251 research outputs found

    Integral Input-to-State Stability of Nonlinear Time-Delay Systems with Delay-Dependent Impulse Effects

    Full text link
    This paper studies integral input-to-state stability (iISS) of nonlinear impulsive systems with time-delay in both the continuous dynamics and the impulses. Several iISS results are established by using the method of Lyapunov-Krasovskii functionals. For impulsive systems with iISS continuous dynamics and destabilizing impulses, we derive two iISS criteria that guarantee the uniform iISS of the whole system provided that the time period between two successive impulse moments is appropriately bounded from below. Then we provide an iISS result for systems with unstable continuous dynamics and stabilizing impulses. For this scenario, it is shown that the iISS properties are guaranteed if the impulses occur frequently enough. For impulsive systems with stabilizing impulses and stable continuous dynamics for zero input, we obtain an iISS result which shows that the entire system is uniformly iISS over arbitrary impulse time sequences. As applications, iISS properties of a class of bilinear systems are studied in details with simulations to demonstrate the presented results

    Time-delayed impulsive control for discrete-time nonlinear systems with actuator saturation

    Get PDF
    This paper focuses on the problem of time-delayed impulsive control with actuator saturation for discrete-time dynamical systems. By establishing a delayed impulsive difference inequality, combining with convex analysis and inequality techniques, some sufficient conditions are obtained to ensure exponential stability for discrete-time dynamical systems via time-delayed impulsive controller with actuator saturation. The designed controller admits the existence of some transmission delays in impulsive feedback law, and the control input variables are required to stay within an availability zone. Several numerical simulations are also given to demonstrate the effectiveness of the proposed results.&nbsp

    Impulsive Control and Synchronization of Chaos-Generating-Systems with Applications to Secure Communication

    Get PDF
    When two or more chaotic systems are coupled, they may exhibit synchronized chaotic oscillations. The synchronization of chaos is usually understood as the regime of chaotic oscillations in which the corresponding variables or coupled systems are equal to each other. This kind of synchronized chaos is most frequently observed in systems specifically designed to be able to produce this behaviour. In this thesis, one particular type of synchronization, called impulsive synchronization, is investigated and applied to low dimensional chaotic, hyperchaotic and spatiotemporal chaotic systems. This synchronization technique requires driving one chaotic system, called response system, by samples of the state variables of the other chaotic system, called drive system, at discrete moments. Equi-Lagrange stability and equi-attractivity in the large property of the synchronization error become our major concerns when discussing the dynamics of synchronization to guarantee the convergence of the error dynamics to zero. Sufficient conditions for equi-Lagrange stability and equi-attractivity in the large are obtained for the different types of chaos-generating systems used. The issue of robustness of synchronized chaotic oscillations with respect to parameter variations and time delay, is also addressed and investigated when dealing with impulsive synchronization of low dimensional chaotic and hyperchaotic systems. Due to the fact that it is impossible to design two identical chaotic systems and that transmission and sampling delays in impulsive synchronization are inevitable, robustness becomes a fundamental issue in the models considered. Therefore it is established, in this thesis, that under relatively large parameter perturbations and bounded delay, impulsive synchronization still shows very desired behaviour. In fact, criteria for robustness of this particular type of synchronization are derived for both cases, especially in the case of time delay, where sufficient conditions for the synchronization error to be equi-attractivity in the large, are derived and an upper bound on the delay terms is also obtained in terms of the other parameters of the systems involved. The theoretical results, described above, regarding impulsive synchronization, are reconfirmed numerically. This is done by analyzing the Lyapunov exponents of the error dynamics and by showing the simulations of the different models discussed in each case. The application of the theory of synchronization, in general, and impulsive synchronization, in particular, to communication security, is also presented in this thesis. A new impulsive cryptosystem, called induced-message cryptosystem, is proposed and its properties are investigated. It was established that this cryptosystem does not require the transmission of the encrypted signal but instead the impulses will carry the information needed for synchronization and for retrieving the message signal. Thus the security of transmission is increased and the time-frame congestion problem, discussed in the literature, is also solved. Several other impulsive cryptosystems are also proposed to accommodate more solutions to several security issues and to illustrate the different properties of impulsive synchronization. Finally, extending the applications of impulsive synchronization to employ spatiotemporal chaotic systems, generated by partial differential equations, is addressed. Several possible models implementing this approach are suggested in this thesis and few questions are raised towards possible future research work in this area

    Impulsive Control for the Synchronization of Chaotic Systems with Time Delay

    Get PDF
    This paper considers impulsive control for the synchronization of chaotic systems with time delays. Based on the Lyapunov functions and the Razumikhin technique, some new synchronization criteria with an exponential convergence rate are derived. Our results show that impulses do contribute to globally exponential synchronization of dynamical systems. Besides, the impulsive moments are independent of the upper bound of time delays. Furthermore, a bigger upper bound of impulsive intervals for the synchronization of chaotic systems can be obtained when compared with many previous studies. Hence, our results are less conservative and more effective for the synchronization analysis. A numerical example is given to show the validity and potential of the developed results

    Stability analysis and H ∞ control for hybrid complex dynamical networks with coupling delays

    Get PDF
    This paper formulates and studies a model of complex dynamical networks with switching topology and coupling delays. Based on the hybrid control and Lyapunov function, the stability and robust H control of such networks with impulsive and switching effects, which have not been studied before, are addressed with some criteria derived. Examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd

    Synchronization of reaction–diffusion Hopfield neural networks with s-delays through sliding mode control

    Get PDF
    Synchronization of reaction–diffusion Hopfield neural networks with s-delays via sliding mode control (SMC) is investigated in this paper. To begin with, the system is studied in an abstract Hilbert space C([–r; 0];U) rather than usual Euclid space Rn. Then we prove that the state vector of the drive system synchronizes to that of the response system on the switching surface, which relies on equivalent control. Furthermore, we prove that switching surface is the sliding mode area under SMC. Moreover, SMC controller can also force with any initial state to reach the switching surface within finite time, and the approximating time estimate is given explicitly. These criteria are easy to check and have less restrictions, so they can provide solid theoretical guidance for practical design in the future. Three different novel Lyapunov–Krasovskii functionals are used in corresponding proofs. Meanwhile, some inequalities such as Young inequality, Cauchy inequality, Poincaré inequality, Hanalay inequality are applied in these proofs. Finally, an example is given to illustrate the availability of our theoretical result, and the simulation is also carried out based on Runge–Kutta–Chebyshev method through Matlab

    Impulsive Control of Dynamical Networks

    Get PDF
    Dynamical networks (DNs) consist of a large set of interconnected nodes with each node being a fundamental unit with detailed contents. A great number of natural and man-made networks such as social networks, food networks, neural networks, WorldWideWeb, electrical power grid, etc., can be effectively modeled by DNs. The main focus of the present thesis is on delay-dependent impulsive control of DNs. To study the impulsive control problem of DNs, we firstly construct stability results for general nonlinear time-delay systems with delayed impulses by using the method of Lyapunov functionals and Razumikhin technique. Secondly, we study the consensus problem of multi-agent systems with both fixed and switching topologies. A hybrid consensus protocol is proposed to take into consideration of continuous-time communications among agents and delayed instant information exchanges on a sequence of discrete times. Then, a novel hybrid consensus protocol with dynamically changing interaction topologies is designed to take the time-delay into account in both the continuous-time communication among agents and the instant information exchange at discrete moments. We also study the consensus problem of networked multi-agent systems. Distributed delays are considered in both the agent dynamics and the proposed impulsive consensus protocols. Lastly, stabilization and synchronization problems of DNs under pinning impulsive control are studied. A pinning algorithm is incorporated with the impulsive control method. We propose a delay-dependent pinning impulsive controller to investigate the synchronization of linear delay-free DNs on time scales. Then, we apply the pinning impulsive controller proposed for the delay-free networks to stabilize time-delay DNs. Results show that the delay-dependent pinning impulsive controller can successfully stabilize and synchronize DNs with/without time-delay. Moreover, we design a type of pinning impulsive controllers that relies only on the network states at history moments (not on the states at each impulsive instant). Sufficient conditions on stabilization of time-delay networks are obtained, and results show that the proposed pinning impulsive controller can effectively stabilize the network even though only time-delay states are available to the pinning controller at each impulsive instant. We further consider the pinning impulsive controllers with both discrete and distributed time-delay effects to synchronize the drive and response systems modeled by globally Lipschitz time-delay systems. As an extension study of pinning impulsive control approach, we investigate the synchronization problem of systems and networks governed by PDEs

    On the dichotomic collective behaviors of large populations of pulse-coupled firing oscillators

    Get PDF
    The study of populations of pulse-coupled firing oscillators is a general and simple paradigm to investigate a wealth of natural phenomena, including the collective behaviors of neurons, the synchronization of cardiac pacemaker cells, or the dynamics of earthquakes. In this framework, the oscillators of the network interact through an instantaneous impulsive coupling: whenever an oscillator fires, it sends out a pulse which instantaneously increments the state of the other oscillators by a constant value. There is an extensive literature on the subject, which investigates various model extensions, but only in the case of leaky integrate-and-fire oscillators. In contrast, the present dissertation addresses the study of other integrate-and-fire dynamics: general monotone integrate-and-fire dynamics and quadratic integrate-and-fire dynamics. The main contribution of the thesis highlights that the populations of oscillators exhibit a dichotomic collective behavior: either the oscillators achieve perfect synchrony (slow firing frequency) or the oscillators converge toward a phase-locked clustering configuration (fast firing frequency). The dichotomic behavior is established both for finite and infinite populations of oscillators, drawing a strong parallel between discrete-time systems in finite-dimensional spaces and continuous-time systems in infinite-dimensional spaces. The first part of the dissertation is dedicated to the study of monotone integrate-and-fire dynamics. We show that the dichotomic behavior of the oscillators results from the monotonicity property of the dynamics: the monotonicity property induces a global contraction property of the network, that forces the dichotomic behavior. Interestingly, the analysis emphasizes that the contraction property is captured through a 1-norm, instead of a (more common) quadratic norm. In the second part of the dissertation, we investigate the collective behavior of quadratic integrate-and-fire oscillators. Although the dynamics is not monotone, an “average” monotonicity property ensures that the collective behavior is still dichotomic. However, a global analysis of the dichotomic behavior is elusive and leads to a standing conjecture. A local stability analysis circumvents this issue and proves the dichotomic behavior in particular situations (small networks, weak coupling, etc.). Surprisingly, the local stability analysis shows that specific integrate-and-fire oscillators exhibit a non-dichotomic behavior, thereby suggesting that the dichotomic behavior is not a general feature of every network of pulse-coupled oscillators. The present thesis investigates the remarkable dichotomic behavior that emerges from networks of pulse-coupled integrate-and-fire oscillators, putting emphasis on the stability properties of these particular networks and developing theoretical results for the analysis of the corresponding dynamical systems.Les populations d’oscillateurs impulsivement couplés constituent un paradigme simple et général pour étudier une multitude de phénomènes naturels, tels que les comportements collectifs des neurones, la synchronisation des cellules pacemaker du coeur, ou encore la dynamique des tremblements de terre. Dans ce contexte, les oscillateurs interagissent au sein du réseau par le biais d’un couplage instantané: quand un oscillateur décharge, il envoie vers les autres oscillateurs une impulsion qui incrémente instantanément leur état par une valeur constante. Diverses extensions du modèle ont été intensément étudiées dans la littérature, mais seulement dans le cas d’oscillateurs leaky integrate-and-fire. Afin de pallier cette restriction, le présent manuscrit traite de l’étude d’autres dynamiques integrate-and-fire: les dynamiques générales integrate-and-fire monotones et les dynamiques integrate-and-fire quadratiques. La contribution principale de la thèse met en évidence le comportement d’ensemble dichotomique selon lequel s’organisent les populations d’oscillateurs: soit les oscillateurs atteignent un état de synchronisation parfaite (taux de décharge lent), soit ils convergent vers une configuration de clustering en blocage de phase (taux de décharge rapide). Ce comportement dichotomique est établi aussi bien pour des populations finies que pour des populations infinies, ce qui démontre un parallèle élégant entre des systèmes en temps-discret dans des espaces de dimension finie et des systèmes en temps-continu dans des espaces de dimension infinie. La première partie du manuscrit se concentre sur l’étude des dynamiques integrate-and-fire monotones. Dans ce cadre, nous montrons que le comportement dichotomique résulte de la propriété de monotonicité des oscillateurs. Cette dernière induit une propriété de contraction globale, elle-même engendrant le comportement dichotomique. En outre, l’analyse révèle que la propriété de contraction est capturée par une norme 1, au lieu d’une norme quadratique (plus usuelle). Dans la seconde partie de la thèse, nous étudions le comportement d’ensemble d’oscillateurs integrate-and-fire quadratiques. Bien que la dynamique ne soit plus monotone, une propriété de monotonicité “en moyenne” implique que le comportement collectif est encore dichotomique. Alors qu’une analyse de stabilité globale s’avère être difficile et conduit à plusieurs conjectures, une analyse locale permet de prouver le comportement dichomique dans certaines situations (réseaux de petite taille, couplage faible, etc.). De plus, l’analyse locale prouve que des oscillateurs integrate-and-fire particuliers ne s’organisent pas suivant un comportement dichotomique, ce qui suggère que ce dernier n’est pas une caractéristique générale de tous les réseaux d’oscillateurs impulsivement couplés. En résumé, la thèse étudie le remarquable comportement dichotomique qui émerge des réseaux d’oscillateurs integrate-and-fire impulsivement couplés, mettant ainsi l’emphase sur les propriétés de stabilité desdits réseaux et développant les résultats théoriques nécessaires à l’étude mathématique des systèmes dynamiques correspondants
    corecore