1,020 research outputs found

    Detection of a dynamic topography signal in last interglacial sea-level records

    Get PDF
    Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (>95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters

    Stable Interpolation with Isotropic and Anisotropic Gaussians Using Hermite Generating Function

    Get PDF

    Seismic Waves

    Get PDF
    The importance of seismic wave research lies not only in our ability to understand and predict earthquakes and tsunamis, it also reveals information on the Earth's composition and features in much the same way as it led to the discovery of Mohorovicic's discontinuity. As our theoretical understanding of the physics behind seismic waves has grown, physical and numerical modeling have greatly advanced and now augment applied seismology for better prediction and engineering practices. This has led to some novel applications such as using artificially-induced shocks for exploration of the Earth's subsurface and seismic stimulation for increasing the productivity of oil wells. This book demonstrates the latest techniques and advances in seismic wave analysis from theoretical approach, data acquisition and interpretation, to analyses and numerical simulations, as well as research applications. A review process was conducted in cooperation with sincere support by Drs. Hiroshi Takenaka, Yoshio Murai, Jun Matsushima, and Genti Toyokuni

    Effect of subglacial shear on geomechanical properties of glaciated soils

    Get PDF
    Continental glaciers covered as much as thirty percent of the present-day inhabited earth during the Quaternary period. Traditionally, one-dimensional consolidation has been considered as the main process of formation for the soils deposited during glaciation. One of the outcomes of accepting one-dimensional consolidation as the main process of formation is that the geomechanical properties of soil in a horizontal plane are isotropic (known as cross-anisotropy). Recent measurements of subglacial pore pressure and preconsolidation pressure profile have indicated that this might not be the case. The role of subglacial shear action has probably been long neglected. The main objective of this research is to investigate the effects of subglacial shearing on the geomechanical properties of glaciated soils. Recent research has found evidence of horizontal property anisotropy associated with the direction of the ice-sheet movement. A testing program was thus proposed to explore the relationship between the anisotropy of property and the direction of past glacier movement. The program involves several fundamental engineering parameters of soils. These parameters together with the corresponding test methods are as follows: (i) Conventional oedometer test – yield stress anisotropy; (ii) Oedometer test with lateral stress measurement – stiffness anisotropy; (iii) Load cell pressuremeter (LCPM) test – in situ stress anisotropy. The physical meaning of yield stress determined by conventional oedometer tests was interpreted as the critical state of structural collapse. The literature review and an experimental study on kaolin samples with a known stress history suggested that yield stress possesses certain dependency on the sampling direction. The anisotropy of yield stress for Battleford till from Birsay, Saskatchewan was also explored by testing directional oedometer samples. In addition, the anisotropy of stiffness was also investigated using a newly developed lateral stress oedometer that is capable of independent measurement of horizontal stresses at three different points with angles of 120 degrees. Preliminary evidence of a correlation between the direction of maximum stiffness in a horizontal plane and the known direction of glacial shear was observed. The correlation between the direction of maximum yield stress and known direction of glaciation was rather poor. Anisotropy of in situ stresses was investigated by conducting LCPM tests in Pot clay in the Netherlands. Based on the LCPM test results, it was concluded that the evidence of a correlation between the anisotropy of in situ stress and known direction of glacial advance is still rather obscure. Although both the laboratory studies and field studies cannot sufficiently confirm the existence of lateral anisotropy of geomechanical properties and its relationship to the direction of the Quaternary ice-sheet movement, the effects of subglacial shearing should not be neglected in assessing the geotechnical properties of glaciated soils. In practice, it is usually found that the preconsolidation pressure profile does not follow the gravitational line as predicted by the one-dimensional consolidation theory and its magnitude is not compatible with the measured effective pressure values at the base of the glacier. It has been suggested that changes in seepage gradient (upward or downward) are responsible for the deviation of preconsolidation pressure profile away from the gravitational line. In this thesis, a new glacial process model – consolidation coupled shearing – was proposed. This model is based on the framework of traditional soil mechanics (critical state theory, Modified Cam-clay model and one-dimensional consolidation theory) and is consistent with the general geological and glaciological evidences. This model may provide an alternative explanation for the preconsolidation pressure patterns generally observed in practice. It can also be combined with groundwater flow characteristics to explain the diversity of the preconsolidation consolidation patterns. The proposed model was used successfully to obtain the preconsolidation pressure profile observed in Battleford till at Birsay and the subglacial shear-softening phenomenon

    An Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation of the ICESat-2 Mission

    Get PDF
    The Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission has been selected by NASA as a Decadal Survey mission, to be launched in 2016. Mission objectives are to measure land ice elevation, sea ice freeboard/ thickness and changes in these variables and to collect measurements over vegetation that will facilitate determination of canopy height, with an accuracy that will allow prediction of future environmental changes and estimation of sea-level rise. The importance of the ICESat-2 project in estimation of biomass and carbon levels has increased substantially, following the recent cancellation of all other planned NASA missions with vegetation-surveying lidars. Two innovative components will characterize the ICESat-2 lidar: (1) Collection of elevation data by a multi-beam system and (2) application of micropulse lidar (photon counting) technology. A micropulse photon-counting altimeter yields clouds of discrete points, which result from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of returned points to reflectors of interest including canopy and ground in forested areas. The objective of this paper is to derive and validate an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2-type data. Data are based on airborne observations with a Sigma Space micropulse lidar and vary with respect to signal strength, noise levels, photon sampling options and other properties. A mathematical algorithm is developed, using spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors and geostatistical classification parameters and hyperparameters. Validation shows that the algorithm works very well and that ground and canopy elevation, and hence canopy height, can be expected to be observable with a high accuracy during the ICESat-2 mission. A result relevant for instrument design is that even the two weaker beam classes considered can be expected to yield useful results for vegetation measurements (93.01-99.57% correctly selected points for a beam with expected return of 0.93 mean signals per shot (msp9) and 72.85% - 98.68% for 0.48 msp (msp4)). Resampling options affect results more than noise levels. The algorithm derived here is generally applicable for analysis of micropulse lidar altimeter data collected over forested areas as well as other surfaces, including land ice, sea ice and land surfaces
    • 

    corecore