40 research outputs found

    MONOCULAR POSE ESTIMATION AND SHAPE RECONSTRUCTION OF QUASI-ARTICULATED OBJECTS WITH CONSUMER DEPTH CAMERA

    Get PDF
    Quasi-articulated objects, such as human beings, are among the most commonly seen objects in our daily lives. Extensive research have been dedicated to 3D shape reconstruction and motion analysis for this type of objects for decades. A major motivation is their wide applications, such as in entertainment, surveillance and health care. Most of existing studies relied on one or more regular video cameras. In recent years, commodity depth sensors have become more and more widely available. The geometric measurements delivered by the depth sensors provide significantly valuable information for these tasks. In this dissertation, we propose three algorithms for monocular pose estimation and shape reconstruction of quasi-articulated objects using a single commodity depth sensor. These three algorithms achieve shape reconstruction with increasing levels of granularity and personalization. We then further develop a method for highly detailed shape reconstruction based on our pose estimation techniques. Our first algorithm takes advantage of a motion database acquired with an active marker-based motion capture system. This method combines pose detection through nearest neighbor search with pose refinement via non-rigid point cloud registration. It is capable of accommodating different body sizes and achieves more than twice higher accuracy compared to a previous state of the art on a publicly available dataset. The above algorithm performs frame by frame estimation and therefore is less prone to tracking failure. Nonetheless, it does not guarantee temporal consistent of the both the skeletal structure and the shape and could be problematic for some applications. To address this problem, we develop a real-time model-based approach for quasi-articulated pose and 3D shape estimation based on Iterative Closest Point (ICP) principal with several novel constraints that are critical for monocular scenario. In this algorithm, we further propose a novel method for automatic body size estimation that enables its capability to accommodate different subjects. Due to the local search nature, the ICP-based method could be trapped to local minima in the case of some complex and fast motions. To address this issue, we explore the potential of using statistical model for soft point correspondences association. Towards this end, we propose a unified framework based on Gaussian Mixture Model for joint pose and shape estimation of quasi-articulated objects. This method achieves state-of-the-art performance on various publicly available datasets. Based on our pose estimation techniques, we then develop a novel framework that achieves highly detailed shape reconstruction by only requiring the user to move naturally in front of a single depth sensor. Our experiments demonstrate reconstructed shapes with rich geometric details for various subjects with different apparels. Last but not the least, we explore the applicability of our method on two real-world applications. First of all, we combine our ICP-base method with cloth simulation techniques for Virtual Try-on. Our system delivers the first promising 3D-based virtual clothing system. Secondly, we explore the possibility to extend our pose estimation algorithms to assist physical therapist to identify their patients’ movement dysfunctions that are related to injuries. Our preliminary experiments have demonstrated promising results by comparison with the gold standard active marker-based commercial system. Throughout the dissertation, we develop various state-of-the-art algorithms for pose estimation and shape reconstruction of quasi-articulated objects by leveraging the geometric information from depth sensors. We also demonstrate their great potentials for different real-world applications

    Real-time 3D hand reconstruction in challenging scenes from a single color or depth camera

    Get PDF
    Hands are one of the main enabling factors for performing complex tasks and humans naturally use them for interactions with their environment. Reconstruction and digitization of 3D hand motion opens up many possibilities for important applications. Hands gestures can be directly used for human–computer interaction, which is especially relevant for controlling augmented or virtual reality (AR/VR) devices where immersion is of utmost importance. In addition, 3D hand motion capture is a precondition for automatic sign-language translation, activity recognition, or teaching robots. Different approaches for 3D hand motion capture have been actively researched in the past. While being accurate, gloves and markers are intrusive and uncomfortable to wear. Hence, markerless hand reconstruction based on cameras is desirable. Multi-camera setups provide rich input, however, they are hard to calibrate and lack the flexibility for mobile use cases. Thus, the majority of more recent methods uses a single color or depth camera which, however, makes the problem harder due to more ambiguities in the input. For interaction purposes, users need continuous control and immediate feedback. This means the algorithms have to run in real time and be robust in uncontrolled scenes. These requirements, achieving 3D hand reconstruction in real time from a single camera in general scenes, make the problem significantly more challenging. While recent research has shown promising results, current state-of-the-art methods still have strong limitations. Most approaches only track the motion of a single hand in isolation and do not take background-clutter or interactions with arbitrary objects or the other hand into account. The few methods that can handle more general and natural scenarios run far from real time or use complex multi-camera setups. Such requirements make existing methods unusable for many aforementioned applications. This thesis pushes the state of the art for real-time 3D hand tracking and reconstruction in general scenes from a single RGB or depth camera. The presented approaches explore novel combinations of generative hand models, which have been used successfully in the computer vision and graphics community for decades, and powerful cutting-edge machine learning techniques, which have recently emerged with the advent of deep learning. In particular, this thesis proposes a novel method for hand tracking in the presence of strong occlusions and clutter, the first method for full global 3D hand tracking from in-the-wild RGB video, and a method for simultaneous pose and dense shape reconstruction of two interacting hands that, for the first time, combines a set of desirable properties previously unseen in the literature.HĂ€nde sind einer der Hauptfaktoren fĂŒr die AusfĂŒhrung komplexer Aufgaben, und Menschen verwenden sie auf natĂŒrliche Weise fĂŒr Interaktionen mit ihrer Umgebung. Die Rekonstruktion und Digitalisierung der 3D-Handbewegung eröffnet viele Möglichkeiten fĂŒr wichtige Anwendungen. Handgesten können direkt als Eingabe fĂŒr die Mensch-Computer-Interaktion verwendet werden. Dies ist insbesondere fĂŒr GerĂ€te der erweiterten oder virtuellen RealitĂ€t (AR / VR) relevant, bei denen die Immersion von grĂ¶ĂŸter Bedeutung ist. DarĂŒber hinaus ist die Rekonstruktion der 3D Handbewegung eine Voraussetzung zur automatischen Übersetzung von GebĂ€rdensprache, zur AktivitĂ€tserkennung oder zum Unterrichten von Robotern. In der Vergangenheit wurden verschiedene AnsĂ€tze zur 3D-Handbewegungsrekonstruktion aktiv erforscht. Handschuhe und physische Markierungen sind zwar prĂ€zise, aber aufdringlich und unangenehm zu tragen. Daher ist eine markierungslose Handrekonstruktion auf der Basis von Kameras wĂŒnschenswert. Multi-Kamera-Setups bieten umfangreiche Eingabedaten, sind jedoch schwer zu kalibrieren und haben keine FlexibilitĂ€t fĂŒr mobile AnwendungsfĂ€lle. Daher verwenden die meisten neueren Methoden eine einzelne Farb- oder Tiefenkamera, was die Aufgabe jedoch schwerer macht, da mehr AmbiguitĂ€ten in den Eingabedaten vorhanden sind. FĂŒr Interaktionszwecke benötigen Benutzer kontinuierliche Kontrolle und sofortiges Feedback. Dies bedeutet, dass die Algorithmen in Echtzeit ausgefĂŒhrt werden mĂŒssen und robust in unkontrollierten Szenen sein mĂŒssen. Diese Anforderungen, 3D-Handrekonstruktion in Echtzeit mit einer einzigen Kamera in allgemeinen Szenen, machen das Problem erheblich schwieriger. WĂ€hrend neuere Forschungsarbeiten vielversprechende Ergebnisse gezeigt haben, weisen aktuelle Methoden immer noch EinschrĂ€nkungen auf. Die meisten AnsĂ€tze verfolgen die Bewegung einer einzelnen Hand nur isoliert und berĂŒcksichtigen keine alltĂ€glichen Umgebungen oder Interaktionen mit beliebigen Objekten oder der anderen Hand. Die wenigen Methoden, die allgemeinere und natĂŒrlichere Szenarien verarbeiten können, laufen nicht in Echtzeit oder verwenden komplexe Multi-Kamera-Setups. Solche Anforderungen machen bestehende Verfahren fĂŒr viele der oben genannten Anwendungen unbrauchbar. Diese Dissertation erweitert den Stand der Technik fĂŒr die Echtzeit-3D-Handverfolgung und -Rekonstruktion in allgemeinen Szenen mit einer einzelnen RGB- oder Tiefenkamera. Die vorgestellten Algorithmen erforschen neue Kombinationen aus generativen Handmodellen, die seit Jahrzehnten erfolgreich in den Bereichen Computer Vision und Grafik eingesetzt werden, und leistungsfĂ€higen innovativen Techniken des maschinellen Lernens, die vor kurzem mit dem Aufkommen neuronaler Netzwerke entstanden sind. In dieser Arbeit werden insbesondere vorgeschlagen: eine neuartige Methode zur Handbewegungsrekonstruktion bei starken Verdeckungen und in unkontrollierten Szenen, die erste Methode zur Rekonstruktion der globalen 3D Handbewegung aus RGB-Videos in freier Wildbahn und die erste Methode zur gleichzeitigen Rekonstruktion von Handpose und -form zweier interagierender HĂ€nde, die eine Reihe wĂŒnschenwerter Eigenschaften komibiniert
    corecore