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Abstract 

Systems like Google Home, Alexa, and Siri that use voice-based authentication to verify their 

users’ identities are vulnerable to voice replay attacks. These attacks gain unauthorized access to 

voice-controlled devices or systems by replaying recordings of passphrases and voice 

commands. This shows the necessity to develop more resilient voice-based authentication 

systems that can detect voice replay attacks. 

This thesis implements a system that detects voice-based replay attacks by using deep learning 

and image classification of voice spectrograms to differentiate between live and recorded speech. 

Tests of this system indicate that the approach represents a promising direction for detecting 

voice-based replay attacks. 
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1 Introduction 

Voice Authentication (VA) is a means of hands-free identity verification that uses voice 

recognition to unlock devices or accounts. It serves the same general purpose as a password or 

other biometric authentication methods but without requiring users to make touch or eye contact 

with a device. While this offers speed and ease of access to users, it also opens a door to 

attackers and can leave devices open to replay attacks. A replay attack is an attempt to gain 

access to devices or accounts by replaying a recorded passphrase to the authentication device. 

The ramifications of successful replay attacks range from minor inconveniences to 

identity theft. For example, if an attacker were to gain access to a banking app that uses VA, the 

victim’s information and finances would be completely compromised. Thus, detecting these 

attacks as they occur is essential in their prevention. 

One promising approach for detecting such attacks involves the use of a trained 

convolutional neural network (CNN) to distinguish between spectrograms of live and recorded 

human speech through image classification. CNNs are a deep learning (DL) algorithm used in 

machine learning (ML) and are often applied to problems involving image classification and 

speech recognition. They offer fast classification of (e.g.) an image’s contents extracted with less 

computational strain than a traditional neural network. 

This work investigated the performance of using CNN for spectrogram image 

classification with 90 training cycles to accurately detect replay attacks. Overall, the system 

achieved an accuracy score of 69% in detecting an attack. This result shows the potential of 

using image classification techniques to help secure voice-based systems. 
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2 Related Work 

2.1 Methods of Voice Authentication and Feature Extraction 

In [8], Meng et al. propose the use of active authentication (AA) to improve the security 

of voice authentication (VA) systems. Common authentication methods test what a user 

knows—e.g., a password—or possesses—e.g., a key—to grant access to an application or 

device. Most authentication systems implement a one-time authentication check for the duration 

of the logged session. AA provides “continuous and real-time monitoring of the user’s identity” 

(ibid.) without disrupting a user’s workflow. VA’s contactless nature makes it a good choice for 

AA. 

VA processes the most important attributes of an audio signal from a speaker such as 

pitch, range, and vocal tract length. Traditionally, methods for measuring these attributes have 

used large amounts of data ranging from several minutes to hours of recorded speech. 

Improvements in statistical modeling and analysis such as the hidden Markov model (HMM) and 

i-vector approaches have reduced the amount of test data needed for an accurate estimate of a 

speaker’s characteristic attributes. However, these methods still fall short of real-time 

requirements for constantly monitoring and verifying a speaker’s identity. For example, “many i-

vector based systems exhibit sharp performance degradation when they are tested with short 

duration (below 5s) utterances” (ibid.). Meng et al. mention research that generated baselines 

with test data samples of two seconds using Gaussian-mixture-model-based universal 

background models; these systems, however, require large computations that may complicate 

their use for real-time active voice authentication (AVA). 

The main challenge with real-time voice authentication “is to effectively train talker-
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specific models, using as little enrollment speech as possible” (ibid.). Most speech analysis 

systems break test data into fixed-length segments of speech (speech frames) and test groups of 

frames, under the assumption that the sample is from one speaker. This assumption, however, is 

incompatible with AVA, which must also detect changes in speakers. 

To detect changes in speakers in speech samples, Meng et al. use a window-based 

approach to analyzing speech. A single window “is expressed in number of frames 𝑁𝑤” and is a 

test segment of the speech signal. During authentication, as speech frames pass through the 

window, the analysis measures how well the current frames match the target speaker’s voice. 

These scores are calculated based on an adapted version of the HMM, which generates models 

for the target speaker and imposters and are log-likelihood ratios taken from each window. 

Meng et al.’s system must be trained before use. To minimize its use of enrollment data, 

Meng et al. use a speaker-independent (SI) model in training. The SI “is trained on a sufficient 

pool of data from a general collection of speakers in the training set” (ibid.). When the system 

registers a user, it generates a speaker-adapted model by applying the SI’s parameters to the 

target speaker’s sample data. A minimum verification error (MVE) algorithm is used to reduce 

the number of errors output by the system. Typical errors include a “miss”, or wrongful 

authentication of an imposter is wrongfully authenticated, and a “false alarm”, or wrongful 

rejection of the target speaker. The authentication system’s performance, its windows-based 

equal error rate, is determined by how often the miss and false alarm rates are equal. Because 

AVA uses window-based tokens, “the sample tokens for training and enrollment must each 

correspond to a segment of speech signal within a test window” (ibid.) to ensure that the training 

aligns with AVA’s short-time testing requirements. 
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In [9], Lei and She propose a new method of identity vector extraction for VA systems. 

Their i-vector model of human speech converts speech signals into feature vectors that encode 

their key attributes while suppressing redundancies in human speech. Lei and She rejected Mel-

frequency cepstral coefficients, one common method for obtaining feature vectors from signals, 

as unsatisfactory, due to the method’s use of the short-time Fourier transform, which incorrectly 

assumes the signal is stationary. Their alternative method, wavelet analysis, uses a “multi-scale 

resolution which is suitable for analyzing non-stationary signal” (ibid.). 

Wavelet analysis can be conducted using one of several transforms. One, the Wavelet 

Transform (WT), which only decomposes a signal’s low frequencies, is insufficiently precise for 

human speech. A second, Wavelet Packet transform (WPT), decomposes the full frequency 

spectrum. WPT, however, is complex and implements a regular decomposition: this creates too 

much overhead for real-time analysis. A third, perceptual WPT, gives the same output quality as 

WPT but reduces computational cost by using an irregular decomposition. It also reduces speech 

noises, making it the best option for wavelet entropy feature extraction. 

Feature extraction begins with a three-stage procedure that normalizes and frames speech 

and removes silence from frames. In the normalization stage, “the effect of volume is discarded 

and utterance becomes comparable” (ibid.). The framing stage divides the normalized signal into 

multiple short-term frames. Finally, periods of silence are removed from the sample, reducing its 

length. Lei and She give equations for Shannon entropy, Non-normalized Shannon entropy, Log-

energy entropy, and Sure entropy as commonly used forms of wavelet entropy calculation. 

After feature vectors are retrieved from the wavelet entropy calculations the i-vectors are 

extracted. Lei and She identify a feature vector’s frame posteriors as “a key issue of i-vector 
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extraction” (ibid.). The authors estimate the frame posteriors using a universal background model 

(UBM). The UBM is trained on background utterances: a collection of speech signals spoken by 

different people. Typically, the UBM would be trained on the Gaussian mixture model (GMM), 

but it only “considers the inner information within feature vectors and is trained in a generative 

way…” (ibid.). Deep neural networks (DNN) could be used to improve training by including 

correlational information between vectors and by being trained discriminatively. However, 

DNNs require large numbers of parameters, which increases the system’s complexity and 

computational costs. Instead, the authors use convolutional neural networks (CNN), which are 

like DNNs, but with fewer training parameters. 

Applying this i-vector approach to VA systems requires the UBM to be trained before the 

VA’s enrollment and evaluation stages. Obtaining the i-vector allows the authentication system 

to differentiate between the user and the imposter from an unknown speaker sample by 

comparing the unknown speaker’s i-vector to i-vectors in a database and comparing the 

verification score to a defined threshold. 

In [11], Aizat et al. discuss the use of deep neural networks (DNNs) and i-vector 

extraction for VA and identification. Voice identification “is the process of determining whose 

speaker provides the speech” (ibid.). VA determines a speaker’s identity to allow access to a 

service or device. Each case generally uses voice activity detection algorithms and automatic 

speech recognition to teach machines to independently detect and analyze speech. For voice 

recognition, Aizat et al. use Transformed Mel-Frequency Cepstral Coefficients (T-MFCC) built 

on i-vector algorithms to feed a hidden Markov model (HMM) based DNN. 

Aizat et al. trained the DNN using phoneme labels together with elementary speech unit 
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(ESU) clusters. Phoneme labels, which are extracted from the transcript and audio files, are 

aligned using HMMs to provide a level of word isolation. ESU clusters are groups of similar 

speech (phonetic) indicators found with signal feature extraction techniques such as i-vector. 

They are extracted from sets of files containing speech recordings from speakers. ESU clusters 

are used to “improve computational indicators, reduce subjective decisions in biometric systems, 

and increase the security against attacks” (ibid.). 

VA systems typically consist of an input device, a speech processing system, a storage 

system for templates (sample speech for verification), a comparison and decision system, and a 

user interface. Attacks against each component of a VA system – except the input device – are 

common. Some examples include replacing, adding, or deleting sample speech template files, as 

well as recording and repetition (replay) attacks. Most of these attacks can be thwarted “by 

applying digital coding, encrypting an open data transmission channel and using time stamps” 

(ibid.). However, an attacker can use a Dictaphone to recreate a recorded reference message. To 

combat this, Aizat et al. provide a multistage approach. Stage 1 records the user’s reference 

speech material. Stage 2 compares the standard from stage 1 with what is spoken for 

authentication at a given moment. The author’s proposed model only requires a verification 

phrase of 3-5 seconds where identification is not dependent on language. 

Aizat et al.’s model “increased the overall classification accuracy by about 13%” (ibid.) 

with low probabilities of errors due to producing equal counts of false acceptance rates and false 

rejection rates. The use of phoneme labels also helped to reduce/remove background noise and 
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silent frames from the speech audio files being analyzed. 

In [7], Moffat et al. present a comparison of audio feature extraction toolboxes. “Audio 

features are contextual information that can be extracted from an audio signal” (ibid.) and are 

usually categorized as low-level – e.g., features computed from the signal frame-by-frame – or 

high-level – e.g., key of a note. Moffat et al. apply the Cranfield model to evaluate a set of 

toolboxes based on their coverage, effort, presentation, and time lag. Coverage depicts how 

many features are extracted by a specific toolkit as well as its other processing capabilities – as a 

measure of how well it covers all relevant information. Effort refers to how easily the interface 

can be manipulated and used. Presentation is how easily and in what format the features can be 

saved as output. Time lag refers to the efficiency of the tool. 

Moffat et al. compared Aubio, Essentia, jAudio, Librosa, LibXtract, Marsyas, Meyda, 

MIR Toolbox, Timbre Toolbox, and YAAFE. The MPEG-7 standard list of seventeen low-level 

audio descriptors was used as a basis for comparison. For coverage, Essentia provides the 

“largest range of features, and is the only toolbox to produce 100% coverage of the MPEG-7 

audio descriptors” (ibid.). MIR Toolbox and LibXtract covered 85% or more of the MPEG-7 

descriptors. Librosa, jAudio, and YAAFE all came in under 40% of MPEG-7.  

For effort, several toolboxes only provide command line interfaces, which can limit 

control over the system. Vamp plugins were found to be the most flexible options as different 

plugins offered different interface options. Moffat et al. also reviewed the amount and quality of 

existing documentation on the list of toolboxes, noting that LibXtract – along with a couple 

others – provide limited documentation. 

Tool formats for presenting data included XML, YAML, and JSON. However, only a 
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couple toolboxes provided users with options of how the data was to be displayed – i.e., 

structured, or tabular. Meyda and LibXtract are meant to be used for real-time computations and 

are thus designed to run faster. Toolboxes written in C based languages also run faster than those 

written in Python and Java. 

2.2 Liveness Detection 

In [2], Zhang et al. propose VoiceGesture, a liveness detection system for VA that 

measures articulatory gestures. VA enables users to authenticate without making direct contact 

with a device. Potential applications for VA range from authenticating access to a mobile device 

to forensics and banking. 

Zhang et al. note that VA systems are vulnerable to spoofing attacks, playback (replay) 

and mimicry attacks being the two main forms of attack. In playback attacks, an attacker plays a 

recording of a user’s passphrase to the VA system’s microphone. In mimicry attacks, an attacker 

imitates a user’s voice either with voice or the simultaneous use of voice and recording replay. 

These attacks are easy and practical due to the ready availability of low-cost, high-quality 

recording devices and speakers. 

Many previous VA methods relied on the acoustic characterizations of speech for user 

identification. These methods, however, have high error rates and limited effectiveness. Other 

systems use the challenge-response technique, which may require a speaker to move the device 

along a pre-determined path or hold it a certain way during authentication. 

VoiceGesture does not require such practices. Rather, it uses articulatory gestures (AGs), 

which are specific to how people pronounce and intone speech. This enables AGs to serve as a 

reliable authentication that resists spoofing attacks. AGs are combinations of movements by 
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multiple muscles around the lower face (e.g., lips, tongue, throat, and jaw) known as articulators. 

Zhang et al. observe that AGs create speech, noting that “the coordination among multiple 

articulators produces gestures like lip protrusion, lip closure, tongue tip and tongue body 

constriction, and jaw angle” (ibid.). For example, p’s are uttered by closing a speaker’s lips 

during speech. While humans create sound through AGs, electronic speakers typically lack 

elaborate mechanics, relying on a diaphragm for sound production. 

VoiceGesture checks for live speech by detecting a mobile device user’s AGs, using the 

device’s built-in speakers and microphones as a Doppler radar system. A device’s speaker emits 

a sound frequency of 20kHz, which reverberates off a user’s articulators as the articulators move. 

VoiceGesture picks up these reflections as a pre-defined passphrase is being captured by a 

device’s mic. 

VoiceGesture processes inputs in five steps. It first extracts Doppler shifts from a voice 

sample by converting it to the frequency domain, then segmenting phonemes to remove non-

audible segments or pauses. Phonemes are segmented by using the lowest two captured 

frequencies to identify vowels and other frequencies, along with hidden Markov models and 

other algorithms to identify consonants. The second step extracts two features from the Doppler 

shifts. The first, energy-band frequency, is the set of energy levels captured based on an 

articulator’s proximity to the microphone; this yields a frequency contour for each band. The 

other, frequency-band energy, refers to the energy contours produced by an articulator’s velocity 

during speech movement. The third step, wavelet-based denoising, “further remove[s] the noisy 

component mixed in the extracted features” (ibid.). Zhang et al. use the discrete wavelet 

transform to divide the signal into two parts, one of which, the detailed coefficient, contains the 
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noise segments. A dynamic threshold is applied to extract and remove noise segments that can be 

caused by hardware or a user’s environment. A correlation coefficient is then used to assess the 

captured speech’s similarity to a reference recording, followed by a determination of the 

utterance’s authenticity. 

Zhang et al.’s system was tested with three different phones, all running Android OS 

version 6 with different speaker and microphone models. Accuracy at sampling rates 48, 96, and 

192kHz was tested, as well as accuracy with a user holding the device in two positions: against 

the ear as if talking on the phone normally and in front of the mouth. Tested passphrase lengths 

varied between 2 to 10 words. Overall, VoiceGesture produced a detection or accuracy rate of 

around 98% with a 1% false acceptance rate. It was noted that “participants who have smaller 

scale of articulatory movements generate higher false acceptance rate” (ibid.). 

In [4], Wang et al. propose VoicePop, an anti-spoofing system for VA systems. Various 

methods for combating these attacks, including liveness detection and automatic speaker 

verification suffer from a variety of limitations. For example, “the extent of articulatory 

movements affects the effectiveness of [AG- based authentication]” (ibid.). 

VoicePop uses pop noise in speech signals to differentiate between live speakers and 

attacks. Human speech, which is uttered on an exhale, produces different phonemes with varying 

bursts of air. These bursts of air are known as pop noise. If, during VA, a user’s mouth is close 

enough to the microphone, the microphone will capture pop noise along with the audible 

passphrase. Wang et al. note that “pop noise has a high energy in the low frequency” and “the 

duration of pop noise varies in the range 20~100 msec” (ibid.). Since different phonemes are 

produced via different means, using different movements and amounts of breath, the probability 
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of pop noise being present during the pronunciation of each phoneme is different. 

VoicePop operates in four phases. The first of these uses traditional voice authentication 

to extract and validate spoken words against a passphrase. If the words are correct, the system 

uses a second, data processing phase to segment phonemes and detect pop noise. The final two 

stages of VoicePop detect replay and impersonation attacks, respectively. Most replay attacks 

can be rejected immediately as recordings are often taken too far from a speaker’s mouth to 

record pop noise. Impersonation attacks are detected by using a phoneme-pop sequence 

algorithm to identify how a speaker breathes while speaking and comparing it to the enrolled 

verification sample. 

VoicePop detects pop noise in six steps. VoicePop removes non-speech segments from a 

signal, then puts the modified signal through the short-time Fourier transform. It locates the peak 

of a given pop noise by checking for a frame whose energy within the range 0-93Hz is greater 

than three times the standard deviation of the energy of all the frames in that range. The 

derivative is then taken to find the differential coefficient of the boundaries around a peak. 

Specific boundaries are determined when the energy at some nearby point (within 3 points of the 

peak) is less than or equal to .45 times the energy at the peak and the derivative of the nearby 

point is greater than or equal to .45 times the derivative of the peak. 

To test VoicePop, the authors recruited 18 volunteers and evaluated the system’s 

accuracy under replay and impersonation attacks. Overall, the system achieved over 93% true 

acceptance rate with just over 5% equal error rate. When the authentication device was more 

than 6 cm from the speaker the system’s accuracy decreased rapidly. Accuracy was also reduced 

when the device is closer than 2 cm. 
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In [10], Anand et al. propose EchoVib, a vibration-based means of VA.  Most VA 

algorithms analyze audible input, which leaves them open to voice synthesis attacks. By contrast, 

EchoVib uses vibration patterns from short segments of replayed speech to detect voice synthesis 

and modeling attacks. These patterns, which a smartphone’s loudspeakers created as a 

passphrase is (re)played, can be detected by the phone’s built-in accelerometers. As noted by 

Anand et al., these vibrations depend in part “on the source generating the vibrations in response 

to the speech signal” (ibid.). These vibrations are specific to individual phones due to minor 

differences in parts and defects, even between two speakers of the same make and model. The 

resulting combination of a user’s speech signal and that person’s device produces a signal that is 

extremely difficult for an attacker to recreate: an attacker would need to “generate a correct 

response to the EchoVib challenge-response authenticator, while synthesizing a vibration pattern 

response that could pass the verification” (ibid).  

EchoVib’s verification process requires users to register with the system and train it by 

providing input. After this, when users respond to an authentication challenge with a passphrase, 

the system replays the passphrase using the authentication device’s loudspeakers and uses the 

accelerometer to record the device’s vibrations. These vibrations are subsequently compared to 

the initial training data to approve or reject the authentication attempt. 

As a basis for training their system and analyzing user input, Anand et al. implemented 

two algorithms for feature extraction and three ML algorithms. They compared Mel-frequency 

cepstrum coefficients with time and frequency domain feature sets as inputs and compared 

support vector machines, regression algorithms, and decision trees as bases for classification. 

They found that time-frequency domain feature sets and the random forest classifier, a decision 
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tree ML algorithm, were best for authentication. Overall, EchoVib showed a true positive rate of 

over 90% against voice synthesis attacks and over 85% against voice modeling attacks. 

2.3 ML in Cybersecurity 

In [3], Xin et al. discuss ML and deep learning (DL) and their use in cybersecurity. Xin et 

al. define cybersecurity as “technologies and processes designed to protect computers, networks, 

programs and data from attacks and unauthorized access, alteration, or destruction” (ibid.). ML 

and DL are types of artificial intelligence applications; they imitate human thought processes and 

respond appropriately to various challenges. ML, according to Xin et al., “primarily focuses on 

classification and regression based on known features previously learned from the training data” 

(ibid.). DL, on the other hand, uses neural networks and tends to focus on data learning 

characteristics that enable predictions on largely unknown variables. 

ML and DL models are constructed using a similar sequence of steps. Both typically 

begin with a determination of the features that will be used for prediction. This is followed by a 

choice of prediction algorithm, typically classification or regression; the training of candidate 

models; a determination of which of these models is best; and a final classification or prediction 

of the data. In DL, unlike ML, “feature extraction is automated rather than manual” and “model 

selection is a constant trial and error process…” (ibid.). 

ML and DL models can exhibit what experts refer to as supervised, unsupervised, and 

semi-supervised learning based on the prediction and classification algorithms. Supervised 

learning, which assumes the use of labeled data, identifies relationships between labels to 

content. Unsupervised learning is commonly used for unlabeled data: e.g., datasets that are too 

large or costly to label. According to Xin et al. this approach “deduces the description of hidden 
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structures from unlabeled data” (ibid.). It also suffers from a lack of procedures for measuring its 

accuracy. Semi-supervised learning models are used to bridge the gap between label 

maintenance and calculating accuracy. 

Similar approaches are used to evaluate the effectiveness of ML and DL models. One, a 

confusion matrix, is a table that characterizes a classifier’s outputs. Binary classifiers, for 

example, can be characterized in terms of correct (true positive, true negative) and incorrect 

(false positive, false negative) classifications. Other common confusion matrix metrics include 

accuracy, precision, recall, and the F1-score. Accuracy is a percentage of correctly identified 

samples to the total. Precision is the percentage of correct identifications divided by the 

incorrect. Recall is the ratio of all correctly identified samples to all samples that should have 

been identified. The F1-score is the “harmonic mean of the precision and the recall” (ibid.). 

Although ML and DL models are constructed and trained similarly, they differ in terms 

of their data and hardware dependencies, feature processing techniques, problem solving 

methods, execution time frames, and interpretability. DL algorithms need much larger data sets 

than ML algorithms for the same level of accuracy and precision. DL algorithms are typically 

used to solve more complex computations than ML algorithms and require more processing 

power to do this. ML often requires a more detailed and expert breakdown of a problem’s 

characteristics than DL, which can function with more abstract content. ML approaches tend to 

decompose problems via a set of subproblems, while DL typically avoids such decompositions. 

DL usually takes longer to train than ML—for example, weeks instead of minutes or hours—but 

less time to run tests. ML algorithms can provide rationales for their choices; current DL 

algorithms cannot. 
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ML- and DL-based applications are often deployed as elements of a layered approach to 

cybersecurity, as defensive technologies that check for possible attacks. They are often 

incorporated in intrusion detection systems (IDS), a class of applications that checks for events 

that are associated with known attacks and/or anomalous uses of a system. Anomaly-based 

detection allows for detection of zero-day attacks: unknown or new attacks that misuse detection 

cannot detect. Xin et al. observed that most modern ML and DL methods in cybersecurity are 

hybrid approaches of intrusion detection. 

ML algorithms used in cybersecurity applications include support vector machines 

(SVM), k-nearest neighbor (kNN) algorithms, and decision trees (DT). A SVM classifies a 

dataset’s items by partitioning them into clusters, using hyperplanes. kNN classifiers measure the 

distance between a dataset’s items, grouping items within some k value of the current instance. 

The current instance is classified by the majority classification of its neighbors’ classifications 

within the range of k. Decision trees use tree structures to depict the use of sequences of tests to 

characterize a data item’s attributes; the tree’s leaf nodes represent categories into which these 

items might be classified.  

DL algorithms used in cybersecurity applications include deep belief networks (DBN), 

recurrent or recursive neural networks (RNN), and convolutional neural networks (CNN). Xin et 

al. define a DBN as “a probabilistic generative model consisting of multiple layers of stochastic 

and hidden variables” that represents the correlations between instances in the data with weights 

(ibid.). RNNs are used when the data is presented in a sequential format where a previous 

instance’s output alters or relates to the output of the current instance. CNNs use a shared weight 

system that more closely resembles biological neural networks than other neural network designs 
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while reducing the network complexity. It produces hierarchies of the features used for learning 

extracted from unlabeled data. 

In [1], Aiyanyo et. al. review ML algorithms used in cybersecurity, datasets used to train 

those algorithms, and cyber threats that could be thwarted by ML algorithms. The authors focus 

primarily on defensive cybersecurity techniques, which are reactive and attempt to prevent 

known attacks based on previous knowledge. 

ML algorithms used in defensive cybersecurity include SVMs, which are typically used 

in IDSes; decision tree classifiers; Naïve Bayes classifiers; random forest classifiers; logistic 

regression; neural networks; and hybrid algorithms. Naïve Bayes algorithms are simplified 

Bayesian classifiers that provide good accuracy and performance for their simplicity. Random 

forest algorithms are based on decision trees but use several trees. They average the predictions 

from all the trees to produce the final classification decision; this can improve upon decision 

trees by reducing the false alarm rate and time required for processing. According to Aiyanyo et 

al., “Logistic regression is a probabilistic linear classifier that involves the projection of input 

vectors onto hyperplanes” (ibid.). Logistic regression, according to the authors, is best used for 

removing noisy data from the network. Neural networks are also used in IDS. They can solve 

larger problems because they can extract patterns from data without needing supervision or much 

prior knowledge of the data. Hybrid systems typically combine signature and anomaly detection 

techniques, using a knowledge of known attacks and variances in the normal flow of network 

traffic to mitigate cyber-attacks. 

Any of these ML algorithms can be trained with using supervised, unsupervised, or semi-

supervised learning. Unlike supervised approaches, unsupervised techniques do not need to be 
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trained on as much historical data pertaining to the network and can be more generally applied to 

different problems. As for semi-supervised ML, the authors state that this “is useful when the 

training data is insufficient for supervised ML, but the unsupervised alternative may not give the 

best results” (ibid.).  

Offensive cybersecurity methods attempt to proactively detect attacks and remove them 

as they are detected before any data is lost. Aiyanyo et. al. noted that there were fewer offensive 

applications of ML in cybersecurity and that the most common algorithms for this approach were 

association rule, neural network, and SVM. 

Of the data sets used to train ML algorithms in cybersecurity, Aiyanyo et. al. identified 

KDDCUP’99 database as the most common and the DARPA’99 data set as a common basis for 

testing IDS methods. Because of its age, the DARPA’99 set was often used with other data sets. 

Log files and data from honey pots were also used, with the latter primarily being a source for 

attack vectors. 

Aiyanyo et. al. identified “denial of service, user to root, remote to local, and probe 

attacks” as attacks that have been mitigated with ML systems (ibid.). Denial of service attacks 

effectively shut down service by overloading a network or a host with traffic. In a user to root 

attack, an attacker attempts to elevate their privileges on the system to gain control. In a remote-

to-local attack, an attacker “exploit[s] vulnerabilities which could involve the guessing of 

passwords to take control over a remote machine” (ibid.). In probe attacks, an attacker gathers 

information about a system and its weaknesses to use in a later attack.  

Zero-day attacks can be also mitigated with ML, usually with anomaly detection-based 

systems. Zero-day attacks are previously unknown attacks; as such, they are difficult to identify.  
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Despite advances in the use of ML in cybersecurity, Aiyanyo et. al. observe that the 

classification problem continues to be a challenge as the complexity of network packets and 

processes grow with the emergence of more network-based communication technologies. 

Additionally, the use of more software to detect and mitigate security issues creates a greater 

attack surface for attackers to exploit. 

In [5], Shaukat et. al. review the literature on ML algorithms in cybersecurity, comparing 

their performance and discussing challenges with using ML in cybersecurity. Their review 

includes assessments of SVM, decision tree, deep belief network (DBN), artificial neural 

network (ANN), random forest, and Naïve Bayes algorithms as reported in the research 

literature, focusing on defense against malware and spam attacks and ML-based IDSs. 

Researchers had evaluated these algorithms based on their precision, recall, accuracy, ROC 

curve, and error rate based on the confusion matrix, with accuracy being the most documented 

performance measurement. 

The highest accuracy listed for SVM is 99.30% when used for IDSs. Decision trees had 

the highest reported accuracy when used with IDS at 99.96% with malware detection following 

extremely close behind. An anomaly-based approach to IDS using DBN returned a 99.45% 

accuracy with the highest accuracies for malware and spam detection approaches using DBN 

returning around 96 and 97%, respectively. For ANN, the highest accuracies for IDS, malware, 

and spam were 99.82%, 92.19%, and 93.71%, respectively. Random forest had highest 

accuracies for IDS, malware, and spam all above 98%.  For Naïve Bayes IDSs, Shaukat et. al. 

identified accuracies ranging from 99.9% to 36%. 

Overall, most algorithms’ accuracies were reported to be at or above 90% with few 
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falling below 85%. Several approaches were evaluated for IDS, malware, and spam relative to 

different data sets. The reported highest accuracies for IDS, malware, and spam were not 

consistently obtained from a specific approach. For example, the highest accuracies for IDS with 

SVM and decision tree were from hybrid and misuse-based approaches, respectively. 

Current challenges of using ML in cybersecurity, as discussed by Shaukat et. al., are the 

lack of current data sets, lack of standardized methods of feature extraction, low attack detection 

speed, and high costs of hardware and data for some methods. 

In [6], Priyam et. al. compared the accuracy of three serial decision tree algorithms, C4.5, 

ID3, and CART, for predicting a student’s test performance. C4.5 and ID3 are based on Hunt’s 

algorithm, have serial implementations, and use a splitting attribute found by sorting the tree 

with the information gain ratio. However, C4.5, unlike ID3, can handle incomplete training data 

and can be trained on continuous or discrete datasets. CART, which is not based on Hunt’s 

algorithm, classifies data attributes by splitting them into two classes; it can also be used in 

regression techniques.  

Pryiam et al. noted that CART had an accuracy of around 67% on “some data sets using 

10-fold cross validation” (ibid.). One of these algorithms’ limitations is a decrease in 

performance on larger datasets. To address this, the authors mention two other algorithms – i.e., 

SPRINT and SLIQ – that can be implemented serially or in parallel to handle larger sets of data. 

2.4 Image Classification 

Image classification is the practice of training DL algorithms to recognize patterns within 

images so that the images can be sorted into classes. Tripathi [16] mentions applications of 

image classification that include medical research, navigation, and biometric authentication. 
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Tripathi’s work focused on the use of image classification to detect and categorize types of fruit 

using filters and feature detectors. In order to achieve the best results, Tripathi first standardized 

the data by resizing the images and performed data augmentation to increase the size of the 

training dataset. The author then tested 4 types of CNN architectures in an attempt to maximize 

the accuracy of the system – DenseNet, VGG16, VGG19, and InceptionV3. The results of 

Tripathi’s study were reported using accuracy, recall, precision, confusion matrices, and f1-

scores. By using CNNs and image classification, the four frameworks used achieved accuracies 

ranging from 87.81 to 100.  
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3 Methods and Experiment 

3.1 The Proposed Approach 

To determine the extent to which spectrograms of human voices could be used to detect 

replay attacks, a system was developed for analyzing spectrograms generated from audio files of 

human voices and voices replayed from mechanical speakers. The system, known as Replay 

Attack Detection using Image Classification (RADIC), consists of the following four main 

modules (Figure 1):  

• Audio sample preparation. This module chooses a sample from the audio files dataset 

based on a preferred sample size. In this work, 2200 random files were chosen with 

50:50 split ratio, where 1100 are Spoof files – i.e., recordings of replayed utterances – 

and 1100 are Bonafide, or recordings of human voices.  

• Voice to spectrogram (audio to image) conversion. This module converts all the 

audio files in the dataset into colored spectrograms.  

• Image preprocessor. This module applies standardization, normalization, and data 

augmentation techniques on the generated spectrograms. 

• Feature extraction and deep learning classifier. This module uses a CNN machine 

learning algorithm to construct a detection model that classifies spectrograms as 

human (Bonafide) audio or machine-generated (Spoof) audio. 

3.2 Dataset 

This research’s dataset was obtained from the open source Zenodo repository [12] 

released by the creators of the 2021 ASVspoof challenge. According to [12], the data from the 
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Physical Access (PA) set of this challenge “comprises bonafide speech and replayed recordings 

both collected in a variety of real physical spaces”. This data collection consisted of various 

scenarios and combinations of different replay devices, microphones, and spacing between the 

attacker and human speaker. The resulting dataset consisted of segments of audio files generated 

from human speakers and replayed audio from an attacker’s device. Using the posted metadata 

keys for the repository, the audio files were separated into Bonafide and Spoof datasets. The 

subset of audio files used from the PA ASVspoof dataset were filtered into separate folders 

based on filenames and corresponding categories found in the metadata file. 

The audio files were then converted into spectrogram images for the CNN model to 

classify. The ffmpeg framework handled the conversions from audio to images. Ffmpeg can 

handle almost any format of multimedia files – including audio – and comes with multiple filters, 

libraries, and functions for file manipulation. Using ffmpeg’s showspectrumpic filter, the original 

.flac audio files were converted to spectrogram images with the single following line of code: 

 for i in *.flac; do ffmpeg -i $i -lavfi showspectrumpic=s=960x540 ${i%.*}.png; done 

The ffmpeg command was run from an Ubuntu terminal from within the directory of the 

original audio files. This command takes all the .flac audio files and generates an image using 

Figure 1: The Major Modules of RADIC 
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showspectrumpic setting the size of each image to 960x540 and replaces the file type with .png. 

After the images were created, they were separated from the audio files and placed in their own 

directories/folders, yielding the finalized dataset used in the CNN model creation and speaker 

verification testing. In total, the process generated 3,759 images converted from the ASVspoof 

audio files selected at random consisting of 1,188 bonafide images and 2,571 spoof images. 

3.3 Image Preprocessing 

Before the data was used by CNN for training and testing, it was preprocessed to 

standardize it, normalize it, and vary it, using data augmentation to create content that differs 

slightly from the original. This last step was intended to improve the classifier’s performance and 

training stability: i.e., to avoid skewed results that the model might generate using inconsistent or 

excessively uniform data. 

The standardization process ensured that all images had a common size and color format. 

This step used methods from the image processing python library cv2 (a.k.a. OpenCV). The 

resize() method was used to make sure each image was the same height and width, which in this 

case was a hard-coded variable called img_size equal to 224. The imread() method was used to 

ensure that all images are in the red-green-blue (RGB) color format. 

The normalization process rescaled all data to a common range. This process entailed two 

steps. First, the RGB values produced by the standardization step set each pixel’s color to a value 

between 0 and 255. Since large numbers can slow the computations of CNNs, this first step 

divided each pixel by 255. Then the method reshape() from the NumPy library was used to scale 

the images based on the pixel division operation. This ensures that the results of the CNN 

classification are returned as a percentile. 
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The final, data augmentation step was implemented in order to increase the CNN’s 

accuracy by slightly altering the dataset to increase the amount of training data. This was done to 

minimize the likelihood of overfitting due to an excessive degree of uniformity in the training 

set’s images. This step utilizes the keras ImageDataGenerator, which is a function that used to 

perform the following functions on the data: 

• randomly rotate image within a selected range (30 degrees) 

• randomly zoom image 

• randomly shift image horizontally and vertically a fraction of the images dimensions 

• randomly flip images 

3.4 Constructing the Machine Learning Model 

The CNN model (Figure 2) was built using TensorFlow Keras API because of its 

flexibility in image processing. The documentation pages for Keras describe it as being simple, 

flexible, and powerful [13]. Keras is widely used for many deep learning algorithms including 

image classification. The specific model class used was the Keras Sequential class which takes a 

linear stack of – typically – convolutional and pooling layers. According to the Keras 

documentation guides, “a Sequential model is appropriate for a plain stack of layers where each 

layer has exactly one input tensor and one output tensor” [14]. This works for the dataset used in 
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this work because each layer accepts one type of input and produces one type of output – the 

image and the classification, respectively. 

The model is a standard 3-layer CNN, with pooling layers after each convolutional layer. 

To avoid overfitting for small datasets – this occurs when the testing phase has an unfair 

advantage usually because the dataset was too small and training data is being used in testing – a 

dropout layer was added to the model after the third max pooling layer. The dropout layer sets 

random inputs back to zero while scaling non-zero inputs so that the sum of all inputs stays the 

same [15]. 

To train and test the model, the original dataset was reduced to 1,100 images for each 

classification (2200 total) during audio sample preparation. The training dataset received a 

random 80% of the images from each classification, and the testing dataset received the 

remaining 20% from each. This 80-20 split produces a training set that is large enough to avoid 

overfitting. The model was set to complete 90 epochs during training and is designed to take in 

32 images at a time (i.e., the batch size for the CNN is 32). An epoch is one iteration of the 

dataset through the CNN training algorithm; the number of epochs can increase the model’s 

accuracy depending on the size of the dataset being used. The batch size determines how many 

samples will be run through the network before the model’s training parameters are updated. By 

training the model with 90 epochs, in the training process, the model went through the entire 

                                 
                     

             

Figure 2: The CNN Model for Image Classification 
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training dataset 90 times. With a batch size of 32 and a total training dataset size of 1760, it takes 

the model 55 iterations to finish one epoch (i.e., the number of iterations per epoch equals the 

dataset size divided by the batch size). 
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4 Evaluation 

The Sequential CNN model’s accuracy was determined by presenting it with images from 

the test dataset in order to determine how accurately it classified images from the Bonafide and 

Spoof datasets. The following three measures were used to characterize the model’s accuracy: 

• Precision: the percentage of data the classifier correctly identified as spoof 

• Recall: the percentage of overall spoof data the classifier identified 

• f1-score: the harmonic mean of precision and recall 

4.1 Results 

Running the CNN model with 90 epochs during the training stage resulted in an overall 

accuracy of 69%. The precision, recall, and f1-score are listed in Table 1. 

Class Precision Recall F1-score 

Bonafide 0.70 0.65 0.67 

Spoof 0.67 0.72 0.70 

Table 1: Precision, Recall, and F1-score for Bonafide vs Spoof classification 

Figure 3 shows the accuracy measures for detecting spoof attempts using the proposed system 

(RADIC) with 90 epochs. 

Despite the limited amount of data that was used to train the model, the model’s gradual 

improvement in accuracy over the course of training indicates that any overfitting was minimal. 

4.2 Discussion 

 The model’s ability to accurately classify 69% of the test data indicates that it did in fact 

recognize some patterns between Bonafide and Spoof data.  
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The model labeled 67% of the data correctly as spoof, which indicates that the approach 

warrants further study. The recall rate for spoofed data was 72%, meaning that the CNN has a 

28% chance of missing a replay attack. Deciding which measure to improve upon in the future 

warrants a discussion as to which business application it would be applied to and whether that 

business values customer satisfaction (i.e., limiting the number of users incorrectly identified as 

spoof) over better security (i.e., maximizing the number of replay attacks caught). 

4.3 Future Work 

One potential direction for further research would be to generalize this model to classify 

other types of attacks against VA systems such as deep fakes and text-to-speech spoofing 

attempts. The ASVspoof challenge repository can serve as a source of data for both. A second 

would be to determine how an attack’s setting and means of delivery affects the model’s 

performance: e.g., assessing the impact of the setting in which an attack was recorded and the 

quality of the recording and replay devices on the model’s accuracy. A third would be to 

 

   

   

   

   

   

   

   

   

   

 

                       

 
  
 
  
  
   
 

                

     

Figure 3: Spoof Detection Accuracy 
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determine a limit of diminishing return for the number of epochs run and the accuracy achieved 

by running more epochs. Generally speaking, if the model continues to improve and does not 

reach a state of diminishing returns (where the improvement curve nearly flattens), then adding 

more epochs (300, 500, 800) could improve the model’s accuracy so long as it does not begin 

overfitting the data. 
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5 Conclusion 

This thesis presented RADIC, a voice-based authentication system. The proposed system 

constructed a deep learning (CNN) model that attempts to differentiate between live speech and 

recorded speech that was replayed in a simulated spoof attack against a VA system. The voice 

dataset was first converted to spectrogram images, then the CNN model was used to detect spoof 

attempts. An overall accuracy of 69% was achieved with a subset of the ASVspoof physical 

access dataset. The proposed system’s evaluation shows a promising direction for intrusion 

detection of malicious voice-replay attacks to gain unauthorized access to voice-based 

authentication systems.  A potential future direction for improving the proposed system is to 

experiment with different configurations for the CNN algorithm such as training the model on 

more images and using more advanced image feature extraction techniques.  
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