2,163 research outputs found

    Adaptive foreground segmentation using fuzzy approach

    Get PDF
    Intelligent visual surveillance which attempts to detect, recognize and track certain objects from image sequences is becoming an active research topic in computer vision community. Background modeling and foreground segmentation are the first two and the most important steps in any intelligent visual surveillance systems. The accuracy of these two steps highly effects performance of the following steps. In this thesis, we propose a simple and novel method which employs histogram based median method for background modeling and a fuzzy k-Means clustering approach for foreground segmentation. Experiments on a set of videos and benchmark image sequences show the effectiveness of the proposed method. Compared with other two contemporary methods - k -Means clustering and Mixture of Gaussians (MoG) - the proposed method is not only time efficient but also provides better segmentation results

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Student Engagement with Video Instruction—How to Engage 7th-Grade Social Studies Students and Diverse Academic Abilities with Video in the Classroom

    Get PDF
    This mixed methods action research study explored the use of video-enhanced instruction in a seventh-grade social studies classroom in a small, rural middle school in the southeast United States. The primary research questions for this study was, How do different strategies for video-enhanced instruction support or challenge engagement in learning for students with diverse academic abilities? This dissertation will describe how I used the SAMR model of technology integration (Puentedura, 2012), and David Havens’ (2014) framework for engagement with technology to enact and study the impact of three different ways that video-enhanced instruction could be used to support students identified as academically gifted and talented while also supporting achievement for non-classified students. The results of this study indicated how students of various levels of academic ability can be supported in different ways based on their appreciation for different levels of integration of video-enhanced lessons. The findings and their implications for teachers, administrators, instructional coaches, and curriculum developers are discussed along with an implementation plan for building on this work in the future

    Learning motion patterns using hierarchical Bayesian models

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-179).In far-field visual surveillance, one of the key tasks is to monitor activities in the scene. Through learning motion patterns of objects, computers can help people understand typical activities, detect abnormal activities, and learn the models of semantically meaningful scene structures, such as paths commonly taken by objects. In medical imaging, some issues similar to learning motion patterns arise. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is one of the first methods to visualize and quantify the organization of white matter in the brain in vivo. Using methods of tractography segmentation, one can connect local diffusion measurements to create global fiber trajectories, which can then be clustered into anatomically meaningful bundles. This is similar to clustering trajectories of objects in visual surveillance. In this thesis, we develop several unsupervised frameworks to learn motion patterns from complicated and large scale data sets using hierarchical Bayesian models. We explore their applications to activity analysis in far-field visual surveillance and tractography segmentation in medical imaging. Many existing activity analysis approaches in visual surveillance are ad hoc, relying on predefined rules or simple probabilistic models, which prohibits them from modeling complicated activities. Our hierarchical Bayesian models can structure dependency among a large number of variables to model complicated activities. Various constraints and knowledge can be nicely added into a Bayesian framework as priors. When the number of clusters is not well defined in advance, our nonparametric Bayesian models can learn it driven by data with Dirichlet Processes priors.(cont.) In this work, several hierarchical Bayesian models are proposed considering different types of scenes and different settings of cameras. If the scenes are crowded, it is difficult to track objects because of frequent occlusions and difficult to separate different types of co-occurring activities. We jointly model simple activities and complicated global behaviors at different hierarchical levels directly from moving pixels without tracking objects. If the scene is sparse and there is only a single camera view, we first track objects and then cluster trajectories into different activity categories. In the meanwhile, we learn the models of paths commonly taken by objects. Under the Bayesian framework, using the models of activities learned from historical data as priors, the models of activities can be dynamically updated over time. When multiple camera views are used to monitor a large area, by adding a smoothness constraint as a prior, our hierarchical Bayesian model clusters trajectories in multiple camera views without tracking objects across camera views. The topology of multiple camera views is assumed to be unknown and arbitrary. In tractography segmentation, our approach can cluster much larger scale data sets than existing approaches and automatically learn the number of bundles from data. We demonstrate the effectiveness of our approaches on multiple visual surveillance and medical imaging data sets.by Xiaogang Wang.Ph.D

    Data-driven Computational Social Science: A Survey

    Get PDF
    Social science concerns issues on individuals, relationships, and the whole society. The complexity of research topics in social science makes it the amalgamation of multiple disciplines, such as economics, political science, and sociology, etc. For centuries, scientists have conducted many studies to understand the mechanisms of the society. However, due to the limitations of traditional research methods, there exist many critical social issues to be explored. To solve those issues, computational social science emerges due to the rapid advancements of computation technologies and the profound studies on social science. With the aids of the advanced research techniques, various kinds of data from diverse areas can be acquired nowadays, and they can help us look into social problems with a new eye. As a result, utilizing various data to reveal issues derived from computational social science area has attracted more and more attentions. In this paper, to the best of our knowledge, we present a survey on data-driven computational social science for the first time which primarily focuses on reviewing application domains involving human dynamics. The state-of-the-art research on human dynamics is reviewed from three aspects: individuals, relationships, and collectives. Specifically, the research methodologies used to address research challenges in aforementioned application domains are summarized. In addition, some important open challenges with respect to both emerging research topics and research methods are discussed.Comment: 28 pages, 8 figure

    Multivariate data envelopment analysis to measure airline efficiency in european airspace: a network-based approach

    Get PDF
    In this paper, data envelopment analysis (DEA) is applied to exhaustively examine the efficiency of the main airline companies in the European airspace by using novel input/output parameters: business management factors, network analysis metrics, as well as social media estimators. Furthermore, we also use network analysis to provide a better differentiation among efficiency values. Results indicate that user engagement, as well as the analysis of the position within the airspace-from an operative perspective, influence the efficiency of the airline companies, allowing a more comprehensive understanding of its functioning

    Harnessing the power of the general public for crowdsourced business intelligence: a survey

    Get PDF
    International audienceCrowdsourced business intelligence (CrowdBI), which leverages the crowdsourced user-generated data to extract useful knowledge about business and create marketing intelligence to excel in the business environment, has become a surging research topic in recent years. Compared with the traditional business intelligence that is based on the firm-owned data and survey data, CrowdBI faces numerous unique issues, such as customer behavior analysis, brand tracking, and product improvement, demand forecasting and trend analysis, competitive intelligence, business popularity analysis and site recommendation, and urban commercial analysis. This paper first characterizes the concept model and unique features and presents a generic framework for CrowdBI. It also investigates novel application areas as well as the key challenges and techniques of CrowdBI. Furthermore, we make discussions about the future research directions of CrowdBI

    Shallow Representations, Profound Discoveries : A methodological study of game culture in social media

    Get PDF
    This thesis explores the potential of representation learning techniques in game studies, highlighting their effectiveness and addressing challenges in data analysis. The primary focus of this thesis is shallow representation learning, which utilizes simpler model architectures but is able to yield effective modeling results. This thesis investigates the following research objectives: disentangling the dependencies of data, modeling temporal dynamics, learning multiple representations, and learning from heterogeneous data. The contributions of this thesis are made from two perspectives: empirical analysis and methodology development, to address these objectives. Chapters 1 and 2 provide a thorough introduction, motivation, and necessary background information for the thesis, framing the research and setting the stage for subsequent publications. Chapters 3 to 5 summarize the contribution of the 6 publications, each of which contributes to demonstrating the effectiveness of representation learning techniques in addressing various analytical challenges. In Chapter 1 and 2, the research objects and questions are also motivated and described. In particular, Introduction to the primary application field game studies is provided and the connections of data analysis and game culture is highlighted. Basic notion of representation learning, and canonical techniques such as probabilistic principal component analysis, topic modeling, and embedding models are described. Analytical challenges and data types are also described to motivate the research of this thesis. Chapter 3 presents two empirical analyses conducted in Publication I and II that present empirical data analysis on player typologies and temporal dynamics of player perceptions. The first empirical analysis takes the advantage of a factor model to offer a flexible player typology analysis. Results and analytical framework are particularly useful for personalized gamification. The Second empirical analysis uses topic modeling to analyze the temporal dynamic of player perceptions of the game No Man’s Sky in relation to game changes. The results reflect a variety of player perceptions including general gaming activities, game mechanic. Moreover, a set of underlying topics that are directly related to game updates and changes are extracted and the temporal dynamics of them have reflected that players responds differently to different updates and changes. Chapter 4 presents two method developments that are related to factor models. The first method, DNBGFA, developed in Publication III, is a matrix factorization model for modeling the temporal dynamics of non-negative matrices from multiple sources. The second mothod, CFTM, developed in Publication IV introduces a factor model to a topic model to handle sophisticated document-level covariates. The develeopd methods in Chapter 4 are also demonstrated for analyzing text data. Chapter 5 summarizes Publication V and Publication VI that develop embedding models. Publication V introduces Bayesian non-parametric to a graph embedding model to learn multiple representations for nodes. Publication VI utilizes a Gaussian copula model to deal with heterogeneous data in representation learning. The develeopd methods in Chapter 5 are also demonstrated for data analysis tasks in the context of online communities. Lastly, Chapter 6 renders discussions and conclusions. Contributions of this thesis are highlighted, limitations, ongoing challenges, and potential future research directions are discussed
    • …
    corecore