22 research outputs found

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Coalition based approach for shop floor agility – a multiagent approach

    Get PDF
    Dissertation submitted for a PhD degree in Electrical Engineering, speciality of Robotics and Integrated Manufacturing from the Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaThis thesis addresses the problem of shop floor agility. In order to cope with the disturbances and uncertainties that characterise the current business scenarios faced by manufacturing companies, the capability of their shop floors needs to be improved quickly, such that these shop floors may be adapted, changed or become easily modifiable (shop floor reengineering). One of the critical elements in any shop floor reengineering process is the way the control/supervision architecture is changed or modified to accommodate for the new processes and equipment. This thesis, therefore, proposes an architecture to support the fast adaptation or changes in the control/supervision architecture. This architecture postulates that manufacturing systems are no more than compositions of modularised manufacturing components whose interactions when aggregated are governed by contractual mechanisms that favour configuration over reprogramming. A multiagent based reference architecture called Coalition Based Approach for Shop floor Agility – CoBASA, was created to support fast adaptation and changes of shop floor control architectures with minimal effort. The coalitions are composed of agentified manufacturing components (modules), whose relationships within the coalitions are governed by contracts that are configured whenever a coalition is established. Creating and changing a coalition do not involve programming effort because it only requires changes to the contract that regulates it

    Agent-oriented constructivist knowledge management

    Get PDF
    In Ancient Times, when written language was introduced, books and manuscripts were often considered sacred. During these times, only a few persons were able to read and interpret them, while most people were limited in accepting these interpretations. Then, along with the industrial revolution of the XVIII and XIX centuries and especially boosted by the development of the press, knowledge slowly became available to all people. Simultaneously, people were starting to apply machines in the development of their work, usually characterized by repetitive processes, and especially focused in the production of consuming goods, such as furniture, clocks, clothes and so on. Following the needs of this new society, it was finally through science that new processes emerged to enable the transmission of knowledge from books and instructors to learners. Still today, people gain knowledge based on these processes, created to fulfill the needs of a society in its early stages of industrialization, thus not being compatible with the needs of the information society. In the information society, people must deal with an overloading amount of information, by the means of the media, books, besides different telecommunication and information systems technology. Furthermore, people’s relation to work has been influenced by profound changes, for instance, knowledge itself is now regarded as a valuable work product and, thus, the workplace has become an environment of knowledge creation and learning. Modifications in the world economical, political and social scenarios led to the conclusion that knowledge is the differential that can lead to innovation and, consequently, save organizations, societies, and even countries from failing in achieving their main goals. Focusing on these matters is the Knowledge Management (KM) research area, which deals with the creation, integration and use of knowledge, aiming at improving the performance of individuals and organizations. Advances in this field are mainly motivated by the assumption that organizations should focus on knowledge assets (generally maintained by the members of an organization) to remain competitive in the information society’s market. This thesis argues that KM initiatives should be targeted based on a constructivist perspective. In general, a constructivist view on KM focuses on how knowledge emerges, giving great importance to the knowledge holders and their natural practices. With the paragraph above, the reader may already have an intuition of how this work faces and targets Knowledge Management, however, let us be more precise. Research in Knowledge Management has evolved substantially in the past 30 years, coming from a centralized view of KM processes to a distributed view, grounded in organizational and cognitive sciences studies that point out the social, distributed, and subjective nature of knowledge. The first Knowledge Management Systems (KMSs) were centrally based and followed a top-down design approach. The organization managers, supported by knowledge engineers, collected and structured the contents of an organizational memory as a finished product at design time (before the organizational memory was deployed) and then disseminated the product, expecting employees to use it and update it. However, employees often claimed that the knowledge stored in the repository was detached from their real working practices. This led to the development of evolutionary methods, which prescribe that the basic KM system is initially developed and evolves proactively in an on-going fashion. However, most of the initiatives are still based on building central repositories and portals, which assume standardized vocabularies, languages, and classification schemes. Consequently, employees’ lack of trust and motivation often lead to dissatisfaction. In other words, workers resist on sharing knowledge, since they do not know who is going to access it and what is going to be done with it. Moreover, the importance attributed to knowledge may give an impression that these central systems take away a valuable asset from his or her owner, without giving appreciable benefits in return. The problems highlighted in the previous paragraph may be attenuated or even solved if a top-down/bottom-up strategy is applied when proposing a KM solution. This means that the solution should be sought with aim at organizational goals (top-down) but at the same time, more attention should be given to the knowledge holders and on the natural processes they already use to share knowledge (bottom-up). Being active agency such an important principle of Constructivism, this work recognizes that the Agent Paradigm (first defined by Artificial Intelligence and more recently adopted by Software Engineering) is the best approach to target Knowledge Management, taking a technological and social perspective. Capable of modeling and supporting social environments, agents is here recognized as a suitable solution for Knowledge Management especially by providing a suitable metaphor used for modeling KM domains (i.e. representing humans and organizations) and systems. Applying agents as metaphors on KM is mainly motivated by the definition of agents as cognitive beings having characteristics that resemble human cognition, such as autonomy, reactivity, goals, beliefs, desires, and social-ability. Using agents as human abstractions is motivated by the fact that, for specific problems, such as software engineering and knowledge management process modeling, agents may aid the analyst to abstract away from some of the problems related to human complexity, and focus on the important issues that impact the specific goals, beliefs and tasks of agents of the domain. This often leads to a clear understanding of the current situation, which is essential for the proposal of an appropriate solution. The current situation may be understood by modeling at the same time the overall goals of the organization, and the needs and wants of knowledge holders. Towards facilitating the analysis of KM scenarios and the development of adequate solutions, this work proposes ARKnowD (Agent-oriented Recipe for Knowledge Management Systems Development). Systems here have a broad definition, comprehending both technology-based systems (e.g. information system, groupware, repositories) and/or human systems, i.e. human processes supporting KM using non-computational artifacts (e.g. brain stormings, creativity workshops). The basic philosophical assumptions behind ARKnowD are: a) the interactions between human and system should be understood according to the constructivist principle of self-construction, claiming that humans and communities are self-organizing entities that constantly construct their identities and evolve throughout endless interaction cycles. As a result of such interactions, humans shape systems and, at the same time, systems constrain the ways humans act and change; b) KM enabling systems should be built in a bottom-up approach, aiming at the organizational goals, but understanding that in order to fulfill these goals, some personal needs and wants of the knowledge holders (i.e. the organizational members) need to be targeted; and c) there is no “silver bullet��? when pursuing a KM tailoring methodology and the best approach is combining existing agent-oriented approaches according to the given domain or situation. This work shows how the principles above may be achieved by the integration of two existing work on agent-oriented software engineering, which are combined to guide KM analysts and system developers when conceiving KM solutions. Innovation in our work is achieved by supporting topdown/bottom-up approaches to KM as mentioned above. The proposed methodology does that by strongly emphasizing the earlier phases of software development, the so-called requirement analysis activity. In this way, we consider all stakeholders (organizations and humans) as agents in our analysis model, and start by understanding their relations before actually thinking of developing a system. Perhaps the problem may be more effectively solved by proposing changes in the business processes, rather than by making use of new technology. And besides, in addition to humans and organizations, existing systems are also included in the model from start, helping the analyst and designer to understand which functionalities are delegated to these so-called artificial agents. In addition to that, benefits as a result of the application of ARKnowD may be also attributed to our choice of using the proper agent cognitive characteristics in the different phases of the development cycle. With the main purpose of exemplifying the use of the proposed methodology, this work presents a socially-aware recommender agent named KARe (Knowledgeable Agent for Recommendations). Recommender Systems may be defined by those that support users in selecting items of their need from a big set of items, helping users to overcome the overwhelming feeling when facing a vast information source, such as the web, an organizational repository or the like. Besides serving as a case for our methodology, this work also aims at exploring the suitability of the KARe system to support KM processes. Our choice for supporting knowledge sharing through questioning and answering processes is again supported by Constructivism proponents, who understand that social interaction is vital for active knowledge building. This assumption is also defended by some KM theories, claiming that knowledge is created through cycles of transformation between two types of knowledge: tacit and explicit knowledge. Up to now, research on KM has paid much attention to the formalization and exchange of explicit knowledge, in the form of documents or other physical artifacts, often annotated with metadata, and classified by taxonomies or ontologies. Investigations surrounding tacit knowledge have been so far scarce, perhaps by the complexity of the tasks of capturing and integrating such kind of knowledge, defined as knowledge about personal experience and values, usually confined on people’s mind. Taking a flexible approach on supporting this kind of knowledge conversion, KARe relies on the potential of social interaction underlying organizational practices to support knowledge creation and sharing. The global objective of this work is to support knowledge creation and sharing within an organization, according to its own natural processes and social behaviors. In other words, this work is based on the assumption that KM is better supported if knowledge is looked at from a constructivist perspective. To sum up, this thesis aims at: 1) Providing an agent-oriented approach to guide the creation and evolvement of KM initiatives, by analyzing the organizational potentials, behaviors and processes concerning knowledge sharing; 2) Developing the KARe recommender system, based on a semantically enriched Information Retrieval technique for recommending knowledge artifacts, supporting users to ask and answer to each others’ questions. These objectives are achieved as follows: - Defining the principles that characterize a Constructivist KM supporting environment and understanding how they may be used to support the creation of more effective KM solutions; - Providing an agent-oriented approach to develop KM systems. This approach is based on the integration of two different agent-oriented software engineering works, profiting from their strengths in providing a comprehensive methodology that targets both analysis and design activities; - Proposing and designing a socially aware agent-oriented recommender system both to exemplify the application of the proposed approach and to explore its potential on supporting knowledge creation and sharing. - Implementing an Information Retrieval algorithm to support the previously mentioned system in generating recommendations. Besides describing the algorithm, this thesis brings experimental results to prove its effectiveness

    Proceedings of the 1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020)

    Get PDF
    1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020), 29-30 August, 2020 Santiago de Compostela, SpainThe DC-ECAI 2020 provides a unique opportunity for PhD students, who are close to finishing their doctorate research, to interact with experienced researchers in the field. Senior members of the community are assigned as mentors for each group of students based on the student’s research or similarity of research interests. The DC-ECAI 2020, which is held virtually this year, allows students from all over the world to present their research and discuss their ongoing research and career plans with their mentor, to do networking with other participants, and to receive training and mentoring about career planning and career option

    A model-driven approach for organizations in multiagent systems

    Get PDF
    This thesis introduces a new model-driven approach to agent-oriented software engineering in which agent organizations not only play a crucial role, but are also represented in every abstraction level. In our methodology, multiagent systems are modeled at a platform-independent level and transformed into a platform-specific level preserving the organizational structures. The approach has been refined through several years and has been used in two European Union projects.In dieser Arbeit wird ein neuer Modell-basierter Ansatz für die Agentenorientierte Softwaretechnik vorgestellt, bei dem Agenten-Organisationen nicht nur eine entscheidende Rolle spielen, sondern auch auf allen Abstraktionsebenen vertreten sind. In der dargestellten Methodik werden Multiagenten-Systeme auf einer Plattform-unabhängigen Ebene modelliert und dann in ein Plattform-spezifisches Modell umgewandelt, wobei die Organisationsstrukturen erhalten bleiben. Der Ansatz wurde über einige Jahre kontinuierlich verfeinert und bereits in zwei Projekten der Europäischen Union implementiert

    Artificial Intelligence Applications to Critical Transportation Issues

    Full text link

    Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments

    Get PDF
    This book presents the collection of fifty papers which were presented in the Second International Conference on BUSINESS SUSTAINABILITY 2011 - Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments , held in Póvoa de Varzim, Portugal, from 22ndto 24thof June, 2011.The main motive of the meeting was growing awareness of the importance of the sustainability issue. This importance had emerged from the growing uncertainty of the market behaviour that leads to the characterization of the market, i.e. environment, as turbulent. Actually, the characterization of the environment as uncertain and turbulent reflects the fact that the traditional technocratic and/or socio-technical approaches cannot effectively and efficiently lead with the present situation. In other words, the rise of the sustainability issue means the quest for new instruments to deal with uncertainty and/or turbulence. The sustainability issue has a complex nature and solutions are sought in a wide range of domains and instruments to achieve and manage it. The domains range from environmental sustainability (referring to natural environment) through organisational and business sustainability towards social sustainability. Concerning the instruments for sustainability, they range from traditional engineering and management methodologies towards “soft” instruments such as knowledge, learning, and creativity. The papers in this book address virtually whole sustainability problems space in a greater or lesser extent. However, although the uncertainty and/or turbulence, or in other words the dynamic properties, come from coupling of management, technology, learning, individuals, organisations and society, meaning that everything is at the same time effect and cause, we wanted to put the emphasis on business with the intention to address primarily companies and their businesses. Due to this reason, the main title of the book is “Business Sustainability 2.0” but with the approach of coupling Management, Technology and Learning for individuals, organisations and society in Turbulent Environments. Also, the notation“2.0” is to promote the publication as a step further from our previous publication – “Business Sustainability I” – as would be for a new version of software. Concerning the Second International Conference on BUSINESS SUSTAINABILITY, its particularity was that it had served primarily as a learning environment in which the papers published in this book were the ground for further individual and collective growth in understanding and perception of sustainability and capacity for building new instruments for business sustainability. In that respect, the methodology of the conference work was basically dialogical, meaning promoting dialog on the papers, but also including formal paper presentations. In this way, the conference presented a rich space for satisfying different authors’ and participants’ needs. Additionally, promoting the widest and global learning environment and participation, in accordance with the Conference's assumed mission to promote Proactive Generative Collaborative Learning, the Conference Organisation shares/puts open to the community the papers presented in this book, as well as the papers presented on the previous Conference(s). These papers can be accessed from the conference webpage (http://labve.dps.uminho.pt/bs11). In these terms, this book could also be understood as a complementary instrument to the Conference authors’ and participants’, but also to the wider readerships’ interested in the sustainability issues. The book brought together 107 authors from 11 countries, namely from Australia, Belgium, Brazil, Canada, France, Germany, Italy, Portugal, Serbia, Switzerland, and United States of America. The authors “ranged” from senior and renowned scientists to young researchers providing a rich and learning environment. At the end, the editors hope, and would like, that this book to be useful, meeting the expectation of the authors and wider readership and serving for enhancing the individual and collective learning, and to incentive further scientific development and creation of new papers. Also, the editors would use this opportunity to announce the intention to continue with new editions of the conference and subsequent editions of accompanying books on the subject of BUSINESS SUSTAINABILITY, the third of which is planned for year 2013.info:eu-repo/semantics/publishedVersio

    Big Data in MultiAgent Systems: Market Design Solutions

    Get PDF
    El objetivo principal de esta Tesis es presentar un conjunto de novedosos y diferentes métodos en los que los sistemas multiagente pueden jugar un papel clave en predicciones y modelos económicos en un amplio conjunto de contextos. La hipótesis principal es que los sistemas multiagente permiten la creación de modelos macroeconómicos con microfundamentos reales que son capaces de representar la economía en los diferentes niveles de acuerdo con diferentes propósitos y necesidades. La investigación se estructura en seis capítulos. El Capítulo 1 es una introducción teórica al resto de los capítulos que presentan aplicaciones empíricas. En él se compara los sistemas multiagente con dos alternativas: los modelos de equilibrio general computable y la econometría espacial. El resto de los capítulos son intencionadamente diferentes en sus objetivos y sus contenidos. Estas cinco aplicaciones incorporan diferentes tipos de agentes: incluyen individuos (2, 5, 6), familias (2, 5), empresas (3, 5, 6), establecimientos (5), instituciones financieras (6) y usuarios (4). En el ámbito espacial, la desagregación espacial es deliberadamente diferente en cada aplicación: El capítulo 4 no incluye el espacio, El capítulo 6 es una aplicación para la zona euro en su conjunto y en el capítulo 3 se toma España en su conjunto. Los capítulos 2 y 5 exploran las dos de las principales posibilidades para la incorporación del espacio en los sistemas multiagente: el capítulo 2 incluye las regiones NUTS 3 de la Unión Europea y en el capítulo 5 se geolocalizan los agentes. En el capítulo 2 se desarrolla un sistema multiagente que incluye a todos los individuos de la Unión Europea. Con este sistema podemos predecir la población a escala regional para toda la Unión Europea y cómo distintos niveles de crecimiento económico repercuten asimismo sobre el empleo. En el capítulo 3 se presenta un modelo de simulación con los principales puntos de vista de la teoría de negocios para estudiar el crecimiento empresarial y la demografía empresarial en un modelo evolutivo estocástico. El modelo que se presenta también muestra cómo las empresas se adaptan a los cambios en las características deseadas del producto y el efecto de la crisis sobre estas dinámicas. El capítulo 4 discute el papel clave de los incentivos en la seguridad de los sistemas de información. Trabajos anteriores realizan este estudio utilizando un enfoque de teoría de juegos, pero el capítulo muestra que un modelo basado en agentes es capaz de incluir la heterogeneidad y las interrelaciones entre los individuos, y no se centra en el equilibrio alcanzado sino en la dinámica antes de su aparición. El objetivo del capítulo 5 es el estudio de los efectos de la Ley para la Revitalización Comercial (Ley de Dinamización Comercial) que fue aprobada en la Comunidad de Madrid durante el año 2012. Por último, el objetivo del capítulo 6 es explicar los determinantes de la inflación y pronosticar la tasa de inflación en la zona euro en los próximos cinco años. Se predice una inflación para la zona euro creciente hasta 2018 con un límite cercano al 2,5% en tasa interanual siempre que no se produzcan perturbaciones externas relevantes
    corecore