Classification

Semi-supervised learning [92] is often used when the process of labeling data is

difficult, expensive, or time consuming, but a large amount of unlabeled data is readily

available. In semi-supervised binary classification, a small amount of labeled data,

typically consisting of both positive and negative examples, is available for training

and the unlabeled data is used to identify low density regions of the feature space for

optimal placement of the decision boundary [93,94].

2.2.4 Partially Supervised Classification

If the cost or difficulty of finding different types of input is highly imbalanced, we

may be forced to learn from labeled examples of only one of the classes. Such learning

is referred to as partially supervised classification [95]. Learning from positive and

unlabeled data recently became an active area of research [96–103] after it was first

demonstrated in the context of the probably approximately correct (PAC) learning

framework [104], where theoretical results show that it is sometimes sufficient to

consider the unlabeled data as negative examples [105].

In document classification, if the number of both positive and unlabeled docu-

ments is large and the proportion of unlabeled documents that are positive is known,

then a positive-näıve Bayes (P-NB) classifier [106] can be trained by statistically

removing the effect of positive examples from the model of unlabeled data. This ap-
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proach has been extended through the use of co-training [105] to better cope with a

smaller number of positive documents.

Another common approach to partially supervised classification is to begin by

automatically labeling some “reliable” negative examples from the unlabeled set and

then iteratively applying “soft” labels to the unlabeled data used to train the classifier.

Spy-expectation maximization (S-EM) [95] holds out some of the labeled positive

examples to use as “spies” to identify likely negative examples from the unlabeled set

using a NB classifier. This is then followed by iteratively applying the EM algorithm

to estimate the hidden labels while training the classifier and keeping the positive

labels fixed. When the NB assumption is not well-satisfied, logistic regression has been

used on weighted examples yielding better performance [101]. When data sparsity is

a concern, a support vector machine (SVM) can been used, which is the approach

undertaken by PEBL [100] and Roc-SVM [102]. The latter is so-named because it uses

the Rocchio algorithm as an initial classifier relying on the assumptions that positive

examples are rare in the unlabeled set and negative examples cover a broader region

of the feature space.

Others have simplified partially-supervised classification by ignoring the unlabeled

data completely and performing one-class classification [107]. This is often done with

an SVM trained to estimate the support of the positive examples [108]. While this

approach can detect extreme outliers, it is highly dependent on the input features

and choice of kernel in a manner that is not well understood [109]. This approach
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would also not work on data sets where the anomalies are in the same region of the

feature space as normal data, but their distributions are anomalous (Figure 3.2)

One of many assumptions made in these approaches is that the unlabeled set

is comprised mostly of the opposite class of examples from the labeled set. When

retrieving relevant documents from a set that is mostly irrelevant such an assumption

is valid, but the opposite is usually true for anomaly detection where the probability

of occurrence is consistently small.

2.2.5 Generative vs. Discriminative Classification

Machine learning algorithms typically use generative models, discriminative clas-

sifiers, or a hybrid of both. Generative models estimate the joint distribution p(x, y)

and choose the label which maximizes that probability [110]. This approach is so

named because it models a distribution that could be used to generate novel feature

vectors, although this is rarely done in practice. Dawid refers to this as the “sampling

paradigm” [111] common in statistical theory, which concentrates on the distribution

p(x|y) regarding the label y as an unknown causative parameter to the feature vector

x. The drawback to this approach is that convenience or opportunity sampling, which

is a common scenario when data mining [112], should not be used unless the selection

bias is carefully corrected [113].

The knowledge stored in generative models is not strictly necessary for classifica-

tion [90], but there are several uses that can increase robustness when input data to
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be classified may not have come from the same domain as the training data. Some

forms of adaptation, such as feature mapping [114] and maximum likelihood linear

regression [115], use generative models to develop linear transforms from the observed

feature space into one that better matches trained models. We will explore the use

of generative models to enable distributional anomaly detection. In the produce ex-

ample from Chapter 1, we could have used a generative model of color hue for all

produce to recognize that the blue crab was unlike anything we had seen before. Fur-

ther, if the input distribution is anomalous like the blue crab’s bi-modal color hue, a

robust pattern classification system could produce warnings instead of labels. While

confidence estimation has a similar goal, we saw how easily it can fail when anomalies

which are far away from the decision boundary lead to false confidence (Figure 1.3).

Alternatively, in the “diagnostic paradigm” [111] discriminative classifiers model

the posterior p(y|x) estimating parameters for the decision boundary directly [116].

This approach has lower asymptotic classification error [110] when performing fully-

supervised tasks, but lacks the additional knowledge required to recognize anomalous

data that should not be processed normally.

2.3 Anomaly Detection

Anomaly detection has been studied in many different fields [117] such as network

intrusion detection [118], monitoring systems [119], fraud detection [120], topic detec-
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tion and tracking [121], data mining [122], and stylistic inconsistency detection [123].

In Hodge and Austin’s survey of the subject [117], they categorized most research as

either supervised classification, partially supervised novelty detection, and unsuper-

vised clustering.

Anomaly detection techniques that require labeled instances of both normal and

anomalous data fit into the traditional machine learning paradigm of supervised clas-

sification (Section 2.2.1). This technique is appropriate when the types of anomalies

are fixed and obtaining labeled examples of them is easy. Partially supervised (Sec-

tion 2.2.4) anomaly detection techniques that learn from only normal data are often

referred to as novelty detectors. These methods are appropriate when it is relatively

easy to obtain normal data, but anomalous examples are either difficult or expen-

sive to obtain or are likely to change over time. Unsupervised clustering (Section

2.2.2) methods are appropriate when it is difficult to obtain any labeled examples.

The classical example of unsupervised anomaly detection is the box plot (Figure 2.1),

which can be used without any prior knowledge of the data. Unsupervised techniques

commonly employ either self-diagnosis or robust accomodation of the unlabeled data

in order to “cope with a sizable fraction of contamination” [124].

Now that we have described the statistical inference paradigms and nomenclature,

we will evaluate the performance of distributional anomaly detection when we apply

it to applications in speech processing and graph theory. Chapters 3 and 6 will

investigate partially supervised anomaly detection in each of those applications, and
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Chapter 3

Acoustic Anomaly Detection via

Partially Supervised Learning from

Normal Data

In Chapter 2, we introduced the statistical inference paradigms necessary for dis-

tributional anomaly detection. Here, we will investigate methods of computing the

divergence between various density estimates to improve the robustness of speech

activity detection by developing an acoustic anomaly detector that is trained using

partially supervised learning from normal conversational speech.

The expressive potential of the human voice is enormous [125]. Spoken language

contains both explicit information in its content as well as a variety of implicit infor-

mation about the speaker [126]. It allows for recognition of the speaker’s identity [127],
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provides evidence of their age [128], and conveys some information about their cur-

rent health. It can also encode other demographic information about the speaker,

such as their gender, geographical dialect, level of education [129], and social class in

certain cultures [130]. It can even convey information about their current attitudes

and emotions, medium term moods, and lifetime personality traits [126].

Automatic speech processing is the extraction of this explicit or implicit infor-

mation by machine. While significant computational and algorithmic advances have

been made in many speech processing systems over the last several decades, most still

suffer from a lack of robustness with respect to noise, reverberation, and interfering

speech [131] which makes them brittle under many natural conditions. In contrast,

humans have an incredible ability to adapt to variations in acoustic conditions and

their recognition performance degrades gracefully with increasing levels background

noise and reverberation [132]. While speech and hearing may have evolved together

to overcome many of these challenges, human comprehension is also robust to many

synthetic signal degradations. For example, when designing analog scramblers for

speech privacy, engineers have found it difficult to synthetically degrade speech be-

yond comprehension in a way that allows the intended recipient to reconstruct the

signal. Systems that perform sample permutation, block permutation, and frequency

inversion have all been found to be reasonably intelligible by humans [133] unless

multiple techniques are used in tandem [134].

Humans also have an uncanny ability to exploit spectro-temporal redundancies in
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speech. Licklider and Pollack [135] showed that human intelligibility scores remained

above 85% for speech with infinite clipping, a technique which only preserves the spec-

tral aspect of the zero crossing rate and discards all temporal information about the

speech envelope. If the speech was high pass filtered before being clipped, intelligibil-

ity exceeded 97%. Other experiments have shown that intelligibility also remains high

when temporal information is preserved but spectral information is greatly reduced.

Shannon et al. [136] found that by modulating the temporal envelope of band-limited

white noise to mimic speech in as few as four broad frequency bands, words could be

recognized nearly perfectly by human subjects.

Both high and low frequencies are important for recognizing different phonetic

sounds. However, Fletcher and his team at Bell Labs showed that intelligibility

remained above 97% when speech was high- or low-pass filtered [137] thereby demon-

strating its spectral redundancies. Around the same time, Miller and Licklider [138]

demonstrated temporal redundancies by masking speech intermittently with silence

or noise of equal duration. They showed that this had little effect on understanding

as long as it was done at least 10 times per second so that long contiguous segments

were not removed.

These findings demonstrate that speech is an error correcting code with complex

embedded redundancies enabling robust communication through a variety of noisy

channels. If we are interested in improving the robustness of automated systems,

we need to better exploit these redundancies so we can still recover information in
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the presence of missing or corrupted data. When processing audio to determine if it

contains speech or not, we believe one method of doing so is to aggregate evidence

over time and change the paradigm from short-term speech activity detection to long-

term acoustic anomaly detection. Rather than assessing whether each fraction of a

second of audio contains speech based on a single feature vector, in this chapter we

will examine the features from five minutes of audio to determine if the entire segment

as a whole is comprised of conversational speech worthy of further processing. This

will enable us to make a more informed decision when presented with a potentially

anomalous signal by examining its entire distribution instead of trying to aggregate

many poorly made decisions post hoc.

3.1 Speech Activity Detection?

Speech processing systems are generally used to perform either tokenization or

classification tasks. Tokenization is the process of converting an acoustic signal con-

taining speech into the explicit content of the words, syllables, or phonemes being

spoken. As the amount of input speech gets longer so does the number of output

tokens. On the other hand, classification systems process a variable amount of speech

and yield an output with a fixed size, often indicating their confidence associated

with each decision. They typically extract some aspect of the implicit information

about the speaker, such as their identity, language, gender, or emotional state. These
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speech classification tasks are often formulated as binary detection tasks, where the

goal is to determine whether some implicit aspect of the speech is true or not.

Most speech processing systems depend on speech activity detection (SAD) as

a pre-processing step. This enables the downstream tokenization or classification

systems to know which part of the signal to analyze. This can save computational

resources as well as avoid costly mistakes that can arise when presenting downstream

processing systems with unusual non-speech signals that they were not trained to

ignore. SAD also has other applications, such as saving bandwidth in cellular and In-

ternet communications via discontinuous transmission [139], reducing environmental

noise in hearing aid devices [140, 141], and improving intelligibility via echo cancela-

tion [142,143].

While SAD is a detection task, this definition refers to the decision made on

each acoustic frame, which can be as short as 20 milliseconds. These frame-level

decisions are frequently smoothed over time and the final output is more typical of

tokenization, yielding a sequence of start and stop times indicating when speech is

purportedly present in the acoustic signal.

Depending on the type and amount of background noise, the difficulty of SAD

can range anywhere from incredibly easy to impossibly difficult. If the speaker is in

a quiet indoor environment and the only likely sound is them talking, then a simple

adaptive energy threshold [144] has been shown to perform quite well. This is also

true for some telephony speech corpora such as Switchboard [129], which contains
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high quality landline telephone speech.

However, many SAD systems fail when the level of background noise increases [145]

or if there is unexpected channel variability or degradation [146]. While significant

progress has been made on many speech processing tasks over the last several decades,

many automated systems degrade catastrophically under adverse acoustic conditions

[147]. SAD and other speech processing systems based solely on processing short 20-

30 millisecond frames typically lack robustness to noise and reverberation, conditions

which do not significantly affect human comprehension.

3.2 Features

The speech signal is rich with information and one fundamental challenge of speech

processing is distilling it into a manageable feature space for pattern recognition

while preserving its explicit and implicit information. Consider the five minute audio

segments that will be used in this chapter. Sampled at 8000 Hz, each segment consists

of 2.4 million samples that are each discritized to one of 256 values, which is far too

large to model directly. Furthermore, learning directly from these raw samples would

require an immense amount of training data and would not generalize to new words,

speakers, styles, or acoustic environments. Luckily, a temporal signal like speech is

easy to divide up meaningfully in time allowing us to analyze each frame individually.

This leaves us with three remaining questions:
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• How long should each frame should be?

• What should we do with each frame?

• How should we aggregate evidence across many frames to summarize a segment?

3.2.1 Frame Length

To address the first question, we look to the human auditory system which inspires

most dimensionality reduction techniques in speech processing. In the quest for the

ideal time constant over which to analyze each frame of speech, a variety of psycho-

acoustic experiments have produced results ranging three orders of magnitude from

250 µs to 200 ms. Eddins and Green [148] believe that it is overly simplistic to

assume that a single temporal window is used in the auditory cortex to analyze the

incoming waveform. Several well-known experiments support this assertion and have

demonstrated that perceived loudness increases with signal duration [149–152]. This

time-intensity trade-off provides humans with high temporal acuity for loud sounds

while maintaining the ability to hear quieter sounds via temporal integration [148].

Temporal acuity is often measured in gap detection experiments, which have found

time constants ranging between 250 µs to 30 ms with many estimates clustered around

2 to 3 ms [153–155]. When performing temporal integration of quiet sounds, psy-

chophysical and neurophysiological experiments suggest that the maximum time con-

stant is between 100 and 200 ms [156]. Other experiments assessing the temporal
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order of two tones at different frequencies suggest that the spacing needs to be be-

tween 20 to 30 ms. This same delay is also required when discriminating between

which of two lights came on first in experiments involving both sight and sound [157].

It is perhaps no accident that after decades of tuning and experimentation much

of the speech community has settled on an analysis window of 20 to 30 ms. The

most often cited reasoning for this window length is in some relation to the length

of a phone, which is the smallest linguistic unit that can change the meaning of a

word. However, the median duration for most phonetic classes is considerably longer,

ranging between 60 to 100 ms [158]. Segmenting speech on the basis of phones is

also difficult because adjacent phones often overlap in time, “blurring” together in an

effect known as co-articulation, which is imposed by the biomechanical constraints of

the vocal tract [159].

Greenberg, who has done a wide range of studies in linguistics, neuroscience, and

psychoacoustics [158–164], states that there is increasing evidence that the “syllable,

rather than the phone, is the basic unit of speech perception.” Many studies have

demonstrated that slow modulations in the acoustic envelope reflecting the syllable

rate are probably just as important as spectral variation [136, 164–167]. Temporal

changes in the speech envelope convey information about consonants, stress, voicing,

phoneme boundaries, syllable boundaries, and phrase boundaries [164,168,169]. Lis-

teners also appear more sensitive to syllabic [170] and phrasal [171] boundaries than

those of phonemes [159].
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Syllable rate modulations result from the alternating high intensity levels of vowels

and low intensity levels of consonants [164]. Most syllables last between 107 and 260

ms [158], which corresponds to a syllable rate between 3.8 and 9.3 Hz. The impor-

tance of these modulations has been demonstrated by measuring intelligibility after

“smearing” the speech envelope [165]. Removing amplitude modulations between 4

and 16 Hz significantly decreases intelligibility, while removing modulations outside

of this range has little effect [172]. If we are interested in estimating syllable rate, a

good statistical rule-of-thumb is to use at leave five examples, which would require

between 535 ms and 1.3 seconds of audio.

3.2.2 Syllable Rate Estimation

Viemeister [173] accurately modeled the human ability to detect amplitude mod-

ulations below 50 Hz with a three stage model: (1) initial bandpass filtering, (2)

half-wave rectification, and (3) temporal integration. Tuning the parameters in each

stage yielded an initial bandpass filter between 4 kHz and 6 kHz, and a final low-pass

cut-off frequency of 65 Hz for temporal integration. Forrest and Green [174] con-

ducted similar experiments and arrived at slightly different parameter settings, but

found that the same model fit the psycho-acoustic data quite well. These approaches

closely model the feature extraction of a syllable rate speech activity detector (SR-

SAD) [175] that we were interested in using for our research.

SRSAD’s features can be computed several hundred times faster than real-time,
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and our interest was in increasing the system’s robustness to acoustic anomalies while

not comprising on speed. The calculation of its features (Figure 3.1) begins by low

pass filtering a 500 ms window of squared audio samples to get the frame’s envelope.

The mean of the envelope is then subtracted and the discrete Fourier transform of the

resulting signal is computed. The components representing frequencies between DC

and 60 Hz are normalized so they sum to one and are treated as a discrete probability

distribution. The first feature is the expected value of the distribution characterizing

the frequency of energy concentration. The second feature is the ratio of max to

average component probability mass representing the peakedness of the distribution.

Since speech has a syllabic rate between 3.8 and 9.3 Hz [158], the expected value of its

envelope modulation should be lower than it is for noise and the peakedness should

be higher. The window is shifted by increments of 100 ms for the length of the audio

to better resolve the times of speech onset and offset. A typical distribution of these

features for a large amount of conversational speech collected on landline telephones

is shown in the top-left of Figure 3.2.

In general, SAD is a relatively well-understood problem capable of good perfor-

mance using a variety of features such as pitch, zero-crossing rate, adaptive energy

thresholds [144], signal to noise ratio [176], formant shape [177], and wavelet coeffi-

cients [178]. However, our goal with acoustic anomaly detection is to decide whether

or not an unknown signal has long-term modulation energy distributed in a way

that is consistent with conversational speech. We therefore aggregate our estimates
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Figure 3.1: Syllable rate feature computations for speech (top four) and white noise
(bottom four).
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of syllabic rate and estimate the distribution of syllable rate for each five minute

audio segment. Then we will decide whether or not each segment is anomalous by

comparing it to a model of normal conversational speech.

3.2.3 Evidence Aggregation

Acoustic anomaly detection (AAD) takes the first step of identifying when acoustic

conditions have decayed so drastically that statistical inference performed by down-

stream speech processing systems is likely to be unreliable. We want to distinguish

conversational speech from any anomalous sound whether or not it was present in our

training data. Such a sound could be synthetic or natural, anything from electronic

music to animal vocalizations or something as simple as incorrectly decoded audio.

While we are interested in this wider scope of AAD, there is obviously significant

overlap with speech activity detection. However, we have reformulated the tokeniza-

tion task of SAD into a detection task making a single decision for a long acoustic

segment. This allows us to aggregate evidence over time and make more informed

decisions, but it comes at the cost of temporal localization. We envision using the

best of both approaches by operating them in parallel (Figure 1.4). SAD should con-

tinue to be used for accurate temporal localization of speech, while AAD can monitor

the conditions over longer time spans and make more informed judgements about the

reliability of SAD output. For example, when operating on audio files collected from

the Web, AAD can be used to decide which files are mostly comprised of conversa-
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Figure 3.2: Histograms of syllabic rate features for CallHome English train init (top
left), international Morse code at 2kHz using a 100ms unit time (top right), dual-tone
multiple-frequency (DTMF) signaling keyed on and off for 400ms (bottom left), and
a classical violin piece (bottom right) showing that anomalies can occupy the speech
region (gray) when using log-likelihood ratio testing for a single Gaussian per class
with p(speech) = 0.4855. The x-axis represents the expected value of the frequency
of envelope modulation (in Hz) and the y-axis is the ratio of max to average Fourier
component of the envelope.
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tional speech. SAD can then be used to determine when the speech starts and stops

within each of those files.

It is important to note that when training our AAD system, we never rely on any

finite set of acoustic anomalies, because doing so would limit our ability to detect

new acoustic anomalies in the future. Instead, we aim to model the distribution of

acoustic features from normal conversational speech and then assess how anomalous

an acoustic test segment is by estimating the divergence between it and normal data.

3.3 Data

The Defense Advanced Research Projects Agency (DARPA) has sponsored sev-

eral programs in the last decade calling on participants to address the challenge of

increasing the robustness of speech processing systems. The Naval Research Labora-

tory conducted an evaluation of Speech in Noisy Environments (SPINE) [179] with

DARPA sponsorship from 2000-2001, which sought to improve word recognition of

military-style speech in simulated military environments. Recently, DARPA spon-

sored the Robust Automatic Transcription of Speech (RATS) program to advance

state-of-the-art speech processing in challenging push-to-talk (PTT) communications

channels [180, 181]. State-of-the-art systems have demonstrated impressive perfor-

mance in these and other challenging acoustic conditions [182–184], but in order to

achieve these goals, participants typically develop tailored solutions that are trained
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on very specific communications channels to mirror the testing conditions.

While these and many other data sets were carefully constructed to simulate

real applications, they do not represent the broader challenge of speech processing

across the wide variety of communications channels available today. When considering

large, diverse, multi-genre media like the BBC’s television [185] and radio broadcast

archives [186], podcasts and other Web audio [187], and YouTube videos [188], simply

identifying which files contain speech can be a non-trivial task [189]. During the 2008

election season, Google developed a system to transcribe material posted to YouTube

by presidential campaigns in order to make them searchable. Even though this was a

small and rather homogeneous slice of YouTube’s overall diversity, Alberti et al. [146]

noted that their SAD system aggressively removed noisy parts of videos containing

conversations with people on the street. They also acknowledged that videos with

mismatched recording conditions had much higher error rates compared to the close-

talking microphone used in the training data. They confirmed that this task was

“much less controlled than a typical DARPA corpus” and other authors report that

word recognition error rates on general YouTube videos are higher than 50% [189],

which is five times the error rates reported on English broadcast news corpora [190].

Robustness to channel variability and acoustic anomalies is a fundamental chal-

lenge in automatic speech processing systems. When presented with difficult acoustic

conditions, such as noisy PTT in the DARPA RATS program, researchers insist on

similar training material because their algorithms require it to achieve optimal perfor-
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mance. As we discussed earlier, humans do not have this requirement and adapt well

to new acoustic conditions. Perhaps it is the matched training and testing paradigm

in controlled experiments that guides the research away from robust solutions to real

applications.

We consider the unscripted conversations between family and friends in CallHome

English [191] to be normal conversational speech. The train set consists of 80 two-

sided conversations at most 30 minutes long, yielding approximately 77 hours of audio

after both conversation sides are separated. We further split this into two random

subsets of 54 and 26 conversations referred to as train init and trainheldout respectively.

The English devel and eval set each contain another 20 conversations with 18 and

19 hours of audio respectively. Since our algorithms do not require any annotation

beyond the fact that each file is known to contain conversational speech, we were not

restricted to the subset of audio with associated transcripts.

For testing out-of-domain data, we also experimented with Switchboard-2 Phase

III [192] and Switchboard Cellular Part 1 [193]. Both consist of unscripted calls be-

tween people who do not know each other where the participants are given a topic for

discussion. The former consists of 2,657 five minute land line calls yielding approxi-

mately 422 total hours of audio after separating both sides of the conversation. The

latter is 250 mostly GSM cellular calls in a variety of environmental conditions, each

approximately 6 minutes long, totaling nearly 50 hours of audio. Both have metadata

about each speaker and call including some audit information about the amount of
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echo, background noise, and distortion reported in each.

We also wanted to experiment with wildly anomalous audio totally unlike conver-

sational speech. The easiest data to simulate was incorrectly decoded audio. This

was done by taking the µ-law companded CallHome English devel files and treating

them as if they were a-law, reversed bit-ordered µ-law, reversed bit-ordered a-law,

8-bit linear, and 16-bit linear audio.

Since SRSAD looks for the slowly modulating audio envelope characteristic of

speech, it has a tendency to false alarm on tones and noises of short duration and

on certain kinds of muzak [194]. In the absence of any corpora more appropriate for

anomaly detection, we designed a synthetic corpus that we knew would be challenging

for SRSAD. Audacity plug-in effects1 were used to generate various types of noise such

as dual-tone multiple-frequency (DTMF) signaling, Morse code, buzzing, explosions,

fires, guitar plucks, surf, tuning forks, and wind. One could näıvely hope that a SAD

algorithm could easily label all of these signals as non-speech, but the problem is

non-trivial especially when the only algorithms considered are those that have not

been specifically trained to recognize these sounds as non-speech. We first reported

these results in [195].

1http://audacity.sourceforge.net/download/plugins
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3.4 Methods

We began by training a Gaussian mixture model (GMM) to characterize typical

conversational audio using the CallHome English train set. This is similar to the

universal background model (UBM) described in [196] except that it includes both

speech and non-speech as well as using full covariance matrices because the syllable

rate features are highly correlated. Significant deviation from this normal world model

(NWM) was considered to be indicative of anomalous audio.

The probability of an observation x ∈ RD for a GMM (Section 2.1.2) is

p(x;θ) =
m∑
i=1

wi · N (µi,Σi) (3.1)

where m is the total number of mixtures, each having a weight wi, mean vector

µi, and covariance matrix Σi. The mixture model θ comprises a set of parameters

(w1,µ1,Σ1, . . . , wm,µm,Σm). For a set of n observations x1, . . . ,xn ∈ RD, we can

estimate the average log probability,

log p(x1, . . . ,xn;θ) =
1

n

n∑
i=1

log p(xi;θ), (3.2)

by assuming that they are independent and identically distributed.

SRSAD uses quadratic discriminant analysis [197] to separate speech from non-

speech by assuming each are generated by a single Gaussian with different covariance

matrices. Since we want the NWM to accurately represent the distribution of all

the input, we did not impose this limitation on the number of Gaussians. In this

chapter, we will report results when using 8 components which we found to be a good
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trade-off between performance and model complexity. In a scenario with available

class conditional models for speech and non-speech, a NWM could also be obtained

by merging the available models and normalizing the weights according to the class

conditional priors.

Using expectation-maximization (EM) to train GMMs is a process that is sus-

ceptible to getting stuck in local maxima and overfitting the training data, both of

which we want to avoid. To deal with the former, we begin by randomly shuffling the

syllable rate features for all of train init into as many bins as we had audio files. Each

bin’s data was then used to generate a separate GMM which could be trained rela-

tively quickly. These models were initialized with means equal to randomly selected

data points and a covariance matrix set to that of the bin’s data normalized by the

number of mixtures being trained. This process was repeated 25 times for each bin,

and EM iterations were run until convergence. The model amongst all of the random

starts for all the bins that gave the highest average log probability to its own bin’s

data was selected as the initial model.

The initial model was then trained further on all of train init as long as the log

probability of trainheldout increased. This was done to avoid overfitting the model

to the training data to ensure it would generalize well to other data from the same

domain.

58



CHAPTER 3. ACOUSTIC ANOMALY DETECTION

3.4.1 Average Log Probability Baseline

One would expect that anomalous audio would have a low probability under the

NWM representing the typical syllabic rate distribution of conversational speech. To

test this hypothesis, we derived a baseline anomaly detector using the average log

probability of an input sequence. Here, x1, . . . ,xn is labeled as anomalous if

1

n

n∑
i=1

log p(xi;θ) < λ (3.3)

where the threshold λ is chosen so the false alarm rate is equal to the miss rate on the

test set. This equal error rate (EER) allows us to summarize detection performance

with a single number and automatically adapts to very low false alarm rates. In a

real application, an a priori threshold [198] would be required. This threshold could

be chosen using normal data percentiles as shown in Figure 3.3.

3.4.2 Distributional Anomaly Detection

The distribution of syllabic rate features for conversational speech represented

by the NWM has a shape distinct from the distributions of other anomalous signals

(Figure 3.2). In order to exploit these differences we explored several different ap-

proaches to distributional anomaly detection. Audio was considered anomalous if the

divergence between the NWM and a test sequence exceeded some threshold λ.
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Figure 3.3: Kernel density estimates of various divergences of conversation sides in
CallHome English devel and eval from the NWM trained on CallHome English train.
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3.4.2.1 Parametric Divergence for GMMs

The first distributional approach we investigated was comparing the GMM pa-

rameters

θp =
(
wp,1,µp,1,Σp,1, . . . , wp,m,µp,m,Σp,m

)
and

θq =
(
wq,1,µq,1,Σq,1, . . . , wq,m,µq,m,Σq,m

)
,

directly using a weighted mean square difference (MSD) heuristic between the mean

and covariance parameters,

PDGMM (p‖q) =
m∑
i=1

(
wp,i + wq,π(i)

2

)
×(

α ·MSD(µp,i,µq,π(i)) +

(1− α) ·MSD(Σp,i,Σq,π(i))

)
,

which relies on a mapping function π between the components of each GMM. Rather

than derive a correspondance between two independently trained GMMs, we adapt

the NWM to each test segment. We use only the unique elements in the symmetric

covariance matrix and set α = 0.5. Though in principle one could set α = 1 to only

capture changes in the means, doing otherwise also captures the rare but important

changes in the covariance matrices.

The primary change in the GMM parameters of syllabic rate features for conver-

sational audio should only be due to changes in the prior probability of speech for

different speakers. This would have the most impact on the mixture weights and
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we did not want this effect to contribute to the divergence. However, an individual

Gaussian’s contribution to the divergence should be proportional to its probability

mass in the GMM, so we weighted each mixture’s contribution to the whole using the

average of its values for p and q. We experimented with keeping the mixture weights

fixed during adaptation, but this caused the mixtures to move around to redistribute

probability mass even when the shape of the distribution did not visibly change.

3.4.2.2 KL Divergence Approximation for GMMs

Comparing two densities p(x) and q(x) is often done using the Kullback-Leibler

(KL) divergence [199],

KL (p‖q) =

∫
p(x) log

p(x)

q(x)
dx. (3.4)

This provides a measure of the information lost when using the test sequence q(x) to

approximate the NWM p(x). For x ∈ RD, the divergence between single Gaussians,

p(x) ∼ N (µp,Σp) and q(x) ∼ N (µq,Σq), can be computed directly [200],

KLG (p‖q) =
1

2
log

(
|Σp|
|Σq|

+ Tr|Σ−1
p Σq| −D (3.5)

+
(
µp − µq

)T
Σ−1
q

(
µp − µq

))
. (3.6)

However, there is no such closed form expression between two GMMs. We use an

approximation for GMMs suggested by Goldberger et al. [201],

KLGMM (p‖q) =
m∑
i=1

wp,i

(
KLG

(
pi‖qπ(i)

)
+ log

wp,i
wq,π(i)

)
, (3.7)
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which relies on the mapping function π between the components of each GMM derived

from adapting the NWM to each test segment. This provides a rigorous estimate of

the divergence between the GMMs while remaining computationally efficient and able

to scale well to higher dimensional distributions.

The NWM is a good starting point for modeling the test segments of conver-

sational speech, especially if they are from a similar domain. Maximum a posterior

(MAP) estimation [196] has been used successfully in a similar scenario to adapt GMM

parameters of mel-frequency cepstral coefficients (MFCCs) [202] from a large set of

unlabeled data to that of a particular speaker, channel, or language. MFCC-based

features are typically 39 dimensions and are based on short-term spectral informa-

tion derived from 20-30 ms segments of speech. MAP adaptation requires that each

parameter have a prior distribution which makes an implicit assumption that this

adaptation would only be done to something reasonable, like other speech. This is

not necessarily the case for anomalies whose distribution could yield dramatically

different parameters. Our compromise was to treat the NWM as a starting point for

the parameters of a test sequence GMM and continue training using maximum like-

lihood estimation (MLE). This gave the parameters the necessary freedom to change

dramatically for anomalies or adjust only slightly for other normal data. By taking

this approach, we could use the trivial mapping function π(i) = i for i = 1, . . . ,m

between corresponding mixtures of the GMMs.
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3.4.2.3 KL Divergence using Histograms

Finally, since we are using features reasonably bounded in R2, we also estimate the

KL divergence between the distributions using regularly spaced fixed-bin histograms,

KLhist (p‖q) =
∑

∆x∈R2

p(∆x) log
p(∆x)

q(∆x)
. (3.8)

With this approach we can test the validity of distributional anomaly detection even

if GMMs turned out to be poor models for the syllabic rate features or our adaptation

strategy is flawed. However, this represents an approximation that would likely suffer

from undertraining if scaled to the high-dimensionality of features commonly used in

other speech processing tasks.

3.5 Experimental Results

In order to evaluate the performance of these methods as an acoustic anomaly

detector, we defined the task of detecting normal audio from the CallHome English

devel and eval sets, and rejecting incorrect encodings (a-law excluded) and synthetic

noises. A common method to display possible trade-offs between Type I and Type II

errors using various thresholds is with a detection error trade-off (DET) curve (Figure

3.4) [203].

Anomaly detection results are shown in this form in Figure 3.5. The improvement

of the distributional anomaly detection strategies over the log probability baseline
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Figure 3.4: Receiver operating characteristic (ROC) curves (left) and detection
error trade-off (DET) curves (right) for synthetic data. The DET curves display
results in terms of error rates so results in the lower left-hand corner indicate better
performance. Its axes are plotted on a normal deviate scale, so a system that outputs
Gaussian-distributed scores for targets and non-targets will yield a straight line. The
DET curves make for easier visual comparison of multi-system performance, especially
at low error rates, unlike the ROC figure where some of the curves lie on top of each
other. The black line indicates the the equal error rate (EER) where the miss rate is
equal to the false alarm rate.
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drove down the equal error rate from 36.3% to 5% using PDGMM, 2.5% for KLGMM,

and 0.6% for KLhist.

3.5.1 Anomalies Found in Normal Audio

The first area we explored was audio on either side of the divergence spectrum

from sources we assumed would contain only normal audio. Since the NWM char-

acterized CallHome English train, a natural place to look was in the devel set. As

expected, the distributions of syllabic rate features for conversation sides with low

divergences looked very similar to the NWM, but we were surprised at how different

the distributions appeared for segments with high divergences (Figure 3.6).

Examining the spectrograms and energy envelopes of normal segments (Figure

3.7) revealed that most of the periods of non-speech had a low but steady amount of

nearly white background noise. The spectrograms of the anomalous segments during

periods of non-speech (Figure 3.9) were not as clean, and all looked very different

from each other.

The first anomalous cut, en 4576 1 (Figure 3.8), had periods of background noise

bursting out of almost no energy (Figure 3.9). The second anomaly, en 4686 2 (Fig-

ure 3.6), was extremely noisy with an SNR of 0.75 dB (Figure 3.9) compared to the

average of 16.4 dB for the devel set estimated using NIST’s stnr tool. It also had

some signaling shown in the spectrogram that sounded similar to DTMF although

it occasionally had three simultaneous tones. Other segments labeled as anomalous
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Figure 3.5: Normal audio detection error trade-off curves using various divergences
from the NWM with CallHome English devel and eval conversation sides as targets
and incorrectly decoded audio and noises as non-targets. The incorrectly decoded
audio was performed by falsely assuming that µ-law data was reversed bit-ordered
µ-law, reversed bit-ordered a-law, 8-bit linear, and 16-bit linear.

67



CHAPTER 3. ACOUSTIC ANOMALY DETECTION

en_4580_2
0 20 40

0

5

10

15

20

en_4822_2
0 20 40

0

5

10

15

20

en_6079_1
0 20 40

0

5

10

15

20

en_6161_1
0 20 40

0

5

10

15

20

en_4576_1
0 20 40

0

5

10

15

20

en_4686_2
0 20 40

0

5

10

15

20

en_4580_1
0 20 40

0

5

10

15

20

en_4822_1
0 20 40

0

5

10

15

20

Figure 3.6: Histograms of syllabic rate features for conversation sides in CallHome
English devel with low divergences (top four) and high divergences (bottom four)
from the NWM.

were not quite as noisy, but often had bursts of energy during periods of non-speech

(Figure 3.9). Those present in en 4580 1 were concentrated at 120 and 180 Hz which

gave its distribution an entirely new region of mass, while those in en 4822 1 appeared

to be bleed-over from the other side of the conversation. Both resulted in a modulat-

ing energy envelope during periods of non-speech that contributed to the increased

divergence of their syllable rate feature distributions from the NWM.

It is important to note that segments with a low divergence from the NWM could

have brief periods of anomalous audio that could go undetected. Detecting these short

anomalies is certainly worthy of exploration, but that is outside the scope of this work.

We focus on the long-term anomalies which are usually due to channel irregularities

and can be extremely detrimental to the performance of speech processing systems.
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Figure 3.7: Spectrogram snippets of normal segments from en 4580 2, en 4822 2,
en 6079 1, and en 6161 1 from top to bottom in CallHome English devel with low
syllabic rate distribution divergences from the NWM. Note the low-level, stationary
background noise indicative of normal conversational audio.
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Figure 3.8: Syllable rate feature distributions (left and top-right) of en 4576 1 in
CallHome English devel with a high divergence from the NWM, especially for the
estimates based on GMM adaptation (bottom-right).
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Figure 3.9: Spectrogram snippets of anomalous segments from en 4576 1, en 4686 2,
en 4580 1, and en 4822 1 from top to bottom in CallHome English devel with high
syllabic rate distribution divergences from the NWM.
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3.5.2 Normal Audio Found Amongst Anomalies

When creating the incorrectly decoded audio files, we treated the µ-law data as if

they were each of five other possible encodings commonly used for speech and exam-

ined the distribution of their KLGMM divergences (Figure 3.10) expecting them all

to be anomalous. While the distribution of a-law divergences is slightly shifted away

from the origin, the bulk of the data fell within the 95th percentile of normal audio

shown as a solid red line. After listening to some of these files, we discovered that most

of the speech, while distorted, was still intelligible and could be easily distinguished

from non-speech by looking at the energy envelope. So from the perspective of an

acoustic anomaly detector based on syllable rate estimates, this type of incorrectly

decoded audio was not that unusual after all.

Regardless of what decoding was performed there was always a difference in the

energy envelope between the periods of speech and non-speech. The distortion was

unique when assuming the data was 16-bit linear since the signal was also effectively

downsampled by 2 without any regard for aliasing. Also visible in Figure 3.10 is the

slow but steady migration of the divergences for each different incorrect decoding away

from the origin. These distortion-consistent divergences suggest that our approach

could also be used as a measure of how speech-like the energy envelope is for a set of

audio on a continuous scale.
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Figure 3.10: Kernel density estimates of 8 mixture KLGMM divergences from the
NWM when µ-law data is correctly decoded (top), incorrectly decoded as a-law,
reversed-bit ordered µ-law, reversed-bit ordered a-law, 8-bit linear, and 16-bit linear.
The divergences of the anomalous noises (bottom) are as large as 106, but the axis
is kept short for ease of comparison. Normal percentile demarcations drawn from
in-domain data seen in Figure 3.3.
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3.5.3 Bimodal Distribution of Switchboard-2

While we did not have any transcripts or speech activity labels for Switchboard-2

Phase III, we were interested to see how the distribution of divergences for files would

appear for a corpus similar to CallHome. Both are landline collections, although

they differ in the amount of familiarity between the participants. We were surprised

to find that the files clumped into two distinct groups with similar divergences for

the methods employing GMM adaptation (Figure 3.11). To explore this further, we

divided the set of files into two sets depending on whether or not their parametric

divergence was less than 9.2. Even after pooling all of the features from all the files

on either side of this split, we observed a dramatic difference between the feature

distributions (Figure 3.12). Shown in the same figure are example GMM adaptations

for files in each mode, depicting the component that moves to the origin for the group

with a larger parametric divergence.

While this would not provide a challenge to SRSAD since the obvious heuristic

of no energy being non-speech is employed before the features are even calculated,

it is worth mentioning since this was discovered automatically. A similarly drastic

change was observed in the most anomalous file, en 4576 1, of CallHome devel using

the KLGMM divergence. There is enough probability mass at 38.7, 12.2 (Figure 3.8)

to draw one of Gaussians to its location and make it anomalous even to the histogram

based divergence.

74



CHAPTER 3. ACOUSTIC ANOMALY DETECTION

0 5 10 15 20 25 30 35 40
0

0.05

0.1

PDGMM

0 1 2 3 4 5 6
0

0.2

0.4

KLGMM

Figure 3.11: Kernel density estimates of 8 mixture PDGMM and KLGMM divergences
of conversation sides in Switchboard 2 Phase III from the CallHome English NWM
showing an unexpected bimodal distribution. Normal percentile demarkations drawn
from in-domain data seen in Figure 3.3.

3.6 Conclusion

After carefully constructing a model of the normal world from the perspective of a

speech activity detector, we presented results of explorations into files that were found

to be somewhat anomalous in CallHome English and also reported findings of fairly

normal audio discovered unexpectedly in a variety of incorrectly decoded files. We

also showed that distributional anomaly detection significantly outperformed the log

probability baseline. This is perhaps not surprising since several anomalies occupy

the same regions of the feature space as conversational speech, which is why they

cause false alarms and thus would have a high likelihood under a NWM. Similarly,

incorrectly decoded audio is often noise-like with features similar to those during
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Figure 3.12: Syllable rate feature histograms (top two) drawn from each mode of
the divergences seen in Figure 3.11. All the features from conversation sides with
PD (NWM‖q) ≤ 9.2 are on the left and all the features from conversation sides with
PD (NWM‖q) > 9.2 are on the right. Below each are characteristic GMM adaptations
from each mode for sw 30599 1 (left) and sw 32455 1 (right).
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normal regions of non-speech. The obvious difference is the spread and shape of

the syllable rate distributions for conversational audio compared to the anomalies; a

difference which is better captured by estimating the divergence between statistical

populations.

Our distributional approach provides self-reinforcement in the partially supervised

detection paradigm by aggregating evidence over time, an approach which is some-

what analogous to visual perception where the brain receives a stream of information

when observing a single object resulting from movements such as eye saccades and

head shifts [204].
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Chapter 4

Acoustic Anomaly Detection via

Unsupervised Accommodation

Learning from Contaminated Data

using Histograms

In Chapter 3, we presented several distributional approaches to acoustic anomaly

detection by training a model on normal data and estimating the divergence between

it and other input. Now, we reformulate the problem into unsupervised accommo-

dation learning and allow for anomalous contamination of the training data. In this

chapter, we will explore this problem using histograms since they performed well in

the partially supervised setting of Chapter 3. We first reported these results in [205].
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4.1 Data

One challenge in speech processing is coping a large quantity of data. While

many speech tasks use spectral features computed every 10 ms resulting in dozens

of dimensions, we used two features from a syllable rate speech activity detector

(SRSAD) [175] computed every 100 ms. Since speech has a syllable rate between 3.8

and 9.3 Hz [158], the frequency of its envelope modulation is different from that of

white noise. Using a sliding half-second window of audio, SRSAD computes both the

expected value of this modulation frequency and an estimate of its power (Figure 3.1).

We modeled the distribution of this two-dimensional sequence as a set of independent

observations.

We expanded on the set of synthetic anomalies from Chapter 3 that are known

to be problematic to SRSAD, such as tones and noises of short duration and certain

kinds of muzak [194]. The set of anomalies used in this chapter is comprised of 50

examples of each of the following: DTMF sequences, morse code, MIDI tones, MIDI

songs, and various telephony noises. The MIDI songs were downloaded from the MIDI

Database1 and have a median length of 3.5 minutes. Telephony noises were obtained

from FindSounds2 using the following search terms: busy signal, cell phone, dial tone,

fax, keyboard, modem, off-hook, phone, printer, ringing, and typing. Since some of

these noises were of short duration, the audio was repeated until each was at least 5

1http://mididb.com
2http://findsounds.com
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minutes long. Half of the examples of each anomaly type were randomly selected for

testing and the other half were reserved for possible use as training contamination.

We again used the CallHome English corpus [191] to represent normal audio. Each

conversation side in the train set was divided into 5 minute segments, and 250 of the

total 918 were randomly selected for training. This enabled us to experiment with

contamination percentages up to 33% when using all 125 anomalous segments, which

we felt was adequate since “most estimators are known to fail when the fraction of

outliers is greater than 1
D+1

, where D is the dimension of the data” [206]. The English

eval set was similarly divided into 5 minute segments yielding 226 for testing. Since

we will not use labeled training data in this chapter, we were not restricted to the

subset of audio with associated transcripts. When testing on less than 5 minutes

of audio, we will randomly select one continuous section of the desired length from

each 5 minute segment. We did not investigate varying the amount of data used for

training.

4.2 Histogram Methods

Since the syllable rate features were reasonably bounded in R2, we used histograms

to model their distribution. This non-parametric density estimate (Section 2.1.3)

makes fewer assumptions about the data than parametric or semi-parametric models.

Histograms can use adaptive- or fixed-width bins. Adaptive binning can result in

80



CHAPTER 4. NON-PARAMETRIC ACCOMMODATION LEARNING

a lower error between the feature vectors and bin centroids, but it also eliminates

many computationally efficient histogram dissimilarity measures [207]. We therefore

chose not to use adaptive binning because we were willing to trade some accuracy for

efficiency and increased robustness (Section 1.2.4).

Techniques using fixed bins come in two varieties: Either the feature space is di-

vided up into regular intervals or the bin locations are derived from pre-clustering

the data. The latter has been used extensively in image retrieval applications where

a fixed database of images is being searched [208]. We used regular intervals to char-

acterize the mostly normal training data since we could not guarantee that anomalies

are present when the bin locations are derived. Our goal with unsupervised anomaly

detection is recognizing unexpected anomalies long after training is completed, and

we therefore did not consider it advantageous to use a set of bin locations derived

from a fixed set of mostly normal training data.

In Section 2.1.3, we defined a non-parametric histogram as a set of parameters

θ = (b1, c1, . . . , bm, cm) comprised of bin centroids bj with corresponding counts

cj =
n∑
i=1

1{j}

(
arg min

k
d(bk,xi)

)
(4.1)

using the Euclidean distance d for samples xi for i = 1, . . . , n. We convert this to a

density estimate using add-one smoothing,

p(x;θ) =
cj + 1

m

(
∑m

k=1(ck)) + 1
, (4.2)

where j = arg mink d(bk,x) for a histogram with m cells. Figure 4.1 shows examples
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Figure 4.1: Histograms with 30 bins per axis for 0% contaminated training data (top
left), 33% contaminated training data (bottom left), 5 minutes of CallHome English
5888 side 2 (top middle), 5 minutes of CallHome English 6825 side 2 (bottom middle),
MIDI song (top right), and Morse code (bottom right). Those four test segments
have histogram-based KL divergences of 0.13, 0.45, 5.83, and 9.89, respectively, to
the uncontaminated training data.

of this for our mostly normal model (MNM) with 0% and 33% contamination along

with histograms of normal and anomalous segments.

As in Chapter 3, if the dissimilarity between a histogram of a test sequence and

the MNM exceeds a threshold λ, the test sequence is labeled as anomalous. The

threshold λ is again chosen so that there is an equal error rate (EER) between misses

and false alarms.
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4.2.1 Log Likelihood Baseline

We first present a baseline anomaly detector using a histogram for the mostly

normal model (MNM) to estimate the average log likelihood of a test sequence. In

this case, a test segment x1, . . . ,xn is labeled as anomalous if

1

n

n∑
i=1

log pMNM(xi) < λ. (4.3)

While estimating the likelihood of individual feature vectors allows decisions to be

made quickly with a single observation, the distribution of features over time provides

additional evidence for deciding between normal and anomalous audio.

4.2.2 Distributional Anomaly Detection

As we saw in Chapter 3, the distribution of syllabic rate features for conversational

speech has a shape that is distinct from the distributions of other anomalous signals.

In this chapter, the MNM will be trained on conversational speech and some unknown

amount of anomalous contamination. As seen in Figure 4.1, with as much as 33%

contamination, the MNM still appears to be more similar to other segments of speech

than it is to anomalous test segments. We will exploit these differences using a variety

of techniques to compare histogram-based density estimates of the MNM, p(x), and

each test segment, q(x).
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4.2.2.1 Information Theory Divergences

Shannon formalized information theory as a study of communication and channel

capacity in the presence of noise [209]. Kullback and Leibler followed by generalizing

the concept of information in their study of the “statistical problem of discrimina-

tion” between distributions [199], the results of which we were interested in using for

anomaly detection.

• Jensen-Shannon (JS) Divergence: The JS divergence,

JS (p‖q) =
1

2
KL (p‖g) +

1

2
KL (q‖g) , (4.4)

is a symmetrization of the KL divergence (Equation 3.8) proposed by Lin [210],

where g(x) = 1
2
p(x) + 1

2
q(x), which adds numerical stability and bounds the

divergence between 0 and 1.

4.2.2.2 Minkowski-form Metrics

• L1, L2, and L∞ Distances: To compare two histogram density estimates,

p(x) as the MNM and q(x) a test segment, we computed their L1, L2, and L∞

distances

Lr (p‖q) =

(
m∑
j=1

|p(bj)− q(bj)|r
) 1

r

. (4.5)

The L1 distance is the sum of the absolute cell differences and has been used to

compute color dissimilarity between images [211]. L2 is the sum of the squared
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differences and L∞ is the max difference, which has been used to compute

texture dissimilarities [212].

4.2.2.3 Test Statistics

We also used three statistics to test the null hypothesis that the test segment was

generated from the same probability distribution as the MNM.

• χ2 Test Statistic: For the Chi-squared statistic, we modified Puzicha et al.’s

proposal [213] for histogram-based image retrieval,

χ2 (p‖q) =
m∑
j=1

(q(bj)− p(bj))2

p(bj)
(4.6)

to test if q(x) differed from the mostly normal p(x).

• Kolmogorov-Smirnov (KS) Test Statistic: The KS statistic is defined as

the maximal difference between one-dimensional empirical cumulative distribu-

tion functions. A histogram-based approximation was proposed by Geman et

al. [214] for grayscale boundary detection. Marginal distributions are often used

in a multidimensional setting, but we take a different approach. The cells from

the two dimensional histograms are ordered by descending probability mass in

the MNM and cumulatively summed to obtain cumulative distribution func-

tions, P and Q. We can then simply compute the test statistic

KS (p‖q) = max
j
|P (bj)−Q(bj)| . (4.7)
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• Cramér-von Mises (CvM) Test Statistic: To compute the CvM statistic,

we use the same strategy of converting two-dimensional histograms into a one-

dimensional cumulative density function. This test statistic

CvM (p‖q) =
m∑
j=1

(P (bj)−Q(bj))
2 (4.8)

is then straightforward to estimate with histograms.

4.3 Experimental Results

4.3.1 Model Selection

Model complexity has a substantial impact on anomaly detection performance,

especially for short test segments. In Figure 4.2, we show the performance of each

approach on 30 second segments as the number of histogram bins was varied when

training with 33% anomalous contamination. The interquartile range of the EER was

derived from random resamplings of the test set via statistical bootstrapping [215].

The log likelihood and L∞ distance made their fewest errors when using only 5 bins

per axis, the χ2 statistic when using 10 bins per axis, and the L2 distance when using

20 bins per axis. The L1 distance and information theory divergences achieved their

optimum performance with 30 bins per axis, and the Kolmogorov-Smirnov (KS) test

and Cramér-von Mises (CvM) criterion did slightly better using 50 bins per axis.

These histogram bin sizes were used for the remainder of the results as we varied
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other parameters.

This sensitivity to bin size is similar to the bias-variance trade-off in parameter

estimation and optimizing for it is therefore important when engineering statistical

systems. When the model complexity is too low we can accurately estimate the cell

probabilities, but the restricted model space is biased away from the true distribution

and performance suffers. As the bin sizes decreases the model space expands, yielding

the ability to better model the true distribution. However, when the bins become too

small the increased variance in probability estimates eclipses modeling power, again

leading to a decrease in performance.

When we tested on the entirety of the 5 minute segments (Figure 4.3), the models

performed well for a much wider range of complexities. With more data we were

able to accurately estimate more parameters, which lead to better performance when

using higher complexity models.

4.3.2 Test Segment Length

To further explore the effect of test segment length, we evaluated anomaly detec-

tion performance when training with 33% contamination as we varied the length of the

test segments from 5 seconds to 5 minutes (Figure 4.5). Some general rankings of the

various approaches began to emerge, especially for tests using longer segments. The

L1 distance, χ2 statistic, and both information theory divergences significantly out-

performed the other methods when testing on segments longer than 15 seconds. The
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Figure 4.2: Anomaly detection equal error rate (showing interquartile range) as a
function of model complexity with 33% anomalous contamination of the training
data for 30 second test segments.
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Figure 4.3: Anomaly detection equal error rate (showing interquartile range) as a
function of model complexity with 33% anomalous contamination of the training
data for the full 5 minute test segments.
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KL divergence made no errors on the full 5 minute segments and the JS divergence,

χ2 statistic, and L1 distance achieved EERs of 0.8%, 0.9%, and 1.3%, respectively.

These four methods were also among the best performers on the shorter segments,

but the differences were not always statistically significant.

The L2 distance was the next best performer with an EER of 4.4% on the 5 minute

segments. The KS test and L∞ distance had comparable EERs of 7.2% and 8% while

the CvM criterion and log likelihood baseline did not perform as well with EERs of

12.4% and 16.8%, respectively.

To explore the interplay between test segment length and model complexity, we

show the EER for a range of both (Figure 4.4) when using the L1 distance, χ2 statistic,

and KL divergence. The L1 distance is especially attractive because its simplicity and

numerical stability lead to a robustness unparalleled by the other two approaches. The

χ2 statistic performed well with 10 bins per axis while the KL divergence was harder

to predict. We report the performance of all the approaches when testing on several

segment lengths in Table 4.1.

4.3.3 Training Data Contamination

One aim of this chapter was to relax the requirement in Chapter 3 for large

amounts of uncontaminated training data. Obtaining mostly normal, unlabeled data

is often easier and far less expensive since labeled data requires human time and

effort. Using unlabeled data also allows us to avoid the quagmire of defining what
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Figure 4.4: Anomaly detection equal error rate as the model complexity and test
segment length are varied when training for 33% anomalous training contamination.
A black dot is placed at the minimum(s) of each test segment length.
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Figure 4.5: Interquartile range of anomaly detection equal error rate as a function of
test segment length for 33% anomalous training contamination.

constitutes an anomalous sound. We are primarily interested in finding audio that is

anomalous from the perspective of speech processing algorithms, not humans.

Given this desire, we investigated whether our methods could robustly model the

normal data even if it was partially contaminated with anomalies. This was tested

by incrementally adding anomalies into the data used for training the MNM and

evaluating the anomaly detection performance. At each contamination level from 0%

to 33% in approximate increments of 31
3
%, we display the interquartile range of the

EER via statistical bootstrapping (Figure 4.6).

We were encouraged by the robustness of all of the histogram-based approaches.

The information theory divergences, χ2 statistic, and L1 and L2 distances were min-

imally affected by the contamination. Our strategy of cell-ordering based on the

MNM for the KS test and CvM criterion did not fare as well. With purely normal
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Figure 4.6: Interquartile range of anomaly detection equal error rate as a function of
the amount of training data contamination for 30 second test segments.

data, the EER was cut in half as compared to an arbitrary ordering, but the effect

quickly diminished as the contamination level reached 6.7%. For higher contamina-

tion levels performance started to improve. We attribute this unexpected behavior to

our optimization of model complexity at 33% contamination. This also explains the

performance of the L∞ distance that was inversely related to the contamination level.

The log likelihood baseline was the only method negatively affected by the amount

of contamination throughout the entire range investigated.

We end our analysis of these methods by evaluating the detection error trade-off

curve [216] when training at 33% contamination and testing on 30 second segments

(Figure 4.7). The L1 distance and information theory divergences were the best

performers in this harsh test condition achieving EERs of 2.7% and 3.1%, respectively.

The χ2 and L2 distance formed the next tier of performers with EERs of 4.9% and
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6.4%, followed by KS, CvM, and L∞ with EERs between 10.2% and 13.7%. The log

likelihood baseline remained the worst performer with a 20.8% EER.

4.4 Conclusion

We were pleasantly surprised that the non-parametric histogram-based methods

presented here were barely affected by up to 33% training contamination. The L1

distance, χ2 statistic, and information theory divergences were typically the best per-

formers. While the KL divergence made no errors on the full 5 minute test segments

regardless of the contamination level, we prefer the L1 distance since its performance

was comparable and its simplicity yielded the most robust performance to model

complexity and test segment length. As we will see in the next chapter, coping with

training data contamination can be a significant challenge for semi-parametric models

and we will need to develop techniques to increase their robustness.
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Table 4.1: Percent equal error rate for histograms

Test Length (sec) 5 15 30 60 300

0%
C

on
ta

m
in

at
io

n
likelihood5x5 21.6 15.2 14.4 12.0 10.2

L1,30x30 13.3 4.9 2.4 1.3 0.4

L2,20x20 14.4 8.8 4.9 4.0 2.7

L∞,5x5 36.0 30.1 19.5 16.8 12.0

χ2 stat10x10 12.0 8.4 4.9 4.4 3.5

KS stat50x50 17.6 10.4 7.2 7.2 4.8

CvM stat50x50 18.1 12.8 9.6 8.0 5.8

KL div30x30 11.5 4.0 2.7 0.9 0.0

JS div30x30 12.4 4.9 2.7 1.3 0.4

Continued on next page
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Table 4.1 – continued from previous page

Test Length (sec) 5 15 30 60 300

10
%

C
on

ta
m

in
at

io
n

likelihood5x5 22.4 17.6 17.6 14.6 13.6

L1,30x30 15.2 4.9 2.7 1.6 0.4

L2,20x20 15.0 8.4 7.2 6.2 3.1

L∞,5x5 30.1 29.6 18.6 16.4 13.6

χ2 stat10x10 13.3 8.4 3.5 3.1 1.6

KS stat50x50 25.6 17.6 16.8 11.2 11.2

CvM stat50x50 28.0 21.2 20.8 17.3 14.2

KL div30x30 12.8 4.0 2.7 1.3 0.0

JS div30x30 13.3 4.9 2.7 1.3 0.4

33
%

C
on

ta
m

in
at

io
n

likelihood5x5 27.2 23.5 22.1 20.8 16.8

L1,30x30 17.7 5.8 2.7 1.8 1.3

L2,20x20 18.1 10.6 6.4 5.8 4.4

L∞,5x5 31.4 18.6 13.6 11.9 8.0

χ2 stat10x10 20.8 12.0 4.9 4.0 0.9

KS stat50x50 21.7 13.3 10.2 8.8 7.2

CvM stat50x50 24.0 16.4 13.7 13.6 12.4

KL div30x30 18.1 5.3 3.1 1.6 0.0

JS div30x30 18.6 6.6 3.1 1.8 0.8
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Chapter 5

Acoustic Anomaly Detection via

Unsupervised Accommodation

Learning from Contaminated Data

using Gaussian Mixture Models

In Chapter 4, we began exploring unsupervised accommodation learning from

contaminated data by computing the statistical divergence between histograms to

detect acoustic anomalies. Here, we return to the methods from Chapter 3 employing

Gaussian mixture models (GMMs) and introduce a promising approach to increase

their robustness in the face of contamination. We first reported these results in [217]

and we will use the same data as described in Section 4.1.
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5.1 Gaussian Mixture Model Methods

Semi-parametric density estimation (Section 2.1.2) offers additional flexibility over

parametric models, while maintaining a fixed number of parameters regardless of

sample size. We began by training a GMM (Section 3.4) to characterize the data

that we assumed was mostly normal. In this chapter, we experimented with GMMs

using up to 16 components with full covariance matrices.

Unlabeled data often comes at minimal cost, so we were not concerned with using

all of it. Whenever training the mostly normal model (MNM), we randomly assigned

66% of the data to an initial set, keeping the remainder in a heldout set. Training

GMMs using the Expectation-Maximization (EM) algorithm can be a delicate pro-

cess and we wanted to avoid local maxima and overfitting to the training data. To

deal with the former we trained eight separate initial models. Each of these models

was initialized using k-means clustering on 1000 samples randomly chosen without

replacement from the initial set. After a maximum of 10 iterations of k-means clus-

tering, we performed ML estimation using the EM algorithm until the parameters

converged. The initial model with the highest log likelihood for the heldout set was

then selected. Using this model and all of the data in the initial set, we continued to

perform EM iterations while the log likelihood of the heldout set increased to ensure

that the model would generalize. Our baseline anomaly detector is again the average

log likelihood of an input sequence (Equation 3.2).
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5.1.1 Trimming Gaussians for Robustness

The distribution of syllabic rate features is noticeably different between anomalies

and normal audio (Figure 3.2). To obtain a model of a test sequence, we initialized

the parameters to those of the MNM and performed ML estimation using the EM

algorithm on the test data. While it is common to use MAP adaptation in such

a scenario, we felt that deriving prior probabilities for the parameters using mostly

normal data could not be justified when adapting to data that might be anomalous.

With sufficient contamination some Gaussians in the MNM would inevitably

model anomalous regions of the feature space. When adapting to normal data,

changes in these Gaussians could lead to false alarms. With labelled training data

we could have estimated which Gaussians were modeling anomalous data and then

discarded them before estimating the KL divergence. In our unsupervised setting we

did not have such labels, so instead we exploit the mostly normal data by discard-

ing a fraction of the most divergent Gaussians. Our approach began by treating the

summands of Equation 3.7,

si = wp,i

(
KLG

(
pi‖qπ(i)

)
+ log

wp,i
wq,π(i)

)
(5.1)

as observations of a random variable whose location we want to estimate robustly.

We do so by discarding α of the largest si’s using the one-sided trimmed mean,

KLα-trimmed (p‖q) = m

(
1

m− k

m−k∑
j=1

s(j)

)
(5.2)

with s(j) denoting the order statistics and k = bαmc. We also tried the more tra-
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Figure 5.1: GMM ML adaptation from the MNM (dashed blue) with 33% training
contamination to CallHome English cut 4829 side A (solid green on left) and a random
sequence of DTMF tones keyed on and off every 700 ms (solid red on right). The four
most divergent Gaussians that would be trimmed are shown with thicker lines.

ditional two-sided trimmed mean [218], but found it did not perform as well. We

attributed this to the lack of negative outliers in the right-skewed distribution of the

weighted Gaussian divergences.

An example of the adaptation from the MNM to a normal segment is shown on

the left in Figure 5.1. A change in a few of the Gaussians lead to a divergence of

20.9 using Equation 3.7. Adaptation from the same MNM to an anomaly is shown

on the right in Figure 5.1. The resulting divergence was only 2.9 despite more of the

Gaussians being affected by the adaptation. After discarding the four most divergent

Gaussians (shown with thicker lines) in an unsupervised manner, the normal and

anomalous segments had trimmed KL divergences of 0.2 and 1.3, respectively.
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5.2 Experimental Results

5.2.1 Training Data Contamination

Obtaining data that is mostly normal is relatively inexpensive since it does not

require any annotation. We investigated if any methods could robustly model the

normal data, even when it was partially contaminated with anomalies. Figure 5.2

shows the EER for each of the investigated methods using mixtures of 16 Gaussians

as contamination levels were varied from 0% to 33% in approximate increments of

31
3
%. To examine the relationship between performance and contamination, we first

performed linear regression and then fit natural cubic splines to assess the linearity.

Model selection for the splines was performed using the Bayes information criterion

(BIC) [219].

Linear regression for the log likelihood method suggested that error rate increased

with the amount of contamination (EER% = 22 + 0.87 per contamination percent,

r2 = 0.87, P < 0.001). However, spline fitting suggested that the relationship was

slightly nonlinear (df = 2, P < 0.001). For purely normal training data, the KL

divergence achieved the lowest EER (5.8%) with a median absolute deviation (MAD)

of 1.3%. The difference between its performance and the 1
4
-trimmed KL divergence

(6.3% EER, 0.9% MAD) was not significant (P = 0.44) using a Wilcoxon paired-

sample signed rank test.

For contaminated training data, trimming one quarter of the Gaussians resulted
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●

Figure 5.2: Box and spline plots of anomaly detection EER at various contamination
levels using 16 Gaussians. The dotted lines around the splines indicate 95% confidence
levels.
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in significantly better performance, with one exception at 6.7% contamination (P =

0.19). The variability of performance for the untrimmed KL divergence was not well

accounted for with a linear model (EER% = 9.5 + 0.70 per contamination percent,

r2 = 0.32, P < 0.001), but the BIC suggested that higher order splines offered no

better fit. The performance of the 1
4
-trimmed KL divergence did not show a significant

dependence on the amount of contamination (P = 0.53) and a constant model resulted

in a better fit (EER% = 7.6, P < 0.001). The median EER for all methods including

1
2
-trimming KL divergence are shown in Table 5.1 for select contamination levels.

5.2.2 Model Selection

We also evaluated the performance of each method as we varied the number of

Gaussians from 1 to 16 when training on 33% contaminated data (Figure 5.3). Spline

fitting suggested that all relationships were nonlinear, with three degrees of freedom

for both the log likelihood method and KL divergence and four degrees of freedom for

the 1
4
-trimmed KL divergence. The log likelihood method achieved its lowest EER

of 28.8% (1.2% MAD) using a single Gaussian, although this was not consistent for

other contamination levels. The KL divergence achieved its lowest EER of 7.7% (1.5%

MAD) using 6 Gaussians. Both methods showed a dependence on model complexity

that would require careful optimization for any new data set. In contrast, trimming

one quarter of the Gaussians resulted in robust performance over a wide range of

model complexities (6.4% EER, 1.0% MAD for 16 Gaussians). This performance
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was significantly better than the untrimmed KL divergence with a comparable model

complexity (P < 0.001), but not when compared to the untrimmed divergence using

6 Gaussians (P = 0.053).

5.3 Conclusion

Using only unlabeled data, our goal was to develop a robust acoustic anomaly

detector using two syllable rate features from a speech activity detector. When trained

on purely normal data, we found that the KL divergence achieved the lowest EER

of the three methods employing GMMs. When subjected to training contamination,

the performance of the KL divergence suffered dramatically and optimization of its

model complexity became extremely important. Seeing the merit in this approach,

we wanted to improve its robustness to contamination.

By trimming one quarter of the most divergent Gaussians we were able to statis-

tically remove the effect of contamination up to 33%. We experimented with other

trimming ratios, but one quarter had the most consistent performance regardless of

contamination level and model complexity. Such a detector could work in tandem

with other speech processors, enabling the overall system to have a means of detecting

anomalous audio at little additional cost.
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Table 5.1: Percent equal error rate (median with n=10) for GMMs

Contamination 0% 3.5% 10% 20% 33%

4
G

au
ss

.

likelihood 19.2 22.4 22.8 24.4 44.8

KLGMM 4.8 8.8 10.1 12.0 22.3

KL1/4-trim 4.6 7.2 8.4 15.8 16.4

KL1/2-trim 5.9 11.8 15.1 27.1 24.8

8
G

au
ss

.

likelihood 20.0 24.0 29.6 38.8 45.6

KLGMM 4.4 5.2 5.6 6.9 7.2

KL1/4-trim 4.4 4.2 5.9 6.8 8.6

KL1/2-trim 6.8 8.4 9.2 10.8 13.0

16
G

au
ss

.

likelihood 18.4 26.0 31.2 42.5 48.5

KLGMM 5.5 12.2 10.8 29.6 33.8

KL1/4-trim 6.3 5.8 6.2 7.6 6.4

KL1/2-trim 11.6 12.8 12.2 12.4 11.2
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Figure5.3:BoxandsplineplotsofanomalydetectionEERforvariousmodelcom-
plexitieswhentrainingwith33%anomalouscontamination.Thedottedlinesaround
thesplinesindicate95%confidenceintervals.
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Chapter 6

Anomaly Detection for Graphs via

Partially Supervised Learning from

Normal Data

In Chapters 3-5, we developed various techniques for distributional anomaly detec-

tion and evaluated their performance on acoustics. In order to demonstrate the gen-

erality of our approach, we will now investigate the same techniques in a completely

different application area: graph matching. The only difference in our methodology

will be the feature extraction that must be tailored to the new domain.

A graph G = (V,E) is comprised of a set V of objects called vertices and a set E

of connections between them called edges. The theory of graphs can trace its origin

back to 1735 when Euler used it to solve a vexing problem involving the bridges of
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Kőnigsberg [220]. The question was if the seven bridges connecting four landmasses

could each be traversed without crossing any bridge twice. By simplifying the problem

and representing the landmasses as vertices and the bridges as edges in a graph, he

offered an elegant proof that a non-backtracking traversal is an impossible task since

all four vertices have an odd number of incident edges.

Since then, graphs have been used to characterize a multitude of real world so-

cial, informational, technological, and biological networks [221]. They have been used

to study everything from the synaptic connections between neurons of a nemotode

[222] to the macro-economic and political relationships between nation states [223].

Graphs have enabled a better understanding of the decentralized insurgent networks

in Afghanistan and Iraq [224] and the preferential attachment between scientific col-

laborators [225]. They have offered insights into the structural richness and omnivory

of ecological food-webs [226] and aided in the design and analysis of protocols given

the Internet’s topological properties [227]. Graphs can represent the co-starring roles

of Hollywood actors [228] and the hundreds of trillions of connections in the human

brain [229]. They can be used to infer gender, age, and education levels from hu-

man interactions and turn-taking behavior [230] and model everything from protein

folding [231] and metabolic networks [232] to the world wide web [233] and telephone

calls [234]. We can use them to study how a new product penetrates the consumer

market [235], physicians adopt a new drug [236], and epidemics spread through com-

puter networks [237] and society [238]. Graph theory is a burgeoning field of study
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with numerous survey papers [221,239–241] and several popular books [242,243] de-

scribing the significant achievements that have been made in the field over the last

few decades. In the 21st century we live in a data-rich, connected world [244] and

graphs provide a concise mathematical representation in which to study it.

The goal of this chapter is to detect anomalies in such graphs, which could serve

as a useful tool for determining when changes have occurred in these wide ranging

phenomena. Anomaly detection is a longstanding problem with many applications in

statistics and signal processing [117]. Here, we consider anomaly detection on graphs,

a subject which has not previously had treatment in such depth.

6.1 Preliminaries

Consider graph G = (V,E) from the space of simple graphs G. The order of G is

the number n = |V | of vertices and the size of the graph s = |E| is the number of

edges. We denote an edge between u and v in V as (u, v) in E. Such vertices u and

v are said to be adjacent, and each are incident to the edge (u, v). We only consider

simple graphs with undirected edges, so (u, v) = (v, u).

The adjacency matrix A of a simple graph G is the symmetric binary matrix in

which entry aij = 1 if (vi, vj) ∈ E, otherwise aij = 0. If there exists a nonzero

vector x ∈ RD such that Ax = λx, then x is referred to as an eigenvector of A

associated with eigenvalue λ. Since A is symmetric for undirected graphs, we know
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that all of its eigenvalues are real and A is orthogonally diagonalizable [245]. This

implies that there exists an orthogonal matrix Q such that Λ = Q−1AQ is diagonal.

Since Q−1 = QT , we also know that QΛQT = A. If we choose Λ = diag(λ1, . . . , λn),

then Q can be constructed with the corresponding orthonormal eigenvectors using

Gram-Schmidt orthonormalization, such that Q = [x1, . . . ,xn], where Axi = λixi

and ||xi|| = 1 for i = 1, . . . , n.

6.2 Previous Work

Graph matching is the process of determining whether or not two graphs have the

same structure. It has been the subject of research for over four decades [246, 247]

and is related to anomaly detection with the antithetical goal of determining when

two graphs are the same. Two graphs, G1 = (V1, E1) and G2 = (V2, E2), are said to

be isomorphic if there exists a one-to-one mapping, f , between the vertex sets, V1 and

V2, that preserves the edge structure. That is, if there exists an edge (u, v) ∈ E1 then

there also exists an edge (f(u), f(v)) ∈ E2. In terms of computational complexity,

the graph isomorphism problem is the subject of a great deal of research since it is

probably neither in P nor NP-complete [248].

Graph matching has many applications dating all the way back to 1965 where

it was used for chemical information retrieval [249] and it continues to be used in a

variety of bioinformatic [250] and chemoinformatics tasks today [251]. It is a powerful

110



CHAPTER 6. ANOMALY DETECTION FOR GRAPHS

tool often used by the computer vision community for tasks such as 3D object recogni-

tion [252], character recognition [253,254], and shape analysis [255–257]. In addition

to many other applications, it has also been used to monitor computer networks [258],

mine software design patterns [259], and cluster concepts [260].

Techniques for graph matching can be broadly divided into two categories depend-

ing on whether they are testing for an exact isomorphic match as described above or

if some structural differences are allowed in the search for an approximate or inexact

match [247].

6.2.1 Exact Graph Matching

The most widely known algorithm for exact graph matching is Ullman’s [261]

enumeration algorithm and tree search with a look-ahead function to reduce the search

space. Modifications to this approach have included branch-and-bound techniques

[262] along with more recent approaches to reformulate it as an optimization problem

[263] that can be addressed using techniques such as constraint propagation [264].

The complexity of these tree-search techniques is exponential in the worst case [265]

although heuristics can help achieve polynomial complexity in certain situations, such

as using distance metrics between vertices and edges when working with attributed

relational graphs [266].

One of the fastest methods for exact graph matching is McKay’s group-theoretic

canonical labeling algorithm [267], available in the highly regarded nauty (no auto-
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morphisms, yes?) software package1. After determining which automorphism group

each vertex-colored graph belongs to, McKay provides information about the group

in the form of a set of generators as well as its size and orbits. This is then used to

produce a canonical labeling for each graph to assist in isomorphism testing [268].

It enables equality verification in O(n2), making it suitable for fast database lookup

after deriving the canonical labeling, which can require exponential time in the worst

case [269]. However, on average it performs quite well, although it cannot easily

exploit vertex and edge attributes [247].

Others [270, 271] have used decision trees [272] to similarly enable fast retrieval

from a graph library. However, the pre-processing time and storage space is often

exponential in the size of the graphs in the library [247].

When an exact graph match cannot be found between G1 and G2, we can still

search for a subgraph isomorphism [261] where G2 contains a subgraph G′2 that is

isomorphic to G1 with vertices V ′2 ⊆ V2 and edges E ′2 ⊆ E2. From the set of all

possible subgraphs, we are often interested in finding the maximum common subgraph

(MCS) [273]. However, subgraph matching is known to be NP-complete [274] and

the added computational complexity of exact MCS methods restricts their use to

relatively small graphs.

1http://cs.anu.edu.au/∼bdm/nauty
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6.2.2 Inexact Graph Matching

Many methods of inexact graph matching try to overcome these computational

drawbacks by producing an approximate answer in a reasonable amount of time.

Their error tolerance can also provide more useful results when dealing with graphs

representing real word data, which often suffer from noise or other distortions. For

example, when dealing with incomplete sampling, an observed graph G′ might have

some differences in its vertex or edge sets compared to the true graph G. This has

been formalized in the notion of a graph edit distance, which is the minimal number

of vertex and edge insertions, deletions, or substitutions necessary to transform G′

into G. Bunke showed that the graph edit distance

d(G,G′) = |V |+ |V ′| − 2|V ′′| (6.1)

is equivalent to the MCS problem for a particular class of cost functions [275] where

G′′ = (V ′′, E ′′) is the MCS of G and G′. This naturally leads to a graph similarity

measure,

δ(G,G′) = 1− |V ′′|
max(|V |, |V ′|)

(6.2)

which is a metric that can be used where reflexivity or the triangle inequality are

desired [276].

Inexact graph matching techniques can generally be divided up into methods

using tree search, continuous optimization, and spectral graph theory [247]. Optimal

methods of error-tolerant graph matching [266, 277–279] typically use a tree search
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guided by a cost function of a partial match to find the optimal subgraph isomorphism,

but this comes at the cost of exponential time since that problem is NP-complete. A

heuristic estimate of the future matching cost can speed up the search if the estimate

is accurate, but these are often application dependent.

Although suboptimal methods are not guaranteed to find the best solution, the

approximate answer they can provide quickly is useful for a wide variety of applica-

tions, especially when working with large graphs. One such method casts the discrete

matching problem into one of continuous optimization, where many existing algo-

rithms can be brought to bear on the problem. A prime example of this is relaxation

labeling [280–284] where the probability of each vertex in one graph mapping to each

vertex in the other is initialized based on their attributes or connectivity. These are

then modified in successive iterations until the process converges to a fixed point where

the best solution is represented by the mapping with the highest probability [247].

The only problem with relaxation labeling is that there is no guarantee that the

mapping is one-to-one. Weighted graph matching allows for two way constraints

on the correspondence by means of a matching matrix between vertex sets whose

elements are constrained to be either 0 or 1 with each row and column summing

to unity [247]. This is often transformed into a continuous optimization problem by

allowing the elements to have continuous values between 0 and 1, which can be solved

in polynomial time using linear programming and then converted back into discrete

form using the Hungarian method [285].
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The expectation-maximization (EM) algorithm has also been used for optimiza-

tion rather than search. Luo and Hancock [286] develop a likelihood function for the

graph matching problem and use EM and singular value decomposition to iteratively

estimate a set of assignment variables. This approach is only guaranteed to find local

optima and is highly dependent on the initial conditions. Other recent methods of

continuous optimization techniques for inexact graph matching include fuzzy graph

matching [287] and reproducing kernel Hilbert spaces [288].

Spectral methods for inexact graph matching seek to represent and distinguish

structural properties of graphs using eigendecompositions of graph adjacency matri-

ces which are invariant to vertex/edge reorderings [289]. Rather than use optimiza-

tion techniques that are only guaranteed to find a local optimum, Umeyama [290]

pioneered an analytic approach based on the observation that isomorphic graphs will

have the same spectra regardless of the vertex labelings. Umeyama’s approach is

guaranteed to find the optimal match if two graphs are isomorphic and a suboptimal

solution if the graphs are nearly isomorphic. Umeyama assumes that each graph has

a set of distinct eigenvalues, but he states that they can be perturbed if multiple

roots exist without significantly affecting the result. Recently, Xu and King [291]

offered speed-ups to Umeyama’s approach by approximating the permutation matrix

with a generic orthogonal matrix and using principle components analysis to derive

an objective function that they claim is faster and more accurate.

In order to use spectral approaches to match graphs of different sizes, Carcassoni
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and Hancock [292] adopted a hierarchical approach using the modal structure of the

graph adjacency matrices. After assigning vertices to clusters using an eigendecompo-

sition, they use the within-cluster and between-cluster adjacency matrices to compute

cluster-conditional correspondence probabilities. Kosinov and Caelli take a different

approach and use the eigenvalues to project the vertices and their structure onto the

graph’s most important eigenvectors using principle components analysis to reduce

dimensionality [289]. All these methods of eigendecompositions work on any directed

or undirected graphs with non-negative weights on the edges, but they cannot make

use of other vertex attributes.

Allowing for error-tolerant isomorphisms becomes even more important when deal-

ing with an attributed graphG = (V,E, µV , µE) where µV : V → AV and µE : E → AE

represent attributes on the vertices and edges, respectively. These attributes often

come from measurements or other inference algorithms relevant to a particular appli-

cation, and they can provide useful information when assessing graph similarity.

6.2.3 Anomaly Detection using Graph Invariants

Graph invariants are properties or parameters of a graph that must be preserved

under isomorphisms [293]. Pao, et al. [294] analyzed the inferential capability of scalar

graph invariants as test statistics for differentiating homogeneous graphs from het-

erogeneous “chatter” alternatives where a subset of the vertices are overly-connected.

Their results indicate that there is no uniformly most powerful summary statistic
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across the space of “chatter” alternatives, although the maximum locality statistic

has significantly more power than the others over large regions of the alternative

parameter space. The methodology of using graph invariants as test statistics to

differentiate homogeneous graphs from “chatter” alternatives is important when de-

ciding how to approach anomaly detection in this setting, but it does not speak to

the robustness of using a scalar graph invariant for the detection of a wide variety of

anomalous graphs.

6.3 Vertex Invariants

Vertex invariants are functions i : VG → α from the vertices V in a graph G to a

value in α, such that if an isomorphism maps v onto v′ then i(v) = i(v′) [295]. Such

vertex properties have been used in heuristic techniques to speed up the testing for

graph isomorphisms [267]. Many vertex invariants are also referred to as centrality

measures [296], since they can be used to estimate “power and influence” in social

networks [297]. One famous example involves mapping the covert network of terrorist

cells around the 9/11 hijackers [298]. Krebs states that “after one month of investi-

gation it was ‘common knowledge’ that Mohamed Atta was the ring leader” and his

analysis showed that he had the highest degree and closeness centrality measures.

• Degree: The simplest local vertex invariant is its degree or number of incident

edges. When used as a measure of connectivity independent of graph order n,
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it is often normalized [296],

D(v) =
deg(v)

n− 1
. (6.3)

The max degree maxv∈V D(v) is also investigated here as a graph invariant.

• Betweenness: The betweenness of a vertex v,

B(v) =

∑
v 6=t6=u

σtu(v)

σtu

(n− 1)(n− 2)
, (6.4)

is a measure of global centrality where σtu is the number of shortest paths

between vertices t and u and σtu(v) is the number of shortest paths between

vertices t and u that pass through v.

• Closeness: The closeness of vertex v is the reciprocal of the average distance

to other reachable vertices,

C(v) =
n− 1∑

u∈V \v

d(u, v)
, (6.5)

where d(u, v) is the shortest path distance between vertices u and v.

• Eigenvector Centrality: The eigenvector centrality [299] of vertex v is pro-

portional to the sum of scores of all adjacent vertices,

EV (v) =
1

λ

∑
u∈V,(u,v)∈E

EV (u). (6.6)

It is so named because it is the solution to the eigenvector equation of the adja-

cency matrix A. In general, many solutions exist, but the additional constraint
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that EV (v) > 0 for all v ∈ V restricts us to the eigenvector corresponding to

the largest eigenvalue λ.

• PageRank: Originally defined on directed graphs representing the World Wide

Web [44], PageRank is a modified version of eigenvector centrality which can

be reformulated for undirected graphs as the solution to the recursive equation,

PR(v) = (1− df) + df
∑

u∈V,(u,v)∈E

PR(u)

deg(u)
, (6.7)

where df = 0.85 is a commonly used damping factor.

• Triangles: We denote the number of triangles (cycles of length 3) involving

vertex v as τ(v).

• Locality Statistic: The first order locality statistic [300] of vertex v is

L(v) = size(Ω(N [v])), (6.8)

where N is the first order neighborhood of v and Ω is the induced subgraph.

The first order scan statistic of graph G is S(G) = maxv∈V L(v), which is also

investigated here as a graph invariant.

• Clustering Coefficient: The local clustering coefficient of vertex v is defined

as

CC(v) =
2τ(v)

deg(v) (deg(v)− 1)
, (6.9)

which measures how close its neighbors are to being fully-connected [228].
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Figure 6.1: Two non-isomorphic graphs with the same degree sequence {3, 3, 3, 3, 2,
2}, but different spectra.

6.3.1 Anomaly Detection using Vertex Invariants

In this Chapter, we propose a methodology of detecting anomalous graphs that fol-

lows naturally from Chapters 3-5, where we performed acoustic anomaly detection by

estimating the divergence between statistical populations of syllable rate estimates.

When comparing graphs, we will substitute local measurements in time with local

measurements about each vertex (i.e. vertex invariants) and then estimate the diver-

gences between their statistical populations. In some ways this is a generalization to

Kosinov and Caelli’s projection of vertices into the eigenspaces of graphs [289]. How-

ever, our approach can make use of any vertex invariant or attribute, which may be

readily available in many real-world graph databases. We first reported these results

in [301].

The simplest corollary to our approach that is often used as a fast heuristic for

inexact graph matching is comparing degree sequences. The problem is that there

are many non-isomorphic graphs with the same degree sequences, such as those in

Figure 6.1. A similar approach, which compares the spectral decompositions of each

adjacency matrix, suffers from the same problem. While all isomorphic graphs are

120



CHAPTER 6. ANOMALY DETECTION FOR GRAPHS

Figure 6.2: Two non-isomorphic graphs with the same spectra of approximately {2.7,
1.0, 0.19, -1.0, -1.0, -1.9}, but different degree sequences.

isospectral, not all isospectral graphs are isomorphic. Several examples of the latter

were first discovered in 1957 by Collatz and Sinogowitz [302]. Since then, many other

isospectral graphs have been discovered with the smallest connected examples having

6 vertices (Figure 6.2). Mowshowitz [303] later demonstrated a way of constructing

connected, regular, isospectral, non-isomorphic digraphs and Schwenk showed that

as the number of vertices grow, the probability of occurrence of two isospectral, non-

isomorphic trees approaches unity [304].

Any such one-dimensional approach is bound to be problematic. If we compared

both degree sequences and spectra, we could have determined that the graphs in

Figures 6.1 and 6.2 were not isomorphic. However, comparing two attributes is not

necessarily enough. For example, Figure 6.3 shows two graphs with the same degree

sequences and spectra, but different clustering coefficients. Even though these graphs

are not isomorphic, similar substructures can be seen in both.

If we ignore all numerical and computational considerations and use all n eigen-

vectors and eigenvalues, then the isomorphism problem can be “solved” for most

practical purposes [305]. The caveat is that it is difficult to estimate the complex-
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Figure 6.3: Two non-isomorphic graphs with the same degree sequence of {5, 4, 3, 3,
2, 2, 2, 1, 1, 1} and spectra of approximately {3.01, 1.79, 0.79, 0.50, 0.00, 0.00, -0.74,
-1.31, -1.56, -2.48}, but different clustering coefficients.

ity of the backtracking algorithm required when coping with eigenspaces of multiple

dimensions.

The unanswered question is if there is a “decent” complete set of invariants that

determines a graph up to isomorphism [305]. We have chosen to investigate eight

invariants which are useful for characterizing and visualizing large scale graphs (Fig-

ure 6.4). Another question, which is application dependent, is how important is

distinguishing non-isomorphic graphs that are so similar that it is hard to find any

differences among sets of multiple vertex invariants. As that level of importance rises,

more vertex invariants can be used in the comparison. It is just a matter of engineer-

ing the proper trade-off (Section 1.2.4) between accuracy and other considerations

such as speed and cost.
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Figure 6.4: Histograms of vertex invariants for an Erdös-Rényi random graph
(n=1000, p=0.1; top left), Barabási-Albert preferential attachment graph (n=1000,
m=10; top right) [3], a citation network of 34,546 arXiv articles on High Energy
Physics Phenomenology (bottom left) [4], and an Enron-based communication net-
work with 36,692 email addresses (bottom right) [5]. The invariants for the largest
connected component are plotted on logarithmic axes after removing the zeros, along
with the rank of each vertex according to decreasing degree.
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6.4 Experimental Design

We are interested in demonstrating the generality of our approach to anomaly

detection by showing that our techniques can discover anomalies present in Erdős-

Rényi random graphs. Erdős and Rényi [306] were the first to analyze large graphs

with equiprobable edges [307]. Before their work, graph theory research was largely

focused on proofs associated with small and regular graphs that could be analyzed

manually. Over the years, increasing computational power has lead to models that

have become progressively more realistic. Random graphs can now be created which

are highly-clustered, small-world networks [228] with scale-free degree distributions [3].

The properties of such complex networks have been rigorously studied by van der

Hofstad [308], but our goal is more modest. We want to compare our approach of

distributional anomaly detection to existing baselines on Erdős-Rényi graphs [294].

6.4.1 Null Hypothesis

Our null hypothesis (H0) is that the observed graph is drawn from the class of

Erdös-Rényi random graphs, ER(n, p), with n vertices where each of the
(
n
2

)
possible

edges exist independently with probability p.
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6.4.2 Alternative Hypotheses

The alternative hypothesis (HA) is that the observed graph is not drawn from the

class of Erdös-Rényi random graphs. We test this by generating graphs where a subset

of vertices are connected according to a different process. Let the set of anomalous

vertices be Γ (of order γ) and the set of non-anomalous vertices be V \ Γ (of order

n − γ). In all cases, the
(
n−γ

2

)
possible edges connecting vertices in V \ Γ , exist

independently with probability p, as in H0. Moreover, the γ(n − γ) possible edges

between vertices in Γ and V \Γ also exist independently with probability p, as in H0.

The four types of anomalous graphs treat the
(
γ
2

)
possible edges between vertices in

Γ differently (shown in Figure 6.5).

• Increased Connectivity H1: A kidney-egg graph, κ(n, p, γ, q), where connec-

tions between the γ anomalous vertices exist independently with probability q

where q > p. This condition is directly comparable to [294].

• Decreased Connectivity H{2,3,4}: A kidney-void graph, κc(n, p, γ, ρ), where

the γ vertices are either not connected to each other or form a tree with branch-

ing factor ρ (each vertex connected to at most ρ children in Γ and one parent2).

We investigated H2: ρ = 0, where there are no connections between the vertices

in Γ ; H3: ρ = 1, where Γ form a path; and H4: ρ = 2, where Γ form a binary

tree.

2For ρ > 0, this means there are exactly γ − 1 edges present between vertices in Γ ; equivalent
values of q are extremely small.
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We also evaluate detection performance when distinguishing Erdös-Rényi graphs

from a pooled test set of these anomalous graphs, where half have a local region of

increased connectivity (H1) and half have a local region of decreased connectivity

(H{2,3,4}).

6.4.3 Divergence of Vertex Invariant Distributions

For each vertex v in a graph G, we can fuse the information from D vertex

invariants into ψ(v,G) ∈ RD. For notational convenience, we will occasionally drop

the operands and refer only to ψ. Given a set of graphs G = {G1, . . . , Gs}, each of

order n, we estimate the joint probability density function pG(ψ) of vertex invariants

using {ψ(v1, G1), . . . ,ψ(vn, Gs)}. Our general approach is to measure the divergence,

d(p{G}(ψ)||pN (ψ)), (6.10)

between density estimates of vertex invariants for graph G and the training set N of

normal graphs.

6.4.3.1 Histograms

The oldest, simplest, and most popular form of nonparametric density estimation

is the histogram (Section 2.1.3), which dates back as far as 1662 to mortality tables in

the age of the plague [309]. Histograms provide a consistent estimate of the true un-

derlying probability density function [310] while not making parametric assumptions
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Figure 6.5: Depictions of the anomalous graphs investigated. H1 : κ(n, p, γ, q) where
q > p, the kidney-egg graph. H2 : κc(n, p, γ, ρ = 0), the disappearing-egg graph.
H3 : κc(n, p, γ, ρ = 1), the kidney-line graph. H4 : κc(n, p, γ, ρ = 2), the kidney-tree
graph.
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about its form. Kernel density estimates converge to the true distribution faster than

histograms, but this can come at considerable computational and storage costs [310]

especially for large sample sizes in a multivariate setting. Adaptive histograms with

variable bin widths offer an intriguing compromise, but finding an optimal adaptive

grid is difficult in practice, and ad hoc methods that are easier to implement “need

not be better and in fact can be much worse” [80].

Given a set of graphs, G = {G1 = (V1, E1), . . . , Gs = (Vs, Es)}, each of order

n, let a frequency histogram of D vertex invariants be defined by parameters θ =

{b1, c1, . . . , bm, cm} of bin centroids bj ∈ RD with corresponding counts,

cj =
s∑
i=1

∑
v∈Vi

1
(
j = arg min

k
d(bk,ψ(v,Gi))

)
, (6.11)

using the indicator function 1. We convert this to a density estimate using add-one

smoothing,

pG(ψ;θ) =
cj + 1

m

ns+ 1
, (6.12)

where j = arg mink d(bk,ψ). This allows for an arbitrary number of vertex invariants,

although the sparsity of their joint distribution is known to be problematic if D > 5

[311]. In this work, we chose fixed-bin histograms to model the joint distribution of

each pair of vertex invariants.

6.4.3.2 Cross Entropy

To measure the abnormality of an observed graph G? = (V ?, E?) of order n, we

can efficiently compute the negative average log likelihood of its vertex invariants
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Figure 6.6: Performance of several methods of histogram comparison while varying
the number of bins per axis when using the clustering coefficient and PageRank vertex
invariants. Boxplots depict the interquartile range of the area under ROC curves for
10 resampling experiments of the pooled test condition where half of the anomalous
graphs are sampled from those with a region of increased connectivity (H1) and half
are sampled from those with a region of decreased connectivity (H{2,3,4}).
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under the model of N normal graphs,

− 1

n

∑
v∈V ?

log pN (ψ(v,G?)) (6.13)

≈ −
m∑
i=1

p{G?}(bi) log pN (bi) (6.14)

= H(p{G?}, pN ) (6.15)

using the equivalent cross entropy between histograms.

6.4.3.3 Other Methods

We tested several other methods of histogram comparison (Chapter 4) including

the Kullback-Liebler divergence, χ2 test statistic, Jensen-Shannon divergence, and L1

norm, but none were able to outperform cross entropy (Figure 6.6).

6.5 Monte Carlo Experiments

Since we only consider random graphs in this work, the asymptotic distributions

of some vertex invariants can be found analytically, especially for H0 [294]. However,

invariant distributions of finite graphs are typically known only for an extremely small

number of vertices and those for H{1,2,3,4} would be even more complex. Thus, we

estimate performance via Monte Carlo simulation.

We explore anomaly detection against five compound alternatives, namely each

of H{1,2,3,4}, along with their pooled combination. We first generate the set N of
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R = 1000 graphs according to H0 : ER(n = 1000, p = 0.1). Another set of graphs

are generated according to the same process for testing. We also generate a large set

of anomalous graphs according to HA, which depends on the test condition described

below. We conduct 10 trials, each time randomly sampling 1,000 graphs from H0 and

10,000 graphs from HA. For each method of anomaly detection we compute the test

statistic TN : G → R of each graph and reject the null for large values. We compute

the area under the receiver operating characteristic (ROC) curve (AUC) to assess

performance across the range of possible thresholds.

In order to assess the performance of detecting kidney-egg anomalies, we randomly

sample graphs for HA from H1 : κ(n = 1000, p = 0.1, γ, q) with γ drawn uniformly

from {5, 10, . . . , 100} and q from {0.15, 0.20, . . . , 1.00}. When assessing the detection

of each type of kidney-void graph, we randomly sample graphs for HA from κc(n =

1000, p = 0.1, γ, ρ) with γ drawn uniformly from {5, 10, . . . , 200} and ρ = 0 for H2,

ρ = 1 for H3, and ρ = 2 for H4.

Our primary goal is to find a test statistic that can robustly reject the null hy-

pothesis when presented with a graph from any of the four types of anomalies. To

assess this, we compute the AUC when graphs are sampled with equal probability

from H1 and the set H{2,3,4}. This is referred to as the pooled test condition.

As a baseline, we evaluate the performance of eight graph invariants when de-

tecting anomalies from H{1,2,3,4} along with their pooled combination. We compare

this to our family of methods comprising the Cartesian product of (a) all
(

8
2

)
pairs of
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Table 6.1: Median of the area under 10 ROC curves

Alternative Hypothesis H1 H2 H3 H4 Pooled

G
ra

p
h

In
va

ri
an

t

MaxDegree 0.770 0.515 0.519 0.516 0.644

Size 0.782 0.809 0.783 0.783 0.786

AvgPathLength 0.788 0.813 0.788 0.784 0.792

MADg 0.788 0.809 0.783 0.784 0.789

MADe 0.802 0.801 0.776 0.774 0.792

ScanStat 0.807 0.562 0.553 0.555 0.681

Triangles 0.812 0.805 0.779 0.779 0.801

AvgCC 0.816 0.787 0.761 0.756 0.792

D
is

tr
ib

.

Triangles,CC100x100 0.869 0.798 0.763 0.764 0.822

Locality,Degree3x3 0.772 0.849 0.818 0.820 0.802

Locality,Closeness3x3 0.766 0.846 0.821 0.820 0.797

PageRank,CC100x100 0.862 0.831 0.797 0.795 0.835
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vertex invariants using (b) {3, 5, 10, 20, 30, 50, 100, 200, 300} bins per axis when com-

paring histograms via (c) cross entropy, Kullback-Leibler divergence, χ2 test statistic,

Jensen-Shannon divergence, and L1 norm. We jointly optimized these three param-

eters and show the interquartile range of AUC for the top performing systems along

with that of the graph invariants in Figure 6.7. We also report the median AUC for

these systems across all test conditions in Table 6.1, emphasizing in bold the per-

formance of distributional systems that perform significantly better (p < 0.05) than

each graph invariant using a two-sided Wilcoxon paired-sample signed rank test for

the 10 trials.

Among the vertex invariants investigated here, clustering coefficient is the least

correlated with measures of vertex centrality in Erdös-Rényi graphs. When opti-

mizing for the detection of increased activity in H1, clustering coefficient therefore

provides complementary information to the number of triangles involving each vertex.

However, when optimizing for the detection of decreased activity in H{2,3,4}, locality

is chosen along with another measure of vertex centrality (degree or closeness) even

though they are highly correlated.

While clustering coefficient is not used by the systems optimized for detecting de-

creased activity, it is used in the top performing system for the pooled test condition

along with PageRank. These vertex invariants provide complimentary information

about local neighborhood connectivity and global centrality, both of which are useful

when detecting anomalies that can have regions of increased or decreased activity
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(Figure 6.8). When computing the cross entropy between distributions of these in-

variants using 100 histogram bins per axis, this system achieves an overall median

AUC of 0.835 for the pooled test condition, which is significantly greater (p = 0.002)

than each graph invariant. It also significantly outperforms the graph invariants when

testing against each anomaly type separately. When detecting H1 graphs, the me-

dian AUC of 0.862 was significantly greater (p = 0.002) than the top performing

graph invariant, average clustering coefficient (median AUC = 0.816). Performance

improvements were also significant for H2 (median AUC = 0.831, p = 0.002), H3

(median AUC = 0.797, p = 0.014), and H4 (median AUC = 0.795, p = 0.006) when

compared to average path length, which was the top performing graph invariant with

median AUCs of 0.813, 0.788, and 0.784, respectively.

Considerable research has been done to optimize histogram bins for a given amount

of data, especially for a single dimension [310,312]. In the multivariate setting, opti-

mal bin size also depends on the correlation coefficient between variables [313] along

with the measure of divergence between histograms when performing anomaly de-

tection [205]. We thus left it as another free variable in the joint optimization and

found that two highly correlated centrality measures, like locality and degree, are best

utilized with as few as 3 histogram bins when detecting anomalies with decreased ac-

tivity (H{2,3,4}). When using uncorrelated vertex invariants like clustering coefficient

and PageRank, 100 bins per axis yields the top performing overall system. While this

is contrary to accepted theory where more bins are required to track the diagonal
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distributions of highly correlated variables, as we note that our goal is to optimize

anomaly detection performance, not distributional accuracy.

For each test condition, we find that cross entropy is the best method of histogram

comparison of those investigated as demonstrated in Figure 6.6. We attribute this

to the tendency of anomalous vertex invariants to be in low density regions of the

space making the likelihood-equivalent, cross entropy, a natural choice for measur-

ing anomalousness. Also, the disparity in the amount of training and test data (106

and 103 measurements, respectively) is well accommodated by the cross entropy com-

putation where the logarithmic emphasis is not performed on the poorly estimated

p{G?}.

While most of our investigation explores compound alternatives to assess overall

performance, we show the median AUC for each simple alternate hypothesis in Fig-

ures 6.9 and 6.10. For the “chatter” alternative, the tradeoff between the γ vertices

involved in the anomaly and their increased connectivity q is well covered in [294].

We display the AUC results here (Figure 6.9) to confirm that this performance metric

is highly correlated with statistical power and to demonstrate that our new methods

experience similar trends across this space of parameterized alternate hypotheses.

For the anomalous graphs with regions of decreased activity (Figure 6.10), per-

formance tends to be better for ρ = 0 compared to ρ = {1, 2}. This is further

demonstrated for the other methods in Figure 6.7 when comparing H2 to H{3,4}. This

is likely due to the greater degree of connectivity change when q = 0 for ρ = 0
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compared to q ≈ γ−1

(γ2)
for ρ = {1, 2}.

6.6 Conclusion

In this chapter, we demonstrate the generality of our approach by achieving state-

of-the-art performance when detecting anomalies in graphs. Our approach to the

antithetical goal of graph matching is in some ways a generalization to Kosinov and

Caelli’s projection of vertices into the eigenspaces of the adjacency matrix [289].

However, we are not limited to eigenvectors and can use any vertex invariant or

attribute. Given a graph database with existing vertex attributes, our approach scales

well since fixed-width histograms can be compared using “embarrassingly parallel”3

algorithms unlike the agglomerative clustering used by Kosinov and Caelli.

By estimating the joint distribution of two vertex invariants using histograms

and assessing its divergence from normality, we significantly outperform all avail-

able graph invariants when detecting anomalies with a local region of increased or

decreased connectivity. We demonstrate that clustering coefficient and PageRank

provide complementary information about vertices, and modeling their distribution

makes for a robust system capable of detecting multiple types of anomalous graphs.

While we chose these features for their performance in the pooled test condition, they

also outperform all available graph invariants when constraining the problem to the

detection of each of four anomalous graph types.

3This phrase was first found in [314] although its etymology remains unknown.
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Figure 6.7: Performance of graph invariants and the best systems using distribu-
tions of vertex invariants. Boxplots depict the interquartile range of the area under
ROC curves for 10 resampling experiments with each type of anomaly. The anoma-
lous graphs present in the H1 test condition are κ(n = 1000, p = 0.1, γ, q) graphs
with γ drawn uniformly from {5, 10, . . . , 100} and q from {0.15, 0.20, . . . , 1.0}. The
anomalous graphs in the H{2,3,4} test conditions are κc(n, p, γ, ρ) graphs with γ drawn
uniformly from {5, 10, . . . , 200} and ρ = 0, ρ = 1, and ρ = 2 for H2, H3, and H4,
respectively. We do not show results for max degree and scan statistic for H{2,3,4}
since their construction gives them no power for these type of anomalies.
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Figure 6.8: Log probability histogram of clustering coefficient and PageRank vertex
invariants. Lower left panel shows their distribution for H0: Erdös-Rényi graphs with
n = 1000 vertices where each edge exists independently with probability p = 0.1.
Upper panels show log differences between histograms of invariants from H0 and H1

(kidney-egg) where H1 = κ(n = 1000, p = 0.1, γ = 20, q = 0.8) on the left and
H1 = κ(n = 1000, p = 0.1, γ = 80, q = 0.25) on the right. Lower right panel shows log
differences between histograms of invariants from H0 and H2 (disappearing-egg) where
H2 = κc(n = 1000, p = 0.1, γ = 110, ρ = 0). The histograms shown here have 100 bins
per axis resulting in the best performance of the distributional methods for the pooled
test condition. The κ parameters were chosen to show different conditions leading
to approximately the same AUC of 0.99 when using cross entropy for histogram
comparison.
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Figure 6.9: Area under the ROC curve as a function of the anomalous subgraph’s
order m and connectivity q when using histograms with 100 bins per axis to compare
the joint distribution of clustering coefficient and PageRank vertex invariants between
ER(n = 1000, p = 0.1) and κ(n = 1000, p = 0.1, γ, q) random graphs.

139



CHAPTER 6. ANOMALY DETECTION FOR GRAPHS

Order of Anomaly

B
ra

nc
hi

ng
 F

ac
to

r

2

1

0

50 100 150

0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.10: Area under the ROC curve when varying the anomalous subgraph’s order
γ and branching factor ρ when using histograms with 100 bins per axis to compare
the joint distribution of clustering coefficient and PageRank vertex invariants between
ER(n = 1000, p = 0.1) and κc(n = 1000, p = 0.1, γ, ρ) random graphs.
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Conclusion

The human ability to know what we do not know is a concept often overlooked

in the development of pattern recognition systems that discriminate between sub-

populations of normal data in controlled experiments. Robustness to anomalies often

comes at some cost to classification performance on normal data, so it is not in

a researcher’s best interest to worry about something that will not present itself in

their experiments. It is only when using pattern recognizers in real-world applications

that extra care must be taken to avoid making egregious errors, which can quickly

lead to the distrust of automated systems.

Since the capability of recognizing the unknown is straightforward for humans, we

have taken some cues from biological systems. When performing tasks such as read-

ing and scene perception [315], humans extract local information during eye fixations

using the fovea centralis, the part of the retina responsible for visual acuity. Most
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visual perception occurs during fixational eye movements [316] in between short and

rapid movements called saccades. These saccades relocate the point of fixation else-

where so additional information can be extracted. The visual system then aggregates

all of this information to build up a global representation of the entire scene.

Our approach to distributional anomaly detection is analogous. We perform fea-

ture extraction to gather local information and then aggregate all such evidence to

form a global density estimate which can be compared to a model of normal data.

When determining whether a 30 second segment of audio contains conversational

speech, we extract syllable rate estimates from each 500 ms frame of audio. We then

use those local features to estimate the global distribution of syllable rate for the

entire segment and compare it to normal conversational speech. When determining

whether a random graph contains an anomalous region of excessive or negligible con-

nectivity we perform a similar process. We focus our attention on each vertex, extract

local features that are invariant up to isomorphism, estimate the global distribution

of vertex invariants for the graph in question, and compare it to a non-anomalous

distribution.

7.1 Summary

Throughout our investigations, we demonstrated that our approach of comparing

distributions outperformed log likelihood baselines. In retrospect, this is not surpris-
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ing since the anomalies we were investigating often occupied the same regions of the

feature space as normal data. The difference was typically found in the spread and

shape of the feature distributions between normal and anomalous data; a difference

that is better captured by estimating the statistical divergence. And while our goal

was to detect anomalies, we did not learn from them by studying any specific exam-

ples, both because they are often rare and difficult to find, and because they can result

from a multitude of poorly understood causes. We therefore developed methods for

acoustics and graphs that could detect anything that markedly deviates from normal

data using robust estimates of statistical divergence.

Anomaly detection is a longstanding problem with many applications in signal

processing. In the interest of developing a robust speech activity detector, we refor-

mulated the problem into acoustic anomaly detection (AAD) in Chapter 3 using a

partially supervised strategy learning from normal acoustics. We presented results of

explorations into files that were found to be anomalous in a normal speech corpus,

and conversely reported findings of fairly normal audio discovered unexpectedly in a

variety of incorrectly decoded files. We also showed that partially-supervised distri-

butional anomaly detection significantly outperformed the log probability baseline.

In Chapter 4, we reformulated AAD into unsupervised accommodation learning

and allowed for anomalous contamination of the training data. Nonparametric his-

tograms were found to be naturally robust to contamination and we demonstrated

state-of-the-art performance when using the L1 distance on 30 seconds of audio when
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subjected to 33% training contamination to achieve an equal error rate of 2.7%.

In the interest of being able to robustly compare two distributions in a high

dimensional space we returned to Gaussian mixture models (GMMs) in Chapter 5. We

analyzed what caused the Kullback-Leibler (KL) divergence between GMMs to break

down in the face of training contamination and came up with a promising solution:

By trimming one quarter of the most divergent Gaussians from the mixture model,

we were able to statistically remove the effect of training data contamination levels

as high as 33%. We significantly outperformed the untrimmed KL approximation for

contamination levels of 10% and above, reducing the equal error rate from 33.8% to

6.4% when subjected to 33% training contamination.

In Chapter 6, we demonstrated the generality of our approach to anomaly detec-

tion by considering the application of inexact graph matching. To do this, we com-

pared distributions of vertex invariants to those obtained from non-anomalous graphs.

We considered homogeneous Erdös-Rényi random graphs to be non-anomalous, and

compared them to four classes of heterogeneous alternatives, where a subset of the

vertices were connected according to a different process with excessive or negligible

connectivity. In this context, we demonstrated superior performance to available

state-of-the-art approaches against a specific type of anomaly and further demon-

strated superior generalization to entire classes of graph anomalies.
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7.2 Future Work

Our work in acoustic anomaly detection focused on the perspective of a speech

activity detector that used envelope modulation features known to be indicative of

syllabic rate. Recently, long-term acoustic frames have been used to model the am-

plitude variations in critical bands as a way of extending the modulation spectrum to

the higher dimensions necessary for many other speech processing tasks. Frequency

domain linear prediction (FDLP) [317] is one such technique that has proven to be

robust to noise and reverberation for phoneme recognition, speaker verification, and

audio compression [318–320]. Leveraging acoustic anomaly detection in these con-

texts could allow for even more accurate confidence estimation. It could also foster

the development of a more robust and integrated speech processing system, rather

than the traditional pipelined approach where speech activity labels are passed to

other subsystems without confidence estimation or feedback loops.

Another promising area of research could be combining temporal and spectral

features while using missing feature theory to concentrate on the salient pieces of

information and de-emphasize those corrupted by noise. Missing feature theory was

originally developed to deal with occluded objects in computer vision, but Cooke [321]

adapted the techniques to acoustic scene analysis [322–324]. It has since been used

to improve speaker identification [325,326] and speech recognition [327–329]. One of

the largely unexplored areas of missing feature theory is how to accurately estimate

the noise mask without a priori knowledge. We believe that our approach to acoustic
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anomaly detection could be extended to improve noise mask estimation by temporally

localizing abnormalities that deviate markedly from normal audio.

The task of localizing anomalies is outside the scope of this work, but it would be

useful for both acoustics and graphs. While many acoustic anomalies are transient, it

is still important to identify and exclude them from downstream processing without

having to discard an entire segment. Anomaly localization is even more important in

graphs because the anomaly is often what we are interested in finding and studying,

rather than just discarding as a nuisance to other systems.

Local anomaly detection could benefit from recent developments in distribution-

free methods of comparison that require less data than density estimation. One

approach uses k-nearest neighborhoods for multi-dimensional divergence estimation

[330], while another uses locality sensitive hashing [331] to compare data in higher

dimensions without constructing a density estimate [332].

Regardless of the approach to estimating divergence, it is important to note that

we do not require a good match to a recognizable distribution. By design, our process

can decide that an anomaly is unlike anything we have seen before. We believe that

such a system can and should be used as part of a more robust pattern recognition

system that can detect the “unknown unknowns” [1] and properly react to any “black

swan events” [2].
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