319 research outputs found

    Efficient use of space-time clustering for underwater acoustic communications

    Get PDF
    Underwater acoustic (UWA) communication channels are characterized by the spreading of received signals in space (direction of arrival) and in time (delay). The spread is often limited to a small number of space-time clusters. In this paper, the spacetime clustering is exploited in a proposed receiver designed for guard-free orthogonal frequency-division multiplexing (OFDM) with superimposed data and pilot signals. For separation of space clusters, the receiver utilizes a vertical linear array (VLA) of hydrophones, whereas for combining delay-spread signals within a space cluster, a time-domain equalizer is used. We compare a number of space-time processing techniques, including a proposed reduced-complexity spatial filter, and show that techniques exploiting the space-time clustering demonstrate an improved detection performance. The comparison is done using signals transmitted by a moving transducer, and recorded on a 14-element non-uniform VLA in sea trials at distances of 46 km and 105 km

    TS-MUWSN: Time synchronization for mobile underwater sensor networks

    Get PDF
    Time synchronization is an important, yet challenging, problem in underwater sensor networks (UWSNs). This challenge can be attributed to: 1) messaging timestamping; 2) node mobility; and 3) Doppler scale effect. To mitigate these problems, we present an acoustic-based time-synchronization algorithm for UWSN, where we compare several message time-stamping algorithms in addition to different Doppler scale estimators. A synchronization system is based on a bidirectional message exchange between a reference node and a slave one, which has to be synchronized. Therefore, we take as reference the DA-Sync-like protocol (Liu et al., 2014), which takes into account node's movement by using first-order kinematic equations, which refine Doppler scale factor estimation accuracy, and result in better synchronization performance. In our study, we propose to modify both time-stamping and Doppler scale estimation procedures. Besides simulation, we also perform real tests in controlled underwater communication in a water test tank and a shallow-water test in the Mediterranean Sea.Peer ReviewedPostprint (author's final draft

    Underwater 3D positioning on smart devices

    Full text link
    The emergence of water-proof mobile and wearable devices (e.g., Garmin Descent and Apple Watch Ultra) designed for underwater activities like professional scuba diving, opens up opportunities for underwater networking and localization capabilities on these devices. Here, we present the first underwater acoustic positioning system for smart devices. Unlike conventional systems that use floating buoys as anchors at known locations, we design a system where a dive leader can compute the relative positions of all other divers, without any external infrastructure. Our intuition is that in a well-connected network of devices, if we compute the pairwise distances, we can determine the shape of the network topology. By incorporating orientation information about a single diver who is in the visual range of the leader device, we can then estimate the positions of all the remaining divers, even if they are not within sight. We address various practical problems including detecting erroneous distance estimates, addressing rotational and flipping ambiguities as well as designing a distributed timestamp protocol that scales linearly with the number of devices. Our evaluations show that our distributed system running on underwater deployments of 4-5 commodity smart devices can perform pairwise ranging and localization with median errors of 0.5-0.9 m and 0.9-1.6

    A chaotic spread spectrum system for underwater acoustic communication

    Get PDF
    The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).Peer reviewedPostprin

    UNDERWATER COMMUNICATIONS WITH ACOUSTIC STEGANOGRAPHY: RECOVERY ANALYSIS AND MODELING

    Get PDF
    In the modern warfare environment, communication is a cornerstone of combat competence. However, the increasing threat of communications-denied environments highlights the need for communications systems with low probability of intercept and detection. This is doubly true in the subsurface environment, where communications and sonar systems can reveal the tactical location of platforms and capabilities, subverting their covert mission set. A steganographic communication scheme that leverages existing technologies and unexpected data carriers is a feasible means of increasing assurance of communications, even in denied environments. This research works toward a covert communication system by determining and comparing novel symbol recovery schemes to extract data from a signal transmitted under a steganographic technique and interfered with by a simulated underwater acoustic channel. We apply techniques for reliably extracting imperceptible information from unremarkable acoustic events robust to the variability of the hostile operating environment. The system is evaluated based on performance metrics, such as transmission rate and bit error rate, and we show that our scheme is sufficient to conduct covert communications through acoustic transmissions, though we do not solve the problems of synchronization or equalization.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Advanced OFDM Receivers for Underwater Acoustic Communications

    Get PDF
    In underwater acoustic (UWA) communications, an emerging research area is the high data rate and robust transmission using multi-carrier modulation, such as orthogonal frequency-division multiplexing (OFDM). However, difficulties in the OFDM communications include Doppler estimation/compensation, beamforming, and channel estimation/equalization. In this thesis, to overcome these difficulties, advanced low complexity OFDM receivers of high performance are developed. A novel low complexity Doppler estimation method based on computing multi-channel autocorrelation is proposed, which provides accurate Doppler estimates. In simulations and sea trials with guard-free OFDM signal transmission, this method outperforms conventional single-channel autocorrelation method, and shows a less complexity than the method based on computing the cross-ambiguity function between the received and pilot signals with a comparable performance. Space-time clustering in UWA channels is investigated, and a low complexity multi-antenna receiver including a beamformer that exploits this channel property is proposed. Various space-time processing techniques are investigated and compared, and the results show that the space-time clustering demonstrates the best performance. Direction of arrival (DOA) fluctuations in time-varying UWA channels are investigated, and a further developed beamforming technique with DOA tracking is proposed. In simulation and sea trials, this beamforming is compared with the beamforming without DOA tracking. The results show that the tracking beamforming demonstrates a better performance. For the channel estimation, two low complexity sparse recursive least squares adaptive filters, based on diagonal loading and homotopy, are presented. In two different UWA communication systems, the two filters are investigated and compared with various existing adaptive filters, and demonstrate better performance. For the simulations, the Waymark baseband UWA channel model is used, to simulate the virtual signal transmission in time-varying UWA channels. This model is modified from the previous computationally efficient Waymark passband model, improving the computational efficiency further
    • …
    corecore