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Abstract

In underwater acoustic (UWA) communications, an emerging research area is the high data

rate and robust transmission using multi-carrier modulation, such as orthogonal frequency-

division multiplexing (OFDM). However, difficulties in the OFDM communications include

Doppler estimation/compensation, beamforming, and channel estimation/equalization. In

this thesis, to overcome these difficulties, advanced low complexity OFDM receivers of high

performance are developed. A novel low complexity Doppler estimation method based on

computing multi-channel autocorrelation is proposed, which provides accurate Doppler esti-

mates. In simulations and sea trials with guard-free OFDM signal transmission, this method

outperforms conventional single-channel autocorrelation method, and shows a less complexity

than the method based on computing the cross-ambiguity function between the received and

pilot signals with a comparable performance. Space-time clustering in UWA channels is in-

vestigated, and a low complexity multi-antenna receiver including a beamformer that exploits

this channel property is proposed. Various space-time processing techniques are investigated

and compared, and the results show that the space-time clustering demonstrates the best

performance. Direction of arrival (DOA) fluctuations in time-varying UWA channels are in-

vestigated, and a further developed beamforming technique with DOA tracking is proposed.

In simulation and sea trials, this beamforming is compared with the beamforming without

DOA tracking. The results show that the tracking beamforming demonstrates a better per-

formance. For the channel estimation, two low complexity sparse recursive least squares

adaptive filters, based on diagonal loading and homotopy, are presented. In two different

UWA communication systems, the two filters are investigated and compared with various

existing adaptive filters, and demonstrate better performance. For the simulations, the Way-

mark baseband UWA channel model is used, to simulate the virtual signal transmission in

time-varying UWA channels. This model is modified from the previous computationally

efficient Waymark passband model, improving the computational efficiency further.
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Chapter 1

Introduction

Contents

1.1 Underwater Acoustic Communications . . . . . . . . . . . . . . . 1

1.2 Underwater Acoustic Signal Processing Techniques . . . . . . . . 3

1.3 OFDM Signal Transmission in Underwater Acoustic Channels . 6

1.4 Underwater Acoustic Channel Models . . . . . . . . . . . . . . . . 7

1.5 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . 8

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Underwater Acoustic Communications

For millions of years, in the vast oceans, some marine mammals like dolphins and whales

have used acoustic waves as a way of communicating with each other. In recorded human

history, around 350 years B.C., Aristotle noted that humans can hear sound in water as well

as in the air [5]. In 1490, Leonardo da Vinci observed that the sound of ships can be heard

at great distances underwater [6]. In 1743, Abbé J. A. Nollet conducted a series of trials, and

verified that sound can travel underwater, even easier than that travels in the air [7].

It is not until the Second World War, for military purposes, the underwater wireless commu-

nication technique started to develop [8], eliminating physical connection of tethers. After

the War, underwater communications started to extend into commercial fields. In recent

years, the demand for it has motivated extensive research in a growing number of oceanic

applications, e.g., discovery of new resources, marine and oceanographic research, marine

commercial operations, speech transmission between divers, remote control in off-shore oil

1



industry, scientific data collection from ocean-bottom stations, control of surface vessels, un-

manned or autonomous underwater vehicles (UUVs, AUVs), ocean floor mapping, pollution

monitoring in environmental systems, and so on [9, 10]. Driven by these demands, the utili-

sation of underwater communications will likely experience a surge in the near future.

Currently, for employing such wireless communications, three completely different underwater

wireless waves are commonly used, which are: radio waves, optical waves, and acoustic waves.

The radio waves are commonly used for communication in the air, due to their fast-speed

propagation and wide available frequency spectrum as well as their capability of propagation

without medium. The optical waves are commonly used for their small propagation delay and

high possible data rates. However, the radio waves suffer from tremendous attenuation, i.e.,

require large antennas and high power for transmission, only over short distances (usually at

ranges of just a few metres) underwater [9]. The optical waves are severely scattered in a

few hundred metres in water mediums [9]. Acoustic waves, on the contrary, are attractive for

underwater communications, due to their capability of propagating over distances as large as

hundreds or even thousands of miles [9].

Even though the acoustic waves possess the significant merit in underwater communications,

they also offer a great deal of challenges, due to issues like [10–15]:

1. Doppler effect, induced by the motion of the transmitter, the receiver, and the propa-

gation medium with a low propagation speed of sound (normally 1.5 km/s);

2. multipath propagation, induced by reflections on the sea surface and bottom, refraction

of sound waves, scattering from inhomogeneities in the water column, resulting in in-

tersymbol interference, signals spreading (typically tens of milliseconds) and frequency-

selective signal distortion;

3. time-variation, from the ocean surface waves, internal waves, turbulence, and tides;

4. small available bandwidth, from roughly 1 to 100 kHz;

5. ocean noise from numerous mechanisms, including weather, surface wave action, marine

life, shipping, and off-shore industry;

6. geometrical shadow zones, where no acoustic power is transferred to, bent by uneven

speed of sound in a designated direction;
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7. strong signal attenuation, due to absorption, i.e., transfer of acoustic energy into heat,

especially for high frequencies over long distances.

The aforementioned issues reach a point, where the design of a single communication sys-

tem that is capable of handling all these issues seems hopelessly complicated. Accordingly,

to exploit and minimize these issues, advances in techniques of underwater acoustic (UWA)

communications have been made in the past few decades, especially in terms of UWA commu-

nication channel modelling and system design. Underwater channel models, e.g., the VirTEX

model [16], and the Waymark model [1] have been developed and applied to UWA commu-

nications for simulating the acoustic propagation in real underwater environments; multi-

ple multi-carrier modulation schemes have been used for UWA communications [10, 17, 18];

multi-antenna systems were demonstrated [19–22] for UWA communications especially in low

signal-to-noise ratio (SNR); adaptive channel estimators [19, 23] were proposed to improve

UWA channel estimation performance; and so on.

However, high demands in reliable UWA communication schemes call for more effective tech-

niques, some of these techniques are being improved, in terms of throughput, performance,

and robustness. Examples can be listed like the development of advanced signal processing

algorithms, such as Doppler estimation and compensation algorithms [24–29], and sparse

channel estimation algorithms [17, 30–34]; the development of direction of arrival (DOA)

estimation and beamforming algorithms, such as the fractional delay beamforming algo-

rithm [35]; the design of adaptive multi-carrier modulation, such as guard-free orthogonal

frequency-division multiplexing (OFDM) [4]; and so on.

1.2 Underwater Acoustic Signal Processing Techniques

Originally, signal processing techniques were developed for terrestrial wired and wireless chan-

nels in the air [14]. For suiting UWA channels, these techniques need significant modifica-

tions [14]. The research area of UWA signal processing began with development efforts can

date back to the late 1910’s, when the manned submarines were developed and the need to

communicate with them [14]. The UWA signal processing emerged as a distinct discipline

in its own right until many articles in UWA communications published in the past decades.
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Some articles deal primarily with basic architectures and algorithms for UWA channel mod-

elling [1,36], Doppler estimation [26], array processing [37,38], and adaptive filtering [12,25],

with many of them considering real underwater environment and emphasizing practical ap-

plications [11].

However, for reliable UWA communications, there are many problems, involving severe

Doppler effect, complicated channel multipath, and fast time-varying underwater environ-

ment. The unknown underwater environment represents some of the most difficult problems

in demodulating received data. Some components in UWA channels must be estimated, such

as Doppler shift; some components can be learned, such as space-time clustering; and some

components are changing in an unknown manner and therefore should be tracked, such as

time-varying DOAs. Quite frequently, all of these components exist in UWA signal process-

ing. However, the research of the UWA signal processing provides approaches for removing

distortions resulted from the complicated UWA channels, as well as extracting information

about unknown UWA channels [39].

In UWA communication channels, the distortions are often present. Examples are as follows.

1. Doppler effect, which is a common problem in UWA channels, induced by the trans-

mitter/receiver motion and time-varying water column. This presents a severe effect

and can degrade the detection performance of an underwater receiver.

2. In a long distance UWA communication, the detection performance of a multi-antenna

receiver is usually depending on the combination of received signals from array elements

directly. However, it is often difficult for the receiver to achieve a good performance

especially with a low SNR, and the complexity can be high.

3. Multipath propagation, resulted from refraction, reflection and scattering in compli-

cated time-varying underwater physical environment, affects the communication data

to a great extent or even distorts the original data severely.

Other examples can also be presented, but the three examples above are sufficient to illus-

trate some of the main reasons for the requirement of advanced signal processing in UWA

communications. In the first example above, with the time-varying ocean surface/internal

waves or platforms motion, the Doppler effect is usually unavoidable. Therefore, to remove

the distortion and demodulate the data effectively, the Doppler effect must be estimated
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accurately. Also, other problems, such as high complexity, or inaccurate compensation of

Doppler shift, are also need to be solved. Therefore, low complicated and effective Doppler

estimation/compensation methods, that are capable of estimating and compensating for fast

time-varying Doppler shift, are important signal processing techniques which need to be de-

veloped.

The second example above concerns DOA estimation and beamforming. In the UWA chan-

nels, spatial signals are usually analysed by DOA estimation with multi-element vertical

linear array (VLA). In order to separate the spatial signals, beamforming techniques are of-

ten applied. The power of spatial signals from different angles are usually different, which

indicates different SNRs. Maximizing the SNR of spatial signals offers better performance of

the receiver. Moreover, by distinguishing different arrivals, a beamformer makes it possible

to apply different Doppler shifts and delay spreads to each arrival, which potentially max-

imizes performance and reduces complexity of the receiver. Therefore, developing efficient

beamforming techniques as well as optimizing equalizers, are key factors to maximize the

performance of the receiver.

The third example above concerns the channel estimation. The UWA communication chan-

nel is characterized by complicated multipath [12]. For example, when the transmitter is

moving (e.g., towed by a surface vessel) during the data transmission, the underwater propa-

gation paths between the transmitter and receiver are changing, sometimes rapidly. In such

conditions, problems like data symbol timing, and propagation loss, are unknown to the com-

munication system. Therefore, designing a flexible and robust channel estimator, which is

capable of handling the wide range of possible solutions of these problems, is necessary for

improving quality of the UWA communication system.

Recent developments in UWA communications have made it clear that significant perfor-

mance improvement can be achieved by using advanced signal processing techniques, e.g.,

Doppler estimation algorithms [24–28], antenna array beamforming algorithms [35, 40, 41],

sparse adaptive filtering algorithms [17, 23, 31], adaptive equalization algorithms [12, 42–46]

and direct spread spectrum techniques [47–51]. An insight into some of the UWA signal pro-

cessing techniques will be provided, and some new effective techniques of solving distortion

problems and producing desired results will be developed, with an emphasis on complexity
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reduction and performance improvement.

1.3 OFDM Signal Transmission in Underwater Acoustic Chan-

nels

OFDM [52] has emerged as one of the attractive techniques for the signal transmission in

multipath channels [18]. Originally, OFDM was adopted in radio communication systems as

an efficient technique to attain high data rate transmission with high bandwidth efficiency

in frequency selective fading channels [53]. It divides the available channel into a number of

closely-spaced narrowband sub-channels, with each sub-channel orthogonal to all the others.

The number of sub-channels is chosen to generate a sufficiently small spacing sub-carrier,

such that the frequency response in each sub-carrier can be considered flat. Each sub-carrier

can be modulated with a conventional modulation scheme at a low symbol rate [54].

In an OFDM system, each sub-channel is processed independently from all the others, making

OFDM capable of coping with severe channel conditions such as multipath and narrowband

interference, and therefore simplifies the channel equalization and demodulation algorithms.

Moreover, it offers easy reconfiguration for use with different bandwidths, and requires low

computational complexity based on fast Fourier transform (FFT) signal processing. Due to

these significant merits, in recent years, OFDM has been considered as a promising technique

for high data rate transmission in UWA channels, providing robustness against frequency

selective fading [15,55–59].

Even though OFDM has such merits, it is still a challenging task to apply OFDM in UWA

channels due to its sensitivity to frequency shift in underwater. Also, because of the non-

negligible bandwidth of the acoustic signals with respect to the centre frequency, Doppler

effects induced by the relative motion result in such problems as the non-uniform frequency

shift across the signal bandwidth and intercarrier interference [23,59].

To achieve high spectral efficiencies, in this thesis we consider guard-free OFDM signals with

superimposed data and pilot symbols [1, 31, 60, 61]. Guard-free OFDM symbols do not have

any guard interval, such as cyclic prefix or zero padding. The duration of the OFDM symbol
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is the same as the orthogonality interval, and the OFDM symbols are transmitted one-by-one.

A binary pseudo-random sequence of the same length as the OFDM symbol, serves as the

superimposed pilot signal; this is the same in all OFDM symbols. In the UWA communica-

tion channels, the using of the guard-free OFDM signals with superimposed data and pilot

symbols is considered to benefit the spectral efficiency [4, 62].

Multiple sea trials with data transmission using guard-free OFDM signals, were carried out

by the Acoustics Institute (Moscow) in the Pacific and Indian Oceans in 1987-1989 [57,60,63].

In these sea trials, the guard-free OFDM signals were transmitted by a moving underwater

transducer at low (≈ 0.5 m/s) to high (6 to 8 m/s) speeds. Antenna arrays were used for

receiving the signals. Distances between the transducer and the receiver varied from 30 to

110 km.

1.4 Underwater Acoustic Channel Models

For assessing the signal processing techniques in UWA communication channels, experimen-

tal data are required. Sea trials are the ultimate means of collecting experimental data and

assessing the techniques performance [1]. However, the sea trials are confined to expensive

and lengthy experimental preparation. Also, in some situations, the parameters are difficult

if not impossible to control. Instead, the simulation of the propagation channel can be ap-

plied. Therefore, designing an UWA channel model, that is capable of modelling underwater

acoustic signal transmission in similar conditions, is clearly desirable.

Modelling acoustic signal transmission underwater is a difficult problem, taking into consid-

eration the specific time-varying Doppler spreading and multipath propagation due to the

complicated motion of a transmitter and receiver, giving severe signal distortions [64]. The

effect of the relatively slow propagation of sound through water is that the Doppler effect in

UWA communications is a significant factor in performance [36]. This is especially an issue

when the specific time-varying multipath propagation is taken into consideration due to the

complicated motion of a receiver and transmitter.

For such a virtual signal transmission, i.e., the transmission that mimics a real sea trial, the
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VirTEX underwater propagation channel model was developed [65] and used [66]; this model

is based on the Bellhop ray/beam tracing [67] to compute the channel impulse response in

different acoustic propagation environments. A similar approach was implemented in the

Waymark model [1] developed to efficiently simulate the UWA signal transmission in long

communication sessions, potentially allowing for less computation. However, the passband

signal processing in the Waymark model developed in [1] can be replaced by baseband signal

processing, which would potentially reduce the complexity further.

1.5 Motivation and Contributions

1.5.1 Motivation

Advanced signal processing techniques are essential for UWA communications. Developing

such techniques will improve our ability to communicate and exchange information in UWA

channels, and is essential for underwater applications in marine research, oceanography, ma-

rine commercial operations, autonomous underwater vehicle (AUV) design, the off-shore oil

industry, and defence [10]. In recent years, many signal processing techniques for UWA com-

munications have been developed. However, researchers in UWA communications are still

facing challenges. The aim of this thesis is to build high data rate robust UWA communication

systems, more specifically, developing advanced signal processing techniques for such systems.

Guard-free OFDM transmission allows high data rate communications underwater. How-

ever, receivers in guard-free UWA communication systems can be complex, and so far only

single-antenna receivers are known in the literature; the single-antenna configuration has a

limited performance [4]. The key signal processing techniques that define the complexity and

performance of the receiver are the Doppler estimation and compensation, channel estimation

and equalization, and the antenna array beamforming. In this thesis, new techniques will

be developed for Doppler estimation, channel estimation and beamforming that reduce the

complexity of the receiver, while keeping or improving its performance.
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1.5.2 Major contributions

The major contributions of this thesis are summarized as follows.

1. The Waymark UWA channel model [1], based on an approach for setting waymark sam-

pling interval, is modified for acoustic signal propagation underwater, that processes

signals in the baseband. The baseband model processes signals at a low sampling

rate. Therefore, the computational complexity of the model is reduced. Moreover, the

performance of it is comparable to that of a relatively mature UWA channel model

VirTEX [16].

2. A multi-channel autocorrelation (MCA) method is proposed for Doppler estimation.

The method can be used in communication systems with periodically transmitted pi-

lot signals or repetitive data transmission. This method requires a small number of

Doppler estimation channels, which provides low computational complexity, while pro-

viding accurate Doppler estimation.

3. Space-time clustering in UWA channels is illustrated, and space-time clusters com-

bining is proposed to improve detection performance and reduce the computational

complexity of a receiver. Based on the illustrated space-time clustering, a spatial filter

is proposed for DOA estimation, beamforming and producing directional signals. The

angles for producing directional signals are based on the discrete space-time clusters,

which usually results in a small number of diversity branches of the receiver. Based

on the delay spread estimation of a directional signal, an equalizer length is optimized

to reduce the computational complexity of each diversity branch. Moreover, due to

the Doppler-delay spread of signals in a single cluster is smaller than that in multiple

clusters, extra performance improvement can be achieved with a reduced complexity.

4. The time-varying UWA channels are exploited with DOA estimation, and a beamform-

ing technique with DOA tracking is proposed to produce directional signals in time-

varying UWA communication channels. In the channels, the DOAs are often varying

rapidly within small angular intervals, which are usually produced mostly by moving

boundaries (ocean surface), internal waves and drifting hydrophones/sensors. Based on

the proposed beamforming technique with DOA tracking, a receiver shows capability
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of tracking the time-varying DOA and demonstrates better detection performance than

that without DOA tracking.

5. Two sliding-window sparse recursive least squares (RLS) adaptive filters, based on di-

agonal loading and homotopy, are proposed and used in UWA channel estimator. They

are used for UWA sparse impulse response estimation. Sea trial results suggest that the

two proposed sparse RLS adaptive filters achieve better performance than the classic

and existing sparse RLS adaptive filters used for comparison.

1.6 Thesis Outline

This thesis is organized into seven chapters and one appendix. It develops advanced signal

processing techniques in UWA communications. Following the introduction in Chapter 1,

Chapter 2 describes the Waymark baseband propagation channel model. Chapter 3 proposes

the multi-channel autocorrelation method for Doppler estimation. Chapter 4 investigates

the space-time clustering of the channel propagation and applies it to the receiver design.

Chapter 5 contains the DOA fluctuation analysis and the beamforming technique with DOA

tracking in the receiver. Chapter 6 proposes and compares various RLS adaptive filters in

UWA channel estimators for sparse channel estimation. Chapter 7 provides a summary of

this thesis, conclusions and suggestions for future work. More specifically, the context of the

chapters is as follows.

Chapter 2 presents the Waymark baseband UWA channel model, which extends the work

in [1] where a computationally efficient underwater passband propagation channel model is de-

scribed. The extended model creates a time-varying channel model as a baseband equivalent

representation, allowing the signal propagating through the channel at baseband frequen-

cies. Due to the processing in baseband is performed at a lower sampling rate than that

in passband, the simulation time is reduced. In addition, longer channel impulse responses

can be modelled with the same resources, giving the model the ability to accommodate more

complicated and extreme underwater environments.

Chapter 3 presents the MCA Doppler estimation method in UWA channels. This method
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provides accurate Doppler estimates with a low complexity. This method can be used in

communication systems with periodically transmitted pilot signals or repetitive data trans-

mission. The MCA method is compared with conventional single-channel autocorrelation

(SCA) method and the method based on computing the cross-ambiguity function (CAF) be-

tween the received and pilot signals. The comparisons are performed using simulation data

in four shallow water scenarios and sea trial data in two deep water scenarios. The results

demonstrate that the proposed MCA method outperforms the SCA method and comparable

in the performance with the CAF method.

Chapter 4 investigates space-time clustering in UWA channels, and proposes a receiver that

exploits the space-time clustering. The proposed receiver is designed for an UWA commu-

nication system with guard-free OFDM signals and superimposed pilot signals, and a VLA

of hydrophones. Various space-time processing techniques are investigated and compared.

The results show that the space-time clustering demonstrates the best performance with a

relatively low complexity. The comparison has been done using signals transmitted by a fast

moving transducer, and recorded on a 14-element VLA in a sea trial at a distance of 105 km.

Chapter 5 investigates the DOA fluctuation in the time-varying UWA channels, and proposes

a beamforming technique with DOA tracking in the receiver. The DOA fluctuation is inves-

tigated from the ocean dynamics, including surface and internal waves. Taking into account

the fluctuation, a beamforming technique with DOA tracking is proposed and used in a re-

ceiver. The receiver with DOA tracking demonstrates an improved detection performance

than that without DOA tracking. The comparison is based on data recorded on a 14-element

non-uniform VLA, in a simulation at a distance of 80 km, and in two sea trials at distances

of 30 km and 105 km.

Chapter 6 presents two RLS adaptive filters for sparse identification of UWA channels. The

first adaptive filter is based on sliding-window, diagonal loading, and dichotomous coordinate

descent (DCD) iterations. It has a complexity that is only linear in the filter length. The

adaptive filter is used for channel estimation in an UWA communication system with the

transmission of guard-free OFDM signals and superimposed pilot symbols. A LMS adaptive

filter and various RLS adaptive filters are investigated and compared. The results show that

the proposed sliding-window sparse RLS adaptive filter with diagonal loading demonstrates
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the best performance. We also show that adaptive filters with a sliding-window outperform

adaptive filters with an exponential-window. The comparison has been done using signals

recorded in a sea trial at a distance of 80 km transmitted by a fast moving transducer, result-

ing in fast-varying channels. In these conditions, a low-error-rate transmission is achieved at

a spectral efficiency of 0.5 bps/Hz. The second adaptive filter is based on sliding-window, ho-

motopy, and DCD iterations. It is used in a multi-antenna receiver of an UWA communication

system with guard-free OFDM signals and superimposed pilot symbols. More specifically, it

is used for channel estimation in the channel-estimate-based equalizer. We compare the pro-

posed sliding-window homotopy RLS adaptive filter with exponential-window homotopy and

classic RLS algorithms. The results show that the proposed algorithm provides an improved

performance compared to other adaptive filters. The comparison is based on signals recorded

on a 14-element vertical antenna array in a sea trial at a distance of 105 km transmitted

by a fast moving transducer. In these conditions, error-free transmission is achieved with a

spectral efficiency of 0.33 bps/Hz.

Finally, Chapter 7 presents the main conclusions of this thesis, and ideas for future work are

discussed.
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Chapter 2

Waymark Baseband UWA

Propagation Channel Model

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Underwater Channel Simulation . . . . . . . . . . . . . . . . . . . 14

2.3 Shallow Water Experiments . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Introduction

It is difficult to model acoustic wave propagation underwater, due to distortions from severe

Doppler spreading and multipath [64]. The relatively slow propagation of sound through wa-

ter makes the Doppler effect significant in performance of UWA communications [36]. This

is especially apparent when the specific time-varying multipath propagation is taken into

consideration due to the complicated motion of a transmitter/receiver. It is clearly desirable

to be able to make a computer simulation of the propagation of an acoustic signal through

the ocean, especially for testing signal processing algorithms for UWA communications. Not

only are sea trials expensive and time consuming, but also the parameters are difficult if

not impossible to control, therefore trying out different design ideas in similar conditions or

environments becomes infeasible.

Currently, a number of approaches to deal with this problem have been presented in litera-

tures, for example using a static channel impulse response [15] obtained from acoustic field
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computation [68, 69], or a model based on random fluctuations of complex amplitudes of

eigenpaths. Some models approximate the Doppler effect by introducing frequency shifts in

eigenpaths and statistical model for multipath amplitudes [70]. Other approaches are based

on direct replay using a measured time-varying channel response [71], random local displace-

ments [66], and so on.

Among these approaches, a promising one for dealing with this problem is the ‘virtual’ signal

transmission [16,65]. For such a virtual signal transmission, i.e., the transmission that mimics

a real sea trial, the VirTEX underwater propagation channel model was developed [65] and

used [66]; this model is based on the Bellhop ray/beam tracing [67] to compute the channel

impulse response in different acoustic propagation environments. A similar approach was im-

plemented in the Waymark model [1] developed in this research group to efficiently simulate

the UWA signal transmission in long communication sessions, potentially allowing for less

computation. However, the passband signal processing in the Waymark model developed

in [1] can be replaced by baseband signal processing, which would potentially reduce the

complexity further.

A new Waymark model described in this chapter with the aim to further reduce the compu-

tational complexity is developed by my colleague Mr. Benjamin Henson. The new developed

model uses baseband processing for modelling the signal transmission. The author verifies

the new developed model with three simulations, and use the new model to model the signal

transmission for designing UWA receivers in the following paragraphs.

2.2 Underwater Channel Simulation

A received signal in a time-varying linear channel may be described in the general case by [72]

without considering noise:

y(t) =

∫ ∞
−∞

h(t, τ)s(t− τ)dτ, t ∈ [0, Tsig], (2.1)

where h(t, τ) is the impulse response of the channel, s(t) is the transmitted signal, Tsig is the

signal duration. At time t the baseband channel impulse response may be represented as the
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sum of multipath components [73] given by:

h(t, τ) =
L∑
p=1

cp(t)δ(τ − τp(t)), (2.2)

where

cp = Ap(t)e
−j2πfcτp(t), (2.3)

L is the multipath components, cp is the complex amplitude of path p, j =
√
−1, τp(t) is the

time-varying delay for path p, Ap(t) is the time-varying complex amplitude for path p, fc is

the signal carrier frequency. The delay τp(t), would be affected by the path geometry, which

would encompass any movement in the system ultimately representing the Doppler effect.

In the passband Waymark model [1], the impulse response are calculated for a set of points

or waymarks along the transmitter/receiver trajectory. The relative delay in the impulse

responses between these points is then estimated, allowing the shape of the impulse response

and the delays to be interpolated separately, giving an improved result.

Different from the Waymark model, the VirTEX model [16] uses a regularly spaced grid to

describe the water volume that the signal propagates through. The model interpolation is

performed on the amplitude and time of arrivals of the multipath components. An interpo-

lated point between the grid points is the weighted sum of the arrivals at the four surrounding

points. So, for instance, if there were two multipath arrivals at each of the surrounding grid

points then the interpolated point would comprise of eight multipath arrivals. The delays

are adjusted according to the local speed of sound, the geometric distance and incident angle

from the interpolated point to the grid point. The VirTEX system also includes an ocean

surface wave model, however for our experiment it is set up as a flat surface.

In the chapter both the Waymark and VirTEX models use the Bellhop ray-tracing pro-

gram [67] to simulate the physics of the propagation. Other simulators could be used, how-

ever the VirTEX model is restricted to a ray traced input. The Waymark model can use

any model that can produce a frequency response. This would perhaps be more versatile for

lower frequency signals and more complicated bottom profiles where normal-mode models

such as KRAKEN [68] may be more appropriate.
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From the passband discrete form convolution the baseband signal is given by:

ye(nTs) =

I−1∑
i=0

h(nTs, iTs)se(nTs − iTs), n = 0, . . . , N − 1, (2.4)

where se(nTs) can be approximated by:

se(nTs) =

K−1∑
k=0

[
s(kTs)e

−j2πfckTs]r(nTs − kTs), (2.5)

and the r(nTs) is given by [74]:

r(nTs) = sinc(f0nTs)
cos(πf0αnTs)

1− (2f0αnTs)2
, (2.6)

ye(nTs) is the baseband output signal, se(nTs) is the baseband equivalent signal, Ts is the

sample period, I is the number of channel taps in the channel finite impulse response (FIR)

filter, N = Tsig/Ts, r(nTs) is the raised cosine low pass filter impulse response, K is the

raised cosine filter length, f0 is the upper bound of baseband bandwidth, and α is the roll-off

factor.

The original signal spectrum is shifted to centre around zero and a low pass filter (LPF)

applied. The LPF chosen is a raised cosine filter [75]. Once the signal has been moved to be

the baseband equivalent then the sampling frequency may, with reference to the baseband

bandwidth, be decimated from Ts to give a lower sample period Td.

Figure 2.1 shows a diagram of the system with the development from the original system

in [1]. In this development the waymark impulse response is created in the baseband, in

addition the input signal is converted to a downsampled baseband signal and passed through

the time-varying delay and time-varying FIR filter. The splitting of the channel into these two

components allows a more accurate interpolation of the channel impulse response (for more

details see [4]) between waymarks, thus increasing the waymark interval and consequently

reducing the computation. However, the time-varying delay requires a phase correction when

upshifting the signal as shown in Figure 2.1.

The bandlimited channel frequency response at waymark m is generated from multipath ar-

rivals with their respective excess delays and baseband equivalent complex amplitudes. As
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described in [1], the common propagation delay is removed from all of the arrivals thus reduc-

ing the size of the required impulse response. The frequency response Hm(fk) at waymark

m is computed using an acoustic field computation program, Bellhop in this case [67]. The

acoustic field is defined by a set of environmental parameters such as sound speed profile,

the sea bottom parameters, the transmitter/receiver trajectory, and other environmental pa-

rameters. The bandwidth for the channel representation (frequencies fk) should be selected

with reference to the bandwidth of the signal plus any Doppler shift from the environment

and movement.

The channel impulse response for each waymark is calculated from the inverse discrete Fourier

transform (DFT) of the waymark frequency response. With the waymark composite delay

computation, a signal is filtered by the impulse response and an extra delay τm. With the de-

lay compensation this gives a set of responses with an alignment based on the cross-correlation

of the waymark impulse responses giving a better interpolation between the waymarks. How-

ever, the variation of the channel impulse response from one signal sample to another can

often be considered slow. Therefore, the computation of the impulse response for every sig-

nal sample will be redundant, and the trajectory sampling interval can be made much higher

than the signal sampling interval. Then, a local spline interpolation procedure is used for re-

covering the time-varying impulse response for all signal sampling instants [1]. Cubic splines

are used here which provides good trade off between the complexity and accuracy of approx-

imation compared to other spline orders [76].

Due to the low speed of sound, a small deviation of the transmitter/receiver position may

result in significant deviation of the multipath propagation delays. With a high sampling

interval, this condition can result in significant interpolation errors [77]. To overcome this

problem, the delay shifts between consecutive waymark impulse responses are compensated.

Once passed through the channel the signal may be upsampled and upshifted back to the

original sampling frequency and passband. Due to the relatively low speed of sound the

delays are important in the restoration of the signal to the passband, therefore, the upshift

of the signal needs to take into account the delay that is applied to the input signal at each
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sample point. The upshifted post channel signal may be calculated as follows.

y(nTs) = <
{
ye(nTs)e

j2πfc(nTs−τn)
}
, (2.7)

where y(nTs) is the output signal, ye(nTs) is the low frequency equivalent signal, τn is the

estimated additional delay at each output sample instant, and <{·} denotes the real part of

a complex number.

2.3 Shallow Water Experiments

In order to compare the Waymark and VirTEX models, three experiments are performed.

The first is with a flat sound speed profile (SSP), the second is in a summer environment,

the third is in a winter environment.

In the three simulations, a pseudo-random binary sequence (PRBS) data signal is passed

through the channel models, and a cross-ambiguity function (CAF) [78] is computed. In or-

der to obtain a fine resolution for Doppler and delay in the CAF, a PRBS is generated using

an m-sequence of a length of 255 [79]. Five periods of the PRBS are generated at a bit rate

of 1250 Hz. A square root raised cosine filter is used for pulse shaping [80] the sequence, with

a roll-off factor of 0.25, thus producing a signal with the bandwidth 1562.5 Hz. The carrier

frequency is 5 kHz and the sampling frequency is 40 kHz. The transmitted signal duration

is 100 s.

2.3.1 Flat sound speed profile

In this simulation, the environment is as follows.

• Flat SSP at 1.5 km/s;

• Flat bottom at 200 m. Sound speed in sea bed 1.6 km/s;

• Flat calm surface;

• Transmitter and Receiver depth 100 m;

• Range 1000 + vct metres, (vc = 5 m/s);
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• Decimation factor 8, giving Td = 0.2 ms.

The decimation factor is 8, giving a large saving in the channel impulse response interpola-

tion and convolution calculations (at least linear in the decimation factor) compared to the

original Waymark model in [1].

The waymark interval is 0.0512 s. For the Waymark model, two minutes of transmission

time is simulated requiring 2344 field calculations, this number being proportional to the

duration of the transmission time. As for the VirTEX model, to cover the whole area for

ranges between 0 and 2 km and depths between 0 and 200 m with a resolution of 0.254 m,

the same as that in the Waymark model, the VirTEX model would require 6.2 × 106 field

computations; however this figure is constant for any transmission time.

An estimate of the differential delay and Doppler shift between the generated PRBS signal

and the demodulated sequences in the receiver a CAF was calculated using:

A(τ, f) =

∫ T

0
s1(t)s2(t+ τ)e−j2πftdt, (2.8)

where s1(t) is the complex envelop of the generated PRBS, s2(t) is the complex envelop of the

demodulated signal from the channel, τ is the multipath arrival delay, and f is the Doppler

shift. Figures 2.2(a) and 2.2(b) show the CAF of the generated PRBS and demodulated

sequence from the Waymark and VirTEX channel models.

One period of the signal is chosen for analysis. The images in Figures 2.2(a) and 2.2(b)

show some similarities: both have three main paths (direct, and reflected paths from the

surface and bottom) showing comparable excess delays. Also, both have similar Doppler

shifts (around 16.67 Hz). The variation is considered to be due to the differences in the

interpolation in the two models and a different processing window from the removal of the

initial propagation delay for all paths.

2.3.2 Summer environment

In this simulation, the environment is as follows.
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(a) Waymark.

(b) VirTEX.

Figure 2.2: CAF for the two propagation models with a flat SSP.
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water column

bottom
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Figure 2.3: The canonical shallow water SSPs [2, 3] used in the simulation.

• The SSP in the summer environment is shown in Figure 2.3(a);

• Flat bottom at 120 m. Sound speed in sea bed 1.6 km/s;

• Flat calm surface;

• Transmitter and Receiver depth 60 m;

• Range 1000 + vct metres, (vc = 5 m/s);

• Decimation factor 8, giving Td = 0.2 ms.

Figures 2.4(a) and Figure 2.4(b) show the CAF of the generated PRBS and demodulated

sequence from the Waymark and VirTEX channel models, respectively.

One period of the signal is chosen for analysis. The images in Figures 2.2(a) and Figure 2.2(b)

show some similarities: both have four main paths (direct, and reflected paths from the sur-

face and bottom) showing comparable excess delays. Also, both have similar Doppler shifts

(around 16.67 Hz).
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(a) Waymark.

(b) VirTEX.

Figure 2.4: CAF for the two propagation models in the summer environment.
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2.3.3 Winter environment

In this simulation, the environment is the same as that described in Section 2.3.2, apart from

the winter SSP shown in Figure 2.3(b).

Figures 2.5(a) and Figure 2.5(b) show the CAF of the generated PRBS and demodulated

sequence from the Waymark and VirTEX channel models, respectively.

One period of the signal is chosen for analysis. The images in Figures 2.2(a) and Figure 2.2(b)

show some similarities: both have four main paths (direct, and reflected paths from the sur-

face and bottom) showing comparable excess delays. Also, both have similar Doppler shifts

(around 16.67 Hz).

The three experiments are conducted with a flat surface to give a clear comparison with

VirTEX, however a surface model implementation similar to VirTEX has been incorporated

into the Waymark model and simulations will be shown in Chapter 5.

2.4 Summary

In this chapter, the proposed Waymark baseband UWA propagation channel model requires

a lower computational complexity than the Waymark passband UWA propagation channel

model [1], and the performance of it is comparable to that of a relatively mature UWA

propagation channel model (VirTEX ) [16]. This chapter involves developing the channel

model and signal representation at the baseband. This however represents a significant chal-

lenge; the time-varying phase shift introduced into the upshifted signal at the channel output,

should be perfectly synchronized with the time-varying delay introduced in the transmitted

signal before the baseband time-varying convolution. This is in addition to the decimation

process being taken into account. This challenge is similar to that in the baseband Doppler

effect compensation in underwater acoustic modems. In this work, three experiments were

considered, in which the Waymark and VirTEX models were compared. The results show

similarity with a qualitative comparison, with the major feature such as the Doppler shifts

and delays being the same. It is not expected that the results show perfect agreement, since

different interpolation procedures are used in the models.
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(a) Waymark.

(b) VirTEX.

Figure 2.5: CAF for the two propagation models in the winter environment.
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One of significant problems of testing signal processing algorithms for UWA communications

is the modelling of the signal transmission, taking into consideration the specific time-varying

multipath propagation due to the complicated motion of a receiver and transmitter. For such

a virtual signal transmission, we use the developed Waymark model to test the Doppler

estimation methods in communication sessions with complicated motion of the transmitter

and receiver in Chapter 3, and to test the beamforming algorithms with multiple receive

antennas in Chapter 5.
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Chapter 3

Multi-channel Autocorrelation

Method for Doppler Estimation in

Fast-varying UWA Channels
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3.1 Introduction

In UWA communications, due to the low propagation speed of acoustic waves, the Doppler

effect introduces significant distortions in propagated signals [17, 18, 26, 81]. To achieve a

high detection performance accurate Doppler estimation and compensation techniques are

required [25,26,29,82]. The Doppler effect is caused by transmitter/receiver motion, by sur-

face waves, by fluctuations of the sound speed, and other phenomena [1,36,83]. The Doppler

effect on signals is often described as time compression/diletion with a compression factor

constant over a measurement interval, i.e., a constant-speed movement [84–87]. For specific

underwater tasks, such as underwater imaging, environment monitoring, and sea bottom
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searching, fast-moving platforms such as autonomous underwater vehicles (AUVs) can use

complicated trajectories [88–93], where the constant-speed assumption is not valid. Such

movements require frequent re-estimation of the Doppler effect to support a high detection

performance of UWA communications [94]. The Doppler estimation then becomes a compli-

cated task dominating the complexity of the receiver [4].

Many Doppler estimation methods are currently used in UWA communications. One such

method involves transmitting Doppler-insensitive preamble and postamble around a data

package and estimation of the time difference between their arrivals, transformed into the

time-compression factor [26, 95, 96]. This method however assumes that the time compres-

sion (the transmitter/receiver velocity) is constant over the data package, which is often not

the case with a fast-moving and manoeuvring transmitter/receiver. With fast-varying move-

ments, the Doppler estimation should also be performed within the data package, sometimes

requiring updates with every received data symbol [94]. Such Doppler estimation techniques

have been specifically developed for different single-carrier modulation schemes [24,25,27,28].

These techniques however cannot be directly applied to multicarrier transmission, such as the

orthogonal frequency-division multiplexing (OFDM); besides, multicarrier schemes are more

sensitive to Doppler distortions and require more accurate Doppler estimation [97].

One efficient method of Doppler estimation in multipath channels is based on computing the

cross-ambiguity function (CAF) between received and transmitted signals [60, 61, 97]. The

CAF is computed on a two-dimensional (2D) grid of channel delays and Doppler compression

factors. The position of maximum of the CAF magnitude over the Doppler grid provides an

estimate of the Doppler compression. However, due to a large number of Doppler estimation

channels, the CAF method is computationally intensive, even if fast Fourier transforms and

a two-step (coarse and fine estimation) approach is used to reduce the number of Doppler

channels and speed up the computations [4, 29, 84]. Significantly less complicated is the

single-channel autocorrelation (SCA) method [84, 98–101]. This method is applied to peri-

odic transmitted signals and it exploits the fact that, with a moving transmitter/receiver,

the signal period changes; the SCA method measures this change to estimate the time-

compression factor. Apart from being of low complexity due to a single estimation channel,

another benefit of this method is the efficient combining of multipath components. However,

the method can fail in cases where the motion of transmitter/receiver involves accelerations.
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Figure 3.1: Channel model.

In this chapter, we propose a multi-channel autocorrelation (MCA) method that is capable of

estimating the Doppler effect in UWA channels with fast moving and manoeuvring transmit-

ter/receiver, having significantly lower complexity than the CAF method and outperforming

the SCA method.

The Doppler estimation methods are implemented in a communication system with the trans-

mission of guard-free OFDM and superimposed data and pilot signals [1,31,60,61]. The com-

parison of the three methods (CAF, SCA and MCA) in a number of simulation scenarios,

as well as in two real sea trials, shows that the MCA method outperforms the SCA method,

also its performance is comparable to that of the CAF method, but with a less complexity.

3.2 Channel Model

The UWA channel is often modelled as a time-variant linear system with an impulse response

h(t, τ) that describes multipath and Doppler spreads in the channel. The received signal is

then given by

r(t) =

∞∫
−∞

h(t, τ)s(t− τ)dτ + ν(t), (3.1)

where ν(t) is the additive noise.

In UWA communications, when the transmitter and/or the receiver is moving, the channel

can be represented using two time-varying components described by a dominant time-varying

channel delay τd(t) and a slower time-varying channel impulse response h̄(t, τ) as shown in

Figure 3.1 [4]. The component δ(τ − τd(t)) can be thought of as caused by the varying

distance between the transmitter and receiver. The component h̄(t, τ) incorporates variations

in the lengths of acoustic rays due to the movement. Thus, the time-varying channel impulse

response h(t, τ) can be represented as a convolution of δ(τ − τd(t)) and h̄(t, τ).
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Acoustic field
computation (Bellhop)

- Sound speed profile
- Sea bottom parameters
- Transmitter/receiver trajectory
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Time-varying
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Time-varying
FIR filter

Local spline
interpolation

Figure 3.2: A block diagram of the Waymark underwater acoustic simulator; adapted to this chapter.

The Waymark channel simulator [1] shown in Figure 3.2 implements the channel model in

Figure 3.1 using the acoustic field computation for an environment defined by a sound speed

profile (SSP) and acoustic bottom parameters. This is done using the Bellhop ray/beam

tracing [67]. Using the ray parameters, the Waymark simulator computes the dominant

delays {τm} and channel impulse responses {hm(τ)} for a set of points (waymarks) along

the transmitter/receiver trajectory. These are interpolated in time to obtain the continuous

time-varying delay τd(t) and impulse response h̄(t, τ); in the simulator, the continuous time

t is treated as the discrete time at a sampling rate high enough to accurately represent the

communication signal. The (fractional) delay τd(t) is then implemented by interpolation of

the signals, whereas the convolution with the impulse response h̄(t, τ) is implemented using

a time-varying FIR filter. In this chapter, the Waymark simulator is used for numerical in-

vestigation of the Doppler estimation methods in a number of scenarios. Note that sea trials

with such scenarios would otherwise be difficult to conduct. However, data from sea trials

are also used for investigation of the Doppler estimators.

30



3.3 Multi-channel Autocorrelation Doppler Estimator

Consider the channel model in Figure 3.1. Let the transmitted signal x(t) be represented

using an equivalent baseband signal x̃(t):

x(t) = <{x̃(t)ejωct}

=
1

2
x̃(t)ejωct +

1

2
x̃∗(t)e−jωct, (3.2)

where <{·} denotes the real part of a complex-valued number. Similarly, we have

s0(t) = <{s̃0(t)ejωct}

=
1

2
s̃0(t)ejωct +

1

2
s̃∗0(t)e−jωct, (3.3)

where s̃0(t) is an equivalent baseband signal for s0(t).

Let the signal x̃(t) be periodic with a period Ts, so that

x̃(t+ Ts) = x̃(t). (3.4)

Assume that the first component in the channel model, shown in Figure 3.1, is time-invariant,

i.e., h̄(t, τ) = h̄(τ). Then, the baseband signal s̃0(t) is also periodic with the same period Ts,

i.e.,

s̃0(t+ Ts) = s̃0(t). (3.5)

The second channel component in Figure 3.1 is modelled as a time-varying delay τd(t), so the

output of the channel without noise is given by

s(t) =s0(t− τd(t))

=
1

2
s̃0(t− τd(t))ejωc(t−τd(t)) +

1

2
s̃∗0(t− τd(t))e−jωc(t−τd(t)).

(3.6)

In a receiver, typical front-end processing includes a frequency shifting of the received signal

s(t) by ωc via multiplying the signal by e−jωct and further low-pass filtering. Therefore, the

second component in (3.6) is filtered out, and the front-end processing produces a baseband

signal

s̃(t) = s̃0(t− τd(t))e−jωcτd(t). (3.7)
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3.3.1 Single-channel autocorrelation estimator

The delay τd(t) can often be represented as a linear function of time, described by two

parameters, an initial delay a0 and a time-compression factor a1 [17, 81]:

τd(t) = a0 + a1t, t ∈ [−Θ/2,Θ/2], (3.8)

where Θ is a measurement interval. For estimation of the parameter a1, the autocorrelation

function

ρ(τ) =

Θ/2∫
−Θ/2

s̃∗(t)s̃(t+ τ)dt (3.9)

of the baseband signal s̃(t) can then be used [102]. More specifically, a1 can be estimated by

searching for the maximum of |ρ(τ)| over delays in vicinity of the signal period Ts:

τmax = arg max
Ts−τM≤τ≤Ts+τM

|ρ(τ)|, (3.10)

where [τ − τM , τ + τM ] is a search interval defined by the maximum possible delay τM due to

the time compression, i.e., due to the maximum relative speed between the transmitter and

receiver. The ratio â1 = 1− Ts/τmax can be considered as an estimate of a1 (see below). We

call such an estimator of a1 the SCA estimator.

3.3.2 Multi-channel autocorrelation estimator

However, the SCA estimator is limited in accuracy when the Doppler compression factor

varies over the measurement interval, i.e., when the delay line in Figure 3.1 is described by a

polynomial of a higher degree, e.g., if τd(t) is a quadratic polynomial:

τd(t) = a0 + a1t+ a2t
2, t ∈ [−Θ/2,Θ/2], (3.11)

where a2 is a parameter describing the acceleration. Let a be an uniform acceleration be-

tween the transmitter and receiver. Due to this acceleration, the distance d(t) between the

transmitter and receiver varies in time as d(t) = at2/2 in a straight line. Since τd(t) = d(t)/c,

we have a2 = a/(2c), where c is the sound speed.
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In fast-varying channels, for estimation of Doppler parameters, we propose to use the following

statistic:

ρ(τ, ω, µ) =

Θ/2∫
−Θ/2

s̃∗(t)s̃(µt+ τ)ejωtdt. (3.12)

Specifically, the position of the peak of |ρ(τ, ω, µ)| over delay τ in vicinity of the signal period

Ts and over the angular frequency ω = 2πf and compression factor µ:

{τmax, ωmax, µmax} = arg max
τ,ω,µ
|ρ(τ, ω, µ)|, (3.13)

will define the Doppler estimate as explained below.

We now show how the position of the maximum of |ρ(τ, ω, µ)| relates to the Doppler param-

eters a1 and a2 in (3.11). Denote the product in the integral (3.12) as

z(t) = s̃∗(t)s̃(µt+ τ)ejωt. (3.14)

Using (3.7), we obtain that

z(t) = s̃∗0[t− τd(t)]s̃0[(µt+ τ)− τd(µt+ τ)]ejωc[τd(t)−τd(µt+τ)]+jωt. (3.15)

In order to achieve a maximum of |ρ(τ, ω, µ)|, according to the Cauchy-Bunyakovsky-Schwarz

inequality [103], the following should be satisfied

s̃0[t− τd(t)]e−jωc[τd(t)−τd(µt+τ)]−jωt = βs̃0[(µt+ τ)− τd(µt+ τ)], (3.16)

where β is an arbitrary constant independent of time. To satisfy this equality, we need,

in particular, to guarantee that the exponent in (3.16) is independent of time t. With the

approximation of the channel delay τd(t) as in (3.11), the component τd(t)− τd(µt+ τ) in

the exponent can be represented as

τd(t)− τd(µt+ τ) = −(a1τ + a2τ
2) (3.17)

+ (a1 − a1µ− 2a2µτ)t (3.18)

+ a2(1− µ2)t2. (3.19)
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The first (time-independent) term (3.17) is absorbed in the constant β, and therefore it can

be ignored. Below, we will show that the third term (3.19) can also be ignored. In order to

make the second term (3.18) equal zero for any t, the following should be satisfied:

ωc(a1 − a1µ− 2a2µτ) + ω = 0. (3.20)

From this relationship, we arrive at the following estimate of the parameter a2:

â2 =
ωmax + a1(1− µmax)ωc

2µmaxτmaxωc
, (3.21)

where instead of a1 its estimate can be substituted. Note that in many scenarios µmax ≈ 1

and therefore, the estimate in (3.21) can be simplified as

â2 =
ωmax

2τmaxωc
. (3.22)

To guarantee (3.16), we also need to equate arguments of s̃0(·) in both sides of this equation.

Thus, we arrive at the relationship

t− τd(t) = (µt+ τ)− τd(µt+ τ)− Ts, (3.23)

where we also take into account that the signal s̃0(t) is periodic with the period Ts. Us-

ing (3.11), this condition takes the form

(−a1τ − a2τ
2 + τ − Ts) (3.24)

+ (a1 − a1µ− 2a2µτ + µ− 1)t (3.25)

+ a2(1− µ2)t2 = 0. (3.26)

Due to the time dependence present in this equation, we have to make all the three terms equal

zero. Note that the last term (3.26) can be shown to be close to zero for all t ∈ [−Θ/2,Θ/2]

(see below), and therefore it can be ignored.
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Making the first term (3.24) equal zero results in the following relationship:

τmax =
1

2a2

(
k −

√
k2 − 4a2Ts

)
' Ts

k

(
1 +

a2Ts
k2

)
, (3.27)

where k = 1−a1. This approximation is based on the facts that k ' 1, a2Ts � 1 (see below),

and the approximation
√

1− ε ≈ 1− ε/2− ε2/8, applicable if |ε| � 1. If a2 = 0, we arrive at

the estimate of the parameter a1 given by

â1 = 1− Ts
τmax

, (3.28)

which is exploited in the SCA estimator. For a2 6= 0, from (3.27), after some algebra, we

arrive at the following estimate of a1:

â1 = 1− Ts
τmax

− αωmax

2ωc
, (3.29)

where α = [Ts/(kτmax)]2 ' 1.

Making the second term (3.25) equal zero results in the following relationship:

µmax =
1

1− 2a2τmax
k

, (3.30)

where instead of a2 its estimate from (3.22) can be used. Note that µmax has a weak depen-

dence on a1, since k = 1− a1 ≈ 1, and therefore we can approximately write:

µmax ≈
1

1− ωmax/ωc
. (3.31)

Thus, µmax can be found from ωmax. This simplifies the Doppler estimation. According

to (3.13), the statistic |ρ(τ, ω, µ)| needs to be computed at a three-dimensional (3D) grid.

However, as µmax and ωmax are inter-dependent, only a 2D grid over (τ, ω) is sufficient.

Previously, the term a2(1− µ2)t2 has been ignored for t ∈ [−Θ/2,Θ/2] in (3.19) and (3.26);

we now justify this step in our derivation. In many applications, it can be assumed that

a < 1 m/s2 [94, 97, 101]. Assuming also that ∆ is the time-correlation interval of the signal
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s̃0(t), which is given by ∆ ≈ 1/F , the term a2t
2(1− µ2) can be ignored if

|a2t
2(1− µ2

max)| � ∆ ≈ 1

F
. (3.32)

From (3.30), taking into account that, for |ε| � 1, (1 − ε)−2 ' 1 + 2ε and τmax ' Ts/k, we

approximately have

1− µ2
max
∼= −

4a2Ts
k2

. (3.33)

Therefore, it is sufficient to require that

a2Θ2TsF

4c2
� 1. (3.34)

In our experimental scenarios, we have Θ = 1 s, Ts = 1 s, F = 1024 Hz, c = 1.5 km/s, and

a < 1 m/s2. For all these scenarios, a2Θ2TsF/(4c
2) < 10−4 � 1; thus, this requirement is

satisfied with a significant margin.

When deriving (3.29), it was assumed that a2Ts � 1. Indeed, in our scenarios, a2Ts =

aTs/(2c) ≈ 1/3000� 1, i.e., the assumption is satisfied with a significant margin.

We now analyse a possibility of setting µ = 1 in (3.13) to further simplify the Doppler

estimator. Such setting is possible if

|Θ−Θµmax| � ∆ ≈ 1

F
, (3.35)

or ΘF |1−µmax| � 1, i.e., if the signal compression due to the factor µmax over the observation

interval Θ does not exceed the signal autocorrelation interval ∆. For our scenarios, from (3.30)

we obtain

ΘF |1− µmax| < 0.3� 1, (3.36)

i.e., this requirement is satisfied and we can set µ = 1. Indeed, with higher values of the mea-

surement interval Θ and the frequency bandwidth F , one of the components in (3.13) needs

to be prescaled with a compression factor µ related to the frequency ω as µ = (1− ω/ωc)−1.

The estimates of parameters a1 and a2, obtained in the MCA Doppler estimator, are used

for approximation of the delay τd(t) and resampling the received signal (see Figure 3.4).
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Figure 3.3: Guard-free OFDM symbols.

Note that in the SCA method, the term ωmax
2ωc

as in (3.29) is ignored, which makes the SCA

method less accurate when there is a non-zero acceleration a. However, the main disad-

vantage of the SCA method against the MCA method is that, with non-zero acceleration,

the amplitude of the autocorrelation peak in the vicinity of the signal period Ts is reduced.

For example, for pseudo-noise signals, such as the m-sequence [104], with a δ-like ambiguity

function, the amplitude at ω = 0 will be close to zero if ωmaxΘ > 2π; e.g., for our scenarios,

it corresponds to accelerations a > 0.5 m/s2.

3.4 Transmitted Signal and Receiver

In this section, the transmitted signal and the receiver structure are described.

3.4.1 Transmitted signal

OFDM symbols without any guard interval, such as a cyclic prefix or zero padding, are

considered. The duration of the transmitted OFDM symbol is the same as the orthogonality

interval, shown in Figure 3.3. The transmitted signal consists of a continuous sequence of

guard-free OFDM symbols [4, 60] is given by:

sl(t) = <

{
ej2πfct

Ns/2−1∑
k=−Ns/2

[Mp(k) + jDl(k)]ej
2π
Ts
kt

}
, (3.37)

where l = 1, 2, . . . , L, L is the number of OFDM symbols in the transmitted data pack-

age, Ns = 1024 the number of sub-carriers, fc = ωc/(2π) = 3072 Hz the carrier frequency,

F = 1024 Hz the frequency bandwidth, Ts = 1 s the symbol duration, and j =
√
−1. The

sequence Mp(k) ∈ [−1,+1] is a binary pseudo-random sequence of length Ns, serving as the

superimposed pilot signal, the same for all OFDM symbols. Therefore, the pilot signal is

periodic in time with the period Ts. The sequence Dl(k) represents the information data
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in the lth OFDM symbol; it is obtained by interleaving and encoding original data across

sub-carriers using rates 1/2 or 1/3 convolutional codes [104].

Note that in the sea trial described in Section 3.6.1 later on, the guard-free OFDM symbols

at the carrier frequency fc = 768 Hz with a frequency bandwidth of F = 256 Hz were trans-

mitted.

Such a superimposed combining of the information data and pilot does not solve completely

the problem of available resources as half of the signal energy is allocated to the pilot, i.e.,

half of signal energy is wasted. However, in the UWA communication channels, the using

of the guard-free OFDM signals with superimposed data and pilot symbols is considered to

benefit the spectral efficiency [4, 62], due to the fact that the channel capacity is directly

proportional to the available frequency bandwidth, but proportional to the logarithm of the

signal energy. Furthermore, compared to the radio communications in the air, the UWA

communication is characterised with much lower speed propagation and more complicated

multipath, which makes the delay much larger. In this case, the conventional cyclic prefix is

unable to act as a buffer region to protect OFDM signals from intersymbol interference.

3.4.2 Receiver

Figure 3.4 shows the block diagram of the receiver. The front-end processing implements the

frequency shifting of the received signal r(t) = s(t) + n(t) by ωc, where n(t) is a noise signal,

the low-pass filtering, and analogue-to-digital conversion of the baseband signal

r̃(t) = s̃(t) + ñ(t), (3.38)

where ñ(t) is a baseband noise signal, into signal samples r̃(i) taken with a sampling interval

∆τ = Ts/(NsNτ ), where Nτ is the time oversampling factor, which is set to Nτ = 2 for our

experiments.

The Doppler estimation consists of two steps: coarse and fine estimation. The coarse es-

timation is implemented using one of three methods: CAF; SCA; or MCA. In the CAF

method, 2Nd + 1 Doppler sections of the ambiguity function is computed with a period
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Test by cross-correlating the scale-distorted received signal and one period of the pilot signal

(see [26] and [4] for more details). The ambiguity function is computed on the delay-Doppler

scale grid. The delay step on the grid is ∆τ . The Doppler scale step is chosen so that the

corresponding frequency shift ∆f is a predefined fraction of the subcarrier spacing F/Ns:

∆f = F/(NsND), with the frequency oversampling factor ND set to ND = 2. In [4], it is

shown that such a coarse resolution is enough for operation of the receiver, whereas higher

ND would proportionally increase the complexity of the Doppler estimator. However, this

coarse resolution would not be good enough for equalization and demodulation. Therefore,

the coarse estimate is refined by using parabolic interpolation as detailed in [4].

The SCA method is implemented by computing the autocorrelation of the received signal,

ASCA(τ) =

NτNs−1∑
i=0

r̃∗(i)r̃
(
i+

τ

∆τ

)
, (3.39)

where τ/∆τ ∈ {NτNs − τM/∆τ,NτNs + τM/∆τ}, and finding the maximum

τmax = arg max
τ
|ASCA(τ)|. (3.40)

The parameter a1 is then estimated as in (3.28).

The MCA method is implemented by computing 2Nd + 1 autocorrelation functions with a

set of frequency shifts ωm, m = −Nd, . . . , Nd:

AMCA(τ, ωm) =

NτNs−1∑
i=0

r̃∗(i)r̃
(
i+

τ

∆τ

)
ejωm∆τi, (3.41)

where τ/∆τ ∈ {NτNs − τM/∆τ,NτNs + τM/∆τ} and ωm = 2π∆fm. The parameter a1 is

then estimated as in (3.29), where

{τmax, ωmax} = arg max
τ,ωm
|AMCA(τ, ωm)|. (3.42)

Note that the complexity of each of the three methods is directly proportional to the number

of Doppler estimation channels (2Nd + 1). It can be shown that the complexity of a single

channel is approximately the same in all the methods. Therefore, to compare the complexity,

we need to know the number of Doppler channels. For the CAF method, Nd is approximately
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Figure 3.5: Block diagram of a single branch of the equalizer [4].

given by

Nd = round

[
Vmaxfc
c∆f

]
, (3.43)

where round[·] denotes the closest integer number, ∆f = 0.5 Hz the Doppler frequency step,

fc = 3072 Hz the carrier frequency, c = 1.5 km/s the underwater sound speed, and Vmax the

maximum speed of transmitter/receiver. For the MCA method, Nd is given by

Nd = round

[
UmaxTsfc
c∆f

]
, (3.44)

where Umax is the maximum acceleration of transmitter/receiver.

The discrete-time estimates of the Doppler scale factor obtained with the time interval Test

(in our experiments, Test = Ts/4) are linearly interpolated, and used to compensate for the

dominant time-varying Doppler effect by resampling and frequency correcting the signal r̃(i)

(see [4] for details).

The resampled and frequency corrected signal r̃(n) is divided into two fractional diversity

signals r̃0(n) and r̃1(n), corresponding to odd and even samples of r̃(n), respectively. The

two signals are independently time-domain equalized. Figure 3.5 shows the block diagram of

a single branch of the equalizer. Assuming perfect compensation of the dominant Doppler

compression described by the time-varying delay τd(t), the equalization deals with the dis-

tortions of the signal caused by the slow variant impulse response h̄(t, τ) (see Figure 3.1).

The equalized signals x̃0(n) and x̃1(n) from the two diversity branches are combined to

produce one combined signal x̃(n). The equalizer is implemented using the channel-estimate-

based FIR scheme with a channel estimator based on an RLS adaptive filter [31, 43]. The

linear equalizer compensates for scale factors of different multipath components and com-

bines these components. The channel estimates are transformed into spline coefficients for

the impulse response of the equalizer FIR filter to trace the time-varying channel fluctuations
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(see [4, 31] for details).

The combined signal is then converted into a frequency domain signal X̃(k). The frequency

domain signal is demodulated to produce tentative data estimates D, further refined in Q

iterations; in our experiments, Q = 1. The final data estimate D(Q) is applied to the Viterbi

decoder [104] to recover transmitted data.

3.5 Numerical Results

In this section, we investigate the detection performance of three versions of the receiver

of guard-free OFDM signals, shown in Figure 3.4. These versions differ in the Doppler

estimator, which are the CAF, SCA, or MCA estimator. The investigation is performed

using the Waymark simulator [1] to model the time-varying multipath distortions of signals,

caused by moving transmitter and/or receiver in specific acoustic environments. The required

signal-to-noise ratio (SNR), from 7 dB to 17 dB, is then achieved by adding independent

Gaussian noise to the distorted signal. The SNR is defined as the ratio of the energy of the

distorted signal over the whole length of the communication session to the noise energy over

the same time interval, in the frequency bandwidth of the transmitted signal (from 2560 Hz

to 3584 Hz). The SNR is computed in the passband as:

SNR = 2Epass/N0, (3.45)

where Epass is the signal energy in the passband, and the N0 is the noise energy in the pass-

band.

In the simulation, the following three scenarios are considered:

• Scenario 1: the transmitter moves with a sinusoid-like trajectory towards the receiver

at a speed of 6 m/s, while the receiver is stationary, as shown in Figure 3.6(a);

• Scenario 2: the transmitter moves with a sinusoid-like trajectory past the receiver at a

speed of 6 m/s, while the receiver moves towards the transmitter at a speed of 6 m/s,

as shown in Figure 3.6(b);

• Scenario 3: the transmitter performs a slow flower circle movement, while the receiver
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moves towards the transmitter at a speed of 6 m/s, as shown in Figure 3.6(c).

The depth of both the transmitter and the receiver is 60 m. The data transmission lasts for

200 s, i.e., L = 200 OFDM symbols are continuously transmitted in a communication session.

3.5.1 Transmitter moves towards receiver

In this scenario, two shallow water environments are considered, with summer and winter

SSPs [2, 3], shown in Figure 3.7(a) and Figure 3.7(b), respectively. The transmitter moves

towards the receiver with a sinusoid-like trajectory as shown in Figure 3.6(a). Such a move-

ment can be caused when a transducer is towed by a surface vessel. Indeed, the sinusoid-like

trajectory is only an approximation of a real movement affected by the surface waves [1]. The

distance D(t) between the transmitter and receiver varies in time as

D(t) = D0 − vtt+K sin

(
2πt

T

)
, (3.46)

where D0 is an initial distance at t = 0, K = 2 m is the sinusoid amplitude, T = 10 s is a

typical period of surface waves, and vt = 6 m/s is the speed of the vessel. Thus, the maximum

speed between the transmitter and receiver is Vmax = 7.3 m/s and the maximum acceleration

Umax = 0.79 m/s2.

Based on the maximum velocity and acceleration, from (3.43) and (3.44) we obtain the

number of Doppler channels in the CAF and MCA estimators as 61 and 7, respectively. As

the complexity of the estimators is proportional to the number of Doppler channels, it can

be seen that the MCA estimator requires almost 9 times less computations. Indeed, the SCA

method requires a single estimation channel and it has the lowest complexity of the three

methods. However, as will be seen from our investigation, the SCA method is incapable of

providing reliable detection.

1. Experiment with the summer SSP

This experiment starts at the distance D0 = 10 km. Figure 3.8(a) shows fluctuations

of the channel impulse response. Figure 3.9(a) shows the bit-error-rate (BER) perfor-

mance of the receiver with the three Doppler estimation methods. It can be seen that

the SCA method is unable to provide a reliable detection, whereas the MCA estimator
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(a) Transmitter moves towards receiver

Tx

Rx

(b) Transmitter moves past receiver

Tx

Rx

(c) Flower circle movement of the transmitter

Figure 3.6: Simulation scenarios (top view; Tx is the transmitter, and Rx is the receiver).
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water column

bottom

(a) Summer profile

water column

bottom

(b) Winter profile

Figure 3.7: The canonical shallow water SSPs [2, 3] used in the simulation; For convenience, Figure 2.3 is
shown here again.

provides a BER performance comparable to that of the CAF method.

2. Experiment with the winter SSP

In this case, the SSP is as shown in Figure 3.7(b), and the initial distance is set to

D0 = 20 km. Figure 3.8(b) shows fluctuations of the channel impulse response in this

case. It is seen that the multipath structure of this channel is more complicated than

in the channel with the summer SSP. However, as seen in Figure 3.9(b), the proposed

MCA method still provides a performance comparable to that of the CAF method. It

is also seen that the SCA method cannot provide reliable detection.

3.5.2 Transmitter moves past receiver

In this scenario, the summer SSP is used for simulation, and the distance D(t) between the

transmitter and receiver is described as

D(t) =
√

(D0 − vrt)2 + (vtt+K sin(2πt/T ))2, (3.47)

where D0 = 2 km is the initial distance at t = 0, K = 2 m, T = 10 s and vt = vr = 6 m/s. Fig-

ure 3.8(c) shows fluctuations of the channel impulse response in this scenario. Figure 3.9(c)
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(a) Summer SSP, transmitter moves towards receiver (10 km).

(b) Winter SSP, transmitter moves towards receiver (20 km).

(c) Summer SSP, transmitter moves past receiver (2 km).

(d) Summer SSP, flower circle movement (5 km).

Figure 3.8: Fluctuations of the channel impulse response in the simulation scenarios (distance).
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(a) Summer SSP, transmitter moves towards receiver, 10 km, 1/2 bps/Hz.
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(b) Winter SSP, transmitter moves towards receiver, 20 km, 1/2 bps/Hz.
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(c) Summer SSP, transmitter moves past receiver, 2 km, 1/3 bps/Hz.
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(d) Summer SSP, flower circle movement, 5 km, 1/3 bps/Hz.

Figure 3.9: BER performance of the receiver with the three Doppler estimation methods in the four simulation
scenarios (environment, scenario, distance, spectral efficiency).
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shows the BER performance of the receiver with the three Doppler estimation methods. It

can be seen that the SCA method shows poor performance, whereas the MCA estimator

again shows a performance similar to that of the CAF method.

In this scenario, the maximum transmitter/receiver speed is Vmax = 6 m/s and the maximum

acceleration is Umax = 0.7 m/s2. From (3.43) and (3.44) we obtain that the CAF method re-

quires 51 Doppler channels and the MCA method requires 7 channels, i.e., the MCA method

requires 7 times less computations than the CAF method.

3.5.3 Flower circle movement of transmitter

AUVs can use complicated trajectories for underwater imaging, monitoring and sea bottom

searching [88–93]. A complicated trajectory is considered in this scenario as shown in Fig-

ure 3.6(c); the trajectory of the transmitter looks like a petaled flower. The receiver moves at

a speed of vr = 6 m/s. The distance D(t) between the transmitter and receiver is described

as

D(t) =
√

(D0 − vrt)2 + [K sin(12πt/T ) + 2]2 − 2(D0 − vrt)[K sin(12πt/T ) + 2] cos(2πt/T ),

(3.48)

where D0 = 5 km is the initial distance at t = 0 between the central point (point O in

Figure 3.6(c)) of the flower and receiver, K = 2 m, and T = 100 s the period of passing one

flower circle; the external radius of the flower is 3 m.

Figure 3.8(d) shows fluctuations of the channel impulse response in this scenario and Fig-

ure 3.9(d) shows the BER performance of the receiver. It can be seen that the SCA method

is outperformed by the other two methods, which show similar performance.

In this scenario, the transmitter moves with a relatively low time-varying speed, vt ≤

0.38 m/s. The maximum transmitter/receiver speed is Vmax = 6.8 m/s, and the maximum

acceleration is Umax = 0.29 m/s2. From (3.43) and (3.44), we obtain that the CAF method

requires 59 Doppler channels and the MCA method requires only 3 channels; thus the MCA

method has almost 20 times less complexity than the CAF method.
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From this numerical investigation, we can conclude that the proposed MCA method signifi-

cantly outperforms the SCA method and provides a performance similar to that of the CAF

method. However, the complexity of the MCA method is significantly lower than the CAF

complexity.

3.6 Sea Trial Results

In this section, we compare the performance of the three Doppler estimation methods using

data recorded in two deep-water sea trials, with low and high speeds, respectively.

3.6.1 Low speed of transmitter

In the first sea trial, the communication signals (guard-free OFDM symbols) with a duration

of 33 minutes were transmitted in the frequency interval 640-896 Hz at a distance of 3 km

from a drifting transmitter to a drifting omnidirectional receiver; the relative speed was about

0.5 m/s. The depth of both the transmitter and receiver were at 200 m. Figure 3.10(a) shows

fluctuations of the channel impulse response in this sea trial.

Table 3.1: BER performance of the receiver with the three Doppler estimators in the low speed sea trial;
spectral efficiency: 1/2 bps/Hz.

Doppler estimator
BER for code

[3 7] [23 35] [561 753]

CAF 2.4× 10−5 0 0

SCA 1.0× 10−3 1.0× 10−3 1.4× 10−3

MCA 4.1× 10−5 0 0

The BER performance of the receivers with the three Doppler estimators is shown in Table 3.1.

Note that, since in this sea trial the speed and acceleration of the transmitter/receiver were

low, we would expect a similar performance for the SCA and MCA methods. It can be seen

that the proposed MCA estimator guarantees the performance comparable to that of the

CAF method, and it still outperforms the SCA method. Thus, even in this low-speed case,

the proposed estimator results in the performance improvement. Note that in communication
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(a) Indian Ocean; low speed, short distance.

(b) Pacific Ocean; high speed, long distance.

Figure 3.10: Fluctuations of the channel impulse response in the two sea trials.
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Figure 3.11: SSP in the second sea trial.

systems, the convolutional code is used for error-correcting that generates parity symbols via

sliding application of polynomial function to the data stream [105], it is not necessary for

a receiver to achieve better error-correcting performance with higher convolutional codes,

especially in time-varying and complicated UWA channels.

In this sea trial, the CAF method requires 7 Doppler channels, whereas the MCA method

requires only 3 channels; thus, the complexity of the MCA method is significantly lower.

However, the BER performance of the two methods is similar, whereas the SCA method

cannot provide the reliable detection.

3.6.2 High speed of transmitter

In the second sea trial, described as session F1-10 in [4], 376 guard-free OFDM symbols were

transmitted at distances from 81 to 79 km. The transducer was towed at a depth of 200 m by

a surface vessel moving at a speed of about 6–7 m/s towards a receiver. Due to the surface

waves affecting the towing vessel, the transducer exhibited random oscillations around the

main trajectory with an average period about 10 s [4]; this resulted in an acceleration between

the transmitter and receiver. The receive omnidirectional hydrophone was slowly drifting at a

depth of 400 m. Figure 3.11 shows the SSP in the sea trial. The SNR for the received signals

is shown in Figure 3.12. The average SNR during the session is about 11 dB. Figure 3.10(b)

shows fluctuations of the channel impulse response in the sea trial, after removing the dom-

inant time-varying delay corresponding to the transmitter speed 6 m/s. It is seen that the
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Figure 3.12: Time-varying SNR in the F1-10 sea trial.

channel is characterized by a large number of fast-varying multipath components.

Table 3.2: BER performance of the receiver with the three Doppler estimators in the high speed sea trial;
spectral efficiency: 1/2 bps/Hz.

Doppler estimator Code [3 7] Code [23 35] Code [561 753]

CAF 4.5 · 10−3 8.5 · 10−4 2.0 · 10−5

SCA 0.30 0.34 0.37

MCA 4.8 · 10−3 9.2 · 10−4 0

The BER performance is shown in Table 3.2. The BER is shown for different coding schemes,

characterized by the code polynomial, [3 7], [23 35], or [561 753] in octal. It can be seen that

for all the codes, the MCA method shows a performance similar to that of the CAF method,

and it is significantly better than the performance provided by the SCA method. This result

is similar to that obtained in numerical experiments in Section 3.5.

The poor performance of the SCA method can be explained using Figure 3.13(a) and Fig-

ure 3.13(b) showing |AMCA(τ, ωm)| with 7 Doppler channels, m = 1, . . . , 7. The variable

m = 4 corresponds to ωm = 0, i.e., AMCA(τ, ω4) = ASCA(τ). Figure 3.13(a) illustrates a

case, when the peak of |AMCA(τ, ωm)| is in the Doppler channel m = 4; in this case, the

SCA method performs as the MCA method. However, in another case, illustrated by Fig-

ure 3.13(b), the peak is at m = 2, the SCA method cannot detect the peak, and, consequently,

the detection performance of the receiver is poor.

In this sea trial, the CAF method requires 61 Doppler channels, whereas the MCA method

requires only 7 channels; thus, the complexity of the MCA method is significantly lower.
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(a) A case of low acceleration.

(b) A case of high acceleration.

Figure 3.13: Examples of the time-frequency autocorrelation function |AMCA(τ, ωm)| in the sea trial.
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However, the BER performance of the two methods is similar, whereas the SCA method

cannot provide reliable detection.

3.7 Summary

In this chapter, we proposed and investigated a new (multi-channel) autocorrelation method

for Doppler estimation in fast-varying UWA channels. The proposed method not only mea-

sures the time compression over the estimation interval, but also the gradient of the time

compression, thus allowing more accurate (with time-varying sampling rate) resampling of

the received signal to compensate for the Doppler distortions. The proposed method has been

compared with a single-channel autocorrelation method and a method based on computing

the cross-ambiguity function between the received and pilot signals. The results in shallow

water simulation scenarios and in the two deep ocean sea trials demonstrate that the proposed

method outperforms the single-channel autocorrelation method, and it is comparable in the

performance to the method based on computation of the cross-ambiguity function. However,

the proposed method requires significantly less computations.
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Chapter 4

Efficient Use of Space-time

Clustering for UWA OFDM

Communications
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4.1 Introduction

In UWA communication channels, received signals are spread in angle and delay of arrival [38].

In many communication scenarios, e.g., in deep-water channels, the spreading is concentrated

around a few specific directions of arrival (DOAs) and delays [35, 40, 41, 106]. We refer to

this phenomenon as the space-time clustering, and exploit it to improve the detection per-

formance and reduce complexity of a receiver. The receiver that we consider here utilises a

vertical linear array (VLA) of hydrophones. For improving the detection performance, an

efficient way is to combine signals from multiple diversity branches [38, 107, 108], e.g., from

antenna array elements. However, with combining applied directly to antenna elements, a

large number of elements is required to achieve a good bit error rate (BER) performance in
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scenarios with a low signal-to-noise ratio (SNR). In such receivers, the complexity is propor-

tional to the number of antenna elements and can be high.

The space-time clusters introduce a natural diversity, which can be used to improve the detec-

tion performance and reduce the complexity. In order to exploit this opportunity, the clusters

need to be identified, which, in particular, requires estimation of the spatial signal distribu-

tion [35,109]. Spatial filters (SFs) estimate the spatial signal distribution and choose single or

multiple directions from this distribution for diversity combining [35,40,41]. If directions for

further processing are chosen based on the maximum power of arrived spatial signals, several

directions from the same space cluster can be chosen, which limits the receiver performance

due to correlation of the diversity branches. For achieving a high performance when pro-

cessing wideband communication signals, a SF would combine properly delayed signals from

antenna elements. This requires delays to be fractional with respect to the sampling interval

used for analogue-to-digital conversion (ADC) of the received signals, and for every DOA of

interest applying specific sets of delays. As a result, such SFs possess a high complexity.

In this chapter, we investigate a receiver with space-time processing of orthogonal frequency-

division multiplexing (OFDM) signals. In the receiver, a SF computes a spatial signal dis-

tribution to estimate DOAs, and further uses these estimates in beamformers to form space

diversity branches. We propose a SF that does not require delaying the signals from antenna

elements and therefore it is of reduced-complexity compared to the SF with fractional delays.

In every diversity branch, an equalizer compensates for the Doppler effect and performs the

multipath combining. Finally, the equalized signals from the diversity branches are combined

using the maximal ratio combining (MRC) [107], demodulated and decoded. We investigate

the performance of the receiver with proposed and existing space-time processing techniques,

and find that the receiver exploiting the space-time clustering demonstrates an improved per-

formance and reduced complexity. The investigation is based on processing signals recorded

on a 14-element VLA in a sea trial at a distance of 105 km with a transducer moved at a

speed of 6 m/s. In these conditions, when exploiting the space-time clustering, an error-free

data transmission is achieved with a spectral efficiency of 0.33 bps/Hz.
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4.2 Space-time Clusters in UWA Channels

In this section, we show examples of space-time clusters observed in sea trials at distances

from 30 km to 110 km. The acoustic environment is characterised by the sound speed profile

shown in Figure 3.11. The sea depth is about 5 km, and the minimum sound speed is at a

depth of about 300 m. In the trials, communication signals are transmitted in the frequency

band 2560-3584 Hz; a transducer is towed at a depth of around 250 m and a receive VLA

of 14 hydrophones is placed at a depth of around 420 m. Figure 4.1 shows the hydrophone

positions within the VLA of a total length of 8.1 m; the inter spacing between hydrophones

differs from 0.3 m to 1.2 m.

Space-time distribution of received signals are shown in Figures 4.2-4.3 for various distances

between the transmit and receive antennas. It can be seen that in all the cases, the signal

distributions are characterised by several peaks representing what we call space-time clusters.

These clusters can provide natural diversity branches in a receiver.

When describing the receiver below, data from these experiments can be used. For illus-

tration, we will be using the experimental data obtained at a distance of 105 km, see Fig-

ure 4.3(c).

4.3 Transmitted Signal and Channel Model

The transmitted signal s(t) described in Section 3.4 is used here.

The UWA channel is often modelled as a time-variant linear system with an impulse response

hm(t, τ) that describes multipath and Doppler spreads in the channel. The received signal at

the mth hydrophone is then given by

rm(t) =

∞∫
−∞

hm(t, τ)s(t− τ)dτ + νm(t), m = 1, . . . ,M, (4.1)

where M is the number of hydrophones in the VLA, and νm(t) is the additive noise. Various

models of hm(t, τ) can be used; e.g., for a channel with Q discrete multipath components we
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Figure 4.1: Vertical Linear Array of 14 hydrophones deployment in the sea trials.
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(a) 30 km (b) 39 km

(c) 46 km (d) 50 km

(e) 94 km (f) 100 km

Figure 4.2: Experimental space-time distributions of received signal observed at various distances from 30 km
to 100 km.
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(a) 102 km (b) 103 km

(c) 105 km (d) 106 km

(e) 109 km (f) 110 km

Figure 4.3: Experimental space-time distributions of received signal observed at various distances from 102 km
to 110 km.
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have [18,110]:

hm(t, τ) =

Q∑
q=1

Aq,mδ(τ − τq,m(t)), (4.2)

where Aq,m is the amplitude of the qth multipath component at the mth hydrophone, and

δ(t) is the Dirac delta function. The time-variation of the impulse response is mainly due

to the time-variation of delay rather than the slow time-variation of amplitude, so we can

almost consider the amplitude in the (4.2) to be a constant value. The time variation of the

delay τq,m(t) is caused by the Doppler effect; the slop (gradient) of the time dependence de-

fines the time compression experienced by the signal. One of challenges in processing signals

received in such a channel is due to different time compressions of signals received via differ-

ent multipaths. As a consequence, the simple time compression operation, implemented in

practice via resampling the received signal, cannot completely remove the Doppler distortion.

However, multipath components arrived from a particular (jth) direction tend to have close

values of the time-compression factor. Therefore, the Doppler distortion in a signal from

the jth direction can be accurately compensated by resampling. After the resampling, the

channel can be modelled by a time-invariant impulse response

hj(τ) =

Qj∑
q=1

Aq,jδ(τ − τq,j), (4.3)

where the delays τq,j are now constant and Qj is the number of multipath components in

the jth space branch, Qj ≤ Q. The time-invariant property of the impulse response allows

a higher accuracy of channel estimation/equalization and, eventually, better detection per-

formance of the receiver. A reduced channel delay spread in directional signals also allows a

better detection performance and reduced complexity.

Signals received from several directions and equalized can be combined to further improve the

detection performance. The performance after the diversity combining will not only depend

on the energy of the received signals, but also on correlation of channels in diversity branches.

It is therefore possible that weaker signals from uncorrelated directions after combining will

provide a better detection performance compared to combining strong signals received from

correlated directions.
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Figure 4.4: Block diagram of the receiver.

4.4 Space-time Processing in Receiver

In this section, we describe the receiver (see Figure 4.4). The analogue signals received by M

hydrophones are bandpass filtered within the frequency band of the OFDM transmission and

converted into the digital form r1(i) to rM (i) at a sampling rate fs; fs = 4fc = 12288 Hz in

our case. The digital signals r1(i) to rM (i) are processed in a SF that produces J directional

signals r(i, θ̂j), j = 1, . . . , J . The angles θ̂j are chosen from the average signal power as a

function of DOA. The directional signals are equalized in time-domain, transformed into the

frequency domain using the fast Fourier transform (FFT), and combined using the MRC.

The combined frequency domain signal X̃l(k) is transferred to a demodulator and, after dein-

terleaving, further to the soft-decision Viterbi decoder [104].

4.4.1 Spatial filters

The following six SFs are considered here:

1. Single-element SF

The signal r1(i) received at the first hydrophone is the only output of the SF.

2. Multiple-elements SF

The M received signals r1(i), . . . , rM (i) are J = M outputs of the SF.

3. SF with a single direction corresponding to the maximum power of spatial

distribution

62



Figure 4.5: Spatial power distribution P(if ; θ) in the sea trial at a distance of 105 km; positive angles corre-
spond to acoustic rays received from the sea surface direction while negative angles show rays from the sea
bottom direction.
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Figure 4.6: The average spatial signal power P̃(θ); obtained at angle step 0.4◦.

The time-varying power P(if ; θ) (see Figure 4.5, where if is the time instant) and the

average power P̃(θ) (see Figure 4.6) are computed in a DOA estimator (see Figure 4.7)

as explained below in Section 4.4.2.

Based on the maximum power of the spatial distribution, a single (J = 1) direction θ̂1

is chosen:

θ̂1 = arg max
θ

P̃(θ). (4.4)

The beamformer produces a single directional signal r(i, θ̂1).

4. SF with J directions corresponding to J maxima of spatial distribution
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Figure 4.7: Block diagram of the SF with J outputs based on maxima of the spatial signal power.

In this case (see Figure 4.7), several directions (J ≥ 2) are chosen, corresponding to

the first J maxima of the average power distribution P̃(θ):

[θ̂1, . . . , θ̂J ] = arg max
θ

P̃(θ). (4.5)

Note that the function P̃(θ) is computed on a grid of angles θ; in our experiments here,

we use a grid within the interval θ ∈ [−25◦, 25◦] with a step of 0.4◦.

5. Proposed SF with J directions corresponding to J space clusters

In this SF, a peak detector P (in the software MATLAB, the function “findpeaks”

can be used) finds J local maxima of P̃(θ), which are considered to correspond to

space clusters. With this technique, two (J = 2) space clusters are identified in the

experiment at the distance 105 km (see Figure 4.3(c)). The two clusters occupy angle

intervals [6◦, 11◦] and [−12◦,−6◦], but in each of them, a single angle θ̂j (θ̂1 = 8.4◦ and

θ̂2 = −9◦, respectively) is chosen for further processing:

[θ̂1, . . . , θ̂J ]T = P[P̃(θ)]. (4.6)

6. SF with fractional delays and J directions corresponding to J space clusters

In SFs 3, 4 and 5 described above, low-complexity DOA estimation and beamforming

techniques presented below in Section 4.4.2 are used. More accurate but also more com-

plicated DOA estimation and beamforming are used in the SF with fractional delays.

For achieving a high accuracy when processing wideband signals, such as communication

signals, both the DOA estimator and beamformer should operate by introducing delays

(fractional delays with respect to the sampling interval) in the hydrophone signals, the

delays being different for each direction, and processing each direction separately from
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other directions, which make this SF complicated [35].

4.4.2 DOA estimator and beamformer

The DOA estimator computes the spatial power distribution to estimate DOAs, then beam-

formers, using these DOA estimates, produce directional signals. In this section, we propose

simplified DOA estimator and beamformer not requiring the fractional delays.

1. DOA estimator

The DOA estimator computes the spatial power distribution of the received signal by

processing the hydrophone signals r1(i) to rM (i). The ith time-domain snapshot of

received signals is described as an M × 1 vector r(i) = [r1(i), r2(i), . . . , rM (i)]T . The

snapshots are divided into Nf frames, If snapshots each. A frame is divided into Nsf

non-overlapping subframes of U snapshots each, i.e., If = NsfU . The subframes

are transformed into the frequency domain; the M × 1 frequency domain snapshot at

frequency ωk for a subframe starting at time u is given by

z(u; k) =
U−1∑
n=0

r(u+ n)e−jωkn/fs , (4.7)

where k = 0, . . . ,K− 1, K = 2πF/∆ω, F is the bandwidth of interest, ωk = ω0 +k∆ω,

∆ω = 2πfs/U , and ω0 the lowest frequency of interest. For a frame starting at time if ,

for every frequency ωk, the M×M spectral density matrix (SDM) is computed as [111]:

Y(if ; k) =
1

Nsf

Nsf−1∑
nsf=0

z(if + nsfU ; k)zH(if + nsfU ; k) + κIM , (4.8)

where (·)H denotes the conjugate transpose, IM an M ×M identity matrix, and κ a

loading factor which is a small positive number related to the noise level.

The SDM Y(if ; k) is used for obtaining the spatial power at every angle of arrival θ. Due

to the minimum variance distortionless response (MVDR) algorithm [112, 113] is less

sensitive to perturbations and model errors than Maximum Likelihood (ML), Multiple

Signal Classification (MUSIC), and Estimation of Signal Parameters via Rotational

Invariance Technique (ESPRIT) [114], the MVDR is suitable for both DOA estimation
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and optimal beamforming in underwater acoustic channels and used in the spatial filter.

For a frequency ωk, the steering vector is given by

v(θ, k) =
[
1, . . . , e−jωk

D(m) sin(θ)
c , . . . , e−jωk

D(M) sin(θ)
c

]T
, (4.9)

where D(m) is the distance between the first (m = 1) and mth hydrophone (see Fig-

ure 4.1) and the sound speed c = 1.5 km/s. The power at frequency ωk from a direction

θ is given by

Pk(if ; θ) =
[
vH(θ, k)Y−1(if ; k)v(θ, k)

]−1
. (4.10)

The total power over all frequencies

P(if ; θ) =
K−1∑
k=0

Pk(if ; θ), (4.11)

is shown in Figure 4.5. The average power over Nf frames (shown in Figure 4.6) is

given by

P̃(θ) =
1

Nf

Nf∑
nf=1

P(if ; θ). (4.12)

2. Beamformer

For a chosen direction θ̂j , for cancelling the interference arriving from the other direc-

tions, the beamformer weight vector w̄nf (θ̂, k) in the nf th frame is calculated as [112]

w̄nf (θ̂j , k) = Y−1(if ; k)v(θ̂j , k)Pk(if ; θ̂j). (4.13)

The weight vector is then smoothed in time:

wnf (θ̂j , k)← λwnf−1(θ̂j , k) + (1− λ)w̄nf (θ̂j , k), (4.14)

where 0 ≤ λ < 1 is a forgetting factor, and w0(θ̂j , k) = w̄1(θ̂j , k). Since the DOAs

are relatively slowly varying in time (see Figure 4.5), the forgetting factor λ can be

chosen close to unity, providing a good filtering of the noise and interference; in our
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experiment, we set λ = 0.998. The directional signal is then computed as

r(i, θ̂j) =

K−1∑
k=0

wH
nf

(θ̂j , k)z(u; k)ejωkn/fs , (4.15)

where i = if + (nsf − 1)U + n.

3. Complexity of the proposed SF

For the DOA estimation, the proposed SF requires the time-frequency transform (4.7),

computation of the SDM (4.8), and the power computation (4.10); complexity of the

other processing steps is significantly lower and can be ignored. The complexity of

the three steps are given by 2KMIf , 4KNsfM
2, and 4(KM3 + KNθM

2) real-valued

multiply-accumulate operations per second (MACs), respectively, where If = fs in our

experiments, and Nθ is the number of angles in the DOA grid. In the beamformer, the

frequency-time transform (4.15) needs to be performed; the other operations require

significantly lower complexity. This transform requires (4KMNsf + 4Kfs) MACs; for

J beamformers, this should be multiplied by J . For example, with M = 14, K = 32,

Nsf = 32, Nθ = 126, J = 2, and fs = 12288 Hz, which are values used in the re-

ceiver in Section 4.5, the total complexity of the SF is 1.9 × 107 MACs. Note that

the complexity of the SF with fractional delays [35] with the same parameter values is

about 1.3 × 109 MACs; thus, in this scenario, the proposed SF is about 70 times less

complicated than the SF with fractional delays.

4.4.3 Equalizer

Once a directional signal r(i, θ̂j) has been obtained, it is applied to the equalizer shown

in Figure 4.8, where the signal is down-shifted and low-pass filtered (LPF) to produce the

baseband digital signal r̃(i, θ̂j). The signal r̃(i, θ̂j) is resampled to compensate for the Doppler

effect and linearly equalized.

1. Doppler estimator

Figure 4.9 shows the block diagram of the Doppler estimator, where the time-varying

dominant Doppler scale factor and delay are estimated by computing the ambiguity

function as follows. Firstly, the baseband signal r̃(i, θ̂j) is resampled with a number
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Figure 4.8: Block diagram of the equalizer.
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Figure 4.9: Block diagram of the Doppler estimator.

of compression factors ρn, n = 1, . . . , N . Then, N Doppler sections of the ambiguity

function [26] between the received and pilot signals are computed on the delay-Doppler

scale grid [26, 57, 115]. The ambiguity function A(ρ, %) (see [4] for details), where ρ

indicates the ρth Doppler section and % indicates the %th delay, is used to estimate the

dominant Doppler compression and delay:

[ρ̂, %̂] = arg max
ρ,%

A(ρ, %). (4.16)

The estimated dominant channel delay is used for the timing synchronization. In a

multipath channel, however, there will be a delay spread. Using the ρ̂th Doppler sec-

tion, the Doppler estimator also estimates the delay spread ds(θ̂j) (see Figure 4.9). The

estimated delay spread is used to set the length of the linear equalizer as explained

below in Section 4.5.

2. Linear equalizer

Figure 4.10 shows the block diagram of the linear equalizer, which is based on channel

estimation and finite impulse response (FIR) filtering [31]. The equalizer length is

typically chosen as three to five times of the channel delay spread ds(θ̂j) [42], and

therefore, if the delay spread is reduced, the equalizer complexity can also be reduced.
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Figure 4.10: Block diagram of the linear equalizer.

In the channel estimator, a sparse recursive least squares (RLS) adaptive filter (see [31]

for more details) is used to estimate the multipath structure of the directional signals.

The equalizer weights are computed and interpolated as detailed in [4]. After FIR fil-

tering, the equalized signals x̃(n, θ̂j) from all directions are linearly combined.

4.4.4 Diversity combining

The MRC is known to provide the highest SNR in the combined signal [107]. In general,

phases of the complex-valued MRC weights should compensate for phase shifts in the direc-

tional signals, while the weight magnitudes should be proportional to SNRs in the directional

signals. The phase compensation has already been achieved in the equalizer. Therefore, to

compute the MRC weights, we only need to estimate SNRs in the equalized directional sig-

nals. The SNR estimates can be obtained from the superimposed pilot signal in the frequency

domain since, after the equalization, the pilot and data sequences are separated.

In the lth symbol of the jth diversity branch, the residual error el(j, k) at frequency k is

computed as

el(j, k) = Mp(k)−<{X̃l(k; θ̂j), (4.17)

where <{X̃l(k; θ̂j)} is an estimate of the pilot sequence after the equalization. Since the pilot

energy is
∑Ns

k=1 |Mp(k)|2 = Ns and the energy of the residual signal is El(j) =
∑Ns

k=1 |el(j, k)|2,

we adopt the following SNR estimate:

SNRl(j) =
Ns

Ēl(j)
, (4.18)
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where

Ēl(j) = αĒl−1(j) + (1− α)El(j), l = 1, 2, . . . , L, (4.19)

Ē0(j) = E1(j), and the forgetting factor 0 ≤ α < 1 is chosen close to unity; in our experi-

ment, α = 0.99.

The MRC weight for the lth OFDM symbol in the jth diversity branch is then computed as

Wl(j) =

√
SNRl(j)∑J

n=1

√
SNRl(n)

, l = 1, 2, . . . , L. (4.20)

The combined signal in the frequency domain is then given by

X̃l(k) =
J∑
j=1

Wl(j)X̃l(k; θ̂j). (4.21)

Finally, the sequence X̃l(k) is demodulated, deinterleaved, and decoded.

4.5 Sea Trial Results

In this section, we compare BER performance and complexity of the receiver with the six

SFs described in Section 4.4.1, firstly when all diversity branches have the same equalizer

lengths, and secondly, with the equalizer lengths adaptively adjusted according to the esti-

mated channel delay spreads.

We consider the sea trial at a distance of 105 km as described in Section 4.2. In this sea trial,

L = 200 guard-free OFDM symbols were continuously transmitted.

When processing received signals in the proposed SF, the frame duration is set to 1 s with a

number of subframes Nsf = 32 and number of snapshots in a subframe U = 384; K = 32 fre-

quencies are processed in the bandwidth of interest, F = 1024 Hz, and the lowest frequency

of interest is ω0/(2π) = 2560 Hz. The angles θ for DOA estimation are computed in the

interval [−25◦, 25◦] with an angle step of 0.4◦.
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Figure 4.11: SNR at the first hydrophone in the sea trial at a distance of 105 km.

4.5.1 Comparison of spatial filters

In this subsection, results are presented for the case when the RLS filter length in the channel

estimator is set to 75 ms, which matches to the channel delay spread at a single hydrophone,

while the equalizer length is set to 250 ms.

Table 4.1 compares BER performance and complexity of the receiver with different SFs. It

can be seen that the proposed DOA estimator and beamformer (introduced in Section 4.4.2

and used in SFs 3, 4 and 5) reduce the receiver complexity by 15 times compared to the

receiver with the SF using fractional delays (SF 6). Note that a single equalizer branch

requires about 8.3× 107 MACs (see the complexity analysis in [4]).

Table 4.1: Comparison of receivers with different spatial filters

SF Comments BER
Complexity

(106 MACs)

1 Single hydrophone 0.45 83

2 All 14 hydrophones 2.1× 10−3 1164

3 Single angle 8.4◦ 9.1× 10−2 100

4 Angles 8.4◦ and 8.8◦ 8.9× 10−2 185

5 Cluster (8.4◦ and −9◦) 0 185

6 Cluster (8.4◦ and −9◦) 0 1489

From Table 4.1, it can be seen that the receiver applied to a single hydrophone (SF 1) is

unable to recover reliably the transmitted data. This is due to a low SNR on a single hy-
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drophone, as seen in Figure 4.11, which is obtained from the result of the received signal

energy divided by recorded noise energy in frames. The receiver with equalizers applied di-

rectly to all 14 antenna elements (SF 2) significantly reduces the BER, but the complexity

greatly increases. With one or two diversity branches chosen based on the maxima of the

average spatial power distribution (SF 3 and 4, respectively), the BER performance improves.

The difference in the performance between these two SFs is small, but the complexity of the

SF with two branches is almost twice higher. With DOAs corresponding to the two space

clusters (SF 5), the receiver provides an error-free transmission. Such a receiver has the best

performance and 6.3 times less complexity compared to the receiver with equalizers applied

directly to 14 antenna elements (SF 2). SF 6 (with fractional delays) also allows an error-free

transmission with the two branches, but its complexity is significantly higher than that of

the receiver with the proposed SF 5.

Note that increasing the number of space diversity branches in SF 4 does allow improvement

in the detection performance and with J = 5 such branches, an error-free transmission is also

achieved. However, the complexity in this case would be the summation of the complexity of

a spatial filter with 5 beamformers (2.5 × 107 MACs), and 5 equalizer branches complexity

(4.15× 108 MACs), which is 4.4× 108 MACs, about 2.4 times higher than that of the SF 5

with two branches. Note that one MAC here is one multiplication step.

4.5.2 Equalizer optimization

Figure 4.12(a) shows fluctuations of the channel impulse response over the communication

session at the first hydrophone; there can be seen four multipaths. We now consider two

signals from directions θ̂1 = 8.4◦ and θ̂2 = −9◦; fluctuations of channel impulse responses for

these directions are shown in Figure 4.12(b) and Figure 4.12(c), respectively. It can be seen

that the four multipaths are now split between the two directions. As a result, the delay

spreads in the diversity branches are also reduced compared to that at a single antenna ele-

ment. We can exploit this to further reduce complexity of the receiver by setting the channel

estimator and equalizer lengths according to the delay spreads of directional signals.

The delay spread of the signal received at the first hydrophone is estimated as about 50 ms.

To cover all delay fluctuations throughout the communication session, the RLS filter length
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(a) Received signal at the first hydrophone.

(b) Directional signal at θ̂1 = 8.4◦.

(c) Directional signal at θ̂2 = −9◦.

Figure 4.12: Fluctuations of the channel impulse response in the sea trial.
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is set to 75 taps, with approximately 1 ms/tap; then the equalizer length is set to 250 taps.

At angle θ̂1 = 8.4◦, the delay spread ds(θ̂1) is estimated as 12 ms; the RLS filter length is set

to 18 taps and the equalizer length is set to 60 taps. At angle θ̂2 = −9◦, the delay spread

ds(θ̂2) is estimated as 24 ms; the RLS filter length is set to 36 taps and the equalizer length

is set to 120 taps.

The reduced delay spread in the diversity branches compared to the delay spread at a single

hydrophone allows reduction in the receiver complexity. Moreover, the reduced number of

channel taps to be estimated also allows a higher estimation accuracy.

Figure 4.13(a) shows the Doppler-delay spread of the signal arrived at the first hydrophone.

It can be seen that the first and second groups of multipaths are Doppler-shifted with respect

to each other. Therefore, the Doppler effect cannot be compensated by resampling the

hydrophone signals; there will be a residual Doppler effect seen by the equalizer as fast

channel fluctuations. Figure 4.13(b) and Figure 4.13(c) show the Doppler-delay spread of

the two directional signals at angles θ̂1 = 8.4◦ and θ̂2 = −9◦, respectively. It can be seen

that, compared to Figure 4.13(a), Doppler spreads in Figure 4.13(b) and Figure 4.13(c) are

reduced, i.e., the speed of channel variation in the two diversity branches are also reduced,

thus allowing a better channel estimation and equalization performance.

Table 4.2: Performance of the receiver with optimized equalizers

SF Equalizer lengths
BER for code Complexity

[5 7 7] [25 33 37] [225 331 367] (106 MACs)

5 250 taps, 250 taps 3.3× 10−3 1.6× 10−4 0 185

5 60 taps, 120 taps 2.8× 10−3 0.8× 10−4 0 94

6 250 taps, 250 taps 6.4× 10−4 3.9× 10−4 0 1489

6 60 taps, 120 taps 4.0× 10−4 1.1× 10−4 0 1398

Table 4.2 shows BER performance and complexity of the receiver, using SFs 5 and 6, with

and without adjusting the equalizer length to the delay spread of directional signals. In the

former case, both the equalizers are of length 250 ms, whereas in the later case, the equal-

izer length for the DOA θ̂1 = 8.4◦ is set to 60 ms and the equalizer length for the DOA

θ̂2 = −9◦ is set to 120 ms. It can be seen that the shorter equalizers allow reduction in the

complexity of the receiver with the proposed SF 5 by about 2 times. This is however is not
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(a) Received signal at the first hydrophone.

(b) Directional signal at θ̂1 = 8.4◦.

(c) Directional signal at θ̂2 = −9◦.

Figure 4.13: Doppler-delay spread of the signal received at the first hydrophone and directional signals.
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the case for the receiver with SF 6, since the SF complexity dominates the receiver complexity.

With the stronger code with the polynomial [225 331 367] (see [104]), also used to obtain re-

sults in Table 4.1, the proposed SF with both long and short equalizers results in an error-free

transmission. With weaker codes (polynomials [25 33 37] and [3 7 7]), the shorter equalizers

allow a better detection performance. It can also be seen that the SFs 5 and 6 show similar

detection performance for the stronger codes (polynomials [25 33 37] and [225 331 367]), and

SF 6 shows somewhat better performance for only the weak code (polynomial [3 7 7]).

4.6 Summary

In this chapter, we investigated a receiver with various space filters for detection of OFDM sig-

nals in underwater acoustic communications. Analysis of signals recorded on a vertical linear

antenna array in sea trials shows that the propagation channel is characterised by a number

of space-time clusters. The use of the cluster structure of received signals in the spatial filter

is shown to improve the detection performance of the receiver, compared to a multi-channel

receiver with direct equalization of hydrophone signals or a receiver with directional signals

generated based on the maxima of the spatial power distribution. Moreover, due to a reduced

Doppler-delay spread of signals in clusters, extra performance improvement can be achieved

with a reduced complexity. In this chapter, we have also proposed a spatial filter that has

a significantly lower complexity compared to the spatial filter with fractional delays of hy-

drophone signals and still providing a high detection performance. In particular, an error-free

data transmission with a spectral efficiency of 0.33 bps/Hz is achieved at a distance of 105 km.
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Chapter 5

DOA Tracking in Time-varying

UWA Communication Channels
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5.1 Introduction

In UWA channels, the communication link depends on the positions of the transmitter and the

receiver relative to the acoustic propagation medium, and it is practically impossible to make

the medium or the transmitter/receiver stationary, especially when the transmitter/receiver

are attached to surface platforms. Ocean physical dynamics, from endless undulations of

the sea surface to internal waves as well as tides and currents, cause the channel medium

to vary and alter the propagation speed of sound, further strongly change the direction of

arrival (DOA) of the received signals in time. Although the measurement of the ocean dy-

namics has been studied at length [116–124], it remains one of the most daunting challenges

of UWA communications. In order to improve the performance of communication systems,

it is required to adapt to the temporal instability during processing, i.e., keeping track of the
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dynamics.

The existing DOA estimation techniques [35, 40] are formulated for beamforming problems,

in which the DOAs are assumed to be static. In real applications, the receivers (e.g., verti-

cal linear array (VLA) of hydrophones) are in fact dynamic due to the drift oscillations of

platforms (e.g., vessel) caused by surface waves [116–119]. Apart from the platform motion,

internal wave-induced variations in sound speed are dominant cause of the acoustic scintilla-

tions in the ocean interior [120–124]. The acoustic scintillations of the received signal in the

ocean interior from a source/transmitter can vary rapidly in amplitude, travel time, and the

DOA [120]. Hence, it is desirable to take into account both the platform oscillation and the

internal wave-induced fluctuation to use the acoustic DOA estimates.

DOA estimation is often used to analyse spatial signals in UWA channels [35,38,40,41,106].

The spatial analysis provides information for beamforming and producing directional sig-

nals [40,41]. Often, the spread of received signals in space (DOA) and time (delay) is limited

to a small number of clusters [35]. However, if several directions from the same space clus-

ter is chosen, the receiver performance is limited due to correlation of the diversity branches.

Chapter 4 reveals that the space-time clusters introduce a natural diversity, which can be used

to improve the detection performance and reduce the complexity. Chapter 4 also proposes

a low complexity time-frequency-time (TFT) beamforming technique to estimate DOAs and

produce directional signals with static angles over a whole communication session. However,

this TFT beamforming technique with static angles does not consider DOA fluctuation.

In this chapter, we investigate DOA fluctuation in UWA communication channels, and pro-

pose a beamforming technique that tracks DOAs. In the investigation, guard-free orthogonal

frequency-division multiplexing (OFDM) signals [4,60] are transmitted. The investigation is

based on numerical simulation of signals received by a 14-element VLA experiencing angular

oscillations. The simulation is done using the Waymark propagation channel model described

in Chapter 2 at a distance of 80 km between the transmitter and receiver. We also use data

from two sea trials at transmitter/receiver distances of 30 km and 105 km, with a transducer

towed by a vessel moving at high speeds (8 m/s and 6 m/s, respectively). In the simulation

and the two sea trials, with the proposed DOA tracking beamforming technique, the receiver

shows an improved detection performance.
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5.2 DOA Fluctuation in UWA Channels

In this section, we analyse time-varying DOAs in the sea trial at a distance of 105 km; we

call it the F1-2 session. The acoustic environment is characterised by the sound speed pro-

file (SSP) shown in Figure 3.11. In the sea trial, communication signals with a duration

of 200 s were transmitted in the frequency interval 2560-3584 Hz; the distance between the

transmitter and the receiver varied from 105 to 106 km, and the transmitter was towed by a

vessel moving away from the receiver at a speed of 6 m/s. The depth of the transmitter was

around 250 m, and a non-uniform receive VLA (with a length of 8.1 m) of 14 hydrophones

was placed at a depth of around 420 m as shown in Figure 4.1. The inter spacing between

the hydrophones differs from 0.3 to 1.2 m.

The space-time distribution of the received signal in the F1-2 session is shown in Figure 4.3(c).

Spatial power distribution of the received signals is shown in Figure 5.1(a), from which two

discrete space clusters can be seen. The two clusters provide two natural diversity branches in

design of a receiver. Moreover, it can also be seen that within each cluster, the DOAs (angles)

are time-varying. The DOA fluctuation in Figure 5.1(a) are tracked from the highest average

power in each time step ∆t (∆t = 1 s here), as shown in Figure 5.2(a).

In physical oceans, wind (surface) waves, with periods of a few seconds (up to about 20 s) [121,

122,125], and internal waves, with periods from tens of minutes to many hours [120,121] are

two real phenomenons. In our case, specifically, the periods of the drifting platform induced

by the surface waves are considered to be within 5-20 s, corresponding to a typical frequency

spectrum (0.05-0.2 Hz) of surface waves [121, 122, 125]; the periods of the internal waves are

considered to be more than 20 s, corresponding to a lower frequency interval of 0-0.05 Hz.

Figure 5.2(b) shows that the period of the ocean surface waves is approximately Tsur ≈ 10 s,

while Figure 5.2(c) shows relatively slow DOA fluctuations.

To show the strength of linear relationship between the two DOA fluctuations in the high
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(a) Spatial power distribution in the F1-2 session; positive DOAs correspond to acoustic rays received from the
sea surface direction while the negative DOAs show rays from the sea bottom direction.
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(b) The average spatial signal power P̃(θ) obtained at an angle step of 0.1◦.

Figure 5.1: Spatial power in the F1-2 session.
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(a) Varying DOAs.
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(b) DOA fluctuations in the frequency interval 0.05-0.2 Hz.
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(c) DOA fluctuations in the frequency interval 0-0.05 Hz.

Figure 5.2: DOA fluctuations in the F1-2 session; 1st cluster: left in Figure 5.1(a); 2nd cluster: right in
Figure 5.1(a).
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and low frequency intervals, the Pearson correlation coefficient [126] is used as

ξ =

∑K−1
k=0 (ϕ1(k∆t)− ϕ̄1)(ϕ2(k∆t)− ϕ̄2)√

σ2
1

√
σ2

2

, (5.1)

where

σ2
1 =

K−1∑
k=0

(ϕ1(k∆t)− ϕ̄1)2, (5.2)

and

σ2
2 =

K−1∑
k=0

(ϕ2(k∆t)− ϕ̄2)2, (5.3)

are covariances of the two DOAs, ∆t = 1 s is one frame duration of the transmitted signals

(known as time step), K = 200, ϕ1(k∆t) and ϕ2(k∆t) are the two DOAs of the two space

clusters at time instant k∆t, ϕ̄1 and ϕ̄2 are average DOA fluctuation of the two space clusters,

respectively. As a result,

• The correlation coefficient for the relatively “high frequency” interval (0.05-0.2 Hz) is

ξh = 0.8725. This shows a strong relationship between the two DOAs series of the two

space clusters. In this session, the high wind speed (7-8 m/s) resulted in a complicated

motion of the vessel connected with a receive VLA. The fluctuation of the VLA conse-

quently induced fast DOA fluctuations in the frequency interval from 0.05 to 0.2 Hz.

• The correlation coefficient for the relatively “low frequency” interval (0-0.05 Hz) is

ξl = −0.0960. This shows a weak relationship between the two DOA series of the two

space clusters. During the communication session, propagation rays from the two space

clusters experience two almost completely different medium in the channels, which re-

sults in the small correlation in the frequency interval from 0 to 0.05 Hz.

5.3 Transmitted Signal, Channel Model and Receiver

In this chapter, the transmitted signals are the same as that described in Section 3.4, the

channel model is the same as that described in Section 4.3, and the receiver is the same as

that described in Section 4.4 apart from techniques used in the spatial filter.
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Figure 5.3: Block diagram of the spatial filter with J outputs based on J space clusters.

5.4 Beamforming Techniques in Spatial Filter

Figure 5.3 shows the block diagram of the spatial filter in the receiver. The DOA estimator

computes the spatial power distribution to estimate DOAs. Then, the beamformers use these

DOAs estimates to produce directional signals.

In the spatial filter, the following two beamforming techniques are considered:

• time-frequency-time beamforming technique with static DOA (TFT-SD) (Section 4.4.2);

• proposed time-frequency-time beamforming technique with DOA tracking (TFT-DT).

When describing the techniques below, for illustration, we will be using the sea trial data

recorded in the F1-2 session.

5.4.1 Time-frequency-time beamforming with static DOA

The TFT-SD beamforming is modified from the beamforming described in Section 4.4.2, and

the difference is that the TFT-SD beamforming considered in this chapter does not divide

the frame into subframes. With the TFT-SD beamforming technique, J static DOAs (angles)

are chosen from J space clusters for producing J directional signals.

The total power for all frequencies is shown in Figure 5.1(a). The average power over Nf

frames is shown in Figure 5.1(b), obtained within the interval θ ∈ [−25◦, 25◦] with a step of

0.1◦.

In this chapter, the forgetting factor λ in (4.14) of the beamformer is different from that
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chosen in Section 4.4.2 and will be analysed in Sections 5.5 and 5.6.

5.4.2 Time-frequency-time beamforming with DOA tracking

We now describe the TFT-DT beamforming technique, in which J varying DOAs series are

chosen from signal frames of J space clusters, to produce signal frames of J directional signals.

Different from the TFT-SD beamforming, the TFT-DT beamforming chooses varying DOA

series in a continuous communication session rather than a static DOA from each cluster for

producing directional signal.

1. DOA estimator

With (4.12), a peak detector P finds J local maxima of each frame P(if ; θ) from (4.11),

which are considered to correspond to space clusters, as shown in Figure 5.1(a). With

this technique, two (J = 2) time-varying DOAs series are identified in the F1-2 session,

as shown in Figure 5.2(a). In each cluster, varying DOAs series θ̂j (θ̂1 = [θ̂1,1, . . . , θ̂1,Nf ]

and θ̂2 = [θ̂2,1, . . . , θ̂2,Nf ]) is chosen for further processing:

[θ̂1,nf , θ̂2,nf ]T = P[P(if ; θ)]. (5.4)

Note that in order to track the varying DOAs resulted from the dynamic ocean surface

waves, we use Nyquist-Shannon sampling theorem [127] to set the time duration of one

frame length ∆t 6 1
2Tsur; in our experiments here, ∆t 6 5 s.

2. Beamformer

For a chosen varying DOA series θ̂j , to cancel the interference arriving from other DOAs,

the beamformer weight vector w̄nf (θ̂j,nf , k) in the nf th frame is calculated as [112]:

w̄nf (θ̂j,nf , k) = Y−1(if ; k)v(θ̂j,nf , k)Pk(if ; θ̂j,nf ), (5.5)

where Y(if ; k) is from (4.8), v(θ̂j,nf , k) is from (4.9), and Pk(if ; θ̂j,nf ) is from (4.10).

The weight vector is smoothed in time:

wnf (θ̂j,nf , k)← λwnf−1(θ̂j,nf−1, k) + (1− λ)w̄nf (θ̂j,nf , k), (5.6)
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where w0(θ̂j,nf , k) = w̄1(θ̂j,nf , k). The directional signal is then computed as:

r(i, θ̂j,nf ) =
K−1∑
k=0

wH
nf

(θ̂j,nf , k)z(if ; k)ejωkn/fs , (5.7)

where i = if + (nf − 1)If + n.

5.5 Numerical Results

To demonstrate the effectiveness of the proposed TFT-DT beamforming technique, we apply

the technique to guard-free OFDM signals with superimposed data and pilot [4]. In a simula-

tion with the Waymark propagation channel model described in Chapter 2, the transmitter

is stationary at a depth of 300 m. The receive VLA is towed by an ocean surface platform,

and has a periodic oscillation with a maximum oscillating angle of ϑM = 0.3◦. When the

oscillating angle ϑ(t) = 0◦, the depth of the first hydrophone is 300 m, and the distance

between the transmitter and the VLA is 80 km, as shown in Figure 5.4.

The VLA is the same as shown in Figure 4.1, and the SSP used in the simulation is as shown

in Figure 3.11. During the simulation, 200 guard-free OFDM symbols are continuously

transmitted. The signal-to-noise ratio (SNR) is set to 0 dB at receive hydrophones. The

receive VLA oscillation is considered to be induced by the ocean surface waves, and the

oscillating angle is given by

ϑ(t) = −ϑM cos
(2πt

Tp

)
, t ∈ [0, T − 1], (5.8)

where Tp = 10 s is the period of the VLA oscillation, and T = 200 s the duration of the

communication session, ignoring propagation time in the channel. Note that when the angle

is on the left hand of the middle vertical line (see Figure 5.4), we set the ϑ(t) a negative

value; vise versa.

In this simulation and in the sea trials described in Section 5.6 later on, when processing the

received signals in the spatial filter, K = 32 frequencies are processed in the bandwidth of in-

terest F = 1024 Hz, and the lowest frequency of interest f0 = ω0/(2π) = 2560 Hz. The frame

length If is considered to be one OFDM symbol length, and the loading factor κ = 10−3. The
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Figure 5.4: Simulation scenario with periodic oscillating receive VLA. Tx is the transmitter, and Rx is the
receiver.

DOAs θ for DOA estimation are computed in the interval [−25◦, 25◦] with a DOA step of 0.1◦.

Figure 5.5(a) shows spatial power distribution in this simulation. It can be seen that sev-

eral (three) space clusters are identified, and the most outstanding cluster is the one with

DOAs around θ = 12.5◦, which has much higher power than the other clusters (with angles

of around −5.5◦ and 2◦). It can also be seen that the DOAs in the outstanding cluster are

time-varying but stationary. In the simulation, for simplicity, we only choose the outstanding

cluster with the highest power to analyse.

Figure 5.5(b) shows the average spatial power P̃(θ) in this simulation. With the peak detector

P, the angle corresponding to the highest power peak is θ̂j = 12.5◦ (j = 1 here), which is

used to produce a single directional signal using the TFT-SD beamforming technique.

Figure 5.6 shows the VLA oscillating angle ϑ(t) (5.8) considered in the simulation and the

estimated DOA fluctuation θ̆(t) from the TFT-DT beamforming technique. The estimated
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(a) Spatial power distribution.
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(b) The average spatial power P̃(θ).

Figure 5.5: Spatial power in the simulation.
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Figure 5.6: Comparison of the VLA oscillating angle ϑ(t) and the estimated DOA fluctuation θ̆(t) in this
simulation.
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Figure 5.7: Coded BER performance of the receiver with the TFT-SD and the TFT-DT beamforming tech-
niques in this simulation; the convolutional code described by the polynomial in octal [3 7].

DOA fluctuation θ̆(t) is given by

θ̆(t) = θ(t)− θ̄(t), t ∈ [0, T − 1], (5.9)

where θ(t) is the estimated DOA at time instant t, and θ̄(t) is the average estimated DOA

during a whole communication session. It can be seen that the VLA oscillating angle ϑ(t)

and the estimated DOA fluctuation θ̆(t) are almost coincide, including the amplitude and

the period. Using (5.1) to compute the correlation coefficient of the VLA oscillating angle

ϑ(t) and the estimated DOA fluctuation θ̆(t), ξ = 0.9518 is obtained, which shows a strong

relationship between the two variations.

We now analyse effects of the forgetting factor λ in the two beamforming techniques to the

detection performance of the receiver. Figure 5.7 shows the bit error rate (BER) performance

of the receiver with the TFT-SD and the TFT-DT beamforming techniques at a spectral effi-

ciency of 0.5 bps/Hz; the convolutional code described by the polynomial in octal [3 7], being

rate-1/2 code [104] is used.
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It can be seen that the BER performance of the receiver with the TFT-SD beamforming

does not change when the forgetting factor λ is increased from 0.1 to 0.9. The receiver with

the TFT-DT beamforming outperforms that using the TFT-SD beamforming operating at

forgetting factors λ varying from 0.1 to 0.9.

5.6 Sea Trial Results

Apart from the simulation data, data from two sea trials are also used to demonstrate the

effectiveness of the proposed TFT-DT beamforming technique.

In this chapter, we consider two sea trial communication sessions. In one session, the dis-

tance between the transmitter and the receiver varied from 30 to 29 km, and the transmitter

was towed by a vessel moving towards the receiver at a speed of 8 m/s; we call it the F1-1

session. In this session, 100 guard-free OFDM symbols were transmitted, and the space-time

distribution of the received signals has been shown in Figure 4.2(a). In the F1-2 session, as

described in Section 5.2, the distance between the transmitter and the receiver varied from

105 to 106 km, and the transmitter was towed by a vessel moving away from the receiver at

a speed of 6 m/s. In the F1-2 session, 200 OFDM symbols were transmitted.

5.6.1 30 km between transmitter and receiver

In the F1-1 session, the high wind speed (7-8 m/s) resulted in a complicated motion of the

vessel connected with a receive VLA. The motion indicates a fast DOA fluctuation (shown in

Figure 5.8(b)) in the frequency interval between 0.05 and 0.2 Hz. In Figure 5.8(b), the period

of the DOA fluctuation is approximately 10 s, which indicates a similar oscillation period as

that shown in Figure 5.2(b). Figure 5.8(c) shows a slow DOA fluctuation in the frequency

interval between 0 and 0.05 Hz. The ocean dynamics consequently resulted in a complicated

DOA fluctuation of the received signals, shown in Figure 5.8(a) and Figure 5.9(a).

Figure 5.9(a) also shows the spatial power distribution in the F1-1 session. It can be seen

that a space cluster with time-varying DOA around θ = −1.7◦, covers a range of angles from
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(a) Time-varying DOA.
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(b) DOA fluctuation in the frequency interval 0.05-0.2 Hz.
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(c) DOA fluctuation in the frequency interval 0-0.05 Hz.

Figure 5.8: Time-varying DOAs in the F1-1 session.
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(a) Spatial power distribution.
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(b) The average spatial signal power P̃(θ).

Figure 5.9: Spatial power in the F1-1 session.

−4◦ to 1◦. Figure 5.9(b) shows the average spatial signal power P̃(θ) in this session. The

peak angle θ̂j = −1.7◦ (j = 1 here) is used to produce a single directional signal by the

TFT-SD beamfoming. Figure 5.10 shows fluctuations of the channel impulse response over

the F1-1 session at the first hydrophone.

We now compare BER performance of the receiver with the TFT-DT beamforming with that

using the TFT-SD beamforming, when the forgetting factor λ varies from 0.1 to 0.9. Fig-

ure 5.12 presents the BER performance of the receiver applied to the sea trial data recorded

in the F1-1 session at a spectral efficiency of 0.5 bps/Hz; the code represented by polynomial

in octal [561 753], being rate-1/2 code [104] is used. The SNR in the F1-1 session (shown in

Figure 5.11) is the result of the received signal energy divided by recorded noise energy in

frames, which varies between -15 and -3 dB, and on average is -9 dB.
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Figure 5.10: Fluctuations of the channel impulse response at the first hydrophone in the F1-1 session.
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Figure 5.11: Time-varying SNR at the first hydrophone in the F1-1 session.
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Figure 5.12: Coded BER performance of the receiver with the TFT-SD and the TFT-DT beamforming
techniques in the F1-1 session; the code represented by polynomial in octal [561 753].
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Results presented in Figure 5.12 demonstrate that the receiver with the TFT-DT beamform-

ing outperforms that with the TFT-SD beamforming. When λ increases from 0.1 to 0.9,

the receiver with the TDT-SD beamforming improves its detection performance. When λ

increases from 0.1 to 0.8, the detection performance of the receiver with the TDT-DT beam-

forming is improved; and when λ = 0.8, the receiver with the TFT-DT beamforming achieves

the best performance. However, with further increase in the forgetting factor to λ = 0.9, the

receiver with the TFT-DT beamforming shows a degradation in the performance, but the

performance is still better than that of the TFT-SD beamforming.

5.6.2 105 km between transmitter and receiver

In the F1-2 session, as described in Section 5.2, the distance between the transmitter and

the receive VLA was 105 km at the beginning of the communication session. The SNR on a

single hydrophone during the communication session is shown in Figure 4.11, with an average

of −0.3 dB. Figure 4.12(a) shows fluctuations of the channel impulse response over the F1-2

session at the first hydrophone; there can be seen four discrete multipaths. We consider two

signals, from directions θ̂1 = 8.4◦ and θ̂2 = −9◦; fluctuations of channel impulse responses

for these directions are shown in Figure 4.12(b) and Figure 4.12(c), respectively. It can be

seen that the four multipaths are now split between the two directions.

We now analyse the effects of the forgetting factor λ in the two beamforming techniques to

the detection performance of the receiver. Figure 5.13 shows BER performance of the receiver

at a spectral efficiency of 0.33 bps/Hz; the code represented by polynomial in octal [5 7 7],

being rate-1/3 code [104] is used.

It can be seen that the performance of the receiver with the TFT-SD beamforming is improved

when the forgetting factor λ is increased from 0.1 to 0.5, and achieves the best performance at

λ = 0.8 and 0.9; the performance of the receiver with the TFT-DT beamforming is improved

when the forgetting factor λ is increased from 0.1 to 0.8, and achieves the best performance

at λ = 0.8. The receiver with the TFT-DT beamforming performs better than that with the

TFT-SD beamforming.

93



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10−4

10−3

10−2

λ
BE

R

TFT−SD
TFT−DT

Figure 5.13: Coded BER performance of the receiver with the TFT-SD and the TFT-DT beamforming
techniques in the F1-2 session; the code represented by polynomial in octal [5 7 7].

5.7 Summary

In this chapter, the acoustic DOA fluctuation in time-varying UWA communication channels

is illustrated, and a receiver that exploits the DOA tracking is investigated. The DOA fluc-

tuation of the received signals is resulted from the ocean surface and internal waves. The

investigated receiver is designed for an UWA communication system with the transmission of

guard-free OFDM signals with superimposed pilot symbols. In the receiver, the beamforming

with DOA tracking is proposed, and compared with the beamforming without DOA tracking

in the simulation and the two sea trials. The results show that the beamforming with DOA

tracking outperforms the beamforming without DOA tracking.
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RLS Adaptive Filters for
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6.1 Introduction

The impulse response of an UWA channel is often sparse [17]. To identify the channel, sparse

adaptive filters are used [33]. A high identification performance of the channel estimation

is very important for improving the detection performance of a receiver. In a receiver of a

high date rate communication system, signals are often processed using a linear equalizer

whose weights are calculated based on accurate channel estimates [31]. However, the channel

estimation is challenging due to a large delay spread and fast time-variation of the acoustic

channel. For obtaining a good channel estimation performance, adaptive algorithms have

been employed extensively [12], e.g., the least mean squares (LMS) algorithm, and classic re-

cursive least squares (RLS) algorithms [128–132] are used. However, the LMS algorithm has

a slow convergence [32], and these RLS algorithms have relatively high complexity [O(N2)
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arithmetic operations, where N is the filter length] and lower performance compared to sparse

RLS adaptive filters [32,133].

For improving the performance, sparse adaptive filters were proposed [32, 33, 133]. In UWA

channels, the impulse response spreads over delay areas where most of magnitudes are close to

zero, which makes the channel sparse [17]. To reduce the complexity, dichotomous coordinate

descent (DCD) iterations are used [133], making the filter complexity only linear in the filter

length. In sparse adaptive filters, a priori information on the channel is incorporated into the

adaptive algorithm to improve their performance. By taking into account the sparseness of

the channel impulse response as an inherent property of the underwater acoustic propagation,

adaptive filters can significantly improve the performance of channel estimation [17,32,34].

In this chapter, we investigate normalized LMS (NLMS) adaptive filter and sparse RLS adap-

tive filters [131] in UWA channels and propose two new sliding-window RLS adaptive filters,

which are: (1) sliding-window RLS adaptive filter with diagonal loading; and (2) sliding-

window RLS homotopy adaptive filter, to improve the detection performance of a receiver

of guard-free orthogonal frequency-division multiplexing (OFDM) signals with superimposed

pilot symbols [4].

In [133], the convergence of exponential-window in adaptive filters was compared with that of

a sliding-window, and the comparison results showed that the sliding-window provides a faster

convergence to the steady-state. The first proposed sliding-window RLS adaptive filter with

diagonal loading is exploited in a channel estimator of the receiver. The proposed adaptive

filter is based on sliding-window, diagonal loading, and DCD iterations [134,135]. We inves-

tigate and compare performance of the receiver with the first proposed sliding-window RLS

adaptive filter with diagonal loading and existing adaptive filters. More specifically, we con-

sider: NLMS adaptive filter; exponential-window and sliding-window classic RLS adaptive

filters [131, 132]; exponential-window and sliding-window RLS adaptive filters with penal-

ties [133]; exponential-window RLS adaptive filter with diagonal loading [32]; and the pro-

posed sliding-window RLS adaptive filter with diagonal loading. The comparison has been

done using signals recorded in a sea trial at a distance of 80 km with a transducer moved at

a speed of 6 m/s. In these conditions, with the first proposed sliding-window RLS adaptive

filter with diagonal loading, the receiver demonstrates the best performance, whereas the
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complexity of the first proposed sliding-window RLS adaptive filter with diagonal loading is

only linear in the filter length.

In [136], an exponential-window homotopy RLS-DCD adaptive filter possessing a high per-

formance and low complexity was proposed. Here, we propose a sliding-window homotopy

RLS-DCD algorithm and investigate it in application to estimation of sparse UWA chan-

nels. The second proposed sliding-window RLS homotopy algorithm has the same structure

as the exponential-window homotopy RLS-DCD algorithm. The proposed homotopy algo-

rithm is used for channel estimation in an UWA communication system. In the transmitter

of the system, the guard-free orthogonal frequency-division multiplexing (OFDM) signals

with superimposed pilot signals are transmitted. We investigate and compare performance

of the receiver with five adaptive filters: NLMS adaptive filter; exponential-window and

sliding-window classic RLS adaptive filters [128]; the exponential-window homotopy RLS-

DCD adaptive filter [136]; and the second proposed sliding-window homotopy RLS-DCD

adaptive filter. The comparison is done using signals recorded on a 14-element vertical linear

antenna array (VLA) in a sea trial at a distance of 105 km with a transducer moved at a

speed of 6 m/s. The proposed adaptive filter provides an improved performance and error-

free transmission at a spectral efficiency of 0.33 bps/Hz.

6.2 Sparse System Identification

We consider adaptive filters with the task of finding a complex-valued N×1 vector h(n) that,

at every time instant n, minimizes the cost function

J̄ [h(n)] = f̄LS[h(n)] + f [h(n)], (6.1)

where f̄LS[h(n)] is the least square (LS) error of the solution h(n) and f [h(n)] is a penalty

function that incorporates a priori information on the sparse solution [133].

Let complex-valued x(n) and d(n) be anN×1 regressor vector and desired signal, respectively,
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at time instant n. We denote

X(n) =


xH(1)

...

xH(n)

 and d(n) =


d∗(1)

...

d∗(n)

 (6.2)

the n × N matrix of the regressor data and n × 1 vector of the desired signal, respectively.

In many adaptive filtering scenarios, f̄LS[h(n)] can be expressed as [137,138]:

f̄LS[h(n)] =
1

2
dH(n)D(n)d(n) + fLS[h(n)], (6.3)

where fLS[h(n)] = 1
2hH(n)R(n)h(n)−<{hH(n)b(n)}, R(n) = XH(n)D(n)X(n) and b(n) =

XH(n)D(n)d(n).

There are two important cases of the matrix D(n). The first one is when an exponential-

window is used for computing the matrix R(n) and vector b(n), similarly to what is done in

the classic exponential-window RLS algorithm [131,132]. In this case, we have

D(n) = diag[λn−1, λn−2, . . . , λ, 1], (6.4)

where λ is the forgetting factor, λ ∈ (0, 1]. The other one is when a sliding-window is used,

in which case we have

D(n) =

 0(n−M)×(n−M) 0(n−M)×M

0M×M IM

 , (6.5)

where M is the length of the sliding-window [133] and IM is an M ×M identity matrix.

These two matrices D(n) are considered below in eight adaptive filters, which are: exponential-

window and sliding-window classic RLS adaptive filters; exponential-window and sliding-

window RLS adaptive filters with penalties; exponential-window RLS adaptive filter with di-

agonal loading; the first proposed sliding-window RLS adaptive filter with diagonal loading;

exponential-window homotopy RLS adaptive filter; and the second proposed sliding-window

homotopy RLS adaptive filter.
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6.3 Sliding-window Adaptive Filter with Diagonal Loading

6.3.1 Adaptive filters

In this section, we describe seven adaptive filters as follows.

1. NLMS adaptive filters

In the case of NLMS adaptive filter, we have the following recursions for updating the

impulse response h(n) of the input signal x(n) = [x(n), x(n−1), . . . , x(n−N+1)]T [139]:

h(n) = h(n− 1) +
µ

ε+ ||x(n)||2
e(n)x(n), (6.6)

where the adaptation constant µ satisfies the condition 1 < µ < 2 to make the NLMS

algorithm convergent in the mean square, and the small regularization value ε satisfies

the condition ε > 0 to avoid numerical instability. The initial h(n) = 0. The error e(n)

at the time instant n is given by:

e(n) = d(n)− xT (n)h(n− 1), (6.7)

where d(n) is the desired response. The NLMS algorithm can be viewed as a LMS

algorithm with a time-varying step size µ(n) = µ/(ε + ||x(n)||2), solving a gradient

noise amplification problem in LMS algorithm.

2. Exponential-window and sliding-window classic RLS adaptive filters

In the case of the classic exponential-window RLS adaptive filter, we have the follow-

ing recursions for updating the correlation matrix R(n) of the input signal x(n) =

[x(n), x(n− 1), . . . , x(n−N + 1)]T and vector b(n) [131,132]:

R(n) = λR(n− 1) + x(n)xH(n), (6.8)

b(n) = λb(n− 1) + d∗(n)x(n). (6.9)

In the case of the classic sliding-window RLS adaptive filter, we have the recursions for
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updating the matrix R(n) and vector b(n) are given by

R(n) = R(n− 1) + x(n)xH(n)− x(n−M)xH(n−M), (6.10)

b(n) = b(n− 1) + d∗(n)x(n)− d∗(n−M)xH(n−M). (6.11)

In the classic RLS adaptive filters, the penalty term in (6.1) is zero, i.e., f [h(n)] = 0.

The solution to the optimization problem at every instant n can be found as a solution

to the system of equation

R(n)h(n) = b(n). (6.12)

The complexity of solving this system directly is O(N3). When recursions (6.8) and

(6.10) are considered, the complexity can be reduced to O(N2). However, we can use

DCD iterations to further reduce the complexity to O(N) (see Table 6.2 below). When

using DCD iterations, elements of the solution vector are represented in a fixed-point

format with Mb bits within an amplitude interval [-H, H]. The DCD iterations start

updating the most significant bits of the solution, proceeding towards less significant

bits. This is controlled by a step-size δ > 0 that starts with δ = H and is reduced as

δ ← δ/2 for less significant bits; see [135] for more details.

3. Exponential-window and sliding-window RLS adaptive filters with penalties

In sparse RLS adaptive filters with penalties [133], the penalty is often given by

f [h(n)] = τ ||h(n)||p, (6.13)

where ||h(n)||p is a p-norm, and τ > 0 is a regularization parameter that controls a bal-

ance between the LS fitting and the penalty. In the two adaptive filters with penalties,

we consider the case of p = 1, which means that the penalty is the lasso penalty [133].

With the lasso penalty, the adaptive filter solves the minimization problem in (6.1) at

every time instant n with DCD iterations.

4. Exponential-window RLS adaptive filter with diagonal loading

In this sparse RLS adaptive filter [32], the penalty functions from (6.13) are used. The

solution to the optimization problem at every instant n is found as a solution to the
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system of equations

{R(n) + W(n)}h(n) = b(n), n > 0, (6.14)

where the diagonal matrix W(n) = diag{w(n)} depends on ĥ(n − 1), and ĥ(n − 1) is

an estimate of the impulse response h(n− 1). Then, the DCD algorithm is applied to

iteratively solve the system (6.14) by reusing the solution found at the previous instant

n− 1 as a warm-start for the solution at time instant n.

As estimate ĥ(n) of the solution h(n) to the system in (6.14) is found as

ĥ(n) = ĥ(n− 1) + ∆ĥ, (6.15)

where ∆ĥ is an estimate of the solution ∆h of the system

[R(n) + W(n)]∆h = c(n|n− 1), (6.16)

where

c(n|n− 1) = λc(n− 1|n− 1) + e∗(n)x(n)− [W(n)−W(n− 1)]ĥ(n− 1), (6.17)

c(n|n) = c(n|n− 1)− [R(n) + W(n)]∆ĥ, (6.18)

e(n) = d(n) − y(n) is the a priori estimation error, and y(n) = ĥ
H

(n − 1)x(n) is the

adaptive filter output at time instant n.

We consider here the case p = 0 in (6.13) and the weights of diagonal matrix W(n) are

correspondingly given by [32]

wi(n) =
τ

|ĥi(n− 1)|2 + ε
, (6.19)

where ε > 0 and τ > 0 are adjusted parameters. When |ĥi(n − 1)| is close to zero,

we have the diagonal loading entry τwi(n) ≈ τ/ε. Thus the ratio τ/ε should be high

enough to almost remove (zero) the element hi(n) from the solution. However, when

|ĥi(n− 1)| is close to a maximum value hmax = maxi |hi|, we should have ε� h2
max to

avoid degradation in the estimation accuracy. The parameter τ should also relate to

the noise level: the higher is the noise level the higher should be τ .
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Table 6.1: Sliding-window RLS adaptive filter with diagonal loading

Input parameters: M , Mb, Nu, ε > 0, τ > 0

Output: ĥ(n) = h, c(n|n) = c

Step Initialization: for n ≤ 0 : x(n) = 0L, ĥ(0) = 0L, c(0|0) = 0L,R(0) = ηIL,
η > 0, IL is the identity matrix

for n = 1, 2, . . .

1 Update: R(n) = R(n− 1) + x(n)xH(n)− x(n−M)xH(n−M)

2 Filter output: y(n) = ĥ
H

(n− 1)x(n)

3 Error: e(n) = d(n)− y(n)

4 Filter delayed output: yM (n) = ĥ
H

(n− 1)x(n−M)

5 Delayed error: eM (n) = d(n−M)− yM (n)

6 c(n|n− 1) = c(n− 1|n− 1) + e∗(n)x(n)− e∗M (n)x(n−M)

−[W(n)−W(n− 1)]ĥ(n− 1)

7 Use DCD approximately solve: [R(n) + W(n)]∆h = c(n|n− 1)

to obtain a solution ∆ĥ

and c(n|n) = c(n|n− 1)− [R(n) + W(n)]∆ĥ

and update ĥ(n) = ĥ(n− 1) + ∆ĥ

8 Update the diagonal matrix W(n)

5. Sliding-window RLS adaptive filter with diagonal loading

In this sparse RLS adaptive filter, the correlation matrix R(n) is recursively updated as

in (6.10). The penalty functions from (6.13) are used. The solution to the optimization

problem with the cost function (6.1) at every time instant n is then found by solving

the linear system in (6.14).

Table 6.1 shows the algorithm of the sliding-window RLS adaptive filter with diagonal

loading, where Mb is the number of bits used for representation of filter entries in the

solution vector and Nu is the number of DCD iterations per sample. The parameter

Mb defines the accuracy of the fixed-point representation, whereas the parameter Nu

limits the complexity.

6.3.2 Signal processing in the receiver

In this section, the transmitted signals are the same as that described in Section 3.4, and the

receiver and adaptive filters are described below.
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Figure 6.1: Block diagram of the receiver of guard-free OFDM signal.

1. Receiver

The block diagram of the receiver is shown in Figure 6.1. It contains a block of front-end

processing, Doppler estimator, block of resampling and frequency correction, equalizer,

OFDM demodulator and decoder.

In the front-end processing block, the received signal r(t) is bandpass filtered, converted

into the digital form, down-shifted, and low-pass filtered to produce the baseband dig-

ital signal r̃(i).

In the Doppler estimator, the time-varying dominant Doppler scale factor is estimated.

The estimate is obtained by computing multiple sections of the cross-ambiguity func-

tion between the received and superimposed pilot signals on the delay-Doppler scale

grid and finding the position of its peak [26, 57, 115]. The estimate is further rectified

using a fine estimator that interpolates the peak. The discrete-time estimates of the

Doppler scale factor are linearly interpolated and used to compensate for the dominant

time-varying Doppler compression by resampling the signal r̃(i) with the interpolated

scale factor (see [4] for more details).

The resampled signal r̃(n) is applied to a time-domain linear equalizer. The equal-

ized and combined signal s̃(n) is transferred to a demodulator for symbol decision, and

further to a decoder. Soft-decision Viterbi decoding [104] is applied to the recovered

symbols.

2. Equalizer

Figure 6.2 shows the block diagram of a single branch of the equalizer. The equalizer

contains two branches: one dealing with even samples of r̃(n), and the other dealing
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Figure 6.2: Block diagram of a single branch of the equalizer [4] (for convenience, we show Figure 3.5 again).

with odd samples of r̃(n). The outputs of the equalizers are summed to produce the

signal s̃(n). The equalizer is implemented using the channel-estimate-based FIR scheme

with a channel estimator based on an RLS adaptive filter [31,43]. The linear equalizer

compensates for scale factors of different multipath components and combines these

components. The channel estimates are transformed into spline coefficients for the im-

pulse response of the equalizer FIR filter to trace the time-varying channel fluctuations

(see [4,31] for details). Note that the bandpass signals, such as r̃(n) and s̃(n) are com-

plex valued. Therefore, the adaptive filter should also be complex valued.

6.3.3 Sea trial results

In order to test the effectiveness of the proposed adaptive filter in an UWA channel, we ap-

plied the NLMS adaptive filter and the six RLS adaptive filters discussed in Section 6.3.1 to

channel estimation in the receiver. In the sea trial, 376 OFDM symbols were continuously

transmitted at a carrier frequency of 3072 Hz and with a bandwidth of 1024 Hz. The acoustic

transducer was towed at a depth of 200 m by a vessel moved towards the receiver at a velocity

of 6 m/s. The receiver was placed at a depth of 400 m. At the start of transmission, the

distance between the transducer and receiver was 80 km. The SNR for the received signal

in this session is shown in Figure 6.3. The average SNR during the session is about 11 dB.

Figure 6.4 shows fluctuations of the channel impulse response in the sea trial. There can be

seen fast variations of the channel delays and amplitudes that make the channel estimation

and equalization a very challenging problem. As described in Section 3.4.2, the Doppler vari-

ation rate mainly depends on the acceleration of the transmitter/receiver, and the highest

rate which can be tracked is (2Nd + 1)∆f .

In the NLMS adaptive filter, the adaptation constant µ is set to 0.1, and the regularization

value ε is set to 10−3. In the exponential-window adaptive filters, the forgetting factor is set

to λ = 0.998, which satisfies λ > 1− 2/N [132], where N = 176 (with a sampling interval of
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Figure 6.3: Time-varying SNR in the F1-10 sea trial; for convenience, Figure 3.12 is shown again.

Table 6.2: Performance of the receiver with various RLS adaptive filters and complexity of the adaptive filters.

Adaptive filters
BER

Complexity

used in the receivers (multiplications)

NLMS 4.2× 10−2 2N

Classic RLS (Exponential-window) 8.1× 10−4 3N2 (3N)

Classic RLS (Sliding-window) 2.2× 10−4 5N2 (5N)

Penalties (Exponential-window) 1.1× 10−4 7N

Penalties (Sliding-window) 6.6× 10−5 10N

Diagonal loading (Exponential-window) 7.2× 10−5 4N

Diagonal loading (Sliding-window) 3.9× 10−5 7N

1 ms) is the filter length. The length of the sliding-window M = 1024 is chosen to obtain the

best performance. In sparse RLS adaptive filters, the number of bits used for representation

of filter entries is set to Mb = 12, the number of DCD iterations Nu = 14, the regularization

parameter τ = 3 × 10−4, and ε = 10−3. Table 6.2 shows BER performance of the receiver

with various adaptive filters and complexity of the adaptive filters in terms of complex-valued

multiplications per sample.

From Table 6.2, we observe that the NLMS adaptive filter shows the worst performance among

these adaptive filters and requires the least complexity. In all other cases, compared to the

exponential-window, the sliding-window results in a better detection performance of the re-

ceiver, but comes with a somewhat higher complexity. When DCD iterations are used, the

complexity of the classic RLS adaptive filters reduces from O(N2) to O(N). The RLS adap-

tive filter with penalties results in smaller BER and complexity than the classic RLS adaptive

filters. However, the adaptive filter with diagonal loading allows even better performance and
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Figure 6.5: Constellation diagram of frequency domain signal before OFDM demodulator shown in Figure 6.1.

lower complexity than the adaptive filters with penalties. With the proposed sliding-window

adaptive filter with diagonal loading, the receiver demonstrates the best performance. The

constellation diagram of frequency domain signal before the OFDM demodulator is shown in

Figure 6.5, from which we can see four clusters.

6.4 Sliding-window Homotopy Adaptive Filter

6.4.1 Adaptive filters

In this section, we describe two homotopy adaptive filters as follows.

1. Exponential-window homotopy RLS-DCD adaptive algorithm

Here, we review the exponential-window homotopy RLS-DCD adaptive algorithm from [136].

In this algorithm, the matrix D(n) is defined as

D(n) = diag[λn−1, λn−2, . . . , λ, 1], (6.20)

where λ ∈ (0, 1] is the forgetting factor. Then, the N × N matrix R(n) and N × 1

vector b(n) can be recursively updated as (6.8) and (6.9) [131].

The homotopy algorithm minimises the cost function in (6.1). A set of homotopy iter-

ations is performed for exponentially decreasing values of the regularization parameter
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τ : τ ← γτ ; 0 < γ < 1. If the decreasing factor γ is close to one, large number of homo-

topy iterations are needed, which result in a high complexity. In adaptive filtering, for

reducing the complexity, the homotopy iterations are distributed in time, and at every

time instance, it is enough to perform only one homotopy iteration [136]. For further

reducing the complexity, DCD iterations are used [134, 135]. In a DCD iteration, the

previously obtained solution h(n − 1) is used as a warm-start for minimizing the cost

function in (6.1), so that the solution for time instant n is sought as:

h(n) = h(n− 1) + ∆h(n). (6.21)

Then, minimization of the cost function in (6.1) is replaced by minimization of the cost

function [133]

1

2
∆hH(n)R(n)∆h(n)−<{∆hH(n)c(n, n− 1)}+ τwT (n)|h(n)| (6.22)

with respect to the vector ∆h(n), where c(n|n− 1) is a residual vector given by

c(n|n− 1) = b(n)−R(n)h(n− 1). (6.23)

In the exponential-window algorithm, the residual vector c(n|n−1) is computed as [133,

135]

c(n|n− 1) = λc(n− 1|n− 1) + e∗(n)x(n), (6.24)

where c(n− 1|n− 1) = b(n− 1)−R(n− 1)h(n− 1).

The cost function in (6.22) is minimized using the leading `1-DCD algorithm from [136].

In the leading `1-DCD algorithm, a criterion for terminating computations in every it-

eration is a maximum number of DCD updates Nu. Typically, Nu is set to a small

value for limiting the complexity of the algorithm.

2. Sliding-window homotopy RLS-DCD adaptive algorithm
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In the sliding-window algorithm, the matrix D(n) can be defined as [131]

D(n) =

 0(n−M)×(n−M) 0(n−M)×M

0M×M IM

 , (6.25)

where M is the length of the sliding-window and IM is an M ×M identity matrix.

For a sliding-window RLS problem, the matrix R(n) and vector b(n) can be computed

from the recursions (6.10) and (6.11) [128].

When minimizing the cost function in (6.22) with respect to the vector ∆h(n), the

residual vector can now be computed as

c(n|n− 1) = c(n− 1|n− 1) + e∗(n)x(n)− e∗M (n)x(n−M). (6.26)

The other steps are similar to steps of the exponential-window homotopy RLS-DCD

adaptive algorithm.

Table 6.3 shows the sliding-window homotopy RLS-DCD adaptive algorithm, where Mb

is the number of bits used for representation of entries in the solution vector and defines

the accuracy of the fixed-point representation, the weight matrix w is initialized to an

all-ones vector 1N , e(n) = d(n)− y(n) is the error signal, and y(n) = hH(n− 1)x(n) is

the filter output at time instant n.

6.4.2 Signal processing in the receiver

We apply adaptive filters to channel estimation in a channel-estimate-based linear equalizer

(Figure 6.2) of a multi-antenna receiver (Figure 6.6). In a sea trial, a package of guard-free

OFDM signals with superimposed pilot signals was transmitted [4].

Figure 6.6 shows a block diagram of the receiver. The signals r1(t) to rM (t) from M hy-

drophones are filtered in a spatial filter, where r(t, θ̂j) are directional signals. The directional

signals are equalized (see [4] for details) and combined using the maximum-ratio combining

(MRC) [107]. The combined signal X̃l(k) is demodulated and further decoded using the soft-

decision Viterbi decoding [104].
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Table 6.3: Sliding-window homotopy RLS-DCD adaptive algorithm

Input parameters: M , τ , γ, Mb, Nu, ε

Output: h, c(n|n) = c

Step Initialization: h = 0, I = ∅, c = 0, b = 0, R = εIN , w = 1N

Repeat for n = 1, 2, . . .

1 R(n) = R(n− 1) + x(n)xH(n)− x(n−M)xH(n−M)

2 b(n) = b(n− 1) + d∗(n)x(n)− d∗(n−M)x(n−M)

3 y(n) = hH(n− 1)x(n)

4 e(n) = d(n)− y(n)

5 yM (n) = hH(n− 1)x(n−M)

6 eM (n) = d(n−M)− yM (n)

7 c(n|n− 1) = c(n− 1|n− 1) + e∗(n)x(n)− e∗M (n)x(n−M)

8 τ = maxk |ck|
9 Remove tth element from I(I ← I \ t), if

9.1 t = arg mink∈I
1
2 |hk|

2Rk,k + <{h∗kck} − τwk|hk|
9.2 and 1

2 |ht|
2Rt,t + <{h∗t ct} − τwt|ht| < 0

9.3 If the tth element is removed, then update:

c(n|n) = c(n|n− 1) + htR
(t)(n)

10 Include tth element into the support (I ← I ∪ t), if

10.1 t = arg maxk∈Ic
(|ck|−τwk)

2

Rk,k

10.2 and |ct| > τwt

11 Update the regularization parameter: τ ← γτ

12
Approximately solve the LS-`1 optimization on the support I
using the `1-DCD algorithm [136]

13 Update the weight vector w

Spatial
filter

Equalizer 1

Equalizer J

FFT

FFT

MRC OFDM
Demodulator Decoder

Figure 6.6: Block diagram of the receiver (for convenience, we show Figure 4.4 again).
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Figure 6.7: Coded BER performance with different number of elements; the convolutional code described by
the polynomial in octal [225 331 367].

The equalizer (see Figure 6.2) is implemented using the channel-estimate-based finite impulse

response (FIR) scheme with a channel estimator [4]. In the estimator, an adaptive filter is

used for the channel estimation [31].

6.4.3 Sea trial results

To verify the effectiveness of the proposed adaptive filter in UWA channels, we applied the

exponential-window and sliding-window classic RLS adaptive filters and the two homotopy

RLS-DCD adaptive filters for channel estimation in the equalizer shown in Figure 6.2.

In the sea trial, L = 200 OFDM symbols were continuously transmitted. The frequency

bandwidth of the transmitted signal is 3072± 512 Hz. The acoustic transducer was towed at

a depth of 250 m by a vessel moved away from a receive VLA of 14 hydrophones at a velocity

of 6 m/s; at the start of transmission, the distance between the transducer and receiver was

105 km. The VLA was placed at a depth of 420 m, as shown in Figure 4.1. The distances

between the hydrophones are non-uniform (from 0.3 m to 1.2 m) and the length of the VLA

is 8.1 m. The BER performance of the receiver applying equalizer directly to hydrophone

elements can be seen in Figure 6.7. We can see that as increasing the number of hydrophone

elements, the receiver achieves better performance. However, even with 14 elements, the

receiver is still unable achieve error-free transmission. This is due to a low SNR on a single

hydrophone, as seen in Figure 6.8, which is obtained from the result of the received signal

energy divided by recorded noise energy in frames. For this reason, spatial filter is required

to pre-process the received signal from the hydrophone elements. In the spatial filter, two
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Figure 6.8: SNR at the first hydrophone in the sea trial at a distance of 105 km; for convenience, Figure 4.11
is shown again.

directional signals (for angles of arrival θ̂1 = 8.4◦ and θ̂2 = −9◦) are produced. Figure 4.12(b)

and Figure 4.12(c) show fluctuations of the channel impulse response for the two directions,

respectively.

In the exponential-window adaptive filters, the forgetting factor is set to λ = 0.998 and

N = 100 is the filter length (with a sampling interval of 1 ms for the bandpass signal). The

length of the sliding-window M = 1024 matches to the length of the OFDM symbol Ts. In

the adaptive filters, the number of bits used for representation of the solution vector entries is

Mb = 12, the number of DCD iterations Nu = 14, the regularization parameter τ = 3×10−4,

and ε = 10−3. Table 6.4 shows BER performance of the receiver with 1/2 and 1/3 convolu-

tional codes and various adaptive filters, and the complexity of the adaptive filters in terms

of complex-valued multiplications per sample.

Table 6.4: BER performance of the receiver and complexity of the adaptive filters

Adaptive filters
BER (1/2) BER (1/3)

Complexity

used in the receivers (multiplications)

Classic (Exponential-window) 8.9× 10−2 5.4× 10−3 3N2

Classic (Sliding-window) 8.6× 10−2 4.2× 10−3 5N2

Homotopy (Exponential-window) 1.1× 10−2 0 7.5N

Homotopy (Sliding-window) 1.0× 10−2 0 10.5N

From Table 6.4, it can be seen that the sliding-window adaptive filters perform better than

the exponential-window adaptive filters. Due to the a priori information about sparseness
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Figure 6.9: Constellation diagram of combined signal X̃l(k) before OFDM demodulator shown in Figure 6.6.

taken into account, the homotopy RLS-DCD adaptive filters allow a better performance than

the classic RLS adaptive filters. Due to the DCD algorithm taken into account, the homotopy

RLS-DCD adaptive filters allow a lower complexity than the classic RLS adaptive filters. The

sliding-window homotopy RLS-DCD adaptive filter demonstrates an improved performance

at a spectral efficiency of 0.5 bps/Hz and allows error-free transmission at a spectral efficiency

of 0.33 bps/Hz. The constellation diagram of combined signal X̃l(k) before the OFDM de-

modulator is shown in Figure 6.9, from which we can see four clusters, even in such low SNR.

6.5 Summary

In this chapter, we proposed two RLS adaptive filters to identify the sparse impulse response

in UWA channels. The two adaptive filters are used for channel estimation in two different

UWA communication systems with guard-free OFDM signals and superimposed pilot sym-

bols.

The first proposed adaptive filter is based on sliding-window, diagonal loading, and DCD

iterations. We have investigated and compared performance of a LMS adaptive filter and six

RLS adaptive filters. From the comparison, we have shown that RLS adaptive filters out-

perform LMS adaptive filter, sliding-window adaptive filters outperform exponential-window

adaptive filters, and have shown that the first proposed adaptive filter demonstrates the best
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performance while its complexity is still only linear in the filter length.

The second proposed adaptive filter is based on sliding-window, homotopy, and DCD iter-

ations. The adaptive filter is used for channel estimation in a multi-antenna based UWA

communication system. We have investigated and compared the performance of four RLS

adaptive filters, and have shown that the second proposed adaptive filter demonstrates an

improved performance compared to other adaptive filters.
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Chapter 7

Conclusions and Further Work

Contents
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7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1 Summary of the Work

The goal of this thesis is to develop advanced signal processing techniques, suitable for UWA

communications with high data rate OFDM transmission. Various signal processing tech-

niques for processing received signals in UWA channels are developed (Chapter 3-6), provid-

ing low complexity and high performance; and the Waymark UWA channel model is modified

(Chapter 2), providing low complexity, and used for simulation (Chapter 3 & 5). Our anal-

ysis of the OFDM receivers has provided ample proof that our techniques are capable of

improving the performance and reducing the complexity of UWA communication systems.

Chapter 1 provides the necessary background material about underwater acoustic commu-

nications and signal processing techniques. Chapter 2 describes the Waymark baseband

propagation channel model. Chapter 3 describes the multi-channel autocorrelation Doppler

estimation method. Chapter 4 investigates the space-time clustering of the channel propaga-

tion and applies it to the receiver design. Chapter 5 investigates the direction of arrival (DOA)

fluctuation in UWA channels, and proposes a beamforming with DOA tracking. Chapter 6

proposes and compares various recursive least squares (RLS) adaptive filters for channel es-

timation of sparse impulse responses in UWA channels.
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Chapter 2 presents the Waymark UWA channel model. This model requires a lower compu-

tational complexity than Waymark passband UWA propagation model, and the performance

of it is comparable to that of a relatively mature UWA propagation channel model (VirTEX ).

This extended work involves developing the channel model and signal representation at the

baseband. In this work, a scenario was considered, in which the Waymark and VirTEX

models were compared. The result shows similarity with a qualitative comparison, with the

major feature such as the Doppler shifts and delays being the same. This gave us confidence

that the results obtained from the Waymark channel model are accurate.

Chapter 3 presents a new method based on multi-channel autocorrelation (MCA) for Doppler

estimation in fast-varying UWA channels. The proposed method not only measures the time

compression over the estimation interval, but also the gradient of the time compression, thus

allowing more accurate (with time-varying sampling rate) resampling of the received sig-

nal to compensate for the Doppler distortions. The proposed method has been compared

with a single-channel autocorrelation (SCA) method and a method based on computing the

cross-ambiguity function between the received and pilot signals. The results in shallow wa-

ter simulation scenarios and in deep ocean sea trials demonstrate that the proposed method

outperforms the SCA method, and it is comparable in the performance to the method based

on computation of the cross-ambiguity function. However, the proposed method requires

significantly less computations, which renders it a good candidate in low complexity UWA

applications.

Chapter 4 exploits the space-time clustering in a proposed receiver designed for guard-free

OFDM signals with superimposed data and pilot symbols. For separation of space clusters,

the receiver utilises a vertical linear array (VLA) of hydrophones, whereas for combining

delay-spread signals within a space cluster, a time-domain equalizer is used. A number of

space-time processing techniques are compared, including a proposed reduced-complexity spa-

tial filter. The results show that the techniques exploiting the space-time clustering demon-

strate an improved detection performance. The comparison is done using signals transmitted

by a moving transducer, and recorded on a 14-element non-uniform VLA in a sea trial at a

distance of 105 km. At this distance, an error-free data transmission with a spectral efficiency

of 0.33 bps/Hz is achieved.
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Chapter 5 investigates direction of arrival (DOA) fluctuation in time-varying UWA commu-

nication channels, and proposes a beamforming technique with DOA tracking. The DOA

fluctuation in UWA channels is investigated from ocean surface and internal waves. The

investigation is used to develop a beamforming technique with DOA tracking. The beam-

forming technique is used in a receiver. The receiver is designed for a communication system

using guard-free OFDM signals with superimposed pilot symbols and a 14-element receive

VLA. The receiver with this DOA tracking demonstrates an improved detection performance

than that without DOA tracking. The comparison is based on data from a simulation at a

transmitter/receiver distance of 80 km, and two sea trials at transmitter/receiver distances

of 30 km and 105 km.

Chapter 6 proposes two sparse recursive least squares (RLS) adaptive filters and applied them

to channel estimation in a high data rate transmission in UWA channels. The first adap-

tive filter is based on sliding-window, diagonal loading and dichotomous coordinate descent

(DCD) iterations, while the second is based on sliding-window, homotopy and DCD itera-

tions. The two adaptive algorithms possess a complexity that only linear in the filter length.

The two adaptive filters are used for channel estimation in two different UWA communica-

tion systems with guard-free OFDM signals and superimposed pilot symbols. Various RLS

adaptive filters are investigated and compared. In the sea trial with a single receive element,

the result shows that the first proposed RLS adaptive filter demonstrates better performance

than other existing adaptive filters used for comparison. In the sea trial with multiple re-

ceive elements, the result shows that the second proposed RLS adaptive filter demonstrates

better performance than other existing adaptive filters used for comparison. The results

also show that adaptive filters with the sliding-window outperform adaptive filters with the

exponential-window. The comparisons have been done using signals recorded in sea trials

at distances of 80 km and 105 km transmitted by a fast moving transducers, resulting in

fast-varying channels. In these conditions, an error-free data transmission is achieved with a

spectral efficiency of 0.33 bps/Hz.
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7.2 Future Work

Some suggestions for future work, based on this thesis, are given below:

1. In Chapter 4, a time-frequency-time (TFT) beamforming technique based on minimum

variance distortionless response (MVDR) beamforming algorithm in DOA estimator

is proposed to estimate the space-time clustering, and to produce directional signals.

Similar TFT beamforming techniques based on other beamforming algorithms, such as

conventional beamforming algorithm or multiple signal classification (MUSIC) beam-

forming algorithm, can also be applied and compared. It might be beneficial to the

receiver to compare TFT techniques based on different beamforming algorithms, and

find the most effective one for achieving the best performance.

2. In Chapters 4 and 5, the space-time clustering in UWA channels is investigated. The

investigation is based on two-dimensional (2D) DOA estimation in a spatial filter. How-

ever, the DOA can be considered as sparse, and the DOA estimation can be considered

as a part of channel estimation. Therefore, designing a channel estimator, which is

capable of combining the estimation of the DOA and the channel impulse response,

might be beneficial to the performance improvement and complexity reduction of the

receiver. The sparse DOA estimation for UWA communications is certainly a topic of

further exploration.

3. In this thesis, various advanced signal processing techniques are investigated with the

transmission of guard-free OFDM signals with superimposed pilot symbols. These tech-

niques can also be effective in the employment of different signal transmission schemes,

e.g., cyclic prefix added OFDM signal transmission.
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Glossary

2D two-Dimensional

3D three-Dimensional

ADC Analogue-to-Digital Converter

AUV Autonomous Underwater Vehicles

BER Bit Error Rate

CAF Cross-Ambiguity Function

CP Cyclic Prefix

DAC Digital-to-Analogue Converter

dB deciBel

DCD Dichotomous Coordinate Descent

DFT Discrete Fourier Transform

DOA Direction Of Arrival

DT Direction of Arrival Tracking

ESPRIT Estimation of Signal Parameters via Rotational Invariance

Technique

FFT Fast Fourier Transform

FIR Finite Impulse Response

Hz Hertz

IFFT Inverse Fast Fourier Transform

km kilometre

LMS Least Mean Square

LPF Low Pass Filter

LS Least Square

MAC Multiply-ACcumulate operations
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MCA Multi-Channel Autocorrelation

ML Maximum Likelihood

MRC Maximal Ratio Combining

ms millisecond

MUSIC MUltiple SIgnal Classification

MVDR Minimum Variance Distortionless Response

NLMS Normalized Least Mean Square

OFDM Orthogonal Frequency-Division Multiplexing

PRBS Pseudo-Random Binary Sequence

RLS Recursive Least Squares

SCA Single-Channel Autocorrelation

SD Static Direction of Arrival

SDM Spectral Density Matrix

SF Spatial Filter

SIMO Single-Input Multiple-Output

SNR Signal-to-Noise Ratio

SSP Sound Speed Profile

ST Space-Time

TFT Time-Frequency-Time

UUV Unmanned Underwater Vehicles

UWA UnderWater Acoustic

VLA Vertical Linear Array
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