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ABSTRACT

Modeling and Analyzing Systemic Risk in
Complex Sociotechnical Systems

Zhizun Zhang

Recent systemic failures such as the BP Deepwater Horizon Oil Spill, Global Financial

Crisis, and Northeast Blackout have reminded us, once again, of the fragility of complex

sociotechnical systems. Although the failures occurred in very different domains and were

triggered by different events, there are, however, certain common underlying mechanisms of

abnormalities driving these systemic failures. Understanding these mechanisms is essential

to avoid such disasters in the future. Moreover, these disasters happened in sociotechnical

systems, where both social and technical elements can interact with each other and with the

environment. The nonlinear interactions among these components can lead to an “emer-

gent” behavior – i.e., the behavior of the whole is more than the sum of its parts – that can

be difficult to anticipate and control. Abnormalities can propagate through the systems

to cause systemic failures. To ensure the safe operation and production of such complex

systems, we need to understand and model the associated systemic risk.

Traditional emphasis of chemical engineering risk modeling is on the technical compo-

nents of a chemical plant, such as equipment and processes. However, a chemical plant

is more than a set of equipment and processes, with the human elements playing a crit-

ical role in decision-making. Industrial statistics show that about 70% of the accidents

are caused by human errors. So, new modeling techniques that go beyond the classical

equipment/process-oriented approaches to include the human elements (i.e., the “socio”

part of the sociotechnical systems) are needed for analyzing systemic risk of complex so-

ciotechnical systems. This thesis presents such an approach.

This thesis presents a new knowledge modeling paradigm for systemic risk analysis

that goes beyond chemical plants by unifying different perspectives. First, we develop a



unifying teleological, control theoretic framework to model decision-making knowledge in

a complex system. The framework allows us to identify systematically the common failure

mechanisms behind systemic failures in different domains. We show how cause-and-effect

knowledge can be incorporated into this framework by using signed directed graphs. We

also develop an ontology-driven knowledge modeling component and show how this can

support decision-making by using a case study in public health emergency. This is the first

such attempt to develop an ontology for public health documents. Lastly, from a control-

theoretic perspective, we address the question, “how do simple individual components of a

system interact to produce a system behavior that cannot be explained by the behavior of just

the individual components alone?” Through this effort, we attempt to bridge the knowledge

gap between control theory and complexity science.
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Glossary

aggregate complexity underscores the complex behavior resulting from the interactions

of system components, both social and technical. 1

algorithmic complexity describes the effort required to solve a well-defined technical

problem. 1

bank-dealer is a bank operates as a securities dealer when it underwrites, trades, or deals

in securities. 20

deterministic complexity describes chaotic behaviors and highlights the general inabil-

ity to predict the future behavior of a nonlinear dynamical system. 1

fire sale refers to a sale of goods or assets at heavily discounted prices to avoid a financial

disaster or to satisfy the debts of an insolvent or bankrupt firm. 20

funding run describes a situation in which a company faces an increasing amount of re-

demptions, causing the sell positions to meet the withdrawals. 20

public health promotes and protects the health of people and the communities where they

live, learn, work and play. 71

sociotechnical system is a system that comprises of social elements as well as technical

elements, usually organized as a hierarchy. 1

spatial complexity refers to a system’s large physical scale and geographical complexity.

1
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systemic risk emphasizes the risk of the entire system rather than individual components.

5

systemic failure is the failure at system level which cannot be simply described from the

individual component failures of the system. 1

teleodynamics is the dynamics of rational agents driven by their goals. 104

teleology describes things in terms of their purpose, directive principle, or goal. 105

temporal complexity refers to the various time scales of processes, events, and decision-

making in a system. 1
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

All are good at first, but few prove

themselves to be so at the last.

Shih-ching

Modern technological advances have created an increasing number of complex sociotech-

nical systems, such as offshore oil platforms, power grids, and financial networks, which

bring us comfort and convenience. At the same time, we have paid the cost for the rapid so-

cial and technological developments. Recent systemic failures, such as the British Petroleum

(BP) Deepwater Horizon Oil Spill (2010), Indian Power Outage (2012), and Global Financial

Crisis (2007-09), are a few well known examples.

Systemic failures occur when an entire sociotechnical system collapses, where the system

is typically a large entity, whose failure negatively impacts people and the environment,

causing enormous economic losses. “Sociotechnical” means that these systems consist of

social elements (i.e., humans) as well as technical elements (such as pumps, valves, reactors,

etc.). Unlike technical systems, sociotechnical systems involve human decision-making that

can alter the systems’ behaviors. Typically, sociotechnical systems have a very large number

of inter-dependent components with nonlinear interactions that can lead to “emergent”

behavior - i.e. the behavior of the whole is more than the sum of its parts – that can be

difficult to anticipate and control [Ottino, 2004]. Moreover, these systems are not static

and isolated - they are constantly changing and interacting with the environment.

Sociotechnical systems are usually complex. Complexity arises from their scale, inter-
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CHAPTER 1. INTRODUCTION

connectedness, nonlinear interactions, and feedback. Typically, a sociotechnical system

exhibits several types of complexities, namely, spatial complexity, temporal complexity,

algorithmic complexity, deterministic complexity, and aggregate complexity. Spatial com-

plexity refers to a system’s large physical scale and geographical complexity. Epidemics and

pandemics exhibit this type of complexity. Temporal complexity is related to the various

time scales of processes, events, and decision-making in a system. Algorithmic complexity

describes the effort required to solve a well-defined technical problem [Manson, 2001]. This

type of complexity usually exists in the mechanical processes of a sociotechnical system,

such as the control process of a reactor. Deterministic complexity describes chaotic be-

havior, which highlights the general inability to predict the future behavior of a nonlinear

dynamical system [Manson, 2001]. Typical examples include the stock market and weather

forecast. Aggregate complexity underscores the complex behavior resulting from the inter-

actions of system components, both social and technical [Manson, 2001]. The cumulative

effect of the different types of complexities makes these sociotechnical systems potentially

fragile and susceptible to systemic failures.

To ensure safe operations over the life cycles of sociotechnical systems, we need to

understand their complexity and manage their potential systemic instability and fragility

to mitigate risk [Centeno et al., 2015; Fouque and Langsam, 2013].

1.1 Risk Modeling in Chemical Plants

Chemical industry was born with risk management. Chemical industrial accidents can

result in very severe consequences. In fact, the worst industrial accident is from chemical

industry, namely, the Bhopal Gas Tragedy, resulted an estimated 5000 deaths, and about

100,000 serious injuries. Chemical engineers, having a long history of managing risk in

complex chemical plants, are the pioneers of risk modeling and control. Risk management

is rooted deeply in chemical industry practice and chemical engineering curriculum. Every

chemical engineer is trained a number of techniques to assess risk in chemical equipment

and processes, such as Process Hazard Analysis (PHA), Hazard and Operability Analysis

(HAZOP), and Probability Risk Assessment (PRA). These methods help chemical engineers
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build robust chemical processes and pinpoint potential stress and instability in a systematic

manner.

Risk modeling in chemical engineering mainly focuses on how to detect and diagnose

abnormal events in equipment and chemical processes. Chemical engineers have actively

studied this problem for decades. Many techniques have been developed, focusing on ab-

normality detection, fault diagnosis and correction. Risk modeling within chemical plants

always addresses following three main questions [Apostolakis, 2004; Kaplan and Garrick,

1981]:

• What can go wrong?

• How likely it is?

• What would be the consequence?

The objective of risk modeling is to identify, prioritize, and reduce risk associated with

equipment and processes [Saleh et al., 2014]. Venkatasubramanian [Venkatasubramanian

and Rengaswamy, 2003] has classified the risk modeling methods to three categories: quan-

titative methods, qualitative methods, and process history based methods, as shown in

Figure 1.1.

Quantitative methods typically assess risks on the event probability or on the state-space

models of the underlying technical system [Millot, 2014]. State-space models and statistical

fault diagnosis usually identify the system inconsistencies, then explain the inconsistencies

in terms of the process variables [Venkatasubramanian and Rengaswamy, 2003]. System is

modeled as algebraic equations [Gertler, 1991; Gertler, 1993]. Probabilistic risk assessment

such as root cause analysis usually uses a Bayesian approach. It takes observations as prior

knowledge to infer the truthfulness of a hypothesis [Garvey, 2008].

Qualitative methods, on the other hand, focus on causal relations between variables

or structural properties of the system. Among them, Signed Directed Graphs (SDG) is a

popular causal inference technique used in various chemical industrial safety applications.

Adopting graph theoretical ideas, SDG represents the cause and effect relationships in a

process or equipment [Maurya et al., 2003a; Maurya et al., 2003b; Maurya et al., 2004]. The

qualitative models are easier to develop and analyze, in comparison with the Differential and
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Figure 1.1: Classification of diagnostic algorithms (adapted from [Venkatasubramanian and

Rengaswamy, 2003])
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Algebraic Equations (DAE) models, particularly for modeling and analyzing failure modes

and hazards [Venkatasubramanian et al., 2000; Venkatasubramanian and Vaidhyanathan,

1994]. However, since they are qualitative in nature, they are limited to certain kinds of

queries and can lead to ambiguities. Another important qualitative analysis method is Fault

Tree Analysis (FTA), invented by Bell Laboratories in 1961. Fault tree is a logic tree that

decomposes a critical event to basic events with the help of logic operators such as “AND,”

“OR,” and “XOR” [Lapp and Powers, 1977]. The fault tree is developed by asking the

question “what could cause this event?” [Venkatasubramanian et al., 2003b] A basic event

has a probability of occurrence. Propagating through the tree, probability of a top event

can be computed.

Recent years, artificial intelligence and data science advances have enabled computer-

aided risk assessment. As a result, process history based approaches become popular. It

is effective to use historical data and machine learning techniques to evaluate or predict

the status of equipment or processes. This category includes neural networks and statis-

tical approaches such as Principle Component Analysis (PCA) and Partial Least Square

(PLS) [Venkatasubramanian et al., 2003a], which formulate the fault diagnostic as a pattern

recognition problem. Data points are classified into different classes, indicating different sys-

tem variable inconsistencies. The inconsistencies are usually correlated with faults [MacGre-

gor et al., 1991; MacGregor et al., 1994; MacGregor and Kourti, 1995]. Neural networks have

been used in chemical engineering for fault diagnosis [Venkatasubramanian and Chan, 1989;

Watanabe et al., 1989; Watanabe et al., 1994]. In each case, fault diagnosis is treated as

a classification problem. Training data and number of hidden layers are critical to the

diagnosis performance.

1.2 Risk Modeling beyond Chemical Plants

Risk modeling within chemical plants mainly analyzes risks of equipment and processes.

However, a chemical plant is more than a set of equipment and processes. It is a sociotechnical system

comprising of both technical processes and human decision-making processes. Systemic risk

analysis of such a system needs to go beyond the modeling of equipment and processes by
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focusing on interactions among humans, machines, and the environment. Developing such a

broad framework to analyze systemic failures is one of the main contributions of this thesis.

Many methods have been developed to understand risk from this boarder perspec-

tive. For example, FTA was extensively used in safety critical aerospace missions in

NASA to understand root causes of a failure. Multi-level Flow Modeling (MFM) mod-

els flows of mass, energy, and information of sociotechnical systems [Lind, 1994; Lind, 2005;

Heussen and Lind, 2010a; Heussen and Lind, 2010b]. Systems-Theoretic Accident Model

and Processes (STAMP) is another example that takes human factors into account to as-

sess system’s risk [Leveson, 2004; Leveson and Stephanopoulos, 2014; Leveson, 2015]. In

addition, human interactions in complex systems have also been modeled as networks via

agent based simulations [Amaral and Ottino, 2004; Battiston et al., 2016; Luo et al., 2016;

Natarajan and Srinivasan, 2014]. Government officials study systemic risk associated with

policy-making [Freixas et al., 2000]. Econophysicists use network theory to analyze sys-

temic risk in financial systems [Catanzaro and Buchanan, 2013; Caldarelli et al., 2013].

Our prior work stressed the need for modeling cause-and-effect knowledge explicitly as well

as the need for a multi-scale modeling framework in understanding systemic risk in so-

ciotechnical systems [Maurya et al., 2003a; Maurya et al., 2003b; Maurya et al., 2004; Srini-

vasan and Venkatasubramanian, 1998c; Venkatasubramanian and Vaidhyanathan, 1994;

Venkatasubramanian et al., 2000; Venkatasubramanian, 2011].

These studies have made considerable progress in modeling risk. However, an un-

derstanding about systemic risk in sociotechnical systems is still lacking. The major in-

tellectual challenge is how to model multiple levels of sociotechnical systems and under-

stand their emergent behaviors [Venkatasubramanian, 2011]. This requires a modeling of

sociotechnical system that focuses on not only machines and processes, but also the knowl-

edge and mechanisms that generate complex system behaviors [Rasmussen, 1997].

1.3 Organization

In this thesis, we model different kinds of knowledge by studying the role of teleology, feed-

back, and emergence. Teleology, i.e., goal-driven behavior, provides a unifying perspective
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to investigate sociotechnical systems. Feedback control helps us understand the nonlinear

interactions among the heterogeneous agents of sociotechnical systems. Emergence under-

scores how simple components’ interactions lead to a system’s complex behaviors.

This thesis unfolds as follows. In Chapter 2, we develop a unifying framework to model

system knowledge and analyze the common failure mechanisms behind different systemic

failures. Chapter 3 applies SDG to model cause-and-effect knowledge and understand

systemic risk of a financial network. Chapter 4 develops ontological models for heuris-

tic knowledge that is critical in public health decision-making. In Chapter 5, we try to

answer the question, “how do simple individual components interact to result in a system

behavior that cannot be explained by just the behavior of its components considered indi-

vidually?” This helps us gain a fundamental understanding about emergent behavior of

sociotechnical systems. Chapter 6 concludes this thesis.

7



CHAPTER 2. A HIERARCHICAL FRAMEWORK FOR MODELING AND
ANALYZING SYSTEMIC RISK IN SOCIOTECHNICAL SYSTEMS

Chapter 2

A Hierarchical Framework for

Modeling and Analyzing Systemic

Risk in Sociotechnical Systems

To have faults and not to reform them,

– this, indeed, should be pronounced

having faults.

Confucius

We have seen many industrial catastrophes of different sociotechnical systems, includ-

ing refineries, inter-state power grids, country-wide financial networks, large organizations,

etc. Sociotechnical systems consist of different mechanical processes, agents, organizations,

and stakeholders. Systemic failures in different sociotechnical systems appear to be very

different, but they all resulted in very severe consequences. For example, Union Carbide’s

Bhopal Gas Tragedy in 1984, in which an estimated 5000 died and about 100,000 were

seriously injured by the accidental release of methyl isocynate was a systemic failure of

chemical plants. Another example is the Piper Alpha disaster in 1988, where an offshore

oil platform operated by Occidental Petroleum in the North Sea, U.K., exploded killing

167 and resulting in about $2 billion in losses. The Challenger (1986) and Columbia (2003)

space shuttle disasters, Schering Plough inhaler recall (1999), the Northeast electrical power
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blackout (2003), the spread of SARS (2003), the BP Texas City Refinery Explosion (2005),

and the Johnson & Johnson multi-drug recall (2010) are all examples of systemic failures in

different domains. Examples of financial systemic failures include Enron (2001) and World-

Com (2002) collapses, the Madoff Ponzi scheme (2008), and the Subprime Crisis (2007-09).

The collapse of the News of the World newspaper organization (2011) is an example of sys-

temic failure in the media domain. The Wells Fargo Accounts Scam (2016) and Volkswagen

Emissions Scandal (2016) are examples from last year.

In each case, an official post mortem inquiry was conducted and reports of the accidents

were produced after each systemic failure. Chemical engineers might study the BP Deep-

water Oil Spill Report [Drilling, 2011], and people from the financial world may browse the

Financial Crisis Inquiry Report [Commission, 2011], but rarely does one compare failures

across the different domains to study their commonalities and differences. But when one

undertakes such a comparative study, one is struck by the commonality across different

domains. There is an alarming sameness about such disasters, which can teach us impor-

tant fundamental lessons. Although the failures occurred in different domains, in different

facilities, triggered by different events, there are, however, common failure mechanisms that

often underlie such events. Systematically identifying and understanding these mechanisms

are essential to avoid such disasters in the future.

To do so, we propose a conceptual framework that captures system knowledge and failure

mechanisms. Our analysis models multiple levels of a system, both social and technical, and

identifies the potential failure modes of equipment, humans, policies and institutions. With

the aid of three major recent disasters, we demonstrate how this framework could help us

compare systemic failures in different domains and identify the common failure mechanisms

at all levels of the system.

2.1 Common Patterns of Failures at Multiple Levels

Postmortem investigations of many disasters have shown that systemic failures rarely occur

due to a single failure of a component or personnel. Even though the senior management

of a company typically tried to spin the blame on some unanticipated equipment failure,
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operator error, or a rogue trader, that is rarely the case for major disasters. For instance,

Union Carbide initially claimed that the Bhopal Gas Tragedy was caused by a disgruntled

employee, who had sabotaged the equipment [Jasanoff, 1994]. Enron management initially

blamed Andrew Fastow, Enron’s CFO, as the sole culprit [Plotz, 2002]. But, again and

again, investigations have shown that there are always several layers of failures, ranging

from low-level personnel to senior management to regulatory agencies, that have led to

major disasters.

Such investigations have shown that the safety procedures had been deteriorating at

the failed facilities for months, if not years, prior to the accident. For example, in the case

of Piper Alpha, the Permit-to-Work system had been dysfunctional for months [CCPS,

2005]. In Bhopal, regular maintenance of safety backup systems had not been conducted

for months [Jasanoff, 1994]. Massey Energy ran up about 600 safety violations in its Upper

Big Branch mine during 2009-2010 [MSNBC, 2010]. OSHA statistics show that BP ran up

760 “egregious, willful” safety violations during 2008-2010 in Ohio and Texas. Compare

this with the corresponding numbers for the other oil companies: Sunoco (8), Conoco-

Phillips (8), Citgo (2) and Exxon (1) [Thomas et al., 2010]. These are clear evidences of a

breakdown of the corporate safety culture for months or years. One sees a similar pattern

in financial disasters as well. For example, in Enron, its senior management, led by Ken Lay

and Jeff Skilling, created an extreme performance-oriented risky culture that seems to have

tolerated unethical behavior, which resulted in many violations, market manipulations, and

so on [Plotz, 2002]. In the subprime crisis, the perverted incentive mechanisms in mortgage

lending and its subsequent securitization and trading, caused individuals and corporations

to make highly-leveraged bets that resulted in risk extremes which were unsustainable.

Thus, it was not a question of if a disaster would occur but when.

Another common pattern is that people had not identified all the serious potential

hazards. They had often failed to conduct a thorough process hazards analysis that would

have exposed the serious hazards, which resulted in the disasters later. Such incomplete

hazards analysis was highlighted in the Cullen Inquiry of Piper Alpha [CCPS, 2005]. Failure

to perform such a hazards analysis was partially responsible for the meltdown of Lehman

Brothers and others in the subprime market fiasco [Johnson and Neave, 2007]. However,
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the few who had performed such hazards analysis did see the crash coming and profited

billions of dollars, as described in Michael Lewis’ book, now a movie, The Big Short [Lewis,

2011]. Yet another common cause is the inadequate training of the plant personnel to

handle serious emergencies.

All in all, typically, the responsibility for a systemic failure goes all the way to the top

levels of company management, who had only paid a lip service to safety, tolerated non-

compliant behavior, even encouraged excessive risk taking and unethical behavior, all of

which resulted in a poor corporate culture of safety [Baker et al., 2007; Olive et al., 2006;

CSB, 2005; Hopkins, 2008], which in turn paved the way for the disasters.

We also find that serious failings by regulatory, ratings, and auditing agencies, tolerated,

sometimes even encouraged, by a laissez-faire political environment, playing a significant

role. First and foremost, it does not matter whether the systems are chemical, petrochemi-

cal, or financial – self policing does not work. This seems so obvious that people should not

have to die, or lose all their money, to make us realize this. Sensible regulations are essential,

but, more importantly, they must be audited and enforced by suitably trained personnel

who have no conflicts of interest. The betrayal of public trust by Arthur Andersen, the sup-

posedly independent auditor of Enron, whose aiding and abetting of Enron’s cooked books

was instrumental in its systemic failure [Plotz, 2002]. The subprime market failures showed

us that the rating agencies, which were supposed to make an independent assessment of

the subprime-mortgage-backed securities, were so dependent on their Wall Street clients for

their business that they merrily went stamping AAA ratings on junk instruments. Of the

AAA-rated securities issued in 2006, an astonishing 93% were later downgraded to junk

status [Krugman, 2010].

It is the same lesson we were taught by the BP Deepwater Horizon oil spill – how the

Minerals Management Service (MMS) was inherently conflicted between its goals of award-

ing leases and enforcing safety regulations [Urbina, 2010]. But, this lesson should have been

learnt a long time ago after the Piper Alpha disaster. Based on the Cullen Report’s find-

ings in 1988, the British government moved the responsibility for safety oversight from the

Department of Energy (DOE) to the Health and Safety Executive (HSE), the independent

watchdog agency for work-related health, safety and illness. A separate division was created
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within the HSE to monitor safety of the offshore oil and gas industry [CCPS, 2005].

Indeed, the importance of addressing non-technical common causes, as those described

above, as an integral part of systems safety engineering, was pointed out as far back as 1968

by Jerome Lederer, the former director of the National Aeronautics and Space Administra-

tion (NASA) Manned Flight Safety Program for Apollo, who wrote:

System safety covers the entire spectrum of risk management. It goes be-

yond the hardware and associated procedures to system safety engineering. It

involves: attitudes and motivation of designers and production people, employ-

ee/management rapport, the relation of industrial associations among them-

selves and with government, human factors in supervision and quality control,

documentation on the interfaces of industrial and public safety with design and

operations, the interest and attitudes of top management, the effects of the legal

system on accident investigations and exchange of information, the certification

of critical workers, political considerations, resources, public sentiment and many

other non-technical but vital influences on the attainment of an acceptable level

of risk control. These non-technical aspects of system safety cannot be ignored.

To understand systemic failures and learn from them, one needs to go beyond analyzing

them as independent one-off accidents, and examine them in the broader perspective of the

potential fragility of all complex systems. One needs to study the disasters from a unifying

sociotechnical systems engineering perspective, so that one can thoroughly understand the

commonalities as well as the differences, gain insights about the system-wide breakdown

mechanisms in order to better design, control and manage such systems in the future.

It is quite clear that to properly model and analyze systemic risk, one not only needs

to model failures at the lowest level of a sociotechnical system (such as at the failures of

equipment) but also, more importantly, model the human and institutional failures that

occur at the higher levels of the system. The human elements are not only an integral part

of the system, they are also often the cause of major failures. Hence, it is important to

account for them, as explicitly as possible, in any risk modeling framework. This has not

always been the case in the engineering modeling literature. For instance, most modeling

studies in the process control literature do not account for errors committed by humans
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in their methodologies. HAZOP analysis, as another example, considers only equipment

and operation failures in its guide-word based approach. We need a systematic method-

ology that can identify potential failure mechanisms, due to equipment, process, human,

and institutional failures, at different levels of a sociotechnical system. This chapter is

largely a conceptual contribution, describing a new modeling framework that articulates

how the different levels of a complex sociotechnical system may be formally approached

using control-theoretic ideas. Building on the prior work [Venkatasubramanian, 2011;

Venkatasubramanian et al., 2000], we present such an integrative multi-scale modeling

framework, which addresses the role of the human element explicitly, and discuss its impli-

cations in the context of several prominent systemic failures in different domains.

2.2 TeCSMART Framework

While it may be hard to state exactly what a complex system, is, there is consensus, how-

ever, as to what features are typically associated with a complex sociotechnical system.

As we have discussed in Chapter 1, complex systems typically consist of many diverse,

autonomous, and adaptive components that interact with one another, and their environ-

ment, in nonlinear, dynamical ways to produce a very large set of potential future states or

outcomes. Interactions between such parts at a given scale typically give rise to “emergent”

properties at larger scales in space and/or time, sometimes through self-organization, with-

out any global knowledge or central control, that are hard to predict from the properties

of the parts. They tend to have many feedback loops (both positive and negative), among

their components as well as with their environment, which can cause adaptation and induce

a goal-directed (i.e. teleological) behavior, either intentionally or implicitly, thereby poten-

tially altering the course of their future behavior. Hence, their characteristics are typically

not reducible to an elementary level of description.

Thus, the essential features of a complex sociotechnical system may be summarized as:

(i) goal-driven behavior, (ii) many homogeneous or heterogeneous agents (or components),

(iii) organized in a multi-layered hierarchy or network, (iv) nonlinear dynamical interac-

tions among its agents (or components) and with the environment, (v) feedback loops, (vi)

13



CHAPTER 2. A HIERARCHICAL FRAMEWORK FOR MODELING AND
ANALYZING SYSTEMIC RISK IN SOCIOTECHNICAL SYSTEMS

decentralized control (i.e., local decision-making), and (vii) emergent behavior.

In this section, we develop the modeling framework that captures the characteristics

aforementioned. We call it Teleo-Centric System Model for Analyzing Risks and Threats

(TeCSMART). Telos means goal or purpose in Greek. The central theme of our approach

is the emphasis on recognizing and modeling goals of different agents, at different levels of

abstraction, in a complex sociotechnical system. Both individual players and groups are goal-

oriented, driven to act by their goals and incentives, in a complex system. Therefore, it is

important to recognize and model this goal-driven behavior. Individuals (or groups) usually

have different goals, or even goals with conflicts of interests with each other or with goals

from other individuals. The dynamics of how goals across the system interact, transform

and disperse in the hierarchy, affects both individual and systemic performances. We use a

simple feedback control module as a model for representing this goal-driven behavior as we

discuss below.

We propose an integrative framework that tries to capture the essential features of a

complex teleological system with the purpose of modeling, analyzing, and managing sys-

temic risk by accounting for the effects of both autonomous (i.e., human) and non-human

(i.e., “machines” or “mechanical”) entities in a unified and systematic manner. We model

a complex teleological system as a sociotechnical entity that is embedded in a society, af-

fected by the society’s goals and political environment. This leads to a multi-scale modeling

framework, having seven layers organized as a hierarchy, as shown in Figure 2.1, that nat-

urally arise and represent different perspectives of the entire system. Each layer above is

a zoomed-out, aggregate, view of the immediate layer below. For example, the block rep-

resenting process unit in the network of Plant View contains the individual feedback loop

in Equipment View. The bottom layer of the stack is the basic building block of a system

(e.g., equipment and processes). The top layer of the stack is the macroscopic view of a

society.

Each layer has its own set of goals, which drive the decision-making and actions taken

by the agents in that level. The decisions are taken based on the inputs the layer receives

from the layers immediately above and below it. Similarly, the actions are communicated to

these adjacent layers as outputs. These decisions/actions are indicated, in Figure 2.1, by the
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arrows that capture these information flows, up and down the hierarchy. These information

flows are the feedback loops between the layers (i.e., inter-layer feedback loops). There are

also feedback loops within a given layer, as depicted in Figure 2.1, which are intra-layer

loops. Associated with each layer is a set of agents (autonomous and non-autonomous),

organized in a particular configuration that is appropriate for the goals of that layer (e.g.,

the layout of equipment in a chemical plant, called a flowsheet). Such a multi-layered

representation lends itself naturally to account for emergent phenomena that arise from one

scale to another.

We propose a uniform and unified input-output modeling framework, that is conceptu-

ally the same across all levels. This elementary input-output model structure that serves

as a building block in our framework is shown in Figure 2.2. Specifying such a uniform

modeling structure across all levels has the advantage of integrating and unifying the anal-

ysis of the outcomes at different levels in a consistent manner. Such a template structure

allows us to systematically identify the various failure modes of the different elements at

different levels of the hierarchy as we discuss below. There are five key elements in this

control-theoretic information modeling building block: (i) sensor, (ii) actuator, (iii) con-

troller, (iv) “process” unit that transforms inputs to outputs, (v) connection (e.g., wires

and pipes). These combined with input and output complete the picture. The functions of

these elements, as well as their failure modes, at different levels of the hierarchy are illus-

trated with examples in the discussion below, using examples from chemical engineering. It

is relatively easy to generalize this discussion to other engineering domains. The domain of

finance requires a special treatment and we make that connection wherever needed.

As an organized group, these entities collect, decide, act on, report, and receive a variety

of performance information and metrics. At any level, the layer below act as sensors, actu-

ators, and processes in the inter-layer feedback loop, while the layer above it behaves like

a controller that evaluates the lower level performance and sets new goals. In a chemical

plant, for example, in the Equipment View layer (Chapter 2.2.1), they collect, decide, and

act on individual process and equipment performance data and metrics (such as tempera-

ture, pressure, flow rate, batch times, etc.), that are vital for safe, efficient and profitable

operation, and report them to the Plant View layer (Section 2.2.2), and receive, in turn,
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Figure 2.1: TeCSMART framework
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Figure 2.2: Schematic of a feedback control system (adapted from [Stephanopoulos, 1984],

fig. 13.1b, pp. 241)

local control specifications (such as temperature and pressure set points) from Plant View

layer. The Plant View layer agents make these decisions by considering information from

all the processes and equipment under its purview as well as by considering manufacturing

targets (such as what to make, how much to make, when to make, etc.). These targets, in

turn, are decided by the agents in the Management View (Chapter 2.2.3), which get trans-

lated into the associated set points and constraints by the agents in the Plant View, and

communicated down to the Equipment View as inputs. The target metrics are decided by

the agents in Management View by responding to competitive market conditions as dictated

by the Market View (Chapter 2.2.4). In a similar manner, relevant information regarding

market or company stability, performance, fair competition, etc. are monitored and acted

on by the agents in the Regulatory View (Chapter 2.2.5), by enacting and enforcing appro-

priate regulations approved by the agents in the Government View (Chapter 2.2.6) (such

as the Congress in the U.S.). In an ideal democracy, a government is elected by the citizens

of that society, the Society View (Chapter 2.2.7), who have the final word in determining

what kind of government and laws they would like to live by.

Similar activities occur within layers through intra-layer feedback loops. In the Equip-

ment View layer, for example, a stirred tank heater depicted in Figure 2.3 has sensors to

measure temperature and tank level. Controllers evaluate these metrics, and send new

control signals to valves. In the Management View layer, a firm’s accounting team collects

the performance data and share with the Board of Directors. The Board sets company’s

goal based on the data. Each division follows the goal and carry out its daily operations.
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Periodically, new performance data is collected and the goal updated. At each layer, if

autonomous or non-autonomous agents do not comply with the goal, disturbances arise at

that layer. Controllers take the disturbance into account and set goals accordingly. Such

intra-layer feedback loops exist in all seven layers. Details of each layer will be presented in

the following discussion.

2.2.1 Perspective I: Equipment View Layer

In the Equipment View layer, the focus is on individual equipment such as reactors and

distillation columns in the context of a chemical plant and their operating conditions. A

chemical plant is a collection of such process units suitably organized (called a flowsheet)

to meet the plant-wide goal of manufacturing a desired chemical product at targeted levels

of quality, quantity, cost, time of delivery, etc., safely and optimally. This collection is seen

in Perspective II, the Plant View layer. The time scale for the Equipment View layer is

typically in seconds and minutes as process dynamics happens in real-time.

In the Equipment View layer, the autonomous agents involved are typically engineers

and operators, and the non-autonomous agents are equipment including control systems.

While regulatory control systems can exhibit a certain degree of autonomy, that is negligible

compared to the range of autonomy exhibited by humans. Hence, we classify regulatory

controllers as non-autonomous.

Consider, for example, a stirred tank heater process (Figure 2.3) where the goal is to

control the level h and temperature T of the fluid in the tank that is subject to fluctuations

in the inlet flow rate Fi and temperature Ti. The desired level of the fluid is referred to as

the set point level hset and the desired temperature Tset. These are accomplished by the two

feedback controllers (loops 1 and 2), which receive the current F and T in real-time from

the sensors (level gauge and thermocouple), by suitably manipulating the outlet flow rate F

and steam flow rate, Fsteam, by opening or losing the respective control valves (actuators).

The seven elements of the information modeling block for this system are: (i) input: Fi,

Ti, Fset, Tset, Fsteam, (ii) output: h and T , (iii) sensors: level gauge and thermocouple, (iv)

actuator: outlet flow and steam valves, (v) controller, (vi) “core” process unit: tank and

heater, and (vii) connection: pipes and wires. The constraints are lower and upper limits
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on the level and the temperature of the fluid in the tank.

Figure 2.3: Stirred tank heater example (adapted from [Stephanopoulos, 1984], pp. 89)

The goal at the Equipment View is centered on the performance of individual equipment

such as heaters, reactors, distillation columns, etc. – i.e., each equipment has its goal

of operating at the set point(s). At this level of granularity, typically, for engineering

applications, one can develop detailed dynamical models of the equipment and processes.

These tend to be a set of DAE which are solved to simulate process/equipment behavior.

Since the purpose of this chapter is not to discuss these models at length, we refer the

interested reader to several standard sources in the literature [Stephanopoulos, 1984; Seborg

et al., 2011; Ogunnaike and Ray, 1994; Bequette and Bequette, 1998]. As an example, we

list below the dynamical model equations for the stirred tank heater.

A
dh

dt
= Fi − F

Ah
dT

dt
= Fi(Ti − T ) +

Q

ρCp

Another kind of model used at this level, called SDG, is based on graph theoretical ideas

to represent cause and effect relationships in a process or equipment. The SDG model for

the heater example is shown in Figure 2.4. The nodes represent input and output variables.

The arcs represent either positive (solid lines) or negative (dotted lines) relations between

nodes. The figure is read as follows: a change in the inlet temperature Ti positively affects

the temperature T in the stirred tank, e.g., if Ti increases, T will increase. T negatively
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affects the temperature difference Tε, which is the set point temperature Tset minus stirred

tank temperature T . As T increases, Tε decreases. It means that less steam Fsteam is needed

in the stirred tank, because T gets close to the set point temperature Tset. This positive

relation between Tε and Fsteam is depicted by a solid arc between the two nodes. Fsteam, in

turn, positively affects the temperature T in the stirred tank. This causal behavior among

T , Tε, and Fsteam refers to loop 2 in Figure 2.3.

Figure 2.4: SDG for the tank heater example

Nevertheless, such cause-and-effect based qualitative models are very useful when mod-

eling a social system, where DAE models are usually hard to develop, such as a bank-dealer

system (which will be explained in detail in Chapter 3.3). In this case, the nodes are

variables related to a bank-dealer’s investment and lending activities. In Figure 2.5, the

left-hand side depicts the connections and activities within the bank-dealer, while the right-

hand side shows the SDG model. A bank-dealer system consists of three major desks, among

which the finance desk determines where money should go; the prime broker determines

how much money to lend based on the collateral collected; and the trading desk determines

whether sell to the market or buy from the market based on money received from the fi-

nance desk and the leverage ratio it holds. The SDG model is read as follows: finance desk

collateral CFD positively affects the funding capacity VFD. VFD in turn positively affects

the loan capacity of prime broker VPB and the leverage set point of trading desk λSP
TD. In

20



CHAPTER 2. A HIERARCHICAL FRAMEWORK FOR MODELING AND
ANALYZING SYSTEMIC RISK IN SOCIOTECHNICAL SYSTEMS

the prime broker, both the collateral amount CPB and the margin rate χPB positively affect

the loan capacity VPB. In the trading desk, the leverage set point λSP
TD and current leverage

λTD determine the leverage different εTD, which positively affects the inventory quantity of

trading desk QTD. Using the SDG model, one can quickly examine the causal relations of

a social system like the bank-dealer system, and study unstable conditions and risks such

as the fire sale and funding run scenarios.

Figure 2.5: SDG for the bank/dealer example

One can always incorporate other modeling methods with the TeCSMART framework.

Usually, in order to develop a quantitative model (DAE model) or a qualitative model
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(SDG model), one needs to determine the initial conditions of a system. System initial

conditions at this level are values associated with equipment, such as sensor readings or

controller parameters. Examining failure modes using TeCSMART framework provides a

systematic way for identifying system initial conditions. By giving different system initial

conditions, modelers can develop suitable models to describe the system and conduct in-

depth risk analysis. Therefore, no matter what modeling methods or risk assessment tools

one will use, a HAZOP-like systematic analysis using TeCSMART framework is feasible for

analyzing risks in a sociotechnical system. It enables a systematic hazard identification for

the risk assessment of a sociotechnical system.

The basic functional building block in Figure 2.2 allows us to model systematically

the potential failures at different levels of both human and non-human elements. In the

Equipment View layer, let us consider a sensor, for example. Using a commonly used model

of its failure modes, we can state that a sensor can fail high, low, or zero (i.e., no response,

sensor is dead). Similarly for an actuator (a valve can fail high, low, or zero) and a controller.

A process might have more failure modes depending on its complexity, but it is usually not

in hundreds, more like a dozen or so. The connections can fail, too, again high, low, zero, or

reverse (in the case of flow rate in pipes, for example). One can modify these to make the

set of failure modes more sophisticated, if needed, but even this elementary set goes a long

way as we discuss below. We will show below how these failure modes can be generalized

to accommodate typical human failures as well at different levels of the hierarchy.

2.2.2 Perspective II: Plant View Layer

The Plant View layer is a collection of all the equipment and processes organized in a par-

ticular configuration (or flowsheet) in order to manufacture a desired product safely and

optimally. The autonomous agents involved in this layer are managers and supervisors, and

the non-autonomous agents are equipment clusters. These clusters are usually grouped as

critical process steps or unit operations [Seider et al., 2009], such as reaction, distillation,

etc., which are needed in the manufacture of the desired product. Similarly, in the financial

system example, the left figure in Figure 2.5 is the simplified “flowsheet” of a bank-dealer

system. The Plant View agents collect and report metrics regarding aggregate production
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performance and safety to Management View and receive, in turn, plant-wide target speci-

fications from Management View, as noted above. Although this level is also operating in

real time, the Plant View decisions typically have a larger time scale (hours or even days).

The goal at this level is to ensure meeting production performance targets (typically,

product quantity and quality, cost, and time of delivery) safely and optimally at the overall

plant level. These plant-wide targets would translate into equipment specific targets imple-

mented as set points and constraints that are communicated to the Equipment View level.

Models at this level tend to be DAE models from Perspective I integrated together reflecting

the overall flowsheet organization of the plant. The flowsheet is then simulated to obtain

plant-wide process and equipment behavior. One can also formulate such connected models

using the SDG models from the lower level as well to explicitly capture the cause-and-effect

relationships which are then used for applications such as PHA [Venkatasubramanian et al.,

2000; Venkatasubramanian and Vaidhyanathan, 1994; Srinivasan and Venkatasubramanian,

1996; Srinivasan and Venkatasubramanian, 1998a; Srinivasan and Venkatasubramanian,

1998b; Vaidhyanathan and Venkatasubramanian, 1995; Vaidhyanathan and Venkatasubra-

manian, 1996].

The input-output information model at this aggregate level is shown in Figure 2.1. From

this level onward, going up to the higher levels, the emphasis shifts from decisions/actions

made by individual equipment to those made by personnel, and from real-time sensor data

to aggregate information concerning the overall plant performance. It moves from a data-

centric to information-centric perspective. This is required to reflect the goal of this layer –

to make the desired products at the targeted level of quality, quantity, cost, time of delivery,

safely and optimally. That is the charge of the Plant Manager, given to her by the senior

management at the next layer above.

The seven elements here, therefore, reflect this aggregate nature of information needed

and used at this level: (i) input: aggregate, plant level, information on target as well as

actual performance metrics, (ii) output: schedule, set points, resource allocation, etc., (iii)

sensors: product quality and quantity, resource utilization data, etc., (iv) actuator: plant

personnel, (v) controller: Plant Manager, (vi) “core” process unit: the entire plant, and (vii)

connection: various communication channels among plant personnel such as the Managers,
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Supervisors, Engineers, and Operators.

The failure modes associated with the elements at this level are conceptually similar

to their counterparts at the lower Equipment View layer. For instance, sensors in this

layer are not physical entities like thermocouples, but informational entities that aggregate

and transform relevant data into actionable information such as the projection made about

the plant’s product output for the current month. This transformation is carried out by

a human, such as a process engineer. The engineer can also “fail” high, low, or zero

in the sense that the estimation reported to the Plant Manager can be erroneous along

these lines – e.g., the projection may be too optimistic (i.e., failing high), too conservative

(i.e., failing low), or no projection is made (i.e., failing zero). Likewise, communication

can also fail along these lines – perhaps the projection was made, but the Manager was

not informed. Similarly, in a bank-dealer system, this layer represents the aggregation

of investment and funding activities of different asset classes. The three major desks are

divided into groups (actuators) to handle portfolios consisting of different assets. Sensors

(i.e., analysts monitoring the metrics) in the lower Equipment View layer for a bank-dealer

system report leverage ratios or collateral collected; while sensors in this layer are risk models

of portfolios, which aggregate and transform individual risk factors into a comprehensive

picture that describes the portfolio’s risk. We, thus, see that this template helps us identify

systematically where and how things can fail at different levels of the hierarchy.

It is important to note that we are not claiming that our framework would capture all

things that go wrong in a complex system. We are only suggesting that such a systematic

approach could capture many of the typical failures seen in practice and we demonstrate

this with the aid of three case studies.

2.2.3 Perspective III: Management View Layer

The next level up is the Management View, where the agents involved are the critical

decision makers such as the CEO, Senior Vice Presidents, and Board of Directors. Their

goal is to maximize profitability and create value for the shareholders by making sure the

company’s business performance metrics (including safety) meet the expectations from the

Market (which is the next level up). Influenced by the nature of business and accounting
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cycles, this layer operates in a time scale of quarter (i.e. 3-month period) to a year.

As seen in the control-theoretic information model of this level in Figure 2.6, this group

of decision-makers (Management team) set the overall policies that “control” (i. e., man-

age) the behavior and outcomes of the corporation including its autonomous and non-

autonomous assets. Autonomous agents at this layer include managers and supervisors of

each division, while the non-autonomous agents are corporate assets. The Market at the

next level up sets and demands certain performance targets be met by the company for its

survival and growth. These metrics are usually financial at this level such as Return On

Investment (ROI), Return On Equity (ROE), market share, sales growth, etc. These are

the set points and constraints given to the Management team.

The Management team, in turn, translates these targets into actionable quantitative

information such as production performance metrics, strategic deployment of resources, etc.,

at different plants (the corporation might have several plants distributed all over the world)

as well as more qualitative ones that define the company culture including the safety culture.

They also set the incentive policy to encourage better performance from the employees.

These are communicated to the Plant View layer as their set points and constraints. The

Management team decides on these targets by taking into account of all relevant information

concerned with the survival, profitability and growth of the company in a competitive and

regulatory environment. Thus, the information flow is not only from the company’s internal

sources but also from the environment, which are the two levels immediately above.

Figure 2.6: Control theoretic model of company/management layer

Differing from the control policies at the lower levels, which mainly focus on controlling

equipment (i.e., non-autonomous agents), the policies from this layer onward, at the higher

levels, focus more on achieving the desired behavior and outcomes from autonomous agents

(i.e., humans). As a result, while the lower level control policies can be based on precise
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models of process/equipment (as captured by DAE models), the higher level policies will

necessarily have to deal with imperfect models of human behavior which cannot be reduced

to a set of equations. Consider, for instance, the difficulties involved in “modeling” the

culture of a corporation. At best, we might be able to identify certain key features or

characteristics that define a corporation’s culture. From this level onward, we have to rely

more on graph theoretic, game theoretic and agent-based modeling frameworks. Thus,

from this level onward modeling becomes trickier, and the notion of “control” of agents

transitions to the “management” of agents. Moreover, the importance of TeCSMART

failure modes-based examination becomes more obvious. Such a systemic risk analysis of

human decision-making would help improving safety-related management activities, among

other things.

The Management team acts as a “controller” to monitor the various performance metrics

(e.g., sales, expenses, revenue, profits, ROI, ROE, etc.), compare them with the set points,

and take appropriate actions by manipulating the relevant variables (e.g., cost cutting,

acquisition, etc.) in order to meet the set point targets. The Management level deals with

the big picture and general strategy for the corporation as a whole. These get translated

into more detailed prescriptions and recommendations as they are communicated from this

layer to the lower layers. The failure of the elements in Figure 2.6 can be modeled along the

lines of Equipment View and Plant View layers. For example, the Performance Monitoring

task (i.e., “sensor”) may fail because of errors in the measurements or estimations (e.g., fail

high, low, or zero) or they may be communicated (or not communicated at all) erroneously.

One can methodically identify similar failure modes for the other elements including the

connections (which are the communication channels).

2.2.4 Perspective IV: Market View Layer

Similar to the Plant View, the Market View is a collection of companies that compete, in

the appropriate product/service categories, for economic survival, profitability and growth

in a free market environment. The agents at this level are mainly the customers and cor-

porations. Market is a well-studied concept in economics. It usually refers to the exchange

activities that many parties engage in. In this chapter, we won’t discuss the economic
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aspect of Market, but interpret Market as a collection of companies and their activities.

Market activities such as cooperation and competition can be explained using the input-

output model structure and intra-layer feedback loops. From this layer and above, activities

mainly involve autonomous agents such as humans and human organizations. The informa-

tion generated at this level (e.g., stability of individual companies and the market, fairness

practices, etc.) are communicated to the Regulatory View and from there receive regulatory

requirements and enforcement actions. While the market dynamics is in real-time, as with

the Plant View, the relevant time scale is of the order of months.

2.2.5 Perspective V: Regulatory View Layer

As noted, regulatory agencies oversee the market and control the market behavior through

the enforcement of regulatory policies (Figure 2.7). The primary goal at this level is to en-

sure the security, stability, and wellbeing of the society where these companies operate. This

means, of course, the security and wellbeing of the citizens and their environment. This also

means ensuring that the free market, where these companies compete, is stable, efficient

and fair. The autonomous agents are regulatory agencies such as Occupational Safety and

Health Administration (OSHA), Environmental Protection Agency (EPA), Securities and

Exchange Commission (SEC), Federal Reserve (FED), Federal Energy Regulatory Com-

mission (FERC), Minerals Management Service (MMS), Food and Drug Administration

(FDA), and so on, and the appropriate executives from the companies.

These agencies receive from the agents in Government View, namely, lawmakers and

their staff, regulations which they enforce on the market participants. They also monitor

the market and companies, collect information, and report the effects of regulations to the

agents in Government View for potential improvements. This feedback control loop acts at

a time scale of years.

One typical example of this view is the activity of the SEC which regulates the securities

industry (Figure 2.8). SEC receives laws and regulatory directives from the agents in

Government View, such as the President, the Congress, and the FED Board. Through its 5

divisions and 23 Offices, SEC enforces federal securities laws, issues new rules, and oversees

securities related activities. For instance, SEC regularly monitors the market for unusual
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Figure 2.7: Control theoretic model of regulatory layer

trading patterns that might reveal illegal acts such as insider trading, and take corrective

actions, playing its role as a “controller” here, to ensure fairness in the security markets.

While SEC should be praised for its post-financial crisis actions on successfully going after

various Wall Street entities for their misconduct, various failures of the SEC before and

during the crisis contributed to the crisis, as Judge Rakoff argues persuasively [Rakoff,

2014]. Many of these failures are faults of the elements in Figure 2.7 that can be modeled

using our template of failure modes. In a similar manner, many of the failures at the

MMS [Eilperin and Higham, 2010] that contributed to the BP Oil Spill disaster can be

modeled using our approach. While we do not get into all the details, as that would make

this chapter too long, we do provide a summary of these failures in a series of tables that

compare regulatory failures in three different domains later in the chapter.

Figure 2.8: Control theoretic model of Securities and Exchange Commission

2.2.6 Perspective VI: Government View Layer

The Government View, like the Plant and Market Views, is a collection of various agencies

particularly organized to govern a society of autonomous and non-autonomous agents (e.g.,

physical assets). The objectives here are security, stability, and the overall wellbeing of
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the agents and their environment against a variety of risks and threats. Depending on the

societal preference for capitalism, communism, socialism, monarchy, or dictatorship, the

institutions and their structure can be widely different. The objective of this chapter is

not to discuss these in any detail (there are vast resources on this subject in sociology and

political science) but only to show how our control theoretic framework accommodates the

structures and functions at this level in a uniform and consistent manner which is helpful

for a system-theoretic analysis of system-wide risks and threats. In the context of the U.S.,

this structure is the three branches of government - executive, congress, and judiciary – with

the associated agencies they supervise. The agents are the members of these branches. The

time scale is typically four years, the presidential election cycle, but institutional memory

in congress and judiciary can prolong this to decades. That is, it can take that long to make

significant changes in governance.

2.2.7 Perspective VII: Societal View Layer

Finally, we arrive at the top most level in this modeling hierarchy. The primary agents

(autonomous) are the citizens and elected officials in a democracy such as the U.S. It is, of

course, very different for other political structures, as noted. Again, while the presidential

election cycle imposes a certain natural characteristic time, institutional memories can

prolong this to decades. The societal “set points” are the preferences of its citizenry, which

can vary over time, typically, of the order of decades or generations. In an ideal democracy,

the citizens get to decide what kind of society or country they all would like to live in. The

overall goals of the citizens in the U.S., as expressed in the Declaration of Independence

document, are Life, Liberty and the Pursuit of Happiness [Jefferson, 1776]. Given these

goals, in every election, the citizens get to vote on a number of issues related to economy,

environment, education, health, security, privacy, race relations, etc.

This is the top most layer of the model. In its feedback loop, there are citizens, elected

government officials and regulators involved. In the Government View layer, the three

branches of the U. S. government act as the “controller” of a collection of regulatory agencies

and the country. In the Societal View layer, citizens oversee and influence the society

through elections. It usually takes decades for a society to adapt and evolve in any significant
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fashion. The societal set point is related to the history and culture of a nation.

In all systemic failures, such as the ones mentioned above, we all play a role, through

the Societal View layer, and are accountable for some of the blame, as it was our collective

decision to elect (in the case of U.S.) a particular party, and its political and regulatory

views, to govern us. This accountability is a direct consequence of our responsibility. Con-

sider, for example, the responsibility of a CEO of a large petrochemical company with many

plant sites and tens of thousands of employees. The CEO may not know everything about

what goes on in all her plant sites, on a daily basis, but when a disaster strikes she and

her c-suite executives are held accountable. Time and again, in all the official inquiries

of major disasters, whether it was Bhopal, Piper Alpha, BP Oil Spill, Global Financial

Crisis, Northeast Power Blackout, and so on, the management was help responsible and

accountable for their companies failures. In fact, in a historic first, establishing an en-

couraging precedent, recently in April 2016, former Massey Energy CEO was sentenced

to twelve months in prison as a result of the mining company’s disaster [Blinder, 2016;

Steinzor, 2014]. Thus, the people in charge have to be held accountable for part of the

blame. In a democratic society, the people in charge are, ultimately, us, the citizens who

elected the government.

Therefore, we are responsible, in some part, for the failures resulting from its policies.

We are thus responsible for Bhopal, BP Oil Spill, Subprime Crisis, and so on. This is why

it is vitally important for the citizens to stay informed, engaged and active in the political

process. This is particularly important to remember as we begin to address the mother of

all systemic failures, the Climate Change Crisis, which has been in the works for decades.

2.3 Failure Analysis and Comparison

In this section, we discuss the results of applying the TeCSMART framework to three

prominent systemic failures, namely, the BP Texas City Refinery Explosion (2005), Global

Financial Crisis (2008-09), and the Northeast Power Blackout (2003). We in fact stud-

ied the following twelve systemic failures: (i) the Bhopal Disaster (1984), (ii) the Space

Shuttle Challenger Disaster (1986), (iii) the Piper Alpha Disaster (1988), (iv) the SARS
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Outbreak (2002-03), (v) the Space Shuttle Columbia Disaster (2003), (vi) the Northeast

Power Blackout (2003), (vii) the BP Texas City Refinery Explosion (2005), (viii) Global

Financial Crisis (2008-09), (ix) the BP Deepwater Horizon Oil Spill (2010), (x) the Upper

Big Branch Mine Disaster (2010), (xi) the Fukushima Daiichi Nuclear Disaster (2011), and

(xii) the India Blackouts (2012), by carefully reviewing the official post mortem reports of

these disasters as well as other relevant sources. However, we are presenting the compar-

ative analysis of only these three disasters for the sake of brevity. The other cases have

similar failure patterns as well, more details can be found in Appendix A. We analyzed and

classified over 700 failures mentioned in these reports [Drilling, 2011; Commission, 2011;

CSB, 2005; Browning, 1993; Representative and of, 1986; Cullen, 1993; Organization, 2006;

Board, 2003; Force, 2004; Baker et al., 2007; McAteer et al., 2011; Kurokawa et al., 2012;

CERC, 2012]. We categorize these failures into 5 primary classes, and 19 subclasses, that

are consistent with the typical failure modes presented in Chapter 2.2.

The five classes are as follows:

1. Monitoring Failures; 2. Decision-Making Failures; 3. Action Failures; 4. Communi-

cation Failures; and 5. Structural Failures. Each category has sub-categories that define

more detailed failures. Subclass details are listed in Table 2.1 - 2.4. The five-class failure

taxonomy reveals “what can go potentially wrong” in a complex sociotechnical system. It

summarizes the failure modes modeled using the TeCSMART framework. Different failure

modes give rise to systemic failures in different domains. However, there are common fail-

ure modes shared by many, if not, all the systemic failures. Such common failure pathways

help us identify, proactively, how things can potentially go wrong in a complex system. By

studying these common failure mechanisms, people could become more vigilant for new

systems. Thus, the common patterns identified by our comparative analysis are helpful not

only diagnostically but also prognostically.

The comparative analysis of the three case studies is performed in following three steps.

(i) Carefully review the official post mortem reports and classify the failures into different

classes/subclasses mentioned in Tables 2.1 - 2.4. For example, the level control valve was

accidentally turned off by an operator in BP Texas City Refinery. This failure is classified

as a flawed action (3.1 in Table 2.3). The over-grown tree is a known problem for all power
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grid operators. But First Energy (FE) failed to trim the over-grown trees, which led to line

trips. The inadequate tree trimming is classified as a late response failure (3.2 in Table 2.3).

(ii) Once failures are classified properly, they are organized in the TeCSMART framework

according to the relevant agents and the failure mechanisms. Relevant agents indicate the

level of the failure in the TeCSMART framework, and the failing mechanisms explain which

control component the failure is associated with. One layer can have multiple failures, and

one failure can appear multiple times at different levels. Therefore, the level control valve

failure is a flawed action of actuator at the Process View, and the inadequate tree trimming

is due to late response of actuator at the Plant View. (iii) Compare failures across domains

to identify common patterns.
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Table 2.1: Failure taxonomy part I

Class Definition Examples

1. Monitoring Failures Failure to monitor the key parameters ef-

fectively or having significant errors in the

monitored data

1.1 Fail to Monitor Failure to monitor key performance indi-

cators (“failing zero”)

In BP Texas City Refinery Explosion, numerous measures for tracking various

types of operational, environmental and safety performance, but no clear focus on

the leading indicators for the potential catastrophic or major incidents.

In Northeast Blackout, MISO did not discover that Harding- Chamberlin had

tripped until after the blackout, when MISO reviewed the breaker operation log

that evening.

In Subprime Crisis, Moodys did not sufficiently account for the deterioration in

underwriting standards or a dramatic decline in home prices. And Moodys did not

even develop a model specifically to take into account the layered risks of subprime

securities until late 2006, after it had already rated nearly 19,000 subprime securities.

1.2 Failure to monitor

effectively

Failure to detect/report problems in a

timely manner

In Northeast Blackout, the Cleveland-Akron areas voltage problems were well-

known and reflected in the stringent voltage criteria used by control area operators

until 1998.

BP Texas City did not effectively assess changes involving people, policies, or the

organization that could impact process safety.

1.3 Significant errors in

monitoring

Monitored data is significantly inaccurate.

It is either over-reporting (“failing high”)

or under-reporting (“failing low”) the ac-

tual trend

In BP Texas City Refinery Explosion, a lack of supervisory oversight and tech-

nically trained personnel during the startup, an especially hazardous period, was

an omission contrary to BP safety guidelines. An extra board operator was not

assigned to assist, despite a staffing assessment that recommended an additional

board operator for all ISOM startups.

In Northeast Blackout, from 15:05 EDT to 15:41 EDT, during which MISO did

not recognize the consequences of the Hanna-Juniper loss, and FE operators knew

neither of the lines loss nor its consequences. PJM and AEP recognized the overload

on Star-South Canton, but had not expected it because their earlier contingency

analysis did not examine enough lines within the FE system to foresee this result of

the Hanna- Juniper contingency on top of the Harding-Chamberlin outage.

2. Decision Making

Failures

Failure to provide the correct decisions in

a timely manner

2.1 Model failures Decisions are not supported by the local

system (i.e., “plant-model mismatch”)

In Subprime Crisis, financial institutions and credit rating agencies embraced

mathematical models as reliable predictors of risks, replacing judgment in too many

instances.

In Northeast Blackout, one of MISOs primary system condition evaluation tools,

its state estimator, was unable to assess system conditions for most of the period

between 12:15 and 15:34 EDT, due to a combination of human error and the effect

of the loss of DPLs Stuart- Atlanta line on other MISO lines as reflected in the state

estimators calculations.

2.2 Inadequate or incor-

rect local decisions

Decisions made are unfavorable to the lo-

cal system under supervision

In BP Texas City Refinery Explosion, the process unit was started despite

previously reported malfunctions of the tower level indicator, level sight glass, and

a pressure control valve.

In Subprime Crisis, financial institutions’ inadequate decisions of using excessive

leverage and complex financial instruments.

In Northeast Blackout, FE uses minimum acceptable normal voltages which are

lower than and incompatible with those used by its interconnected neighbors.

2.3 Inadequate or incor-

rect global decisions

Decisions made are unfavorable for the

global system, but could be locally right

In Subprime Crisis, the banks had gained their own securitization skills and didnt

need the investment banks to structure and distribute. So the investment banks

moved into mortgage origination to guarantee a supply of loans they could securitize

and sell to the growing legions of investors. But they are lack of global views of the

entire market.

In Northeast Blackout, many generators had pre-designed protection points that

shut the unit down early in the cascade, so there were fewer units on-line to prevent

island formation or to maintain balance between load and supply within each island

after it formed. In particular, it appears that some generators tripped to protect

the units from conditions that did not justify their protection, and many others

were set to trip in ways that were not coordinated with the regions under-frequency

load-shedding, rendering that UFLS scheme less effective.
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Table 2.2: Failure taxonomy part II

Class Definition Examples

2.4 Resource Failures Failure to acquire, allocate and manage

the required resources properly to com-

plete the tasks safely and achieve the

goal(s)

2.4.1 Lack of resources Failure to acquire the necessary resources,

such as funds, man power, time, etc.

In BP Texas City Refinery Explosion, BP has not always ensured that it iden-

tified and provided the resources required for strong process safety performance at

its U.S. refineries, including both financial and human resources.

In Subprime Crisis, in an interview with the FCIC, Greenspan went further, argu-

ing that with or without a mandate, the Fed lacked sufficient resources to examine

the nonbank subsidiaries. Worse, the former chairman said, inadequate regulation

sends a misleading message to the firms and the market. But if resources were the

issue, the Fed chairman could have argued for more. It was always mindful, however,

that it could be subject to a government audit of its finances.

In Northeast Blackout, there is no UVLS system in place within Cleveland and

Akron; had such a scheme been implemented before August, 2003, shedding 1,500

MW of load in that area before the loss of the Sammis-Star line might have prevented

the cascade and blackout.

2.4.2 Inadequate alloca-

tion of resources

Resources are deployed incorrectly. E.g.,

over-staffing (“failing high”) in some areas

while under-staffing (“failing low”) else-

where

In BP Texas City Refinery Explosion, the incident at Texas City and its con-

nection to serious process safety deficiencies at the refinery emphasize the need for

OSHA to refocus resources on preventing catastrophic accidents through greater

PSM enforcement.

In Northeast Blackout, on August 14, the lack of adequate dynamic reactive

reserves, coupled with not knowing the critical voltages and maximum import ca-

pability to serve native load, left the Cleveland- Akron area in a very vulnerable

state.

2.4.3 Training failures Failures related to the lack of organized

activity(ies) aimed at helping employees

attain a required level of knowledge and

skill needed in their current job. This in-

cludes emergency response training

In BP Texas City Refinery Explosion, BP has not adequately ensured that its

U.S. refinery personnel and contractors have sufficient process safety knowledge and

competence.

In Subprime Crisis, in theory, borrowers are the first defense against abusive

lending. But many borrowers do not understand the most basic aspects of their

mortgage. Borrowers with less access to credit are particularly ill equipped to chal-

lenge the more experienced person across the desk.

In Northeast Blackout, the FE operators did not recognize the information they

were receiving as clear indications of an emerging system emergency.

2.5 Conflict of Interest Incorrect decisions reached due to a con-

flict of interest arising from competing

goals that can affect proper judgment and

execution of tasks. E.g., safety vs financial

gain, ethical failures such as corruption

In BP Texas City Refinery Explosion, cost-cutting, failure to invest and pro-

duction pressures from BP Group executive managers impaired process safety per-

formance at Texas City.

In Subprime Crisis, many Moodys former employees said that after the public

listing, the company [Moodys] culture changedit went from [a culture] resembling a

university academic department to one which values revenues at all costs, according

to Eric Kolchinsky, a former managing director.

In Northeast Blackout, these protections should be set tight enough to protect the

unit from the grid, but also wide enough to assure that the unit remains connected to

the grid as long as possible. This coordination is a risk management issue that must

balance the needs of the grid and customers relative to the needs of the individual

assets.
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Table 2.3: Failure taxonomy part III

Class Definition Examples

3. Action Failures Actions carried out incorrectly or inade-

quately

3.1 Flawed actions in-

cluding supervision

Failure to perform the right actions, or

performing no action, or performing the

wrong actions. Failure to follow standard

operating procedures

In BP Texas City Refinery Explosion, numerous heat exchanger tube thick-

ness measurements were not taken. Some pressure vessels, storage tanks, piping,

relief valves, rotating equipment, and instruments were overdue for inspection in six

operating units evaluated.

In Subprime Crisis, struggling to remain dominant, Fannie and Freddie loosened

their underwriting standards, purchasing and guaranteeing riskier loans, and in-

creasing their securities purchases. Yet their regulator, the Office of Federal Housing

Enterprise Oversight (OFHEO), focused more on accounting and other operational

issues than on Fannies and Freddies increasing investments in risky mortgages and

securities.

In Northeast Blackout, numerous control areas in the Eastern Interconnection,

including FE, were not correctly tagging dynamic schedules, resulting in large mis-

matches between actual, scheduled, and tagged interchange on August 14.

3.2 Late response Failure to take the right actions at the

right time

In BP Texas City Refinery Explosion, Neither Amoco nor BP replaced blow-

down drums and atmospheric stacks, even though a series of incidents warned that

this equipment was unsafe. In the years prior to the incident, eight serious releases of

flammable material from the ISOM blowdown stack had occurred, and most ISOM

startups experienced high liquid levels in the splitter tower. Neither Amoco nor BP

investigated these events.

In Subprime Crisis, declining underwriting standards and new mortgage products

had been on regulators radar screens in the years before the crisis, but disagreements

among the agencies and their traditional preference for minimal interference delayed

action.

In Northeast Blackout, the alarm processing application had failed on occasions

prior to August 14, leading to loss of the alarming of system conditions and events

for FEs operators. However, FE said that the mode and behavior of this particular

failure event were both first time occurrences and ones which, at the time, FEs IT

personnel neither recognized nor knew how to correct.

4. Communication Fail-

ures

Failures that are associated with the sys-

tem of pathways (informal or formal)

through which messages flow to different

levels and different people in the organi-

zation

4.1 Communication fail-

ure with external enti-

ties

Failures of communication between an in-

dividual and/or a group/organization and

an external individual and/or organiza-

tion

In BP Texas City Refinery Explosion, BP and Amoco did not cooperate well

to investigate previous incidents and replace blowdown drum.

In Subprime Crisis, the leverage was often hidden. Lenders rarely discuss the

leverage and the associated high risk with their investors. Investors relied on the

credit rating agencies, often blindly.

In Northeast Blackout, the Stuart-Atlanta 345-kV line, operated by DPL, and

monitored by the PJM reliability coordinator, tripped at 14:02 EDT. However, since

the line was not in MISOs footprint, MISO operators did not monitor the status of

this line and did not know it had gone out of service. This led to a data mismatch

that prevented MISOs state estimator (a key monitoring tool) from producing usable

results later in the day at a time when system conditions in FEs control area were

deteriorating.

4.2 Peer to Peer com-

munication failure

Failures of communication between an in-

dividual and another individual within a

group and/or organization

In BP Texas City Refinery Explosion, the night lead operator left early but

very limited information about his control cations was given to day board operator.

In Northeast Blackout, FE computer support staff did not effectively commu-

nicate the loss of alarm functionality to the FE system operators after the alarm

processor failed at 14:14, nor did they have a formal procedure to do so.

4.3 Inter-level commu-

nication failure

Failures of communication between an

individual and another individual at a

greater or lower level of authority within

the same group and/or organization

In BP Texas City Refinery Explosion, Supervisors and operators poorly com-

municated critical information regarding the startup during the shift turnover.

In Northeast Blackout, ECAR and MISO did not precisely define critical facilities

such that the 345-kV lines in FE that caused a major cascading failure would have

to be identified as critical facilities for MISO. MISOs procedure in effect on August

14 was to request FE to identify critical facilities on its system to MISO.
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Table 2.4: Failure taxonomy part IV

Class Definition Examples

5. Structural Failures Deficient structures and/or models

5.1 Design failures Defects or deficiencies in the design of the

system/component/model, or just wrong

design of the system/component/model

In BP Texas City Refinery Explosion, occupied trailers were sited too close

to a process unit handling highly hazardous materials. All fatalities occurred in or

around the trailers.

In Subprime Crisis, where were Citigroups regulators while the company piled up

tens of billions of dollars of risk in the CDO business? Citigroup had a complex

corporate structure and, as a result, faced an array of supervisors. The Federal

Reserve supervised the holding company but, as the Gramm-Leach-Bliley legislation

directed, relied on others to monitor the most important subsidiaries: the Office of

the Comptroller of the Currency (OCC) supervised the largest bank subsidiary,

Citibank, and the SEC supervised the securities firm, Citigroup Global Markets.

Moreover, Citigroup did not really align its various businesses with the legal entities.

An individual working on the CDO desk on an intricate transaction could interact

with various components of the firm in complicated ways.

In Northeast Blackout, although MISO received SCADA input of the lines status

change, this was presented to MISO operators as breaker status changes rather than

a line failure. Because their EMS system topology processor had not yet been linked

to recognize line failures, it did not connect the breaker information to the loss of a

transmission line. Thus, MISOs operators did not recognize the Harding-Chamberlin

trip as a significant contingency event and could not advise FE regarding the event

or its consequences. Further, without its state estimator and associated contingency

analyses, MISO was unable to identify potential overloads that would occur due to

various line or equipment outages.

5.2 Maintenance fail-

ures

Failure to adequately repair and maintain

equipment at all times

In BP Texas City Refinery Explosion, deficiencies in BPs mechanical integrity

program resulted in the run to failure of process equipment at Texas City.

In Northeast Blackout, FE had no periodic diagnostics to evaluate and report the

state of the alarm processor, nothing about the eventual failure of two EMS servers

would have directly alerted the support staff that the alarms had failed in an infinite

loop lockup.

5.3 Operating proce-

dure failures

Failure to develop and execute standard

operating procedures for all tasks

In BP Texas City Refinery Explosion, outdated and ineffective procedures did

not address recurring operational problems during startup, leading operators to

believe that procedures could be altered or did not have to be followed during the

startup process.

In Subprime Crisis, in addition to the rising fraud and egregious lending practices,

lending standards deteriorated in the final years of the bubble.

In Northeast Blackout, the PJM and MISO reliability coordinators lacked an

effective procedure on when and how to coordinate an operating limit violation

observed by one of them in the others area. The lack of such a procedure caused

ineffective communications between PJM and MISO regarding PJMs awareness of

a possible overload on the Sammis-Star line as early as 15:48.
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2.4 TeCSMART Case Studies

In this section, we briefly introduce the three prominent systemic failures: Northeast Black-

out (2003), BP Texas City Refinery Explosion (2005), and Subprime Crisis (2008), and

compare their failures applying TeCSMART framework. The comparison study shows the

similarities and differences of the three systemic failures. Moreover, the common patterns

indicate important failure modes, which can help improve system design, control, and risk

management.

The Northeast Blackout, happened on August 14, 2003, was the largest blackout of

North America power grid. With many generating units tripping and transmission lines

disconnected at noon, the cascading sequence essentially complete around 4:13 p.m. A

shut-down cascade triggered the blackout. Supply/Demand mismatch and poor vegetation

management triggered the power surges in transmission lines. FE’s operators didn’t pay

attention to the warning signs, and poorly communicated with other line operators. Finally,

the power surges spread and the blackout emerged [Force, 2004].

BP Texas City refinery is the third largest refinery in the United States. The refinery

employs approximately 1,800 BP workers. On March 23, 2005, the refinery initiated the

startup of the Isomerization Process Unit (ISOM) raffinate splitter section. During the

startup, the control valve was turned off by an operator accidentally and so the tower was

filled with flammable liquid for over three hours. The pressure relief valve was activated

by high pressure in the tower and discharged liquid to the blowdown drum. The blowdown

drum overfilled and the stack vented flammable liquid to the atmosphere, which formed a

vapor cloud. When the flammable vapor cloud reached an idling diesel pickup truck, whose

engine was on, an explosion happened. The explosion and fires occurred at the site killed

15 people, injured 180 others, and resulted in financial losses exceeding $1.5 billion [CSB,

2005].

In the summer of 2007, leading banks in the U.S. started to fail as a result of falling

real estate prices. Bear Stearns, the fifth largest investment bank, whose stock had traded

at $172 a share as late as January 2007 was sold to JP Morgan Chase for a fire sale price

of $2 on March 16, 2008; Lehman Brothers, the fourth largest, went bankrupt; Fannie Mae

and Freddie Mac were taken over by government; American International Group (AIG), the
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Table 2.5: Agents of each view

View
Agents

BP Texas City Refinery Explosion Subprime Crisis Northeast Blackout

Societal View U.S. citizens Citizens worldwide U.S. and Canada citizens

Government View Employees of different branches of Government Employees of U.S. and Foreign Governments Employees of U.S.

and Canada Governments

Regulatory View Employees of OSHA Employees of FED, SEC, FDIC, OCC, OTC Employees of NERC and FERC of U.S.;

Employees National Energy Board of Canada

Market View Companies in oil & gas refining industry Institutions in financial industry MAAC-ECAR-NPCC power grid

Management View BP senior management Senior management of financial institutions Senior management

& credit rating agencies of FE, AEP, MISO, PJM

Plant View BP Texas City refinery management Dealers, investors, managers of financial products Eastlake 5 generation,

Harding-Chamberlin line

Equipment View Engineers and operators, equipment Borrowers, lenders, brokers, subprime loans Engineers and operators, equipment

issuance giant, was bailed out by tax payers [Blackburn, 2008]. Over half million families

lost their homes to foreclosure. Nearly $11 trillion household wealth vanished. Between

January 2007 and March 2009, stock market lost half its value [Jickling, 2011]. The final

cost to the U.S. economy as a result of the biggest financial crisis since Great Depression

was about $22 trillion! To get a sense of its magnitude, compare it with the U.S. GDP in

2014 which was $17.4 trillion.

A cross domain comparison, shown in Figure 2.9, has been conducted by analyzing and

comparing failures of these three prominent systemic failures. Figure 2.9 is a table where

rows are TeCSMART views and failure classes, and columns are the three systemic failures.

Table 2.5 lists agents of the three systemic failures. As discussed before, we classify failure

evidences found in the post mortem investigation reports as different failure classes, related

to specific control components at the appropriate levels. Then we mark the failure class as

a colored cell in the table, with a color code that blue represents BP Texas City Refinery

Explosion; yellow represents Subprime Crisis; and brown represents Northeast Blackout. If

the three colors appear in the same row, it means that particular failure class had occurred

in all three cases. Therefore, by comparing the colored cells, we are able to study the

failure mechanisms, their similarities and differences. Figure 2.10 highlights failure classes

classified in the comparison table (Figure 2.9). Failures were found at every level in all

the three cases. Operational failures are more common at low levels; controller failures

dominate at high levels. Among the many important observations and insights from the

comparison, we highlight a few and discuss them in depth.

38



CHAPTER 2. A HIERARCHICAL FRAMEWORK FOR MODELING AND
ANALYZING SYSTEMIC RISK IN SOCIOTECHNICAL SYSTEMS

Figure 2.9: Cross-domain comparison table
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Figure 2.10: Failure modes in the comparison table
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(a) (b)

(c) (d)

Figure 2.11: The logic tree of BP Texas City Refinery Explosion (adapted from [CSB, 2005])
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Figure 2.12: The cause map of Northeast Blackout (adapted from [ThinkReliability, 2008])

The comparison shows that lack of appropriate training was a widespread problem.

In Figure 2.9, we have seen training failures in the bottom three views of all three cases.

Evidence shows that operators, even managers, haven’t received appropriate and sufficient

training prior to the accidents. The operator training program was inadequate at BP Texas

City Refinery. The training department staff had been reduced from 28 to 8; there were

no simulators for operators to practice handling abnormal events [CSB, 2005]. the training

failure of BP is confirmed by the logic tree created by the Chemical Safety and Hazard

Investigation Board (CSB), highlighted in Figure 2.11(a). Similar things happened in the

Northeast Blackout. FE operators were poorly trained to recognize emergency information.

They received signals indicating line trips, but made poor decisions by relying solely on

the Emergency Management System (EMS). Unfortunately, EMS failed at this time. FE

engineers’ poor judgment and lack of training played a significant role in the failure. Their

lack of training was also highlighted by ThinkReliability in their causal map, depicted in

Figure 2.12. Such a pattern was also seen in the financial system failure [Commission, 2011;

Schumer and Maloney, 2007].

Decision-makers are “controllers” in the TeCSMART framework. In all three cases, al-

most every layer has shown decision-making failures. For example, the decision of initializing

the ISOM despite previously reported malfunctions of the raffinate tower level indicator,

pressure control valve, and level sight glass, was a serious failure, which directly triggered

the overall disaster [CSB, 2005]. Moreover, BP’s cost-cutting decisions that led to the layoff

of experienced workers from Amoco contributed to the accident as well [Baker et al., 2007].
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These failures are highlighted by CSB in Figure 2.11(b) and Figure 2.11(c). In Subprime

Crisis, fund managers’ decision to invest in subprime securities without fully understanding

the embedded risks was an important cause of the financial system to collapse [Commis-

sion, 2011]. FE’s decision of using minimum acceptable normal voltages (highlighted in

Figure 2.12), which are lower than and incompatible with those of its neighbors, directly

caused power surges and transmission lines sag [Force, 2004]. At the management level,

demonstrated by both our comparison study and the CSB analysis (Figure 2.11(a) and

Figure 2.11(c)), a critical failure was BP not providing enough resources for strong process

safety performance in its U.S. refineries [CSB, 2005]. At the same level, CEOs of financial

institutions decided to maintain a large quantity of subprime related assets by using a very

high leverage. The high leverage magnified the scale of the crisis dramatically. Moreover,

sometimes a locally favorable decision may bring undesired consequences to the system.

In the North America Power Grid, the pre-protection point that protects single operators

won’t work for the whole system. When single operators dropped out from the grid, the

pressure was all on the other part of the system. Finally the system had no options but to

fail systemically [Force, 2004].

Monitoring problems often play a major role in sociotechnical disasters. Monitoring fail-

ures were observed at the management level in all three cases. As discussed in the preceding

section and in Table 2.1, a sensor or a monitoring task can fail low, high, zero, or fail to

detect in time. BP was not aware of hazards at Texas City Refinery, because BP failed to

incorporate previous incidents; even worse, the incidents investigations were missing [Baker

et al., 2007] (“failing zero”). The monitoring failure of BP is particularly mentioned by

CSB in Figure 2.11(d). On the other hand, prior to the Subprime Crisis, Moody’s did not

account for the deterioration in underwriting standards and was not aware of the plummet-

ing home prices. Moody’s did not develop a model specifically to look into layered risks

of subprime securities, after it had rated nearly 19,000 subprime securities [Commission,

2011] (“failing zero”). Deregulation and self-policing by financial institutions had stripped

away key safeguards [Commission, 2011] (“failing low”). Moreover, in Northeast Black-

out, the Midcontinent Independent System Operator, Inc. (MISO) failed to recognize the

consequence of Hanna-Juniper line loss, while other operators recognized the overload but
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had not expected it because the contingency analysis earlier did not examine enough lines

to foresee the Hanna-Juniper contingency. The failure of not recognizing the line loss in a

timely manner worsened the situation. When the operators finally figured out the situation,

it was too late to respond [Force, 2004] (“failing to detect in time”). MISO’s monitoring

failure not only was highlighted by ThinkReliability (in Figure 2.12) as lack of warning,

but also raised concerns of U.S.–Canada Power System Outage Task Force. The Task

Force report [Force, 2004] recommends FERC should not approve the operation of a new

Regional Transmission Operator (RTO) or Independent System Operator (ISO) until the

applicant has met the minimum functional requirements for reliability coordinators. This

recommendation directly addressed the issue of MISO’s, as a reliability coordinator, failing

to recognize line loss in its region.

Beyond the decision-making or monitoring failures, the flawed actions of regulators

and their limited oversight always contribute to sociotechnical system collapses. The re-

ports [Baker et al., 2007; CSB, 2005] mention that OSHA did not conduct a comprehensive

inspection of any of the 29 process units at the Texas City Refinery. Knowing the high lever-

age and vast sums of subprime loans, the FED did not begin routinely examining subprime

subsidiaries until a pilot program in July 2007. FED even did not issue new rules until July

2008, a year after the subprime market had shut down [Commission, 2011]. North American

Electric Reliability Corporation (NERC), the power grid self-regulator, knowing FE’s po-

tential risk, did not enforce any changes or regulate FE’s activities [Force, 2004]. All these

flawed actions contributed to the disasters. Regulators also experience conflict of interest.

Especially financial regulators, who face challenges from powerful financial institutions.

These observations are just a few examples of what we studied in the TeCSMART

comparison. Comparing with the logic tree and the causal map, TeCSMART comparison is

able to capture high-level failures such as regulatory failures, which are not covered in the

logic tree or causal map. More importantly, TeCSMART comparison can systematically

identify potential risks in a sociotechnical system by identifying possible failure modes

associated with different components at different levels.
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2.5 Chapter Conclusions

Analyzing systemic risk in a complex sociotechnical system requires modeling the system at

multiple levels, at multiple perspectives, using a systematic and unified framework. It is not

enough to focus only on equipment failures. It is important to systematically examine the

potential failures associated with humans and institutions at all levels in a society. We have

proposed the TeCSMART framework, which models sociotechnical systems in seven layers

using control-theoretic concepts. Using this framework, a HAZOP-like hazards identification

can be conducted for every layer of a sociotechnical system. The failure modes identified

using TeCSMART framework, at all levels, serve as a common platform to compare systemic

failures from different domains to elicit and understand common failure mechanisms which

can help with improved design and risk management in the future. They also serve as

the input information for developing other types of models (e.g., DAE, SDG, ontological,

agent-based) for more detailed studies.

We carried out such a comparative analysis of 12 major systemic events from different

domains, analyzing over 700 failures discussed in official post mortem reports. Even though

we are only highlighting the results from three of them, for the sake of brevity, the common

failure patterns we identify were found in the other events as well. The over 700 failures

can be systematically classified into the five categories (and their subcategories) that can

occur at all levels of the system. Using a unifying control-theoretic framework, we show

how these correspond to common failure modes associated with the elements of a control

system, namely, sensor, controller, actuator, process unit, and communication channels.

Even though every systemic failure happens in some unique manner, and is not an exact

replica of a past event, we show that the underlying failure mechanism can be traced back

to similar patterns associated with other events.
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Chapter 3

Process Systems Engineering as a

Modeling Paradigm for Analyzing

Systemic Risk in Financial

Networks

There is nothing stable in the world;

uproar’s your only music.

John Keats

In Chapter 2, we have shown that multiple levels of a sociotechnical system can be

modeled by TeCSMART framework (Figure 2.1). For example, equipment and processes at

the equipment layer are modeled by DAE models. However, at the higher layers, such as

the plant, management, and market layers, where DAE knowledge is not easy to develop,

other types of knowledge can be modeled.

In this chapter, we introduce SDG to capture system’s cause-and-effect knowledge.

Specifically, we develop a SDG model for the market layer of a financial system. Finan-

cial system is a typical sociotechnical system where interactions among financial entities

are very complex and cannot be explained by DAE models. We model its cause-and-effect

knowledge to investigate the interactions among a financial system, hence, understand its
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systemic risk.

3.1 Financial Systems and its Instability

Modern financial systems are constantly adapting and changing. Financial systems are

characterized by a very complex set of interdependencies among a large number of institu-

tions. Stress to one part of the system can spread to others, often threatening the stability

of the entire financial system. The recent financial crisis that was precipitated by coun-

terparty exposures revealed by the Lehman bankruptcy, the near bankruptcy of AIG, and

the European debt crisis that was caused by the exposure of European banks to sovereign

default risk emphasizes the critical need for a fundamental understanding of the structure

and dynamics of this system. In the aftermath of the 2008 crisis, regulators have come

to recognize that interconnectedness can pose substantial threats to the stability of the

financial system.

Financial instability typically results from positive feedback loops that are intrinsic to

the operation of the financial system, that is, the instability results from responses to shocks

that reinforce and amplify the initial shock. The structures and mechanisms that create

these positive feedbacks must, therefore, be the focus of any analysis of financial stability,

and new tools are needed to identify and model these structures and mechanisms.

Furthermore, financial systems have the particular feature that the steps taken by a

single agent to mitigate its risk, under extreme circumstances, can become the very source

of destabilizing positive feedback through the interaction of multiple agents. We refer to

these steps as locally stabilizing yet globally destabilizing. This phenomenon is illustrated

by the phenomenon of the bank run. Suppose a bank is weakened by losses, the prudent

action for each individual depositor is to withdraw funds; yet this very response will drive

the bank to failure if followed by every depositor [Diamond and Dybvig, 1983]. The longer

the line of customers outside grows, the greater the incentive for more customers to join the

line and the stronger the amplifying feedback.

The problem of traditional bank runs was largely solved through deposit insurance,

which effectively eliminates any reason for depositors to react to news about a bank. Yet
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similar dynamics operate throughout the financial system. For example, a bank-dealer

facing a shortfall in funding might reduce the lending it provides to hedge funds, and to

control their risk the hedge funds might respond by liquidating positions. But this circuit

of actions, reasonable and prudent for each of the two sectors, can lead to global instability:

the resulting decline in prices reduces the value of collateral, reducing the cash provided to

the bank-dealer on one hand, and leading to further margin calls and demand for forced

liquidation by the hedge funds on the other.

Examples of these patterns have been identified as fire sale dynamics [Shleifer and

Vishny, 2011], liquidity spirals [Brunnermeier and Pedersen, 2009], leverage cycles [Adrian

and Shin, 2014; Fostel and Geanakoplos, 2008], and panics [Gorton, 2010]. But to under-

stand these critical aspects of the financial system comprehensively, we need a systematic

way to identify the paths of feedback globally, wherever they may arise. In order to do

so, one must understand the conduits for the transmission of information and the control

mechanisms applied by the various financial entities based on their observations of flows and

the financial environment. A further complicating fact is that the nature of this feedback is

scale dependent. For example, a small change in prices, funding, or a bank’s financial con-

dition might be absorbed by the system, whereas a large shock might trigger a destabilizing

cascade.

In engineering systems, the safety and stability of an assembled system is a design

criterion. In contrast, the financial system is self-organized. Individual financial entities

generally have risk-management procedures and controls to preserve their own stability,

but the system as a whole was never engineered for safety and stability. Because of this, it

is all the more critical to understand the paths of positive and negative feedback, alternative

routes for funding, and securities flows in the event of a shock to one node or edge of the

network, and more generally how the interactions of the system can create vulnerabilities

and instability.

This chapter shows how the SDG framework makes this possible through a systemwide

view of transformations and dynamical interactions in the financial system. With an SDG

representation, it becomes possible to automate the systematic identification and monitoring

of vulnerabilities. In particular, this approach contributes to the critical task of systemic
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financial risk management: it can highlight and help us monitor dynamics such as fire sales

and funding runs where actions that are locally stabilizing might cascade to be globally

destabilizing.

3.2 Financial Network as a Process Plant: Systems Engi-

neering Framework

An appropriate process systems engineering analogy is to view each financial entity as a

production or manufacturing plant, for example, a chemical process plant, that takes secu-

rities and funding as inputs and creates new financial products as outputs that are delivered

to other processing units. This analogy opens the possibility of using tools that are applied

in engineering for network analysis to gain a better understanding of the dynamic process

underlying the financial system. Though researchers have suggested the Internet, electrical

power grid, and transportation network as potential models for the financial system, none

of these has the richness of phenomena seen in a large-scale chemical process plant. We

demonstrate in this chapter that phenomena such as various physical or chemical transfor-

mations, feedback and recycle loops, and so on can serve as relevant and useful analogies

for modeling the financial system. In the existing network-based models, risk travels along

edges; however, these models ignore the financial transformations executed within the nodes

that generate and compound risk. Although flows and connections are important, the pic-

ture of risk creation and contagion is incomplete without understanding the production

process.

In order to gain further insight into the underlying dynamics, one needs a richer, more de-

tailed, modeling framework [Venkatasubramanian et al., 2000; Venkatasubramanian, 2009].

This is carried out in process systems engineering at three levels of increasing sophistica-

tion and effort: (1) qualitative causal models, such as SDGs, capture the underlying cause-

and-effect relationships, (2) quantitative steady-state models, represented as a system of

algebraic equations, capture the steady-state behavior of the process, and (3) quantita-

tive dynamic models, generally represented as a system of Ordinary Differential Equations

(ODEs) and Partial Differential Equations (PDEs), predict the transient behavior of the
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process. The particular choice for the model depends on the need. For instance, for per-

forming PHA, where one systematically identifies the potential hazards, their causes, and

adverse consequences, it is often adequate to use the qualitative causal SDG models. On the

other hand, for making process control decisions, one requires a detailed dynamic model

that is derived from first principles (as ODEs or PDEs) or from a data-driven perspec-

tive as an input-output model. Generally speaking, in many industrial settings, given the

complexity of the underlying process, it is often quite difficult or expensive to develop the

quantitative dynamic models, particularly from first principles.

Network models, in this case, are more applicable. Financial systems emphasize the

activities at the Management View (Chapter 2.2.3) and the Market View (Chapter 2.2.4),

where DAE models are difficult to derive. Network models typically describe payment

obligations and flows, and they can be effective in quantifying the degree and complexity of

the connections among the financial entities. Standard network models represent financial

entities as nodes and the flows between them as edges; research questions in this area focus

on which types of networks provide robust structures for the financial system [Kleindorfer

and Wind, 2009; Battiston et al., 2013; Gai and Kapadia, 2010]. But these models lack a

representation for the flow of information and responses to information; they do not provide

a vehicle for understanding how responses and controls of multiple agents interact or the

inner workings of an institution summarized by a single node. They only capture the Market

View. Modeling financial institutions as black boxes fails to illustrate the “locally stable

but globally unstable” effect.

Therefore, we introduce SDG as a tool for understanding the feedback effects in finan-

cial systems. SDGs are extensively used in process systems engineering. An SDG repre-

sentation captures the information transmission, the environmental state, and the causal

relationships that underlie feedback. It encodes the control rules and responses followed

by individual units within a financial system and provides a framework for systematically

investigating the resulting interactions between these units. In particular, the SDG rep-

resentation can be used to identify cycles of positive feedback that may not be immedi-

ately apparent. Moreover, subjecting SDG to a PHA [Venkatasubramanian et al., 2000;

Venkatasubramanian, 2011] pinpoints areas of potential stress and instability in a system-
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Figure 3.1: CSTR Example (Adapted from [Stephanopoulos, 1984], fig. 23.5c)

atic manner. The SDG framework is able to represent and reveal information missed by

more traditional network models of financial interconnections.

We now illustrate the SDG framework with the aid of a simple process engineering exam-

ple, a Continuous Stirred-Tank Reactor (CSTR) process (see Figure 3.1 and Stephanopou-

los [Stephanopoulos, 1984]) where an exothermic (that is, heat generating) reaction, A→B,

takes place. The heat generated by the reaction is removed by passing a coolant through

the jacket of the reactor (shaded), thereby controlling the temperature T inside the reactor.

If the temperature is not controlled, it could lead to a runaway reaction and explosion. The

temperature is controlled by a feedback control loop that manipulates the coolant flow rate

Fc to achieve the desired set point temperature.

We next build an SDG model for the CSTR process. A digraph is a graph with di-

rected arcs between the nodes, and a SDG is a graph in which the directed arcs have a

positive (shown as solid lines) or negative sign (shown as dotted lines) attached to them.

The nodes represent events or variables and edges relationship between the nodes. The

directed arcs lead from the cause nodes to effect nodes, showing the direction of causal-

ity. In the typical use of SDG models, each node corresponds to a deviation from the
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steady-state value of a variable. SDG models are much more compact than truth ta-

bles, decision tables, or finite state models, and are, therefore, quite efficient in cap-

turing the causes and effects represented in a process or equipment. The qualitative

SDG models are easier to develop and analyze, in comparison to the dynamic models,

and can yield quick and useful results in certain decision-making tasks such as process

fault diagnosis and process hazards analysis [Maurya et al., 2003a; Maurya et al., 2003b;

Maurya et al., 2004; Vaidhyanathan and Venkatasubramanian, 1996; Venkatasubramanian

and Vaidhyanathan, 1994; Venkatasubramanian et al., 2000; Viswanathan et al., 1998a;

Viswanathan et al., 1998b; Zhao et al., 2005a; Zhao et al., 2005b]. Even when a dynamic

model is available, it is generally faster and more efficient to use an SDG model to per-

form cause-and-effect reasoning for such applications. However, since SDG models are

qualitative in nature, they can lead to ambiguities and hence are limited to certain kinds

of tasks [Venkatasubramanian and Rengaswamy, 2003; Venkatasubramanian et al., 2003a;

Venkatasubramanian et al., 2003b].

The SDG model for the CSTR example is shown in Figure 3.2. The figure is read as

follows: a change in the inlet concentration of A, CAi positively affects the concentration

of A inside the reactor, CA; that is, if CAi increases, CA will increase, and if CAi decreases,

CA will decrease. This is shown by the solid edge between these two nodes. And if CA

increases, then the reaction rate r will increase, which is shown by the solid edge between

these two nodes. However, an increase in the reaction rate will increase the conversion of

A→B, thereby reducing the concentration of A (a negative feedback here). This is captured

by the negative edge in dotted line between r and CA. An increase in the reaction rate

r results an increase in T , which in turn causes an increase in r, potentially leading to a

runaway reaction if the coolant flow fails to control this. The rest of the SDG is to be

interpreted by following the direction of causality, as shown earlier. Maurya et al. [Maurya

et al., 2003a; Maurya et al., 2003b; Maurya et al., 2004] discuss how the SDG model can

be derived systematically from the underlying equations of the process or from a detailed

causal understanding of the process.

Although the SDG model of the entire process unit network (that is, flowsheet) for an

industrial process is naturally more complicated, with hundreds of nodes and edges, it can
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Figure 3.2: SDG for the CSTR example (exothermic reaction A→B)

be assembled from a library of unitwise SDG models, as discussed by Maurya et al. [Mau-

rya et al., 2003a; Maurya et al., 2003b; Maurya et al., 2004]. Venkatasubramanian and

coworkers have also developed artificial intelligence-based systems that automate much of

the cause-and-effect reasoning (both diagnostic and prognostic) using SDG models for en-

tire flowsheets with recycle and control loops [Maurya et al., 2003a; Maurya et al., 2003b;

Maurya et al., 2004; Vaidhyanathan and Venkatasubramanian, 1996; Venkatasubramanian

and Vaidhyanathan, 1994; Venkatasubramanian et al., 2000; Viswanathan et al., 1998a;

Viswanathan et al., 1998b] for process fault diagnosis and process hazards analysis applica-

tions. These methods can be adapted for developing a process systems engineering frame-

work for modeling and analyzing risk in financial networks. We can develop automated

systems that can identify the potential hazards lurking in a complex financial network by

systematically examining various what if failure scenarios.

3.3 SDG Modeling Framework for Financial Networks

We now explain how SDG models can be used to analyze the dynamics of financial systems.

A bank-dealer acts as an intermediary between buyers and sellers of securities, and between

lenders and borrowers of funding. Its clients are investors, such as asset management firms,

hedge funds, and pension funds, as well as other bank-dealers. There are specific business
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Figure 3.3: Simplified bank-dealer network

units within the bank-dealer that process funding and securities to create products for these

clients. The bank-dealer’s network, with its connections with other financial entities and

among its business units, is complex. For the sake of simplicity, to demonstrate the process

systems engineering inspired modeling framework, we now consider a simplified version of

the reality and focus only on two types of bank-dealer activities shown in Figure 3.3:

1. Funding and securities lending: The bank-dealer goes to sources of funding such as

money market funds through the repo market, and to security lenders, such as pension

funds and asset-management firms through their custodian banks.

2. Providing liquidity as a market maker: The bank-dealer goes to the asset markets, to

institutions that hold assets, and to other market makers to acquire positions in the

securities that the clients demand. This function also includes securitization taking

securities and restructuring them. This involves liquidity and risk transformations.

The functions we show within the bank-dealer include the prime broker, which lends

cash to hedge funds in order for the hedge funds to buy securities on margin; the finance

desk, which borrows cash with high-quality securities used as collateral; and the trading
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desk, which manages inventory in its market-making activities that it finances through the

finance desk. The bank-dealer interacts with cash providers, such as money market funds,

pension funds, and insurance companies; other bank-dealer through the over-the-counter

market, which is the market for the bank-dealer to acquire or lay off inventory; and the

hedge funds, which, as noted earlier, seek leverage and securities from prime brokers to

support their long/short trading positions. The hedge funds also represent the wider swath

of institutional customers that use the bank-dealer’s market-making function, ranging from

asset managers and hedge funds to pension funds, sovereign wealth funds, and insurance

companies.

The interactions between the bank-dealer’s functional areas create various financial

transformations. The finance desk takes short-term loans from the cash providers and

passes them through to clients that have lower credit standing, often as longer-term loans.

In doing this, the bank-dealer is engaging in both a maturity and a credit transformation.

The trading desk inventories securities until it can either lay them off based on the demand

of another client or to the over-the-counter market. In doing this, it provides a liquidity

transformation.

The network for the bank-dealer is more interconnected than that of a chemical plant,

because some clients, that is, nodes that receive the output from a bank-dealer, are also

sources of inputs. A hedge fund that is borrowing in order to buy securities might also be

lending other securities. A pension fund that is providing funding might also be using the

bank-dealer for market making. Hedge funds and related institutional investors are on both

sides of the production in that they are both buyers and sellers of securities, and in that

sense provide inputs as well as output in market making.

3.4 Bank-Dealer Case Study

The network depicted in Figure 3.3, though illustrative of the layout of the components

of the bank-dealer and its interactions, does not represent the effect of the various flows,

and therefore cannot by itself suggest conditions and areas where a disruption will create

instability through positive feedback cycles. To achieve this, we need a cause-and-effect
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Figure 3.4: SDG model for bank-dealer example

representation of this network, as we did in the chemical processing example of the previous

section. We accomplish this by creating the SDG model for this network that is displayed

in Figure 3.4.

For simplicity, we consider a system with a single market asset (for example, a stock

or a bond). Its price is represented by the node PBDM, and this price level influences and

is influenced by the rest of the system. Quantities of the asset QHF and QTD are held by

the hedge fund and trading desk, respectively. These units need funding to finance their

asset holdings; this funding is provided by the money market, the prime broker, and the

finance desk. In each case, funding availability depends on the units collateral level, and

collateral is held in the form of the market asset. Thus, changes in the market price change

the value of the collateral, which in turn changes the level of funding available. A margin

rate controls the ratio of funding capacity to collateral at the money market and the prime

broker; a leverage target controls the level of borrowing relative to asset holdings at the

hedge fund and the trading desk. More specifically, the hedge fund determines its dollar

borrowing based on the availability of loans that are provided through the prime broker
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and a comparison of its assets to its target leverage ratio, λHF. The prime broker’s lending

is determined by the bank-dealer’s finance desk and by the prime brokers margin rate, χPB.

The trading desk provides a market-making function; it stands ready to take on any

quantity sent its way by the hedge fund. This increases its inventory of shares, and when

this inventory becomes too large relative to a set point, it opens the overflow control to pass

shares through to the market, dropping the price as a result. The trading desk’s market-

making function distinguishes its control mechanism from that of the hedge fund. As with

the hedge fund, the trading desk depends on the finance desk to fund its inventory, and a

drop in funding might force the trading desk to release more shares into the bank-dealer

market.

The money market provides funding for both the hedge fund and the trading desk

through the finance desk, and it is changes in the funding of the funding desk that lead to

changes in the quantity held by the hedge fund and the trading unit, ultimately changing

the price. The entire system is driven by, and feeds back into, the prices that are set in the

bank-dealer market. These prices are determined by the actions of the trading desk and

the hedge fund and determine the collateral value that helps drive the willingness of the

various agents along the path to provide funding.

The SDG model clearly illustrates why the financial system becomes embroiled in one

crisis after another: nearly all of the pathways extending from the money market through

the bank-dealers to the hedge funds are positive. Thus a shock to one node may create a

positive feedback, exacerbating the shock. This can be seen by applying the SDG framework

and its associated process hazard analysis methodology to the two most common sources

of a financial crisis: funding runs and fire sales.

Process Hazards Analysis (PHA) [Venkatasubramanian et al., 2000; Venkatasubrama-

nian, 2011; Zhao et al., 2005a; Zhao et al., 2005b] is a methodology for systematically

identifying abnormal causes and adverse consequences that can occur anywhere in the pro-

cess system. In the context of an SDG model, PHA provides the framework that can guide

us in identifying methodically what can go wrong at each node and edge and how that fail-

ure would propagate through the rest of the system. Using this framework, we can identify

and examine the complete list of loops in an SDG model. This list can be computed via a
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depth-first search of the SDG [Russell et al., 1995]. Not all positive loops are necessarily

significant sources of vulnerability, because the edges of the SDG record the direction of

influence but not its magnitude. An individual node is typically subject to multiple compet-

ing effects, so the net effect ultimately depends on the gain associated with each feedback

loop. Nevertheless, the list of loops provides a valuable tool for identifying vulnerabilities;

indeed, we know of no other systematic approach to this problem.

Table 3.1 gives a complete list of loops for the SDG model of the bank-dealer network,

with each row describing a loop. A positive (negative) loop is one in which the product of

the signs along the edges defining the loop is positive (negative). Only the last two loops

in the table are negative, and these have a simple interpretation: they are the internal

risk-management processes of the hedge fund and the trading desk, respectively. Each of

these units uses a leverage target as an internal control for the quantity held of the market

asset. However, when we combine these stabilizing negative feedback loops with the rest of

financial system, we get a range of potentially destabilizing positive feedback loops through

the interactions across units. We will examine two types of positive loops in greater detail,

because these represent fire sales and funding runs, two key examples of crisis dynamics. We

emphasize that these dynamics are discovered automatically by the SDG analysis, which

highlights the value of this approach.

3.4.1 Fire Sales

Figure 3.5 shows a segment of the SDG model of Figure 3.4 that focuses on the interaction

of the hedge fund with the bank-dealer’s prime broker. The fire sale occurs when there is a

disruption to the system that forces a hedge fund to sell positions. As shown in Figure 3.5,

this disruption can occur through three channels: a price drop and resulting drop in asset

value, an increase in the margin rate that leads to a margin call from the prime broker, or a

drop in the loan capacity of the prime broker. As the hedge fund reduces its assets, prices

drop, again leading to a second (and subsequent) round of feedback making the situation

worse in every subsequent iteration.

The fire sale is best depicted by the two loops listed in Table 3.2. Loop 8 shows a price

shock increasing the leverage of the hedge fund. The hedge fund then reduces its holdings
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Table 3.1: List of loops

Index Sign Loop

01 + [PBDM, CMM, FMM, VFD, VPB, LHF, QHF, QTD, λTD, εTD, PBDM]

02 + [PBDM, CMM, FMM, VFD, VPB, LHF, QHF, PBDM]

03 + [PBDM, CFD, VFD, VPB, LHF, QHF, QTD, λTD, εTD, PBDM]

04 + [PBDM, CFD, VFD, VPB, LHF, QHF, PBDM]

05 + [PBDM, CPB, VPB, LHF, QHF, QTD, λTD, εTD, PBDM]

06 + [PBDM, CPB, VPB, LHF, QHF, PBDM]

07 + [PBDM, λHF, LHF, QHF, QTD, λTD, εTD, PBDM]

08 + [PBDM, λHF, LHF, QHF, PBDM]

09 + [PBDM, CMM, FMM, VFD, λspTD, εTD, PBDM]

10 + [PBDM, CFD, VFD, λspTD, εTD, PBDM]

11 + [χPB, VPB, LHF, QHF, χPB]

12 + [PBDM, λTD, εTD, PBDM]

13 - [λHF, LHF, QHF, λHF]

14 - [εTD, QTD, λTD, εTD]
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Figure 3.5: SDG model for bank-dealer fire sale example

in order to reduce its leverage, and this drops prices. Loop 7 has the same effect, a drop in

prices increases leverage, which in turn leads to a drop in the quantity held by the hedge

fund, but the effect in this case works its way through the trading desk. The quantity sold

by the hedge fund raises the quantity held by the trading desk, increasing its λTD. This in

turn leads the trading unit to sell into the market, with the end result again being a further

drop in prices.

Note that each of the units is acting to maintain stability: the prime broker is keeping

its loans within bounds given its collateral, the hedge fund is maintaining a target level of

leverage to control its risk, and the trading desk is governing its inventory level through

an outflow if its market-making activities increases its inventory above a target level. Yet

the stabilizing activities at the local level still lead to instability at the global level. This

underscores a central point in the functioning of the financial system, namely, that it can

exhibit global instability even in the face of each unit acting to control its risk.
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Table 3.2: Fire sale loops

Index Sign Loop

07 + [PBDM, λHF, LHF, QHF, QTD, λTD, εTD, PBDM]

08 + [PBDM, λHF, LHF, QHF, PBDM]

3.4.2 Funding Runs

Figure 3.6 shows another segment of Figure 3.4, focusing on the interaction of the bank-

dealer with the money market. A funding run can be triggered by a disruption in funding

flows from the money market. This may happen if there is an increased uncertainty about

the quality of the collateral, or a drop in the market value of collateral, or by a change

in the money market’s margin rate, which might occur due to an erosion of confidence.

The drop in funding negatively affects the amount of inventory the trading desk can carry,

and as a result it sells into the market. As in case with dynamics associated with fire sales,

selling drops prices, which feeds back to the value of collateral, and can precipitate a further

reduction in funding from the money market.

The funding run is demonstrated by the two loops in Table 3.3 that focus on the effect

of a price drop on the collateral held by the money market. The price shock drops the value

of the collateral being held by the money market, which reduces the funding available to the

bank-dealer’s finance desk. This has two effects. In Loop 2, it feeds through to ultimately

reduce the funding available to the hedge fund through the prime broker, forcing a reduction

in quantity held, and thereby further reducing price. In Loop 9, the reduction in funding

from the money market reduces the funding available to the trading desk, and its reduction

in inventory again leads to a further price drop. These are only two of the possible loops

where a drop in price-induced drop in funding leads to asset sales and subsequent price

drops. For example, the drop in collateral value can affect the finance desk directly.

In both fire sales and funding runs, the SDG model identifies a critical dynamic that

leads to market crises: actions that dampen risk on a local level can contribute positive

feedback and cascades on the global level. The proper response for the prime broker when

faced with a reduction in funding is to reduce funding to the hedge funds. But this leads to
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Figure 3.6: SDG model for bank-dealer funding run example

Table 3.3: Funding run loops

Index Sign Loop

02 + [PBDM, CMM, FMM, VFD, VPB, LHF, QHF, PBDM]

09 + [PBDM, CMM, FMM, VFD, λspTD, εTD, PBDM]
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actions by the hedge funds that contribute to a positive feedback cycle that reduces funding

for the prime broker even further. Similarly, a locally proper response for the trading desk

in the face of lower funding is to reduce inventories, but this leads to a drop in prices that

feeds back to affect the value of collateral, and thereby reduces funding even further.

The unintended consequences are even more widespread than this. There are links

between the segments representing fire sales and funding runs, so a funding run might

precipitate a fire sale, and vice versa. From the SDG model, it is clear that a fire sale can

lead to funding run, if the fire sale by the hedge fund drops prices to the point that the

cash providers, seeing erosion in their collateral, begin to reduce funding. The SDG model

also shows that there is pathway in the opposite direction: a drop in funding to the trading

desk leads to a reduction in inventory, causing a drop in prices that reduces the value of the

hedge fund portfolio, leading the prime broker to increase its margin level, thereby inducing

a forced sale. The forced sale will add yet another positive feedback loop to the initial

price impact that came from the trading desk. So actions that are reasonable locally can

contribute to adverse global consequences.

For the simplified bank-dealer network in Figure 3.3, one can perhaps manually identify

and analyze all the feedback loops listed in Table 3.1. However, for a more realistic ver-

sion of this network, as shown Figure 3.7, where there are multiple hedge funds, multiple

banks/dealers, multiple clients, various derivatives and structured products, it is virtually

impossible to identify and analyze all such loops manually. This, again, highlights the need

for the SDG framework, which can be automated to handle larger systems.

A further advantage is that the framework allows us to formulate more sophisticated

models, as and when we need them, in a methodical manner. For instance, we now show

how we can add numerical gains [Vaidhyanathan and Venkatasubramanian, 1996] on all

the edges connecting various nodes and perform a quantitative analysis of how shocks of

different magnitudes might propagate through the system. The gains used in this example

are for illustrative purposes only and are not meant to reflect actual market conditions. In

practice, these gains can be estimated using a combination of historical market data and

the judgment of experienced market professionals.
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Figure 3.7: More realistic bank-dealer configuration

3.5 Semiquantitative Analysis

Consider a loop of the form (v1, v2, . . . , vn, vn+1 = v1) where each pair of nodes (vi, vi+1) is

connected by a directed edge. Suppose the value of node vi+1 as a function of the value of

node vi is given by the functional relationship vi+1 = fi(vi). The semi-quantitative analysis

proceeds in two steps:

1. Initiate a disturbance at node v1

2. Propagate the deviation through the nodes v2, v3, . . . , vn back to vn+1 = v1.

We are interested in quantifying whether the loop amplifies or diminishes the initial distur-

bance.
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Let δvi = ∆vi/vi denote the relative change in the value of node i. Then

δvi =
∆vi
vi

=
fi−1

(
vi−1(1 + δvi−1)

)
− fi−1(vi−1)

fi−1(vi−1)

=
fi−1

(
vi−1(1 + δvi−1)

)
fi−1(vi−1)

− 1 ≡ Fi−1(δvi−1; vi−1). (3.1)

Thus, the relative change in the value δvi is a function of both the relative change δvi−1

and the current value vi−1. Note that when fi−1(vi−1) is linear, i.e., fi−1(vi−1) = ki−1vi−1,

the function Fi−1(δvi−1) = δvi−1. In the sequel, we will suppress the dependence on the

current value vi−1. We will denote δvn+1, i.e., the relative disturbance in the value of node

v1 after one iteration through the loop, by δv1,f . From Equation (3.1) it follows that

δv1,f = Fn

(
Fn−1

(
. . . F1(δv1)

))
. (3.2)

For linear relationships, (i.e., Fi is replaced by a constant gain ki)

δvi+1 = Fi(δvi) = kiδvi.

Thus, when a loop contains only linear edges,

δv1,f = knkn−1 · · · k1δv1,i.

We now illustrate this approach on Loop 7 displayed in Figure 3.8. Suppose the starting

node v1 = PBDM. Our goal is to determine the relative change in the value of v1 = PBDM
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Figure 3.8: Loop 7 as an example

after one iteration. We assume that the market conditions are described as follows:

PBDM = $10

CHF = $1 billion

CTD = $1 billion

APB = $5 billion

AHF = $5 billion

ATD = $15 billion

AFD = APB +ATD = $20 billion

LHF = AHF − CHF = $4 billion

LTD = ATD − CTD = $14 billion

QHF = 500 million shares

QTD = 1.5 billion shares

χMM = 25%

χPB = 25%.
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These values are chosen simply to illustrate the methodology; we do not claim that the values

chosen are representative of true market conditions. We will first compute the functions

Fi(δvi) for each of the nodes, and then compute the feedback effect. Economic principles

give following relations.

1. δλHF = F1(δPBDM). The leverage

λHF =
1

1− LHF/AHF

=
1

1− LHF/
(
PBDMQHF

) ≡ f1(PBDM)

From Equation (3.1), it follows that

F1(δPBDM) =
−LHFδP

PBDMQHF(1 + δP )− LHF
.

2. δLHF = F2(δλHF). The relationship between LHF and λHF is as follows. The price

change δPBDM results in a change in the leverage λHF; this change triggers a trade

since the hedge fund is targeting a fixed leverage λHF. Thus, the hedge either takes

on more loan or pays down some of the loan in order to reset the leverage back to

λHF. Thus, the relative change δLHF can be computed from the relation

λHF =
AHF(1 + δPBDM) + δLHFLHF

AHF(1 + δPBDM)− LHF
,

i.e.

δLHF =
AHF(λHF − 1)

LHF
(1 + δPBDM)− λHF.

Using the relationship that δλHF = F1(δPBDM) it follows that

F2(δλHF) =
AHF(λHF − 1)

LHF

(
1 + F−1

1 (δλHF)
)
− λHF.

3. δQHF = F3(δLHF), δQTD = F4(δQHF), and δεTD = F6(δλTD). The functions f3, f4

and f6 are all linear; therefore, it follows that F3(δLHF) = δLHF, F4(δQHF) = −δQHF,

and F6(δλTD) = δλTD.

4. δλTD = F5(δQTD). When the trading desk purchases (resp. sells) shares the capital

CTD of the trading desk decreases (resp. increases); moreover, the relationship is
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linear. Therefore, δCTD = −δQTD. The relative change in leverage δLTD is given by

δλTD =

ATD
(CTD(1+δCTD)) −

ATD
CTD

ATD/CTD
=
−δCTD

1 + δCTD
.

Therefore, it follows that

F5(δQTD) =
δQTD

1− δQTD
.

5. δPBDM = F7(δεTD). The relationship between PBDM and εTD is as follows. So long

as εTD ≤ 0, i.e., the trading desk leverage λTD is less than or equal to the leverage

set point λsp
TD, no action is taken. However, when the εTD > 0, the trading desk sells

assets to reset the error εTD = 0. This trading impacts the price PBDM. Thus, there is

a complex non-linear relationship between δεTD and δPBDM that needs to calibrated

from data. For the purpose of illustrating SDG approach, we assume

F7(δεTD) =

 −0.1δεTD normal market conditions

−2δεTD crisis conditions
(3.3)

Now we are in a position to compute the loop gain δPBDM,f/δPBDM using Equation (3.2)

and the nominal market condition described above. δPBDM,f can be determined for a given

δPBDM,i.

Table 3.4 reports the loop gains for all the 14 loops for both normal and crisis conditions,

and for small (1%) and large (5%) initial decrease. Specifically, for Loop 7 under normal

market conditions, a 1% initial decrease in PBDM results in a 0.53% final decrease in PBDM,

i.e., the feedback through the system stabilizes the price. However, under crisis conditions,

the same sale could trigger an 10.53% decrease in price. Thus, iterating over the loop several

times leads to a fire sale situation.

Since the SDG approach allows one to model how the system might behave to price

shocks under normal and abnormal conditions, this approach can serve as a framework

for methodical stress testing and monitoring the critical nodes and edges. The next level

of sophistication would be to develop differential (or difference) equations based dynamic

models, which provide a more detailed analysis of the dynamic behavior of the financial

system.
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Table 3.4: Results for all loops

ID Sign Loop Deviation Condition Final Value Threshold Remarks

1 +

[PBDM, CMM, FMM, Low Normal -0.10% -10% safe

VFD, VPB, LHF, QHF, Low Abnormal -2.02% -10% safe

QTD, λTD, High Normal -0.53% -10% safe

εTD, PBDM] High Abnormal -10.53% -10% not safe

2 +

[PBDM, CMM, FMM, Low Normal -0.10% -10% safe

VFD, VPB, LHF, Low Abnormal -2.00% -10% safe

QHF, PBDM] High Normal -0.50% -10% safe

High Abnormal -10.00% -10% not safe

3 +

[PBDM, CFD, VFD, Low Normal -0.10% -10% safe

VPB, LHF, QHF, QTD, Low Abnormal -2.02% -10% safe

λTD, εTD, PBDM] High Normal -0.53% -10% safe

High Abnormal -10.53% -10% not safe

4 +

[PBDM, CFD, VFD, VPB, Low Normal -0.10% -10% safe

LHF, QHF, PBDM] Low Abnormal -2.00% 10% safe

High Normal -0.50% -10% safe

High Abnormal -10.00% -10% not safe

5 +

[PBDM, CPB, VPB, LHF, Low Normal -0.10% -10% safe

QHF, QTD, λTD, Low Abnormal -2.02% -10% safe

εTD, PBDM] High Normal -0.53% -10% safe

High Abnormal -10.53% -10% not safe

6 +

[PBDM, CPB, VPB, Low Normal -0.10% -10% safe

LHF, QHF, PBDM] Low Abnormal -2.00% -10% safe

High Normal -0.50% -10% safe

High Abnormal -10.00% -10% not safe

7 +

[PBDM, λHF, LHF, QHF Low Normal -0.53% -10% safe

QTD, λTD, εTD, Low Abnormal -10.53% -10% not safe

PBDM] High Normal -3.33% -10% safe

High Abnormal -66.67% -10% not safe

8 +

[PBDM, λHF, LHF Low Normal -0.50% -10% safe

QHF, Low Abnormal -10.00% -10% not safe

PBDM] High Normal -2.50% -10% safe

High Abnormal -50.00% -10% not safe

9 +

[PBDM, CMM, FMM, Low Normal -0.10% -10% safe

VFD, λspTD, εTD, Low Abnormal -2.00% -10% safe

PBDM] High Normal -0.50% -10% safe

High Abnormal -10.00% -10% not safe

10 +

[PBDM, CFD, VFD, Low Normal -0.10% -10% safe

λspTD, εTD, PBDM] Low Abnormal -2.00% -10% safe

High Normal -0.50% -10% safe

High Abnormal -10.00% -10% not safe

11 +

[χPB, VPB, LHF, Low Normal -1.00% -10% safe

QHF, χPB] Low Abnormal -1.00% -10% safe

High Normal -5.00% -10% safe

High Abnormal -5.00% -10% safe

12 +

[PBDM, λTD, Low Normal -1.65% -10% safe

εTD, PBDM] Low Abnormal -32.94% -10% not safe

Low Normal -28.00% -10% not safe

Low Abnormal -560.00% -10% not safe

13 -

[λHF, LHF, QHF, Low Normal -1.23% -10% safe

λHF] Low Abnormal -1.23% -10% safe

High Normal -5.88% -10% safe

High Abnormal -5.88% -10% safe

14 -

[εTD, QTD, λTD, Low Normal -0.10% -10% safe

εTD] Low Abnormal -1.96% -10% safe

High Normal -0.50% -10% safe

High Abnormal -9.09% -10% safe
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3.6 Chapter Conclusions

The financial system does not develop as a carefully engineered system with proper consid-

eration given to the stability and the management of its complex interactions. Because of

this, it is all the more critical to understand the paths of positive and negative feedback,

alternative routes for funding and securities flows in the event of a shock to one node or

edge of the network, and more generally how the dynamic interactions in the system can

create vulnerabilities and instabilities.

We suggest that a process systems engineering framework is the appropriate modeling

paradigm for this challenge. In particular, causal knowledge represented as SDGs, and the

associated process hazards analysis framework, can add the critical capabilities missing in

the current network-based approaches that are emerging as the leading modeling framework

for the financial system. The SDG framework adds crucial information to the context of

linkages in a network in terms of the direction of various flows and whether they contribute

positive or negative feedback, thereby providing a systematic framework for analyzing the

potential hazards and instabilities in the system. We show that this framework can reveal

hidden instabilities, and mechanisms of failure, that may not be apparent in a network-based

perspective for large financial systems. It can highlight dynamics such as fire sales and

funding runs, where actions that are locally stabilizing – e.g., where a financial institution

takes risk management actions without an understanding of the systemic implications –

might cascade to globally destabilizing consequences. Therefore, the modeling of causal

knowledge help us address systemic risk at the market level of a sociotechnical system.
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Chapter 4

An Ontology-Driven Knowledge

Management Framework for

Emerging Infectious Diseases

Preparedness and Response

No knowledge obtained without risk.

Stephen King

Systemic risk associated with the market layer of a sociotechnical system can be studied

via modeling causal knowledge. However, moving up along the hierarchy of sociotechnical system

to the regulatory and government layers, where human decision making plays the dominant

role, DAE and SDG models become difficult to apply. At these layers, the heuristic knowl-

edge of decision makers determines system’s behavior. To manage systemic risk at these

layers, we need to model heuristic knowledge, which is usually documented in manuals,

guidelines, etc.

In this chapter, we study a public health system, which is a typical complex sociotechnical system

consisting of humans, organizations, technology, resources, and information. Systemic risk

management in public health system emphasizes the management of public health docu-

ment knowledge. We develop a document ontology to store and model public health knowl-
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edge so that regulators can respond to public health systemic risk more effectively.

4.1 Systemic Risk Management for Public Health

Public health experts constantly mitigate the risk of Emerging Infectious Diseases (EIDs)

to keep millions of people safe. However, the recent Ebola outbreak in West Africa reminds

us the weaknesses in preparing for and responding to EIDs. The Ebola epidemic directly

affected the health and economies of multiple countries in West Africa over a period of

two years, and resulted in 11,299 deaths among 28,599 suspected infections [Organization,

2015]. The initial international response was regarded as slow and uncoordinated by many

experts [Tomori, 2015], an indication of the poor application of the lessons learned from

prior global pandemics.

Effective coordination and communication of information among different stakeholders

are necessary components of a strong response to an EID outbreak [Stoto et al., 2013].

Public health coordination and communication requires not only sharing resources and

specialties, but also sharing, managing, and using knowledge effectively. This is a recognized

challenge in practice [Oshitani et al., 2008; Bloom, 2002; Revere et al., 2007; LaPelle et al.,

2006; Ho and Participants, 2014]. Knowledge sharing and management is not a single

government task. It needs the collaboration of multiple groups across several sectors. Such

effort, however, is usually hindered by geographical, temporal, and political constraints. A

lack of a strong public health infrastructure in many countries and the persistent problems

in our global health governance structure could exacerbate the crisis and complicate the

collaboration [Oshitani et al., 2008]. The spatial-temporal dynamics of outbreaks further

complicate the real-time preparedness and response processes [Li and Mackaness, 2015;

Ostfeld et al., 2005; Mao and Bian, 2010]. Moreover, how to use the knowledge from prior

pandemics to make a prompt decision under current condition perplexes the public health

community.

Different approaches have been employed to address this challenge. Recent progress

includes influenza information management [Keselman et al., 2010], meta-knowledge anal-

ysis [Trinquart and Galea, 2015], and public health surveillance [Neill, 2012]. Semantic
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reasoning has been used to address the spatial-temporal difficulties of epidemic manage-

ment [Li and Mackaness, 2015]. However, advances in the knowledge management of public

health have been limited. This chapter demonstrates how to apply systems engineering con-

cepts to develop a knowledge management framework facilitated by ontology and semantic

reasoning and to support decision making in EIDs preparedness and response.

The public health system is a complex adaptive system [Bloom, 2002]. We tackle its

complexity using a systems engineering-based approach [Trochim et al., 2006]. The prob-

lem of EIDs preparedness and response resembles risk management in many engineering

disciplines. Recently, systems engineering concepts have gained considerable attention in

the public health community. National Academy of Engineering and Institute of Medicine

have advocated the widespread application of systems engineering tools [Kopach-Konrad et

al., 2007]. Systems engineering methods such as Markov models are used to enhance public

health preparedness [Yaylali et al., 2014].

As a result, we propose a novel systems engineering-inspired, ontology-driven knowledge

management approach. This approach utilizes knowledge from public health documents to

support decision making, for both global and local levels. In this chapter, we demonstrate

how to develop the ontology and semantic rules to manage knowledge and support decision

making. This ontology could also serve as a part of other applications, such as a public

health training or practice tool. Its flexibility enables the integration with other ontologies.

4.2 Ontology-driven Knowledge Management Framework

Public health knowledge management aims to systematically manage tasks and support de-

cision making, which view implicit and explicit knowledge as a key strategic resource [Staab

and Studer, 2013]. It needs storage, retrieval, and utilization of public health knowledge.

We propose the ontology-driven knowledge management approach, which decomposes pub-

lic health documents to elements of knowledge, and stores them in an ontology, namely,

the Public Health Ontology (OntoPH). An inference engine accesses knowledge models, as-

sembles and manipulates elements of knowledge in the ontology to draw conclusions about

EIDs preparedness and response.
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Figure 4.1: Systems engineering inspired ontology-driven knowledge management approach

4.2.1 Overall Architecture

Public health knowledge is mainly preserved in public health documents, which include

guidelines, procedures, and academic publications. They are the most important media to

share, store, and manage knowledge because they are vetted, high quality, generated by

authoritative content source, verifiable by a trusted source and up to date and regularly

updated [Revere et al., 2007]. In order to support decision making, OntoPH’s corpus should

meet at least two requirements: breadth and depth. “Breadth” means the corpus should

cover many, if not all, fields that are involved in public health decision making. “Depth”

means the corpus should contain not only global-level guidelines but also local-level proce-

dures. Our ontology-driven approach works with public health documents as depicted in

Figure 4.1.

OntoPH is developed using concepts and relations decomposed from public health doc-

uments as building blocks and ontology competency questions as guidance. Grüninger and

Fox state that an ontology should answer competency questions proposed based on the

motivation of the ontology [Grüninger and Fox, 1995]. Competency questions define the

terminology and specify the definitions and constraints of the terminology. Knowledge is

modeled using the terminology. An inference engine retrieves knowledge from OntoPH via
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Semantic Web Rule Language (SWRL) rules to answer users’ queries.

4.2.2 Function-based Knowledge Representation

The first task is to represent knowledge preserved in public health documents. Effective

knowledge storage and retrieval requires a knowledge representation, which addresses both

the hierarchical complexity and the semantic heterogeneity. The hierarchical complexity of

public health knowledge is rooted in the multiple layers of public health activities. Practi-

tioners need different chunks of knowledge in various contexts to prepare for and respond

to EIDs. Health workers in the clinic, for example, demand knowledge about disease di-

agnosis, whereas the Department of Health wants to know how to manage and coordinate.

Knowledge always serves some purposes. The health workers’ knowledge leads to accurate

diagnoses. The Department of Health’s knowledge achieves effective emergency response.

Multiple layers of public health activities are linked via their purposes. To better respond

to emergencies, Department of Health requires the health workers to diagnose the disease

effectively.

Semantic heterogeneity, on the other hand, is the result of the cross reference of public

health knowledge, which is a mixture of various fields such as medical science, epidemiol-

ogy, biology, and engineering [Ho and Participants, 2014]. For instance, the knowledge of

physician training lies in the intersection of medical science (i.e., what skills to train) and

management science (i.e., how to train). Nonetheless, the two aspects share the same pur-

pose, i.e., training physicians for better EIDs preparedness. In Chapter 2.2, we summarize

that complex system activities usually have common purposes: communication, decision

making, processing, and sensing.

One can resolve both hierarchical complexity and semantic heterogeneity by identify-

ing the purpose of knowledge. For a piece of knowledge could serve different purposes

under different conditions. Chapter 2.2 identifies the importance of means-end relation in

complex system risk management and propose a systems engineering framework to expli-

cate the relation. Adopting this idea, our approach models elements of knowledge based

on their mean-end relations. We use teleological functions to represent the purposes of

knowledge elements. Unlike mathematical functions that map a set of inputs onto a set of
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permissible outputs, teleological functions emphasize the means to realize a goal by indi-

cating the common purpose between two connected entities. The four common purposes

aforementioned induce four types of teleological functions. A function-based knowledge

representation has been used in many fields including engineering [Heussen and Lind, 2009;

Lind, 1994; Chittaro, 1995; Chittaro et al., 1993] and data science [Kopena and Regli, 2003].

To develop such a function-based knowledge representation, we first classify public health

documents into two categories, general documents that contain general public health prin-

ciples and specific documents that store evidence-based procedures. There exists a gap

between these two types of documents: general documents are usually too general to imple-

ment, whereas specific documents are mostly event-specific thereby limiting their usefulness

for new events. We organize knowledge of general documents as a teleological function of

that of specific documents:

knowledgegeneral doc = f
(
knowledgespecific doc1, knowledgespecific doc2, . . .

)
(4.1)

where f is a teleological function. Specific activities expand a general guideline with specific

recommendations. For example, after the 2009 Influenza A H1N1 Pandemic, many specific

documents have discussed vaccination preparedness and distribution [Union, 2010; UKDOH,

2010]. World Health Organization (WHO) also has issued general guidelines for vaccination

preparation during the pandemic [Organization, 2009a]. The function vaccination describes

activities related to vaccination preparedness and distribution. Therefore, Equation (4.1)

can be re-written as

knowledge[Organization, 2009a] = vaccination
(
knowledge[Union, 2010], knowledge[UKDOH, 2010], . . .

)
.

(4.2)

meaning that WHO guidelines about vaccination can be expanded with specific activities,

hence, bridge the gap. The function-based knowledge representation is depicted as a tree

structure shown in Figure 4.2. Root of the tree is a public health document. Leaves are

the event-based procedures. A general document (e.g., g1) contains general knowledge ex-

pressions (e.g., ge1.1 and ge1.2). A general knowledge expression specifies a teleological

function. For instance, WHO guideline [Organization, 2009a] points out roles of the health

and non-health sectors in vaccination sharing and distribution activities. We can label this
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knowledge expression with a function vaccination (i.e., f2). Specific guidelines (e.g., s2)

elaborate the teleological functions and define many specific knowledge expressions (e.g.,

se1.2). Specific knowledge expressions can further indicate sub-functions (e.g., sf1.2), which

include detailed procedures and instructions. Unlike specific procedures, teleological func-

tions are event independent. Same functions can apply to different events with similar

fundamental lessons. The tree structure demonstrates how general documents and specific

documents are linked via teleological functions. The function-based knowledge represen-

tation handles the hierarchical complexity through the tree structure of documents, and

manages the semantic heterogeneity by grouping distinct activities under the same func-

tion. Teleological functions define the scope and intention of the specific documents. They

let a specific document elaborate a general document by adding actionable items.

4.2.3 Ontology Development

An ontology is a formal description of entities and their properties, relationships, and con-

straints [Grüninger and Fox, 1995]. It is widely used for the information system and knowl-

edge management. An ontology consists of classes, individuals, and properties. Classes are

a collection of concepts in the domain of discourse. Individuals are instances of each class.

Properties are relations between classes, values restrictions, or instance descriptions in the

domain of discourse. An ontology models knowledge by axiomatizing concepts as well as

the relationships between them [Cimiano, 2006]. Knowledge is defined and organized in

a layer style (Appendix B.1). Terms with similar meaning are classified as synonyms. A

list of synonyms is defined as a concept. Concepts form a hierarchy and are connected by

relations. Concepts and relations constitute general axioms that represent the knowledge

of discourse. Figure 4.3 shows the ontology development process, which consists of three

steps. (1) Concept Extraction: extracting knowledge from the corpus; (2) Ontology Assem-

bly: decomposing knowledge into terms, relations, constraints, and descriptions; integrating

these components to form an ontology; (3) Reasoning: creating semantic rules to enable

knowledge retrieval.
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Figure 4.2: The tree structure of function-based knowledge representation
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Figure 4.3: Ontology knowledge management

4.2.3.1 Concept Extraction

Our corpus, with 135,946 words in total, consists of the U.S. Code [Government, 2011],

federal level regulations [Union, 2010; UKDOH, 2010; Services and Human, 2013; Services

and Human, 2010], international health regulations [Organization, 2009a; Organization,

2005; Organization, 2010; Organization, 2009b], and pandemic evaluations of outbreak re-

sponses [Fineberg, 2014; Asnis et al., 2000]. They cover all types of public health documents

aforementioned. U.S. Code is the generic legal document, which ensures that the ontology

aligns with laws. The federal regulations and the international health regulations are guide-

lines regarding surveillance, transportation, and preparedness. The evaluations are chosen

per disease. Influenza A (H1N1) virus (H1N1) and West Nile Virus (WNV) are two specific

diseases chosen for illustration. These two cases are selected because they are well studied

recent emerging diseases with an impact on health resources both locally and globally. In

addition, their impact on health and geographical coverage are both significant. We want to

evaluate case examples where the primary infection risk is associated with different infection

transmission routes in order to evaluate the potential for having a unified framework for

EIDs. There are two knowledge extraction methods available: manual annotation and Nat-

ural Language Processing (NLP) annotation. Manual annotation requires domain experts

to review and annotate every term in the corpus per predefined criteria. Manual annotation

provides high accuracy but requires tremendous human effort. On the other hand, NLP

annotation automatically recognizes and classifies terms into predefined categories [Carley

et al., 2012]. NLP annotation is much more efficient than manual annotation but at the cost
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of accuracy. Usually, a NLP based information retrieval performs clustering or classification

to identify key concepts. The performance is usually measured by precision or recall [Riloff

and Wiebe, 2003].

In this work, we implement a hybrid approach. NLP methods are used mainly for

pre-processing the corpus. By removing stop words and tagging the parts of speech, one

can extract meaningful and most frequent terms and relations using text mining tools like

KHCoder [Higuchi, 2001]. The classification work is done manually. Two domain experts

(our collaborators from Columbia Mailman School of Public Health) review every term and

relation, and decide their descriptions and constraints. OntoPH is built upon these terms

and relations. Domain experts and ontology engineers work collaboratively to select and an-

notate documents. Such a team-based method has been used extensively in many scientific

studies and applications, such as the HAZOP analysis in chemical engineering [Venkata-

subramanian and Rengaswamy, 2003]. Such a team should be as small as possible while

maintain sufficient expertise. In a series of meetings, team members work together to select

documents. Conflicts must be resolved before the list of documents is finalized. Each do-

main expert annotates a part of the corpus and reviews others’ annotations. This practice,

therefore, keeps the corpus and annotation as objective as possible.

4.2.3.2 Ontology Assembly

OntoPH includes 199 classes, 78 properties, and 1234 axioms (Appendix B.2-B.8). We

develop the general structure of OntoPH based on the Legal Knowledge Interchange For-

mat (LKIF) Core Ontology. LKIF Core Ontology is developed by the European project

for Standardized Transparent Representations to extend Legal Accessibility Consortium to

cater for a continuing need for a standard vocabulary of basic legal terms [Hoekstra et al.,

2007]. We expand this legal term vocabulary to include public health vocabulary.

OntoPH is structured in a modularized nature. Modularization improves the reusability,

scalability, and maintenance of an ontology [dAquin et al., 2007; Grau et al., 2007]. OntoPH

has seven modules: space-time module, agent module, action module, role module, process

module, document module, and event module. Inheriting all modules, OntoPH core module

has nine main classes (Table 4.1). The Space class defines spatial concepts such as region
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and nation. The Time class describes temporal concepts such as time point or period. The

Resource class specifies resources used for public health preparation and response. The Ac-

tion class defines potential actions for an EID event. Actions are categorized regarding the

four basic teleological functions: communication, control, implementation, and monitoring.

Sub-classes of the Action class represent specific functions under the four basic functions.

The Process class describes both continuous and discrete event flows. The Agent class lists

all the intelligent and non-intelligent agents involved in a process or an action. The Descrip-

tion class describes the state and the role of any agent or action or process. The Medium

class summarizes different types of public health documents, such as legal documents or

non-binding documents. Lastly, the Expression class represents the knowledge expressions

of the documents.

OntoPH properties (Appendix B.6-B.7) define the relationships between classes and

subclasses. For instance, participate (Figure 4.4) has a domain of Role and a range of

Action, indicating that a role participates in some actions. This property has an inverse of

participate by. OntoPH contains individuals extracted from public health documents. For

example, Legal role, a subclass of Role, has individuals of “emergency committee” and “PH

authority” (Figure 4.5).

4.2.3.3 Semantic Rules and Reasoning

OntoPH is developed using Web Ontology Language (OWL) under Protégé environment [Musen,

2015]. Logic-based semantic rules allow OWL to “exploit the considerable existing body

of logical reasoning fulfill important logical requirements” [Wang et al., 2004]. They imply

answers to the competency questions. OntoPH answers three types of questions: (1) the

relation between actions and roles; (2) the relation between roles and the outbreak con-

ditions; and (3) the relation between actions and the outbreak conditions. OntoPH uses

Time, Space, Resource, and Process classes to describe the conditions of an EID outbreak.

Hence, we can construct the following informal competency questions:

1. What action must a role perform?

2. What are the roles specified by an action?
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Table 4.1: Ontology classes

Class Sub-class

Action

Communication

Control

Implementation

Monitoring

Agent

Animal

Human

Organization

Other agent

Pathogen

Description
Attribute

Role

Expression

Argument

Assertion

Assumption

Comment

Declaration

Evaluative proposition

Evidence

Expectation

Fact

Feedback

Intention

Knowledge

Observation

Qualification

Medium
Document

Sample

Process
Continuous process

Discrete process

Resource

Equipment material

Financial

Human resource

Intellectual tool

Space
Area

Space point

Time
Period

Time point
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Figure 4.4: Protégé screenshot for Property “participate”

Figure 4.5: Protégé screenshot for Individual “Legal role”
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3. What are the actions required under an outbreak condition?

4. What are the roles specified under an outbreak condition?

Informal competency questions should be translated to a formal format, so that an ontology

can retrieve the elements of knowledge to answer them [Grüninger and Fox, 1995]. We

denote Tontology as a set of axioms in the ontology, Gground as a set of ground instances,

and Q as a first-order sentence using only predicates in the language of Tontology. We can

formulate the formal translations for the four informal competency questions.

(1) Let Q(action) denote a sentence that describes some actions. Given a ground formula

Grole defining instances of role, determine

Tcondition ∪ Taction ∪Grole � Q(action) (4.3)

(2) Let Q(role) denote a sentence that describes some roles. Given a ground formula

Gaction defining instances of action, determine

Tcondition ∪ Trole ∪Gaction � Q(role) (4.4)

(3) Let Q(action) denote a sentence that describes some actions. Given a ground formula

Gcondition defining instances of a condition, determine

Trole ∪ Taction ∪Gcondition � Q(action) (4.5)

(4) Let Q(role) denote a sentence that describes some roles. Given a ground formula

Gcondition defining instances of a condition, determine

Taction ∪ Trole ∪Gcondition � Q(role) (4.6)

Semantic rules will link axioms T with instances G, and entail a first-order sentence Q,

which is the answer to the competency question.

Semantic rules are created using Semantic Web Rule Language (SWRL), a rule language

for the semantic web. SWRL rules apply unary predicates for describing classes and data

types, binary predicates for properties, and some special built-in n-ary predicates [Kuba,

2012]. An example SWRL rule is as
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Listing 4.1: SWRL rule for married parents

( Person (? x ) , hasParent (?x , ?y ) , hasParent (?x , ? z ) ,

hasSpouse (?y , ? z ) −> ChildOfMarriedParents (? x ) )

This rule describes the assertion that someone is a child of married parents. Letters

with question mark (e.g., ?x) denote variables. Person(?x) indicates that a variable x is a

Person. The binary relation hasParent(?x, ?y) indicates that person x has a parent y. The

formal formula is shown in Equation (4.7), which reads: there exists persons x, y, and z if

x has parent y, and x has parent z, and y and z are a spouse, then x is a child of married

parents. SWRL rules translate natural language assertions into computable forms.

(∃x, y, z : Person)[hasParent(x, y) ∧ hasParent(x, z) ∧ hasSpouse(y, z)]

=> childOfMarriedParents(x).
(4.7)

We create SWRL rules in three steps (rules are listed in Appendix C.1 and C.2). (1)

Public health experts review documents and identify knowledge expressions. For example,

the “WHO Technical Advice for Case Management of Influenza A(H1N1) in Air Trans-

port” [Organization, 2009a] (“WHO Advice Air Transport”) is a WHO issued guideline for

air transportation case management. It specifies the procedures that the pilot in command

should follow when a suspicious case is identified. We identify a knowledge expression “pi-

lot in command action” under the Expression class. (2) Public health experts create logic

expressions for knowledge expressions. This intermediate step translates a procedure into a

formal representation. For example, the “pilot in command action” can be written as logic

expressions,

(∃ Pilot action)(∃ Pilot)(∀r : Reporting)

[contains(Case mgt, Pilot action] � participate(Pilot, r).
(4.8)

(∃ PH authority)(∃ Comm between agencies)

[contains(Case mgt, Comm between agencies)]

� participate(PH authority, Comm between agencies).

(4.9)
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Logic expressions and natural language are interchangeable. Equation (4.8) says “WHO

Advice Air Transport” contains specifications about pilot actions. The pilot in command

should report any suspicious activities on the flight. Equation (4.9) says that “WHO Advice

Air Transport” requires communication between agencies. Public health authority should

communicate with other agencies. (3) Public health experts work with ontology engineers

to develop the SWRL rules based on the logic expressions from step 2. Listing (4.2) shows

the SWRL rule created for the same example. The rule first states the knowledge expression

and its parent document. Then, it specifies the roles (“Pilot” and “PH authority”) and the

expected actions.

Listing 4.2: SWRL rule for pilot

Guide l ine ( Case management H1N1 AirTransport guidance ) ,

Knowledge ( Pi lo t in command act ions )

−> conta in s ( Case management H1N1 AirTransport guidance ,

P i lo t in command act ions )

Non−h e a l t h s e c t o r ( P i l o t ) , Report ing (? r e p o r t i n g ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P i lo t in command act ions ) −> p a r t i c i p a t e ( P i lo t , ? r e p o r t i n g )

L e g a l r o l e ( PH authority ) ,

I n t e r a c t i v e n e t w o r k ( Communication between agencies ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P i lo t in command act ions ) −> p a r t i c i p a t e ( PH authority ,

Communication between agencies )

Logical inference connects documents with knowledge expressions. An inference process

is depicted in Figure 4.6. “WHO Advice Air Transport” carries many knowledge expres-

sions. One of them informs the chief pilot’s actions for an EID emergency during a flight

mission. This piece of knowledge then implies that pilots and public health authority should
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Figure 4.6: An inference process

report suspicious cases and communicate with each other in time.

Reasoning results are presented per individual. Figure 4.7 shows the reasoning results

of “Mayor’s Office of Emergency Management” under the class Department. Given an

individual, we obtain a list of sentences, such as “Mayor’s Office of Emergency Management

performs delivery strategy.” These sentences in fact are the elements of knowledge.
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Figure 4.7: Reasoning results

88



CHAPTER 4. AN ONTOLOGY-DRIVEN KNOWLEDGE MANAGEMENT
FRAMEWORK FOR EMERGING INFECTIOUS DISEASES PREPAREDNESS AND

RESPONSE
4.3 Results

We use OntoPH in two different ways. First, OntoPH answers general questions regarding

EIDs preparedness and response. Second, it provides recommendations with respect to an

outbreak. OntoPH achieves both via semantic reasoning. Before applying OntoPH, we need

to evaluate its quality.

4.3.1 Ontology Evaluation

The quality of ontology is critical. It affects not only the quality of reasoning results

but also the effectiveness of the application. Ontology can be evaluated on many aspects,

namely, vocabulary, syntax, structure, semantics, representation, and context [Staab and

Studer, 2013]. Extensive research has been conducted to formally evaluate the quality of

ontologies [Staab and Studer, 2013; Burton-Jones et al., 2005; Duque-Ramos et al., 2014;

Brank et al., 2005; Maedche and Staab, 2002]. Among these methods, we follow OQuaRE

approach [Duque-Ramos et al., 2014], which adapts the software engineering ISO standards

SQuaRE. OQuaRE assesses 6 characteristics, 39 sub-characteristics of an ontology using

quality metrics. Quality metrics are composed of primitive and derived measurements.

Primitive measurements are metrics that can be measured directly on the ontology, such

as number of classes, number of relations, etc. Derived measurements are combinations

of some primitive ones [Duque-Ramos et al., 2014]. With a scale 1 to 5 (1 means “not

acceptable” and 5 means “exceeds the requirement”), it rates every aspect of an ontology.

Final score is the arithmetic average of individual scores of all characteristics. The details of

this method can be found on Duque-Ramos et al. [Duque-Ramos et al., 2014]. We include

30 out of the 39 sub-characteristics in our evaluation. The other 9 sub-characteristics that

require experts’ subjective assessment are excluded. The evaluation results of OntoPH

core ontology is presented in Table 4.2. The evaluation indicates that the core ontology

is satisfactory with an average score of 4. Problems have been found on redundancy and

controlled vocabulary, mainly due to the relatively small corpus size.
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Table 4.2: Ontology evaluation results

Characteristics Sub-characteristics OQuaRE Score

Structural

Formalization 5

Formal relations support 4

Redundancy 2

Consistency 5

Tangledness 4

Cycles 5

Cohesion 4

Domain coverage 4

Functional adequacy

Controlled vocabulary 2

Schema and value reconciliation 4.67

Consistent search and query 4

Knowledge acquisition representation 3.67

Clustering 2

Similarity 4

Indexing and linking 4.5

Results representation 5

Text analysis 5

Guidance 5

Decision trees 4.5

Knowledge reuse 4.28

Inference 4.67

Compatibility Replacebility 3.5

Transferability Adaptability 3.5

Operability Learnability 4.17

Maintainability

Modularity 3

Reusability 4

Analyzability 3.8

Changeability 4

Modification stability 4.2

Testability 3.8
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4.3.2 Answering Queries

OntoPH answers general queries based on the competency questions. By substituting the

axioms with classes and the ground instances with individuals, we obtain specific questions.

For illustration purpose, we list four simple queries as following:

1. What actions should the clinical leader perform in workplaces regarding vaccination

issues?

2. What are the roles involved in vaccine sharing during an outbreak?

3. What are the health sector communication activities that involve the Healthcare Ef-

fectiveness Data and Information Set (HEDIS)?

4. Who are emphasized with respect to the financial resources during the preparedness

process?

We rephrase query 1 as: Given clinical leader, regarding vaccination issues in workplaces,

what are the implied actions? Applying the formal form of competency question 1 (Equa-

tion (4.3)), we substitute Grole with “clinical leader,” Tcondition with Workplace, and Taction

with Vaccination. Figure 4.8 displays the reasoning

• Boxes: OntoPH classes;

• Nodes: OntoPH instances (blue nodes are implied instances);

• Arcs: relations implied by OntoPH inference;

Then the answer to query 1 is a formal formula:

(∃ Clinical leader)(∀i ∈ Vaccination)(∀j ∈Workplace)

� participate(Clinical leader, i) ∧ in(i, j).
(4.10)

It reads: Clinical leader participates vaccination activities such as vaccine sharing, the p2p

vaccination campaign, and vaccination distribution in the office or in the ward.

Following the same logic, we restate query 2: Given vaccine sharing, what do health

sector and non-health sector staff imply? Competency question 2 (Equation (4.4)) is applied
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Figure 4.8: Query 1 reasoning process

by substituting Gaction with “vaccine sharing,” and Trole with Health sector and Non-health

sector and Tcondition with Staff. Similarly, query 3 is rephrased: Given the intellectual tool

(e.g., HEDIS) we are interested in, for an interactive network, what are the implied activities

of health sector? Competency question 3 is applied with Gcondition as the “intellectual tool,”

Trole as the Health sector, and Taction as the Interactive network communication. Query 4 is

translated: Who is important with respect to health and social economy support considering

surveillance? By replacing Gcondition with “health and social economy support,” Taction

with Surveillance, and Trole with Non-health sector, OntoPH gives an answer to query

4. Figure 4.9-4.11 depict the reasoning results respectively. The formal formulas of the

reasoning results are:

(∃ Vaccine sharing)(∀i ∈ Health sector)(∀j ∈ Non-health sector)(∀k ∈ Staff)

� involves(Vaccine sharing, i) ∧ involves(Vaccine sharing, j)

∧ involves(Vaccine sharing, k).

(4.11)

(∃HEDIS)(∀i ∈ Interactive network)(∀j ∈ Health sector)

� participate(j, i) ∧ involved(HEDIS, i).
(4.12)
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(∃Health and social economy support)(∀i ∈ Surveillance)(∀j ∈ Nonhealth sector)

� involves(i, j) ∧ involved(Health and social economy support, i)

∧ allocates(j,Health and social economy support).

(4.13)

and their natural language translations are:

• Vaccine sharing requires the input of health workers and the New York Department

of Health (NYCDOH) staff.

• HEDIS can be used by the Mayor’s Office of Emergency Management for Health

Security Committee (HSC) communicators network and the human and animal health

authority communication.

• The NYCDOH staff are the important non-health roles with respect to health and

social economy support for surveillance.

Next, we want to verify whether the reasoning results can provide meaningful suggestions

to real outbreaks. We create a test scenario - a hypothetical WNV outbreak – that is

similar to the one happened in 1999 in New York City (NYC). We intentionally modify

some details, such as outbreak locations, responding agents, etc., of 1999 WNV outbreak

to evaluate OntoPH’s reasoning capacity. The goal is to verify whether the ontology is able

to provide meaningful outbreak preparedness and response suggestions.

4.3.3 West Nile Virus Outbreak Case Study

We assume that a hypothetical WNV outbreak occurs in Europe. WNV is a mosquito-

borne virus known in Africa, the Middle East, and southwestern Asia [Asnis et al., 2000].

On August 23, 1999, two cases were reported to the NYCDOH. By the end of that week,

six additional cases had been identified. An intensive effort has been made to discover 62

NYC residents infected, marked the first documented appearance of WNV in the Western

Hemisphere and the first arboviral outbreak in NYC since the yellow fever epidemics [Fine

and Layton, 2001]. WNV outbreak is a relatively small scale outbreak. Its simplicity makes
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Figure 4.9: Query 2 reasoning process

Figure 4.10: Query 3 reasoning process

Figure 4.11: Query 4 reasoning process
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it suitable for demonstration. We wonder what advice OntoPH will generate to prepare for

and respond to this epidemic.

WNV information includes descriptions about the disease, relevant agents, locations,

etc. OntoPH classifies the input information by their classes. Semantic reasoning connects

these classes with other relevant classes and instances. Therefore, an instance-to-instance

relationship is established. This relationship is described by a logical expression. Users

feed a piece of WNV query information to OntoPH, and it will return corresponding logical

assertions as results. Hence, users can directly find useful information from the ontology

rather than digging out the documents.

OntoPH’s response to this hypothetical scenario is a list of recommendations. The rec-

ommendations emphasize activities of government agencies and public health community.

OntoPH recommends that the Emergency Office (Figure 4.7) should conduct risk assess-

ment, issue vaccine delivery strategy, and prepare vaccines. EU member states should allo-

cate resources such as health workers, financial support, and staff members. On the other

hand, reporting suspicious cases and communicating with animal health authority are criti-

cal communication actions during the outbreak. Communication requires the participation

of different roles such as journalist, health workers, and physicians. Specifically, physicians

are recommended to engage in the communication with animal health authority. Vacci-

nation, as a control action, is another important aspect. Vaccination distribution requires

the collaboration of staff from Department of Health, health workers, and disease experts.

OntoPH not only asks for an authority communication program for vaccination distribution

but also suggests a way of doing so (e.g., using an HSC communication network). OntoPH

advocates educational programs, such as physician training program. It suggests that both

physicians and animal health experts should be properly trained. Reasoning details of above

recommendations are presented in the Appendix B.9-B.14.

We compare the recommendations with those made by Fine and Layton [Fine and Lay-

ton, 2001] for the 1999 WNV outbreak in NYC. They recommend to (1) enhance awareness

and train clinicians; (2) improve communication between human and animal health au-

thorities; (3) strengthen laboratory capacity; and (4) prepare public education. OntoPH

recommendations are able to cover most of these aspects; moreover, it gives similar guid-
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ance in a more systematic manner. OntoPH scans through its knowledge base and lists all

the possible relations between individuals. The reasoning results form pieces of knowledge

consistent with the outbreak condition.

4.4 Discussion

The possibility of using ontology and semantic reasoning in public health decision making

has been recognized in literature [Bure et al., 2012]. In this work, we adapt this idea and

our previous experience of knowledge management in pharmaceutical industry [Venkata-

subramanian et al., 2006] to derive a detailed methodology on how to develop such a tool.

We introduce the systems engineering inspired ontology-driven framework for public health

knowledge management. We demonstrate how complex and heterogeneous public health

knowledge can be modeled and stored in an ontology. Previous work has focused on local

activities, such as activities within a healthcare network [Rao et al., 2014]. OntoPH extends

the scope from local level to global/national level by focusing on general documents.

OntoPH’s strength is threefold. First, it stores public health documents knowledge

as classes, relations, and instances. Public health documents, including guidelines, pro-

cedures, and academic publications, are important sources of knowledge. Even though

medical records, GIS data, and disease information have been studied and stored in the

ontologies [Schriml et al., 2012; Rao et al., 2014], to our knowledge, there is no ontol-

ogy for public health documents. OntoPH provides this missing piece of public health

knowledge management. Second, we present a flexible knowledge management framework.

OntoPH implements a modularized structure, which ensures its extensibility. For exam-

ple, the space-time module can be extended using time ontologies [Hobbs and Pan, 2004;

Rao et al., 2014] and W3C spatial ontologies [Lieberman et al., 2007]. It is also possible

to add new modules. If disease information is needed, we can create a new disease mod-

ule, which inherits the Disease Ontology [Schriml et al., 2012]. This modularized structure

makes OntoPH a potential generic public health knowledge center. Third, OntoPH can

manage the hierarchical complexity and heterogeneity of public health knowledge. Ele-

ments of knowledge are effectively organized by the teleological functions that highlight the
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means-end relations.

This framework is most useful in the Low- and Middle-Income Countries (LMICs). A

lack of resources and public health experts in LMICs usually makes knowledge manage-

ment system difficult to implement. Nonetheless, OntoPH’s general knowledge is widely

applicable. By Expanding the data sources to include LMICs specific knowledge [Nolen

et al., 2005] and connecting with other ontologies [Tao et al., 2010; Hobbs and Pan, 2004;

Lieberman et al., 2007; Schriml et al., 2012], OntoPH would become a useful tool to help

LMICs respond to an outbreak quickly, both at the national and the local levels.

OntoPH can support decision making by answering users’ queries. For example, given

an outbreak scenario, a user could list questions regarding disease identification, transmis-

sion prevention, disease control, and risk mitigation. With enough pre-stored knowledge,

OntoPH could answer the list of questions by producing logical assertions with respect to

each question. However, at this stage, there still exist some limitations.

4.4.1 Limitations

First, the training document corpus is relatively small. Only five general documents and

seven specific documents are pre-stored due to the manual annotation constraint. It requires

a more concerted effort to annotate and develop a more extensive public health knowledge

base for widespread application. Nonetheless, the current corpus is comprehensive enough

for proof of concept. Second, the selection of documents is subjective. When the corpus size

is small, the accuracy of reasoning results is dependent on the document selection rather

than the knowledge base. Increasing the size of the corpus and precise query statement

will improve reasoning accuracy in general. In addition, rule-based reasoning has its intrin-

sic limitations – semantic rules are subjective. SWRL rules rarely allow ternary relations

and that limits the power of the SWRL representation. Third, the current framework is

restricted to public health documents, which lack information from various data sources,

such as GIS data, news articles, social media feeds, etc. This limits OntoPH’s real-time

usage. Moreover, current knowledge representation would not be able to capture knowledge

in research articles that do not fit in the knowledge model. However, the basic and domain

ontologies, such as space-time module, resource module, role module, and agent module,
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contain fundamental public health knowledge, therefore, make the knowledge framework

extendable to cover research articles. It of course requires further study of new knowl-

edge representation. Potentially, a research article knowledge expression module could be

developed and incorporated into OntoPH.

4.4.2 Future Work

Future work aims to address the limitations and evaluate OntoPH’s reasoning capacity.

Adopting artificial intelligence techniques would significantly reduce the human effort, thus,

get rid of many of the limitations. Specifically, a term extraction module implementing NLP

techniques such as topic modeling would enable automated concept classification of public

health documents, reducing the amount of work required for annotation. Enriching data

sources will improve OntoPH’s ability of real-time response. We plan to expand the corpus

incorporating experts’ opinions. A survey for eliciting expert feedback on what to include

in the corpus will be conducted. A systematic literature review on effectiveness of policy

and interventions could help us determine what documents to include. To further evaluate

this method, we will conduct a survey to collect a list of general queries from public health

practitioners. Moreover, we will test OntoPH’s reasoning capacity on realistic outbreaks.

The full-scale case studies will provide us valuable information on how to improve the usage

and accuracy of OntoPH decision support.

4.5 Chapter Conclusion

In recent decades, many EID outbreaks and epidemics have resulted in considerable human

disability and mortality in part due to ineffective coordination or slow response at the start

of the outbreak. Responding to EID outbreaks is intrinsically challenging due to the un-

certainties associated EID, specifically level of risk and potential the impact of its spread

in a population. During an outbreak, evidence-based public health policies developed by

public health authorities, legislators, and other government officials facilitate the implemen-

tation of a strong public health response. However, there are structural and political forces

that prevent decision makers from making evidence-based policies in response to outbreaks.
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Therefore, it is necessary to have in place a mechanism to easily identify evidence in order to

evaluate the consequences of public health or policy actions recommended to address these

public health emergencies. An ontology framework for public health outbreak response will

cut the time spent aggregating expert opinions during the initial stages of an outbreak. It

would also assist public health administrators and government officials on next steps based

on individual- and systems-level factors associated with the outbreak.

This approach manages document knowledge for the regulatory and government layers

of a public health system. It introduces a systematic way of storing, retrieving, and using

public health knowledge. Accuracy and comprehensiveness of decision making can be im-

proved as more knowledge is stored in the ontology. It is a potentially effective methodology

for EIDs preparedness and response.
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Chapter 5

Modeling Emergent Phenomena of

Dynamical Sociotechnical Systems

Nothing endures but change.

Heraclitus

In previous chapters, we discussed how to model system knowledge, cause-and-effect

knowledge, and heuristic knowledge for a sociotechnical system. Systemic risk management

requires the understanding of system’s emergent behaviors. In this chapter, we model

system’s teleodynamics, i.e., the goal-driven dynamics, to study emergent behaviors to

answer the question, “how do simple individual components of a system interact to result

in a system behavior that cannot be explained by the components alone?” This has been a

long standing open question, especially from a control-theoretic perspective.

We investigate simple systems to understand how interactions of parts lead to unex-

pected behavior of the whole. People may wonder how simple systems could help explain

emergence in complex systems. However, science and engineering are full of examples of

simple models that give useful insights about complex phenomena even though they may

miss some of the details.
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5.1 Emergent Behaviors in Dynamical Sociotechnical Sys-

tems

A chemical plant is a multi-layer hierarchical structure where information or materials flow

within each layer or through different layers via goal-driven processes. This hierarchical

structure can be modeled as a seven-layer input-output framework, depicted in Figure 2.1.

At each layer, elements achieve their goals via their functions. For example, a level controller

of a tank system has the goal to maintain the level at its set-point. The controller achieves

this goal by tuning the electronic signal of valve pressure. When elements (e.g., controller)

have realized their goals, the system (e.g., level control tank system) achieves its desired

status. This is a goal-driven process. A chemical plant is a hierarchy of such networked

processes. One level is an aggregation of processes of the adjacent level below it. When low-

level processes execute their goals, the aggregate effect makes the system at the high-level

evolve a new state. Ideally, this new state is the goal of the high-level system. However, as

the system becomes more complex, it might evolve towards a state that is not a desirable

one. For example, BP Texas City refinery and Deepwater Horizon oil rig are at the plant

level while BP as a company is at the company level. The flawed activities at the BP plants

can lead to unexpected state of BP, i.e., a vast monetary loss and reputation crisis. The

whole event is a systemic failure. The goal-driven activities in multi-layered hierarchy lead

to emergent behaviors, some of which are undesirable.

To ensure safe operations over the life cycles of chemical plants, we need to design,

analyze, and model their behaviors, and manage the potential for increasing systemic in-

stability and fragility [Centeno et al., 2015; Fouque and Langsam, 2013]. This requires

the representation of system behavior focusing on the mechanisms generating behavior in

the actual, dynamic work context [Rasmussen, 1997]. Along these lines, some researchers

try to understand the system’s self-organizing behavior [Bialek et al., 2012; Feistel, 2016;

Hemelrijk and Hildenbrandt, 2011; Polani, 2013; Reynolds, 1987]. Others study the com-

plex dynamics of engineered systems using chaos theory [Hirsch et al., 2012] and control

theory [Leveson and Stephanopoulos, 2014; Ogunnaike and Ray, 1994; Seborg et al., 2011].

These studies focus on explaining what is emergent behavior. However, the question how
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simple individual components interact to result in a system behavior that cannot be ex-

plained by the behavior of individual components alone has not been explicitly answered in

a control-theoretic setting.

In this chapter, we try to answer this well-known question in complexity science from

a control-theoretic perspective. We explain how goal-driven behaviors propagate and ag-

gregate in a hierarchical sociotechnical system. This chapter unfolds as follows. First, we

review both the philosophical and the scientific definitions of emergence. Next, we argue

that the study of emergence needs to investigate goal-driven dynamics. We introduce a for-

mal representation to illustrate emergent behaviors of different systems. We also compare

our approach with Qualitative Simulation (QSIM).

5.2 Define Emergence: A Journey from Philosophy to Sci-

ence

Let us start the discussion by reviewing the definition of emergence. English philosopher

G. H. Lewes coined the term “emergence” [Lewes, 1877] in 1875. Emergent phenomena

are widely recognized in biological, physical, chemical, and social systems. Emergence has

been extensively discussed in both philosophy and science. Now people tend to agree that

emergent phenomena represent the behaviors that “the whole is more than the sum of its

parts.” An emergent behavior is usually novel and not previously observed by any parts.

The emergent behavior appears as integrated whole at the system level. Moreover, it is not

pre-given but evolves over time [Goldstein, 1999].

Philosophers are interested in the fundamental question – “what is emergence?” Tremen-

dous efforts have been devoted to an answer [Bar-Yam, 2004; Bedau, 1997; Bedau, 2008;

Bonabeau and Dessalles, 1997; O’Connor, 1994; Prokopenko, 2008; Steels, 1991]. All

have emphasized the concept “level,” i.e., the part-whole relationship [Deguet et al., 2006].

Among these works, two famous perspectives have established: strong emergence and weak

emergence. Strong emergence is defined by O’Conner [O’Connor, 1994] as:

Property P is an emergent property of a (mereologically-complex) object

O iff P supervenes on properties of the parts of O, P is not had by any of the
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object’s parts, P is distinct from any structural property of O, and P has a direct

(“downward”) determinative influence on the pattern of behavior involving O ’s

parts.

Strong emergence emphasizes supervenience of systems, which leads to a downward cau-

sation. However, Bedau argues that this downward causation raises from nothing, which

makes strong emergence scientifically irrelevant [Bedau, 1997]. In contrast, Bedau defines

weak emergence as: macro-state P of system S with micro-dynamic D is weakly emergent if

and only if P can be derived from D and S ’s external conditions but only by simulation [Be-

dau, 1997]. Weak emergence emphasizes the interactions between system and the “external”

environment, as well as the claim that emergence can be shown only via simulation, which is

more scientifically relevant. Chalmers well summarized both perspectives [Chalmers, 2008]:

A high-level phenomenon is strongly emergent with respect to a low-level

domain when the high-level phenomenon arises from the low-level domain, but

truths concerning that phenomenon are not deducible even in principle from

truths in the low-level domain. A high-level phenomenon is weakly emergent

with respect to a low-level domain when the high-level phenomenon arises from

the low-level domain, but truths concerning that phenomenon are unexpected

given the principles governing the low-level domain.

These two definitions successfully describe the characteristics of emergence, however, are

difficult to apply. Many concepts in the definitions are ambiguous and confusing. For

example, novel behaviors such as birds flocking are based on visual inspection and have no

quantitative meaning.

Scientists want to examine the role of emergence in natural and social phenomena.

Emergence has been defined from a self-organization perspective [Deacon, 2011; Goldstein,

1999]. Mathematical models and simulations are developed to model emergent behaviors

of a bird flock and a biological system [Cucker and Smale, 2007; Marsh, 2009]. From a

complexity science perspective, emergence is defined as the attraction of a strange attrac-

tor [Newman, 1996]. Both formal representation and system dynamics are used to investi-

gate emergence [Hollnagel, 2012; Newman, 1996]. Parunak et al. demonstrate the emergent
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behavior of a power grid is the stabilizing behavior without centralized control [Parunak

and VanderBok, 1997]. The simulation shows the system converges to a fixed/stable point.

Recent years, game theory, information theory, and systems science have been used to ex-

plain emergent phenomena. A game-theoretic model by Paravantis et al. [Paravantis, 2016],

for example, is developed for world politics and diplomacy. It treats international relations

as complex sociotechnical systems and studies how political relations emerge. Information

loss principle is used to explain the unintended computational properties that emerge in

computational processes [Licata and Minati, 2016]. Others study system’s structural and

symbolic information to explain how a system evolves over time [Feistel, 2016].

5.3 Teleodynamics: the Dynamics of Sociotechnical Systems

We investigate what contribute to the part-whole relationship of a sociotechnical system.

Corning explains emergence as “a subset of the vast (and still expanding) universe of co-

operative interactions that produce synergistic effects of various kinds, both in nature and

in human societies” [Corning, 2002]. “Cooperative interactions” underscore the goal-driven

activities, whereas “synergistic effects” emphasize the aggregate effect of these activities.

Recall that sociotechnical systems are multi-layered hierarchy. The aggregation is not hap-

pening just at one layer, but at different layers. The inter-layer “synergistic effects” conduce

an emergent behavior.

Therefore, sociotechnical system behaviors can be understood through the study of goal-

driven behaviors propagating through the hierarchical structure, namely, teleodynamics. As

the name suggested, teleodynamics is the dynamics of goal-driven agents, who act to achieve

their individual goals and collectively drive the system to a new state [Venkatasubramanian,

2017b]. Teleodynamics was originally proposed by Venkatasubramanian [Venkatasubrama-

nian, 2007] to state how part-level properties are related to the system-level properties in a

self-organizing network. He further developed statistical teleodynamics [Venkatasubrama-

nian, 2017a; Venkatasubramanian, 2017b], the mathematical framework for analyzing goal-

driven agents’ emergent behavior in the context of economics. Activities in a sociotechnical

system are driven by goals. Even if the system is not statistical, teleodynamics is applicable
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in the understanding of its part-whole relationship.

Teleodynamics emphasizes the relationship between teleology and dynamics. Teleology

means the study of things in terms of their purposes, principles, and goals. It emphasizes

the means-ends relation of entities, which essentially captures the input-output process of

the system. “End” is the system goal imposed by the system modeler. “Means”, on the

other hand, represents the process to achieve the goal. For example, the “end” of a tank

is to maintain the liquid level to the set-point, whereas the “means” of a tank is to con-

tain liquid. Kant emphasizes the importance of teleology as a way of understanding nature

in the “Critique of Teleological Judgment” in 1790 [Kant and Pluhar, 1987]. Teleology

is the end or purpose in Kant’s view (The terms “end” and “purpose” in translations of

the Critique of Judgment both correspond to the German term Zweck [Ginsborg, 2014]).

However, the usefulness of teleology was not well recognized by the scientific community

until recent years. Bertalanffy underscores the importance of teleology in analyzing complex

sociotechnical systems. He emphasizes teleology as one of the keys to understanding the

“wholeness” of systems [Von Bertalanffy, 1968]. Along these lines, Chittaro explains the

usefulness of using both teleological and functional knowledge to model physical systems.

He uses teleological knowledge to abstract a system and functional knowledge to bridge the

gap between abstract purposes and the actual structure and behavior of the system [Chit-

taro et al., 1993]. Venkatasubramanian highlights the teleological multi-perspective mod-

eling framework for managing risk in sociotechnical systems [Venkatasubramanian, 2007;

Venkatasubramanian and Zhang, 2016]. On the other hand, dynamics studies how a phys-

ical system changes over time. Mathematical models are used to represent the evolution

of a system. Classical system dynamics handles systems with a flat structure and goal-free

agents. Nonetheless, dynamics of sociotechnical systems consisting of goal-driven agents

requires an adaption of classical dynamical theory. Teleodynamics, therefore, is an exten-

sion. It demonstrates the propagation of dynamical behaviors across levels via goals. The

aggregate effect of low-level activities becomes a function at the high-level. Teleodynamics

captures the common theme among various definitions of emergence – the concept “level.”

It describes the dynamics resulting from the goal-driven activities propagating through the

hierarchy of sociotechnical systems, thus, induces emergent behaviors.
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Therefore, the question aforementioned really reduces to the investigation on how teleodynamics

explains the part-whole relationship.

5.4 A Formal Representation for Sociotechnical Systems

To model emergent behaviors of a sociotechnical system, we need a unified representation

that captures system’s teleodynamics. This representation should satisfy several criteria.

First, it should be simple, i.e., capturing only the essential elements of a sociotechnical

system, so that a complex sociotechnical system (e.g., the financial system) can be properly

represented. Second, it needs to have a structure that mimics the part-whole nature of

sociotechnical systems. Third, this representation should reveal means-end relations.

A sociotechnical system consists of agents and their interactions. It can be viewed as

a collection of agents, which are described by some characteristics. The interactions are

functions that enable the system moving from one state to another. System behavior,

therefore, is the path of state transitions. In this spirit, we propose a formal representation,

which abstracts system components as classes and sets, and adopts the formal definition of

functions to describe means-end relations.

5.4.1 Object

A sociotechnical system consists of many agents, both autonomous and non-autonomous.

Informally speaking, an agent is an object that is something perceived by the sense or

presented to the mind (a physical or mental entity). For example, a bird in a flock is an

object. A controller in a level control tank system is an object as well. Therefore, a system

is defined as an intended organization of a collection of objects, formally a class, denoted as

SY ,

Definition 5.4.1.

SY = {x1, x2, . . . , xn : x1, x2, . . . , xn are objects}

Members of SY are denoted as,

o ∈ SY abbreviates “o is an object of system SY.”

106



CHAPTER 5. MODELING EMERGENT PHENOMENA OF DYNAMICAL
SOCIOTECHNICAL SYSTEMS

A sociotechnical system is represented as a class of objects. It simplifies the representa-

tion of systems by focusing on the collection of objects rather than the nature of objects.

5.4.2 Attribute

However, objects themselves cannot fully describe the status of a system. People use objects’

characteristics to illustrate system’s state. For example, a liquid tank can be characterized

by its volume, height, material, etc. We call them attributes. An attribute is a characteristic,

a feature, or a factor that can help in defining a particular object or system.

Definition 5.4.2. Attributes of object i form a class

Ai = {% : % is an attribute of an object i}.

Attributes of a system form a class

A = {Ai : ∀i ∈ SY }.

Attributes are also known as state variables, which have values.

5.4.3 Value

The value space of an attribute numerically characterizes the collective activity of physics.

Values are mathematical entities that represent magnitudes of attributes of objects or sys-

tems, denoted as V. Mathematical entities are well constructed in ZFC axiomatic sys-

tem [Kunen, 2009]. Values precisely describe attributes, hence, the corresponding objects

and system. v% denotes the value of any attribute % of an object. For instance, a tank has

an attribute of height h, which has a value space ranging from 0 to infinity, denoted as

{vh : vh ≥ 0}. An object’s attributes with values represent the status of the object, namely,

state.

5.4.4 State

A system has a state space S that describes all the possible statuses of a system. S consists

of system state S, which is a set of objects’ state s.
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Definition 5.4.3. States of an object i form a set

si = {v% : ∀% ∈ Ai}.

So the jth state of the system SY is

Sj = {si : ∀i ∈ SY }.

The state space S is a union of all states,

S =
⋃
Sj∀j.

System’s dynamical behavior can be described by state transition. The three types of

states (s, S, and S) capture the hierarchy of a sociotechnical system.

5.4.5 Function

State transition is enabled by functions, which is formally defined as follows [Kunen, 2009]:

Definition 5.4.4. f is a function if and only if f is a relation and for every x ∈ dom(f),

there is a unique y such that (x, y) ∈ f . In this case, f(x) denotes that unique y (!y).

∀x ∈ Sk∃!y ∈ Sl such that (x, y) ∈ f [u = (x, y)].

A function is specified regarding an object or a system in relation to some rules or

principles describing an intended state-change [Heussen and Lind, 2010b]. In other words,

functions are mappings between input states and output states. That is, functions have

dom(f) ⊂ Sk and ran(f) ⊂ Sl. The formal definition allows a function to be quantitative or

qualitative. The quantitative form is usually seen at low-levels of a sociotechnical system,

whereas qualitative form is more applicable for high-levels. Functions and states together

represent the means-end relation.

5.4.6 Phase Space

Visualizing system behaviors requires delineating state transitions. In fact, state transition

has been widely used to study dynamical behavior of automata, which is also a famous
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example of emergence [Wolfram, 1984]. In our representation, we capture three types of

states, i.e., object state s, system state S, and a set S consisting of all the possible system

instances. One may find it similar to the ensemble theory that describes system’s micro-

and macro-states. For a microcanonical ensemble, a micro-state describes a snapshot of the

system, where all the parameters of constituents are specified. A macro-state, on the other

hand, is defined by the specifications of macro-level physical quantities such as number N ,

temperature T , energy E. It is a collection of micro-states. In our representation, a system

state S is similar to a micro-state, which depicts the system at a particular moment. The

set S is similar to an ensemble of a system, hence, can be seen as the phase space, which

is a k × n dimensional space if each of n objects has k attributes. A subset of S possibly

forms a macro-state. Therefore, micro-states and macro-states have the same meaning even

though the language is different.

The notion of phase space naturally underscores the part-whole relationship by distin-

guishing micro- and macro-states. The means-end relation is represented by state transition,

which forms phase space trajectories. Such trajectories delineate the goal-driven dynami-

cal behaviors of the system. Therefore, phase space is an ideal tool to visualize system’s

teleodynamics.

The dynamical view of the world through the phase space is not new. In fact, there is

a long history of studying complex dynamics in the phase space [Strogatz, 2014]. In 19th

century, Poincaré invented this geometric tool to visualize complex nonlinear dynamics

so that one can study the dynamics without actually solving it. Since then, it has been

used in modelings of both self-organizing systems [Pathria and Beale, 2011] and dynamical

systems [Nolte, 2010; Strogatz, 2014]. The phase space is used to demonstrate complex

dynamical behaviors, such as the three-body problem [Szebehely, 2012]. Quantum physics

uses it to study molecule behaviors, which is the foundation of statistical thermodynamics.

We extend the usage of phase space to teleodynamics by emphasizing the part-whole

and the means-end relationships. A system behavior can be seen as a phase space trajectory,

which consists of states and functions. The system moves from one micro-state to another

along the trajectory, consequently, develops a behavior. A single point on the trajectory

cannot induce the entire state transition. It means that one cannot predict the system’s be-
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havior by only knowing objects’ states. It is objects’ functions and their causal relationships

that facilitate the state transitions.

5.5 Modeling Emergent Behaviors – Control Examples

In this section, we show the emergent behaviors of different dynamical systems by studying

their teleodynamics. Examples include a linear level control tank and a nonlinear level

control tank, which are parts of a complex sociotechnical system, and a financial system at

the market view layer, which mainly consists of humans.

5.5.1 A Level Control Tank

A level control tank, depicted in Figure 5.1, consists of three main objects: a tank, a

controller, and a valve. They are characterized by three attributes: liquid level h, valve

pressure p, and flowrate q. Using the formal representation, we can reveal its means-end

relations, hence, understand its teleodynamics.

Figure 5.1: The level control tank system (adapted from [Seborg et al., 2011])

This system can be written as a collection of objects:

SY = {valve, controller, tank, liquid}.
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Attributes of each mechanical/electronic object (obviously liquid is not) form a class,

Atank = {h}

Acontroller = {p}

Avalve = {q2}

where h is the tank level, p is the valve pressure, q2 is the liquid flowrate. They are elements

of the system attribute class A,

A = {Acontroller, Avalve, Atank}.

Attributes have quantitative values in R. Therefore, the object states are

stank = {vh}

scontroller = {vp}

svalve = {vq2}.

The jth system state or a micro-state is

Sj = {scontroller, svalve, stank}.

Then, the phase space can be expressed as

S =
⋃
Sj , ∀j,

depicted in Figure 5.2. The phase space contains all the possible micro-states of the system.

If the system is unconnected, i.e., no causal relationship exists among the three objects, we

need all three attributes to fully describe the system. The attributes can take any values in

R. Being axes of the phase space, these attributes form a three-dimensional space, where

every point is a three-tuple (h, p, q2). The continuum of phase volume shown in Figure 5.2

represents the sum of parts, i.e., all possible states of the system.

If the system is connected, functions of the objects are stated mathematically as fol-

lows [Seborg et al., 2011]:

e = km(h′sp − h′)

p′ = kc · e

q′2 = kv · p′,
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Figure 5.2: The phase space of unconnected linear level control tank system

where primed variables stand for the deviation variables and e is the error (i.e., difference)

between actual tank level and set-point level. The system has a goal of controlling the liquid

level in the tank. It is realized by the controller which tunes the valve pressure through

the I/P transducer; the valve opens up and let liquid flow into the tank; and the tank

constantly measures the liquid level, compares with the set-point, and sends the signal to

the controller. The teleodynamics can be described by the following differential equations,

A
dh′

dt
= q′1 + q′2 − q′3

= q′1 + q′2 −
h′

R

= q′1 + kvkckm(h′sp − h′)−
h′

R

= q′1 + kckvkmh
′
sp − (kvkckm +

1

R
)h′,

where q1 is a constant inflow to the tank, km = 0.5, kc = 4, kv = 1.03 × 10−2, A = 0.785,

hsp = 1, and R = 6.37 (values taken from Example 11.2 of Seborg et al. [Seborg et al.,

2011]) are process constants.

This system has linear dynamics and one state variable is enough to describe the system

state as shown in Figure 5.3. The dynamics describes the control behavior, whereas the

teleodynamics indicates how goals and functions determine that behavior. The correspond-
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ing phase line on the right not only shows the linear dynamics, but also reveals how a system

behavior emerges. Tank level h(t) can be viewed as a particle moving along the line. At

equilibrium, the particle remains at rest. Figure 5.4 shows that the tank level h stays close

to the set-point with an offset, due to proportional control action on a first-order process.

The cause of the offset has been discussed in detail elsewhere [Seborg et al., 2011] and is

not important here. The solid dot represents a stable fixed point. Obviously, the system

eventually moves to the fixed point in the phase space.

When the system is unconnected, any object’s function and goal do not interact with

those of the others. Therefore, their states are independent of each other’s. So the “system”

can be at any one of the random dots shown in the phase space figure (Figure 5.2), at any

given time. In fact, when unconnected, this collection of objects has not become a system

yet. That happens only when they are all connected in a particular manner.

When the system is connected in the appropriate manner, a causal relationship is im-

posed among the objects. Now, the output of one object determines the input of another

object it is connected to. Their states are not independent anymore, but are now limited

to a few admissible ones, instead of the entire phase space continuum they had in the un-

connected case. The connectivity imposes certain constraints on the possible states of the

objects. Thus, the teleodynamics results in a phase line, instead of a phase volume, with a

stable fixed point embedded in it. By connecting all these objects in an appropriate manner,

we have qualitatively changed the nature of the allowed phase space. In the unconnected

version, all points in the phase space are equally likely to be occupied by the objects col-

lection at any time. There is no preferred region or preferred point. But in the connected

version, we have imposed certain constraints on the phase space, making a certain region (in

fact, a certain point) more preferred than others at steady state. And the system eventually

gets attracted to the preferred region, in this case a preferred point, namely, the fixed point,

and settles there at steady state. For this to happen, all the objects need to be connected

in the correct manner. Further more, all the parameters have to be in the correct ranges.

For example, for the controller to work properly, its proportional gain parameter has to

have the correct value. If, for example, it is extremely low, then it will not be effective in

providing feedback control action and the system will not reach this fixed point.
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In the unconnected version, the phase space is merely the “sum of its parts,” metaphor-

ically speaking. To be more precise, it is actually the “product of its parts.” If the valve

pressure ranges from 0 – 100, tank level also 0 – 100, and controller set point also 0 – 100,

then the total phase space volume is simply 100× 100× 100 – the product of its parts! The

unconnected collection of these objects can be anywhere in this volume - for example, the

controller set point at 81, the valve at 25, and the tank level sensor at 60, giving the state

(81, 25, 60). The other such combinations are all also equally likely. There is no preferred

point or region.

But, when connected, the fixed point, determined by the controller set point, emerges

as the preferred point. This is where the system will now settle at, at steady state. The

system’s phase space is no longer the entire 100×100×100 phase volume, but it is constrained

to a phase line, and even that is restricted to a fixed point. So, the system’s phase space is

no longer the “product of its parts,” but something qualitatively different. In this case, the

“whole” is not more than the “sum of its parts,” but less, as far as phase space region is

concerned. But whether it is more or less is not the point. The point is that the “whole”

is very different from the “sum of the parts,” qualitatively.

But where is this information contained? It is not obvious from the individual properties

of the components. It seems to emerge from their dynamic interactions. The phase line is

a system-level information, not known by any individual component. As a result, we say

that the level control behavior is an emergent behavior. It is not previously known by any

individual components, and thus is novel from the components’ perspective.

5.5.2 Nonlinear Level Control Tank

Next, let us consider a more complicated example – a nonlinear level control tank [Ogunnaike

and Ray, 1994], depicted in Figure 5.5. Similarly, this system consists of four objects: a

tank, a valve, a controller, and liquid. The formal representation is similar to the one in

preceding example, except the function of the tank is no longer linear. The system SY can

be written as

SY = {valve, controller, tank, liquid}.
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Figure 5.3: The time response of the linear level control tank system
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Figure 5.4: The phase portrait of the linear level control tank system
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Objects are characterized by attributes,

Atank = {h}

Acontroller = {p}

Avalve = {Fo}

where h is the tank level, p is the valve pressure, Fo is the liquid outflow rate. So the system

attribute class

A = {Acontroller, Avalve, Atank}.

Figure 5.5: The nonlinear level control tank system (adapted from [Ogunnaike and Ray,

1994])

These attributes have values in R. Therefore, object states can be written as

stank = {vh}

scontroller = {vp}

svalve = {vFo}.

The jth system state is

Sj = {scontroller, svalve, stank}.

The phase space is

S =
⋃
Sj , ∀j.
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The three attributes become the axes of the phase space, as shown in Figure 5.2. The

functions of objects are described by the following equations

e = km(h′ − h′s)

p′ = kc · e

Fo = kv · p′

The system’s dynamical model [Ogunnaike and Ray, 1994] is

A = π

(
Rh

H

)2

dh

dt
=
Fi − Fo
A

=
Fi − kvkckm(h− hs)

A

=
α

h2
(Fi + kvkckmhs)−

kvkckmα

h
,

where α = H2

πR2 , km = 0.5, kc = 4, kv = 1.03, H = 1.2, hs = 1 and R = 0.866 (constants are

chosen to match the linear level control tank example). The time response of h is shown

in Figure 5.6(a). 4 sets of different initial conditions all settle down at the set-point level,

as expected. The phase portrait ḣ versus h, depicted in Figure 5.6(b), shows the change of

height reaches zero while actual height is at the set-point. Apparently, the phase portrait

shows a nonlinear behavior. The fixed point can be easily identified. The emergence of

the level control behavior is the behavior where a continuum of phase volume reduces to a

curve and a point. Individual components do not have full knowledge about this outcome,

but contribute towards it.

Classical dynamics explains what emergent behavior is. As we have seen, both linear

and nonlinear dynamics lead to emergent behaviors, but the dynamics itself does not explain

how the emergent behavior emerges. Answering this question requires the understanding of

teleodynamics. Therefore, it is important to clarify which question regarding emergence we

are trying to answer. Even though the emergent behaviors in the first two examples seem

trivial and are usually taken for granted, these systems, however, give us insights about

emergence in simple dynamical systems which can be used as fundamental building blocks

towards the understanding of more complex systems. In the next example, we will examine

a system at higher levels in the hierarchy.
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Figure 5.6: The behavior of the nonlinear level control tank system

5.5.3 The Bank-Dealer System

So far, we have discussed simple engineered systems that are building blocks of a sociotech-

nical system. Now, let us consider the bank-dealer system, depicted in Figure 3.3. It is a

complex system consisting of the financial market, a bank-dealer, a hedge fund as market

participants. The bank-dealer system has been well explained Chapter 3.4. This system is

a typical example of the market view layer shown in Figure 2.1.

The teleodynamics of this system is hardly modeled quantitatively, rather, it is easier to

describe the teleodynamics using the SDG causal model. Two loops in the graph identify

the fire sale scenario, shown in Table 3.2. The fire sale occurs when there is a disruption

to the system that forces a hedge fund to sell positions. As depicted in Figure 3.5, this

disruption can occur through three channels: a price drop and resulting drop in asset value,

an increase in the margin rate that leads to a margin call from the prime broker, or a drop

in the loan capacity of the prime broker. As the hedge fund reduces its assets, prices drop,

again, leading to a second (and subsequent) round of feedback making the situation worse in

every subsequent iteration. The first loop shows a price shock increasing the leverage of the

hedge fund. The hedge fund then reduces its holdings in order to reduce its leverage, and

this drops prices. The second loop has the same effect, drop in prices increases leverage,
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which in turn leads to a drop in the quantity held by the hedge fund, but the effect, in

this case, works its way through the trading desk. The quantity sold by the hedge fund

raises the quantity held by the trading desk, increasing its leverage. This, in turn, leads the

trading desk to sell into the market, with the result again being a further drop in prices.

A bank-dealer system consists of following objects,

SY = {money market (MM), bank-dealer market (BDM),

trading desk (TD), finance desk (FD), prime broker (PB), hedge fund (HF)}.

The attributes of each object are listed:

AMM = {χ, c, F}

ABDM = {p}

ATD = {λ, λsp, ε, q}

AFD = {c, V }

APB = {c, V, χ}

AHF = {l, q, λ}

where χ is margin rate, c is collateral in dollar, F is funding in dollar, V is funding capacity

in dollar, λ is leverage ratio, q represents quantity of shares, l is loan in dollar, and ε is the

difference between real leverage and target leverage. They form the attribute class A,

A = {AMM, ABDM, ATD, AFD, APB, AHF}.

These attributes can be quantitatively characterized by values in R. The object states,
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therefore, are

sMM = {vχ, vc, vF }

sBDM = {vp}

sTD = {vλ, vλ,sp, vε, vq}

sFD = {vc, vV }

sPB = {vχ, vc, vV }

sHF = {vl, vq, vλ}

The jth system state is

Sj = {sMM, sBDM, sTD, sFD, sPB, sHF}.

Hence, the phase space of the bank-dealer system is

S =
⋃
Sj , ∀j.

In this case, it is a high-dimensional space, where every attribute is an axis.

The teleodynamics can be further explained by the semi-quantitative analysis presented

in Chapter 3.5, where the equations demonstrate the functions of objects.

5.5.3.1 Normal Market Condition

In this example, we demonstrate that it is really goals that affect system dynamics, hence,

result different emergent behaviors.

Under the normal market condition, market participants have a goal to make profit.

Price stabilizes after several trading iterations, as shown in Figure 5.7(a), because market

participants are confident about the market, hence, will buy at low and sell at high. As a

consequence, the price is eventually stabilized. Price stabilization is a system-level behav-

ior. One cannot predict when and at what price the market will stabilize. It reflects the

stochastic nature of the financial market. So the market behavior, depicted in Figure 5.7(b),

is emergent. However, price is not always stabilized. Different market prospects could lead

to very different teleodynamics, thus, change the market behavior dramatically.
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Figure 5.7: The behavior of the bank-dealer system under normal condition

5.5.3.2 Crisis Condition

When most market participants are pessimistic about the market, they lose confidence,

therefore, are willing to sell rather than to buy. The crisis teleodynamics could result in a

price drop depicted in Figure 5.8(a). In this situation, a new phase space pattern, depicted

in Figure 5.8(b), appears. It shows an opposite direction compared with the behavior

shown in Figure 5.7(b). Individual market participants, such as the prime broker and

the hedge fund, assess market information and make their decisions independently. Their

actions would further impact to the market prospects. When the market prospects change,

teleodynamics changes as indicated by the different “weight” terms in Equation (3.3) (0.1

in normal market condition and 2 in crisis condition).

Each of the units acts to maintain their stability. The prime broker is keeping its loans

within bounds given its collateral; the hedge fund is maintaining a target level of leverage

to control its risk, and the trading desk is governing its inventory level through an outflow if

its market making activities increases its inventory above a target level. Their functions are

the same. Yet the stabilizing activities at the local level still lead to instability at the global

level. This underscores a central point in the functioning of the financial system, namely

that it can exhibit global instability even in the face of each unit acting to control its risk.
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Figure 5.8: The behavior of the bank-dealer system under crisis condition

Different market prospects are the reason why the stabilizing activities of objects still lead

to the instability of the entire system. When market participants change their goals, from

adventurous to conservative, the market’s teleodynamics changes consequently. It leads to

different behaviors of the market.

Market behaviors are unpredictable and emergent. Even though one may know the

dynamical mechanisms of the market (i.e., the functions of every entity in the market),

one cannot predict the behavior because the aggregate effect of the market prospects (i.e.,

the weight terms in Equation (3.3)) is unknown to individual market participant. Classical

dynamics cannot capture the the importance of the market prospects, whereas teleodynam-

ics emphasizes the critical role of goals in the dynamical behavior, therefore, is suitable to

study emergence.

5.6 QSIM Comparison

QSIM is a qualitative reasoning algorithm developed by Kuipers [Dalle Molle et al., 1988;

Kuipers, 1986]. The purpose of QSIM is to explain system behavior from the physical

descriptions, even if the description is incomplete. It starts from a set of constraints and

produces all the possible future states that are consistent with the description. The qual-
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itative states are represented as landmark values and direction of change. Then possible

behaviors can be visualized as graphs. QSIM models a system behavior as a sequence

of states constituting a path from the initial state to the final state [Dalle Molle et al.,

1988]. Moreover, QSIM is able to construct qualitative phase space to depict dynamical

behaviors [Lee and Kuipers, 1993].

Our work is similar to QSIM in several aspects. Both works focus on system dynamics.

Phase space plays an important role in explaining system behaviors. A path of states

is used to delineate a behavior. QSIM aims to qualitatively reason a system’s behavior

given only partial information. The essence of QSIM is to construct Qualitative Differential

Equations (QDEs) and solve them to get system’s qualitative behavior. However, our study

is not interested in how to obtain the dynamics. Instead, we focus on explaining emergent

phenomena via teleodynamics. The examples presented in Section 5.5 have dynamics as

differential equations or casual relationships. System’s teleodynamics can also be given as

QDEs.

If we construct QDEs for the level control tank system (Section 5.5) and plot the quali-

tative behaviors of both the “starting low” and the “starting high” scenarios (details about

QSIM model construction can be found in Appendix D), as shown in Figure 5.9(a) and

Figure 5.9(b), we find the two scenarios reach the same final state, i.e., the set point, as

expected.

(a) (b)

Figure 5.9: Qualitative behavior of the linear level control tank system

We can also plot the qualitative phase portrait (Figure 5.10) to show that the system
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settles down at the set point. It confirms the behavior we obtained in Section 5.5.

Figure 5.10: Qualitative phase portrait

5.7 Chapter Conclusion

In this chapter, we illustrate emergent behaviors of sociotechnical systems by studying

teleodynamics. A formal representation is developed to model the teleodynamics of so-

ciotechnical systems at any level. It describes a sociotechnical system in terms of classes

and sets, and system behaviors in terms of functions and states. Examples show systems’

control behaviors in the phase space as “the whole more than the sum of parts.” Phase

space trajectory illustrates the transition of system states, thus, delineates the evolution of

a system. Every point in the phase space represents a micro-state. The trajectory cannot

be induced from an individual micro-state. As a result, we answer the question “how simple

individual components of a system interact to result in a system behavior that cannot be

explained by any components alone.”

It is important to recognize the difference between teleodynamics and classical dynamics.
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Classical dynamics studies the evolution of a system. It does not care about the part-whole

relationship. As a result, classical dynamics is able to explain what emergent behavior

is, however, unable to answer how the behavior emerges. In contrast, teleodynamics con-

cerns both teleology and dynamics. It demonstrates system’s part-whole relationship using

teleology and complex behaviors using dynamics, hence, uncovers the mystery of emergence.

Chemical engineers study the complex dynamics of chemical processes using control

theory, but rarely think about its complexity science implications. We demonstrate that a

control behavior is in fact an emergent behavior, hence, bridge the knowledge gaps between

chemical engineering and complexity science.

125



CHAPTER 6. CONCLUSION REMARKS

Chapter 6

Conclusion Remarks

The road ahead will be long, I shall

search.

Qu Yuan

To ensure the safe operation and production of complex sociotechnical systems, we need

to model and analyze systemic risk. Traditional emphasis of chemical engineering risk

analysis is on equipment and processes. However, systemic risk management studies not

only equipment and processes but also human activities. This means classical quantitative

approaches are no longer satisfactory. It is critical to model different kinds of knowledge of

a sociotechnical system.

In this thesis, we develop a new knowledge modeling paradigm that goes beyond tradi-

tional risk modeling in chemical plants. Specifically, we develop the TeCSMART framework

to model system knowledge, We use SDG to model cause-and-effect knowledge and ontol-

ogy to model heuristic knowledge. We study system’s teleodynamics to answer the question

“how simple individual components interact to result in a system behavior that cannot be

explained by the behavior of just the individual components alone.”

6.1 The Roles of Teleology, Feedback, and Emergence

Our study emphasizes the roles of teleology, feedback, and emergence in modeling systemic

risk. A teleological framework is established to model sociotechnical system as a whole by
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integrating both social elements and technical elements via the goal-driven activities. The

framework models system knowledge to systematically analyze risk associated with differ-

ent levels of sociotechnical systems. Teleology also helps develop an ontological document

knowledge model, which supports public health decision making during EID emergencies.

Feedback is widely observed in complex dynamical systems. A positive feedback loop

usually indicates a run-away situation. By modeling system’s cause-and-effect knowledge,

we can identify positive feedback loops in a complex financial network. These feedback

loops explain the hidden instability of a sociotechnical system.

Moreover, emergent behavior is a result of the aggregate effect of sociotechnical system’s

dynamic, goal-driven activities in the multi-layered hierarchy. The underlying part-whole

relationship can be illustrated in the phase space. Teleodynamics integrates teleology with

system dynamics, therefore, explains how systemic risk emerges in complex sociotechnical

systems.

6.2 Significance of the Work

Our work extends traditional risk modeling in chemical engineering by introducing various

knowledge modeling paradigms for different levels of a sociotechnical system.

By carrying out a comparative analysis of 13 major systemic events, we systematically

classify failures into five categories and develop a teleological modeling framework to capture

system knowledge. Even though every systemic failure happens in a unique manner, and

is not an exact replica of a past event, we show that the underlying failure mechanism can

be traced back to similar patterns associated with other events through the teleological

framework.

We identify that a cause-and-effect knowledge model can add the critical capabilities

missing in the current network-based approaches. It reveals the hidden instability and

failure mechanisms via feedback loops in SDGs. It can highlight, and help us monitor,

dynamics such as fire sales and funding runs, of a financial system where actions that are

locally stabilizing – e.g., where a financial institution takes risk management actions without

an understanding of the systemic implications – might cascade to globally destabilizing
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consequences.

The public health document ontology is the first attempt to store and model knowledge

from public health documents in an ontology. It supports the reuse and management of

public health knowledge for risk mitigation. It is useful for LMICs to make quick response

during a public health emergency.

Our work connects complexity science with control theory by showing a control behavior

as the whole that is more than the sum of parts. The control behaviors of individual financial

entities are shown as the emergent behaviors of a complex financial system. This observation

answers the question that “how simple individual components interact to result in a system

behavior that cannot be explained by any components alone.”

6.3 Future Directions

At this stage, there are some known limitations. First of all, the failure comparative analysis

needs to be carried out manually, requiring tremendous human effort. The size of the

ontology corpus is small because of the time consuming manual annotation process. Second,

the financial network described in Chapter 3 is relatively simple. It does not take into

account the contagion effect of multiple assets. Third, teleodynamics is demonstrated using

simple examples, which only contain a small number of components. It is important to

study how teleology affects the dynamics of a system, which has a very large number of

components?

Future research should focus on improving the methods by addressing these existing

issues. Automation is a necessary step. NLP based concept extraction, such as topic

modeling, can reduce manual effort, hence, improve the scalability. A large scale SDG model

needs to be built for a financial system with multiple classes of assets. The teleodynamics

of systems with a large number of goal-driven agents needs to be studied.

6.4 Final Remarks

This thesis have studied systemic risk in complex sociotechnical systems via the role of

teleology, feedback, and emergence. It extends the scope of complex system modeling from
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differential equations to system knowledge, cause-and-effect knowledge, heuristic knowledge,

and teleodynamical knowledge. As we have argued in Chapter 1, systemic risk modeling

should go beyond modeling mechanical activities. Instead, it is critical to model different

types of knowledge in sociotechnical systems.
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Appendix A

TeCSMART Failure Analysis

Tables

A.1 Bhopal Gas Tragedy

Figure A.1: Bhopal Gas Tragedy failure analysis table part 1
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Figure A.2: Bhopal Gas Tragedy failure analysis table part 2
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Figure A.3: Bhopal Gas Tragedy failure analysis table part 3
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A.2 Space Shuttle Challenger Accident

Figure A.4: Space Shuttle Challenger Accident failure analysis table part 1

155



APPENDIX A. TECSMART FAILURE ANALYSIS TABLES

Figure A.5: Space Shuttle Challenger Accident failure analysis table part 2
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Figure A.6: Space Shuttle Challenger Accident failure analysis table part 3
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Figure A.7: Space Shuttle Challenger Accident failure analysis table part 4
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A.3 Piper Alpha Disaster

Figure A.8: Piper Alpha Disaster failure analysis table part 1
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Figure A.9: Piper Alpha Disaster failure analysis table part 2
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Figure A.10: Piper Alpha Disaster failure analysis table part 3
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Figure A.11: Piper Alpha Disaster failure analysis table part 4

162



APPENDIX A. TECSMART FAILURE ANALYSIS TABLES

Figure A.12: Piper Alpha Disaster failure analysis table part 5
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A.4 SARS Epidemic

Figure A.13: SARS Epidemic failure analysis table part 1
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Figure A.14: SARS Epidemic failure analysis table part 2
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Figure A.15: SARS Epidemic failure analysis table part 3

A.5 Space Shuttle Columbia Accident

Figure A.16: Space Shuttle Columbia Accident failure analysis table part 1
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Figure A.17: Space Shuttle Columbia Accident failure analysis table part 2
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Figure A.18: Space Shuttle Columbia Accident failure analysis table part 3
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Figure A.19: Space Shuttle Columbia Accident failure analysis table part 4
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A.6 Northeast Blackout

Figure A.20: Northeast Blackout failure analysis table part 1
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Figure A.21: Northeast Blackout failure analysis table part 2
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Figure A.22: Northeast Blackout failure analysis table part 3
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Figure A.23: Northeast Blackout failure analysis table part 4
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A.7 BP Texas City Refinery Explosion

Figure A.24: BP Texas City Refinery Explosion failure analysis table part 1
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Figure A.25: BP Texas City Refinery Explosion failure analysis table part 2
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Figure A.26: BP Texas City Refinery Explosion failure analysis table part 3

176



APPENDIX A. TECSMART FAILURE ANALYSIS TABLES

Figure A.27: BP Texas City Refinery Explosion failure analysis table part 4

A.8 Subprime Crisis

Figure A.28: Subprime Crisis failure analysis table part 1
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Figure A.29: Subprime Crisis failure analysis table part 2

178



APPENDIX A. TECSMART FAILURE ANALYSIS TABLES

Figure A.30: Subprime Crisis failure analysis table part 3
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Figure A.31: Subprime Crisis failure analysis table part 4
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A.9 BP Deepwater Horizon Oil Spill

Figure A.32: BP Deepwater Horizon Oil Spill failure analysis table part 1
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Figure A.33: BP Deepwater Horizon Oil Spill failure analysis table part 2
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A.10 Upper Big Branch Mine Explosion

Figure A.34: Upper Big Branch Mine Explosion failure analysis table part 1
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Figure A.35: Upper Big Branch Mine Explosion failure analysis table part 2

184



APPENDIX A. TECSMART FAILURE ANALYSIS TABLES

A.11 San Esteban Mine Collapse

Figure A.36: San Esteban Mine Collapse failure analysis table part 1
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Figure A.37: San Esteban Mine Collapse failure analysis table part 2
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A.12 Fukushima Nuclear Plant Disaster

Figure A.38: Fukushima Nuclear Plant Disaster failure analysis table part 1
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Figure A.39: Fukushima Nuclear Plant Disaster failure analysis table part 2
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Figure A.40: Fukushima Nuclear Plant Disaster failure analysis table part 3
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Figure A.41: Fukushima Nuclear Plant Disaster failure analysis table part 4
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A.13 India Blackouts

Figure A.42: India Blackouts failure analysis table part 1
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Figure A.43: India Blackouts failure analysis table part 2
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Appendix B

Ontology Screenshots from Protégé
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Figure B.1: Ontology layer representation (Adapted from Cimiano [Cimiano, 2006])
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Figure B.2: Ontology classes part 1
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Figure B.3: Ontology classes part 2
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Figure B.4: Ontology classes part 3
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Figure B.5: Ontology classes part 4
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Figure B.6: Ontology properties part 1
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Figure B.7: Ontology properties part 2
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Figure B.8: Ontology individuals (selected)
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Figure B.9: Reasoning results for “EU member stat”
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Figure B.10: Reasoning results for “Case reporting”
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Figure B.11: Reasoning results for “Human and animal health authority communication”
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Figure B.12: Reasoning results for “Physician”
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Figure B.13: Reasoning results for “Vaccination distribution”

206



APPENDIX B. ONTOLOGY SCREENSHOTS FROM PROTÉGÉ

Figure B.14: Reasoning results for “Physician training”
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Appendix C

OntoPH SWRL Rules

C.1 SWRL Rules for H1N1 Lessons

C.1.1 Rule 1.1

This rule explains events management during the flight, required by “Case management

H1N1 AirTransport guidance” [Organization, 2009b]. Specifically, it extends the expression

“Management of event during the flight.”
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Listing C.1: OntoPH SWRL rule 1.1

Guide l ine ( Case management H1N1 AirTransport guidance ) ,

As se r t i on ( Management o f event dur ing the f l i gh t )

−> a s s e r t s ( Case management H1N1 AirTransport guidance ,

Management o f event dur ing the f l i gh t )

Non−h e a l t h s e c t o r ( Cabin crew ) , Report ing (? r e p o r t i n g ) ,

a s s e r t s ( Case management H1N1 AirTransport guidance ,

Management o f event dur ing the f l i gh t )

−> p a r t i c i p a t e ( Cabin crew , ? r e p o r t i n g )

Non−h e a l t h s e c t o r ( Cabin crew ) , Management ( Des ignate cab in crew ) ,

a s s e r t s ( Case management H1N1 AirTransport guidance ,

Management o f event dur ing the f l i gh t )

−> p a r t i c i p a t e ( Cabin crew , Des ignate cab in crew )

Non−h e a l t h s e c t o r ( Cabin crew ) , Management ( D e s i g n a t e s p e c i f i c l a v a t o r y ) ,

a s s e r t s ( Case management H1N1 AirTransport guidance ,

Management o f event dur ing the f l i gh t )

−> p a r t i c i p a t e ( Cabin crew , D e s i g n a t e s p e c i f i c l a v a t o r y )

Non−h e a l t h s e c t o r ( Cabin crew ) , Prevent ion ( Provide medical mask ) ,

a s s e r t s ( Case management H1N1 AirTransport guidance ,

Management o f event dur ing the f l i gh t )

−> p a r t i c i p a t e ( Cabin crew , Provide medical mask )

Non−h e a l t h s e c t o r ( Cabin crew ) , I s o l a t i o n (? i s o l a t i o n ) ,

a s s e r t s ( Case management H1N1 AirTransport guidance ,

Management o f event dur ing the f l i gh t )

−> p a r t i c i p a t e ( Cabin crew , ? i s o l a t i o n )

Non−h e a l t h s e c t o r ( Cabin crew ) , Detect ion ( I d e n t i f y i l l t r a v e l l e r ) ,

a s s e r t s ( Case management H1N1 AirTransport guidance ,

Management o f event dur ing the f l i gh t )

−> p a r t i c i p a t e ( Cabin crew , I d e n t i f y i l l t r a v e l l e r )
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C.1.2 Rule 1.2

This rule explains pilot in command actions, required by “Case management H1N1 Air-

Transport guidance” [Organization, 2009b]. Specifically, it extends the expression “Pilot in

command actions.”

Listing C.2: OntoPH SWRL rule 1.2

Guide l ine ( Case management H1N1 AirTransport guidance ) ,

Knowledge ( Pi lo t in command act ions )

−> conta in s ( Case management H1N1 AirTransport guidance ,

P i lo t in command act ions )

Non−h e a l t h s e c t o r ( P i l o t ) , Report ing (? r e p o r t i n g ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P i lo t in command act ions ) −> p a r t i c i p a t e ( P i lo t , ? r e p o r t i n g )

L e g a l r o l e ( PH authority ) ,

I n t e r a c t i v e n e t w o r k ( Communication between agencies ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P i lo t in command act ions ) −> p a r t i c i p a t e ( PH authority ,

Communication between agencies )

C.1.3 Rule 1.3

This rule describes arrival procedures at airport, required by “Case management H1N1 Air-

Transport guidance” [Organization, 2009b]. Specifically, it extends the expression “Arrival

airport procedures.”
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Listing C.3: OntoPH SWRL rule 1.3

Guide l ine ( Case management H1N1 AirTransport guidance ) ,

Knowledge ( A r r i v a l a i r p o r t p r o c e d u r e s )

−> conta in s ( Case management H1N1 AirTransport guidance ,

A r r i v a l a i r p o r t p r o c e d u r e s )

Non−h e a l t h s e c t o r ( P i l o t ) ,

Management ( P a r k t h e a i r c r a f t t o d e s i g n a t e d p l a c e ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

A r r i v a l a i r p o r t p r o c e d u r e s ) −> p a r t i c i p a t e ( P i lo t ,

P a r k t h e a i r c r a f t t o d e s i g n a t e d p l a c e )

Non−h e a l t h s e c t o r ( Trave le r ) , Management ( Fol low PH procedures ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

A r r i v a l a i r p o r t p r o c e d u r e s ) −> p a r t i c i p a t e ( Traveler , Fol low PH procedures )

Non−h e a l t h s e c t o r ( Trave le r ) , Symptom(?symptom ) ,

has symptom ( Traveler , ?symptom ) ,

Report ing ( I n f o r m p u b l i c h e a l t h a u t h o r i t y ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

A r r i v a l a i r p o r t p r o c e d u r e s ) −> p a r t i c i p a t e ( Traveler ,

I n f o r m p u b l i c h e a l t h a u t h o r i t y )

Non−h e a l t h s e c t o r ( Cabin crew ) , Management ( Fol low PH procedures ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

A r r i v a l a i r p o r t p r o c e d u r e s ) −>

p a r t i c i p a t e ( Cabin crew , Fol low PH procedures )

C.1.4 Rule 1.4

This rule describes public health authority actions at arrival airport, required by “Case

management H1N1 AirTransport guidance” [Organization, 2009b]. Specifically, this rule

extends the expression “PH authority actions at arrival airport.”
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Listing C.4: OntoPH SWRL rule 1.4

Guide l ine ( Case management H1N1 AirTransport guidance ) ,

Knowledge ( P H a u t h o r i t y a c t i o n s a t a r r i v a l a i r p o r t )

−> conta in s ( Case management H1N1 AirTransport guidance ,

P H a u t h o r i t y a c t i o n s a t a r r i v a l a i r p o r t )

L e g a l r o l e ( PH authority ) ,

In t ra ( C o o r d i n a t e w i t h t h e a i r p o r t a u t h o r i t y ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P H a u t h o r i t y a c t i o n s a t a r r i v a l a i r p o r t )

−> p a r t i c i p a t e ( PH authority ,

C o o r d i n a t e w i t h t h e a i r p o r t a u t h o r i t y )

L e g a l r o l e ( PH authority ) ,

Announce ( M a k e a p p r o p r i a t e n o t i f i c a t i o n s a b o u t t h e i n c i d e n t ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P H a u t h o r i t y a c t i o n s a t a r r i v a l a i r p o r t )

−> p a r t i c i p a t e ( PH authority ,

M a k e a p p r o p r i a t e n o t i f i c a t i o n s a b o u t t h e i n c i d e n t )

L e g a l r o l e ( PH authority ) ,

Management ( Superv i s e the imp l ementa t i on o f a r rangement s ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P H a u t h o r i t y a c t i o n s a t a r r i v a l a i r p o r t )

−> p a r t i c i p a t e ( PH authority ,

Superv i s e the imp l ementa t i on o f a r rangement s )

L e g a l r o l e ( PH authority ) ,

Management ( E n s u r e a v a i l a b i l i t y o f a p p r o p r i a t e t r a n s p o r t ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P H a u t h o r i t y a c t i o n s a t a r r i v a l a i r p o r t )

−> p a r t i c i p a t e ( PH authority ,

E n s u r e a v a i l a b i l i t y o f a p p r o p r i a t e t r a n s p o r t )

L e g a l r o l e ( PH authority ) , St rategy ( Conduct PH risk assessment ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P H a u t h o r i t y a c t i o n s a t a r r i v a l a i r p o r t )

−> p a r t i c i p a t e ( PH authority , Conduct PH risk assessment )

L e g a l r o l e ( PH authority ) , In t ra ( Communication between agencies ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P H a u t h o r i t y a c t i o n s a t a r r i v a l a i r p o r t )

−> p a r t i c i p a t e ( PH authority , Communication between agencies )

L e g a l r o l e ( PH authority ) ,

Broadcast ( In form trave l l e rs o f the hea l th measures recommended by WHO ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P H a u t h o r i t y a c t i o n s a t a r r i v a l a i r p o r t )

−> p a r t i c i p a t e ( PH authority ,

In form trave l l e rs o f the hea l th measures recommended by WHO )

L e g a l r o l e ( PH authority ) ,

Train ing ( B o r d e r a g e n c y r e p r e s e n t a t i v e t r a i n i n g ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P H a u t h o r i t y a c t i o n s a t a r r i v a l a i r p o r t )

−> p a r t i c i p a t e ( PH authority ,

B o r d e r a g e n c y r e p r e s e n t a t i v e t r a i n i n g )

L e g a l r o l e ( PH authority ) , Detect ion ( I d e n t i f y i l l t r a v e l l e r ) ,

conta in s ( Case management H1N1 AirTransport guidance ,

P H a u t h o r i t y a c t i o n s a t a r r i v a l a i r p o r t )

−> p a r t i c i p a t e ( PH authority , I d e n t i f y i l l t r a v e l l e r )

212



APPENDIX C. ONTOPH SWRL RULES

C.1.5 Rule 2.1

This rule explains vaccination campaign in the U.K., required by “DOH vaccination cam-

paign best practice guidance” [UKDOH, 2010]. Specifically, it extends the expression “Take

the vaccination to staff.”

Listing C.5: OntoPH SWRL rule 2.1

Guide l ine ( DOH vacc inat ion campaign best pract i ce gu idance ) ,

As se r t i on ( T a k e t h e v a c c i n a t i o n t o s t a f f )

−> a s s e r t s ( DOH vacc inat ion campaign best pract i ce gu idance ,

T a k e t h e v a c c i n a t i o n t o s t a f f )

S o c i a l r o l e ( Health worker ) , Vacc inat ion (? vacc ina t i on ) ,

a s s e r t s ( DOH vacc inat ion campaign best pract i ce gu idance ,

T a k e t h e v a c c i n a t i o n t o s t a f f )

−> p a r t i c i p a t e ( Health worker , ? vacc ina t i on )

C.1.6 Rule 2.2

This rule explains vaccination campaign in the U.K., required by “DOH vaccination cam-

paign best practice guidance” [UKDOH, 2010]. Different from Rule 2.1, it extends the

expression “Involve individual sites” and “Establish communication network.”
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Listing C.6: OntoPH SWRL rule 2.2

Guide l ine ( DOH vacc inat ion campaign best pract i ce gu idance ) ,

As se r t i on ( I n v o l v e i n d i v i d u a l s i t e s )

−> a s s e r t s ( DOH vacc inat ion campaign best pract i ce gu idance ,

I n v o l v e i n d i v i d u a l s i t e s )

Guide l ine ( DOH vacc inat ion campaign best pract i ce gu idance ) ,

I n t en t i on ( Establ i sh communicat ion network )

−> i n t ends ( DOH vacc inat ion campaign best pract i ce gu idance ,

Establ i sh communicat ion network )

Vacc inat ion (? vacc ina t i on ) , Workplace (? workplace ) ,

a s s e r t s ( DOH vacc inat ion campaign best pract i ce gu idance ,

I n v o l v e i n d i v i d u a l s i t e s )

−> in (? vacc inat ion , ? workplace )

Vacc inat ion (? vacc ina t i on ) , Sharing (? shar ing ) ,

in tends ( DOH vacc inat ion campaign best pract i ce gu idance ,

Establ i sh communicat ion network )

−> r e q u i r e s (? vacc inat ion , ? shar ing )

Sharing (? shar ing ) , Vacc inat ion (? vacc ina t i on ) ,

Workplace (? workplace ) , in (? vacc inat ion , ? workplace ) ,

r e q u i r e s (? vacc inat ion , ? shar ing ) −> in (? shar ing , ? workplace )

C.1.7 Rule 2.3

This rule describes vaccination campaign in the U.K., required by “DOH vaccination cam-

paign best practice guidance” [UKDOH, 2010]. Different from the previous rules, this rule

extends the expression “IHR creates a pool of vaccinators.”
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w

Listing C.7: OntoPH SWRL rule 2.3

Guide l ine ( DOH vacc inat ion campaign best pract i ce gu idance ) ,

I n t en t i on ( I H R c r e a t e s a p o o l o f v a c c i n a t o r s )

−> i n t ends ( DOH vacc inat ion campaign best pract i ce gu idance ,

I H R c r e a t e s a p o o l o f v a c c i n a t o r s )

S o c i a l r o l e ( Vacc inator ) , Vacc inat ion (? vacc ina t i on ) ,

in tends ( DOH vacc inat ion campaign best pract i ce gu idance ,

I H R c r e a t e s a p o o l o f v a c c i n a t o r s )

−> p a r t i c i p a t e ( Vaccinator , ? vacc ina t i on )

S o c i a l r o l e ( Vacc inator ) , Planning (? planning ) ,

p a r t i c i p a t e ( Vaccinator , ? vacc ina t i on )

−> p a r t i c i p a t e ( Vaccinator , ? planning )

S o c i a l r o l e ( Vacc inator ) , De l ive ry (? d e l i v e r y ) ,

p a r t i c i p a t e ( Vaccinator , ? vacc ina t i on )

−> p a r t i c i p a t e ( Vaccinator , ? d e l i v e r y )

S o c i a l r o l e ( Vacc inator ) , Train ing (? t r a i n i n g ) ,

p a r t i c i p a t e ( Vaccinator , ? vacc ina t i on )

−> p a r t i c i p a t e ( Vaccinator , ? t r a i n i n g )

C.1.8 Rule 2.4

This rule describes vaccination campaign in the U.K., required by “DOH vaccination cam-

paign best practice guidance” [UKDOH, 2010]. Specifically, this rule extends the expression

“Corporate visible and active leadership.”
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Listing C.8: OntoPH SWRL rule 2.4

Guide l ine ( DOH vacc inat ion campaign best pract i ce gu idance ) ,

Knowledge ( C o r p o r a t e v i s i b l e a n d a c t i v e l e a d e r s h i p )

−> conta in s ( DOH vacc inat ion campaign best pract i ce gu idance ,

C o r p o r a t e v i s i b l e a n d a c t i v e l e a d e r s h i p )

Vacc inat ion (? vacc ina t i on ) , Management ( Leadership ) ,

conta in s ( DOH vacc inat ion campaign best pract i ce gu idance ,

C o r p o r a t e v i s i b l e a n d a c t i v e l e a d e r s h i p )

−> r e q u i r e s (? vacc inat ion , Leadership )

Leader (? l e a d e r ) , Vacc inat ion (? vacc ina t i on ) ,

Management ( Leadership ) , r e q u i r e s (? vacc inat ion , Leadership )

−> p a r t i c i p a t e (? l eader , ? vacc ina t i on )

Broadcast (? broadcast ) , Management ( Leadership ) ,

Vacc inat ion (? vacc ina t i on ) ,

r e q u i r e s (? vacc inat ion , Leadership ) −>

r e q u i r e s ( Leadership , ? broadcast )

S a f e t y p r o t e c t i o n (? s a f e t y p r o t e c t i o n ) , Management ( Leadership ) ,

Vacc inat ion (? vacc ina t i on ) , r e q u i r e s (? vacc inat ion , Leadership )

−> r e q u i r e s ( Leadership , ? s a f e t y p r o t e c t i o n )

De l ive ry (? d e l i v e r y ) , Management ( Leadership ) ,

Vacc inat ion (? vacc ina t i on ) ,

r e q u i r e s (? vacc inat ion , Leadership ) −>

r e q u i r e s ( Leadership , ? d e l i v e r y )
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C.1.9 Rule 2.5

This rule describes vaccination campaign in the U.K., required by “DOH vaccination cam-

paign best practice guidance” [UKDOH, 2010]. Specifically, it extends the expression “De-

velop comprehensive strategy.”

Listing C.9: OntoPH SWRL rule 2.5

Guide l ine ( DOH vacc inat ion campaign best pract i ce gu idance ) ,

I n t en t i on ( Deve lop comprehens ive s t rategy )

−> i n t ends ( DOH vacc inat ion campaign best pract i ce gu idance ,

Deve lop comprehens ive s t rategy )

Vacc inat ion (? vacc ina t i on ) , St rategy (? s t r a t e g y ) ,

in tends ( DOH vacc inat ion campaign best pract i ce gu idance ,

Deve lop comprehens ive s t rategy )

−> r e q u i r e s (? vacc inat ion , ? s t r a t e g y )

Vacc inat ion (? vacc ina t i on ) , St rategy (? s t r a t e g y ) ,

Education ( Sa f e ty educa t i on ) ,

r e q u i r e s (? vacc inat ion , ? s t r a t e g y ) −>

r e q u i r e s (? vacc inat ion , Sa f e ty educa t i on )

Strategy (? s t r a t e g y ) , Department (? department )

−> performs (? department , ? s t r a t e g y )

Strategy (? s t r a t e g y ) , Pe r i od i c (? p e r i o d i c ) ,

Department (? department ) ,

per forms (? department , ? s t r a t e g y ) −> be f o r e (? s t ra tegy , ? p e r i o d i c )

C.1.10 Rule 2.6

This rule describes vaccination campaign in the U.K., required by “DOH vaccination cam-

paign best practice guidance” [UKDOH, 2010]. Specifically, this rule extends the expression

“Element of targeting.”
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Listing C.10: OntoPH SWRL rule 2.6

Guide l ine ( DOH vacc inat ion campaign best pract i ce gu idance ) ,

Knowledge ( E l emen t o f t a r g e t i n g )

−> conta in s ( DOH vacc inat ion campaign best pract i ce gu idance ,

E l e ment o f t a r g e t i n g )

Target ing (? t a r g e t i n g ) , Vacc inat ion (? vacc ina t i on ) ,

conta in s ( DOH vacc inat ion campaign best pract i ce gu idance ,

E l e ment o f t a r g e t i n g )

−> r e q u i r e s (? vacc inat ion , ? t a r g e t i n g )

Target ing (? t a r g e t i n g ) , S t a t i c s i t e (? s t a t i c s i t e ) −>

in (? ta rge t ing , ? s t a t i c s i t e )

Vacc inat ion (? vacc ina t i on ) , Target ing (? t a r g e t i n g ) ,

S t a t i c s i t e (? s t a t i c s i t e ) ,

r e q u i r e s (? vacc inat ion , ? t a r g e t i n g ) , in (? ta rge t ing , ? s t a t i c s i t e )

−> in (? vacc inat ion , ? s t a t i c s i t e )

C.1.11 Rule 2.7

This rule explains project management, required by “DOH vaccination campaign best prac-

tice guidance” [UKDOH, 2010]. Specifically, this rule extends the expression “Good project

management.”
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Listing C.11: OntoPH SWRL rule 2.7

Guide l ine ( DOH vacc inat ion campaign best pract i ce gu idance ) ,

Eva lua t i v e Propo s i t i on ( Good project management )

−> bears ( DOH vacc inat ion campaign best pract i ce gu idance ,

Good project management )

Strategy (? s t r a t e g y ) , Implementation (? implementation ) ,

bears ( DOH vacc inat ion campaign best pract i ce gu idance ,

Good project management )

−> r e q u i r e s (? s t ra tegy , ? implementation )

Strategy (? s t r a t e g y ) , Department (? department )

−> performs (? department , ? s t r a t e g y )

Department (? department ) , St rategy (? s t r a t e g y ) ,

Management ( Project management ) ,

r e q u i r e s (? s t ra tegy , Project management ) ,

per forms (? department , ? s t r a t e g y )

−> performs (? department , Project management )

C.1.12 Rule 2.8

This rule demonstrates expectation setting, required by “DOH vaccination campaign best

practice guidance” [UKDOH, 2010]. Specifically, this rule extends the expression “Set out

expectation message.”
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Listing C.12: OntoPH SWRL rule 2.8

Guide l ine ( DOH vacc inat ion campaign best pract i ce gu idance ) ,

Expectat ion ( Expectat ion message )

−> promises ( DOH vacc inat ion campaign best pract i ce gu idance ,

Expectat ion message )

Agency (? agency ) , Guide l ine (? g u i d e l i n e ) ,

Expectat ion ( Expectat ion message ) ,

promises ( DOH vacc inat ion campaign best pract i ce gu idance ,

Expectat ion message ) −> s e t (? agency , Expectat ion message )

C.2 SWRL Rules for WHO Pandemic Preparedness Guide

C.2.1 Rule 3.1

This rule describes the role of government, and government leadership in pandemic pre-

paredness and response, required by chapter 3 of “WHO pandemic preparedness response

guidance” [Organization, 2009a]. Specifically, this rule extends the expression “WHO ex-

pects government leadership.”
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Listing C.13: OntoPH SWRL rule 3.1

Guide l ine ( WHO pandemic preparedness response guidance ) ,

Expectat ion ( WHO expects government leadership )

−> promises ( WHO pandemic preparedness response guidance ,

WHO expects government leadership )

Government (? government ) , Leader (? l e a d e r ) ,

promises ( WHO pandemic preparedness response guidance ,

WHO expects government leadership ) −>

plays (? government , ? l e a d e r )

Resource (? r e s ou r c e ) , Government (? government ) , Leader (? l e a d e r ) ,

p lays (? government , ? l e a d e r ) −> a l l o c a t e s (? government , ? r e s ou r c e )

Government (? government ) , Resource (? r e s ou r c e ) , Action (? ac t i on ) ,

a l l o c a t e s (? government , ? r e s ou r c e ) −>

i n v o l v e s (? act ion , ? r e s ou r c e )

C.2.2 Rule 3.2

This rule describes the role of health section, required by chapter 3 of “WHO pandemic

preparedness response guidance” [Organization, 2009a]. Specifically, this rule extends the

expression “WHO expects health sector guidance.”
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Listing C.14: OntoPH SWRL rule 3.2

Guide l ine ( WHO pandemic preparedness response guidance ) ,

Expectat ion ( WHO expects hea l th sector guidance )

−> promises ( WHO pandemic preparedness response guidance ,

WHO expects hea l th sector guidance )

H e a l t h s e c t o r (? h e a l t h s e c t o r ) , Communication (? communication ) ,

promises ( WHO pandemic preparedness response guidance ,

WHO expects hea l th sector guidance )

−> p a r t i c i p a t e (? h e a l t h s e c t o r , ? communication )

H e a l t h s e c t o r (? h e a l t h s e c t o r ) , Control (? c o n t r o l ) ,

promises ( WHO pandemic preparedness response guidance ,

WHO expects hea l th sector guidance )

−> p a r t i c i p a t e (? h e a l t h s e c t o r , ? c o n t r o l )

H e a l t h s e c t o r (? h e a l t h s e c t o r ) , Implementation (? implementation ) ,

promises ( WHO pandemic preparedness response guidance ,

WHO expects hea l th sector guidance )

−> p a r t i c i p a t e (? h e a l t h s e c t o r , ? implementation )

C.2.3 Rule 3.3

This rule describes the role of non-health sector, required by chapter 3 of “WHO pandemic

preparedness response guidance” [Organization, 2009a]. Specifically, this rule extends the

expression “WHO expects non-health sector cooperation.”
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Listing C.15: OntoPH SWRL rule 3.3

Guide l ine ( WHO pandemic preparedness response guidance ) ,

Expectat ion ( WHO expects non−h e a l t h s e c t o r c o o p e r a t i o n )

−> promises ( WHO pandemic preparedness response guidance ,

WHO expects non−h e a l t h s e c t o r c o o p e r a t i o n )

Non−h e a l t h s e c t o r (? nonhea l th s e c to r ) , Planning (? planning ) ,

promises ( WHO pandemic preparedness response guidance ,

WHO expects non−h e a l t h s e c t o r c o o p e r a t i o n )

−> p a r t i c i p a t e (? nonhea l th sec to r , ? planning )

Planning (? planning ) , Non−h e a l t h s e c t o r (? nonhea l th s e c to r ) ,

Pandemic (? pandemic ) , p a r t i c i p a t e (? nonhea l th sec to r , ? planning )

−> i n v o l v e s (? nonhea l th sec to r , ?pandemic )

Resource (? r e s ou r c e ) , Non−h e a l t h s e c t o r (? nonhea l th s e c to r ) ,

promises ( WHO pandemic preparedness response guidance ,

WHO expects non−h e a l t h s e c t o r c o o p e r a t i o n )

−> a l l o c a t e s (? nonhea l th sec to r , ? r e s ou r c e )

Non−h e a l t h s e c t o r (? nonhea l th s e c to r ) ,

Communication (? communication ) ,

promises ( WHO pandemic preparedness response guidance ,

WHO expects non−h e a l t h s e c t o r c o o p e r a t i o n )

−> p a r t i c i p a t e (? nonhea l th sec to r , ? communication )

C.2.4 Rule 3.4

This rule describes the role of WHO, required by chapter 3 of “WHO pandemic preparedness

response guidance” [Organization, 2009a]. Specifically, this rule extends the expression

“WHO responsibility.”
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Listing C.16: OntoPH SWRL rule 3.4

Guide l ine ( WHO pandemic preparedness response guidance ) ,

As se r t i on ( WHO responsibi l i ty )

−> a s s e r t s ( WHO pandemic preparedness response guidance ,

WHO responsibi l i ty )

In t e rgove rnmenta l o rgan i za t i on (WHO) , I n t e r a c t i v e ( Coordinat ion ) ,

a s s e r t s ( WHO pandemic preparedness response guidance ,

WHO responsibi l i ty )

−> performs (WHO, Coordinat ion )

I n t e r a c t i v e ( Coordinat ion ) , In t e rgove rnmenta l o rgan i za t i on (WHO) ,

Treaty ( I n t e r n a t i o n a l h e a l t h r e g u l a t i o n s ) ,

per forms (WHO, Coordinat ion ) −> r e q u i r e s ( Coordination ,

I n t e r n a t i o n a l h e a l t h r e g u l a t i o n s )

In t e rgove rnmenta l o rgan i za t i on (WHO) , Planning (? planning ) ,

a s s e r t s ( WHO pandemic preparedness response guidance ,

WHO responsibi l i ty )

−> performs (WHO, ? planning )
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Appendix D

Construct QDE for Level Control

Tank System

D.1 Construct QDE

Adapting the linear level control tank example discussed in Section 5.5, we can construct

the QDE using QSIM algorithm.

The quantity space is described as follows with landmark values:

(h (0 FULL ∞)),

(hs (0 SP ∞)),

(e (−∞ 0 ∞)),

(p (−∞ 0 ∞)),

(q1 (0 ∞)),

(q2 (0 IF2 ∞)),

(fout (0 OFFULL ∞)),

(fin (0 ∞)),

(fnet (−∞ 0 ∞)).

Then, we can write the qualitative constraints of this system,

((− hs h e) (0 0 0) (SP FULL (−∞ 0 ∞)) (∞ ∞ 0)),

((M+ e p) (−∞ −∞) (0 0) (−∞ ∞)),

((M+ p q2) (−∞ 0) (0 IF2) (∞ ∞)),

((M− h fout) (0 0) (FULL OFFULL) (∞ ∞)),

((+ q1 q2 fin)),

((− fin fout fnet)),

(
d

dt
h fnet),

(constant q1),

(constant hs).
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The transition is indicated by the following equation,

((h (FULL inc)) → overflow).

D.2 Propagation from Initial State: Scenario I

To understand what is the current state of the system, we propagate the initial state through

the system to obtain the system behavior. Assume hs is at set point SP, q1 is at IF∗1, and

if initial value of h is smaller than hs (INIT < SP), we have the quantity space

(h (0 INIT SP FULL ∞)),

(hs (0 SP ∞)),

(e (−∞ EFULL 0 EINIT ∞)),

(p (−∞ PFULL 0 PINIT ∞)),

(q1 (0 IF1 ∞)),

(q2 (0 IFFULL IF2 IFINIT ∞)),

(fout (0 OFINIT OFSP OFFULL ∞)),

(fin (IF1 IFFULL IF IFINIT ∞)),

(fnet (−∞ NFFULL 0 NFINIT ∞)).

The initial state t0 is,

(h (INIT) ?).

Propagating through the constraints, we have

1. h = (INIT) → e = (EINIT),

2. e = (EINIT) → p = (PINIT),

3. p = (PINIT) → q2 = (IFINIT),

4. q2 = (IFINIT) → fin = (IFINIT),

5. h = (HINIT) → fout = (OFINIT),

6. fin, fout → fnet = (NFINIT),

7. fnet = (NFINIT) → dh
dt > 0 → dirh = inc.
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So the complete initial state is

(h (INIT) inc),

(hs (SP) std),

(e (EINIT) dec),

(p (PINIT) dec),

(q1 (IF1) std),

(q2 (IFINIT) dec),

(fout (OFINIT) inc),

(fin (IFINIT) dec),

(fnet (NFINIT) dec),

(
dh

dt
(NFINIT) dec).

Move to the time point (t0, t1), the current state is

(h (INIT FULL) inc),

(hs (SP) std),

(e (0 EINIT) dec),

(p (0 PINIT) dec),

(q1 (IF1) std),

(q2 (IF2 IFINIT) dec),

(fout (OFINIT OFSP) inc),

(fin (IF IFINIT) dec),

(fnet (0 NFINIT) dec),

(
dh

dt
(0 NFINIT) dec).

At t1, we have the final state as following

(h (SP) std),

(hs (SP) std),

(e (0) std),

(p (0) std),

(q1 (IF1) std),

(q2 (IF2) std),

(fout (OFSP) std),

(fin (IF) std),

(fnet (0) std),

(
dh

dt
(0) std).

D.3 Propagation from Initial State: Scenario II

What if INIT > SP? We have a different initial state, but it turns out that the steady state

is the same as we propagating the initial state through the constraints. The quantity space
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in this case is,

(h (0 SP INIT FULL ∞)),

(hs (0 SP ∞)),

(e (−∞ EFULL EINIT 0 ∞)),

(p (−∞ PFULL PINIT 0 ∞)),

(q1 (0 IF1 ∞)),

(q2 (0 IFFULL IFINIT IF2 ∞)),

(fout (0 OFINIT OFSP OFFULL ∞)),

(fin (IF1 IFFULL IFINIT IF ∞)),

(fnet (−∞ NFFULL NFINIT 0 ∞)).

The initial state t0 is,

(h (INIT) ?).

By propagating the initial state through the constraints, we have

1. h = (INIT) → e = (EINIT),

2. e = (EINIT) → p = (PINIT),

3. p = (PINIT) → q2 = (IFINIT),

4. q2 = (IFINIT) → fin = (IFINIT),

5. h = (HINIT) → fout = (OFINIT),

6. fin, fout → fnet = (NFINIT),

7. fnet = (NFINIT) → dh
dt < 0 → dirh = dec.

So the complete initial state is

(h (INIT) dec),

(hs (SP) std),

(e (EINIT) inc),

(p (PINIT) inc),

(q1 (IF1) std),

(q2 (IFINIT) inc),

(fout (OFINIT) dec),

(fin (IFINIT) inc),

(fnet (NFINIT) inc),

(
dh

dt
(NFINIT) inc).
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At (t0, t1), the state is

(h (0 INIT) dec),

(hs (SP) std),

(e (EINIT 0) inc),

(p (PINIT 0) inc),

(q1 (IF1) std),

(q2 (IFINIT IF2) inc),

(fout (OFSP OFINIT) dec),

(fin (IFINIT IF) inc),

(fnet (NFINIT 0) inc),

(
dh

dt
(NFINIT 0) inc).

Finally, at t1, the final state obtained is

(h (SP) std),

(hs (SP) std),

(e (0) std),

(p (0) std),

(q1 (IF1) std),

(q2 (IF2) std),

(fout (OFSP) std),

(fin (IF) std),

(fnet (0) std),

(
dh

dt
(0) std).

229


	List of Figures
	List of Tables
	Glossary
	Acronyms
	1 Introduction
	1.1 Risk Modeling in Chemical Plants
	1.2 Risk Modeling beyond Chemical Plants
	1.3 Organization

	2 A Hierarchical Framework for Modeling and Analyzing Systemic Risk in Sociotechnical Systems
	2.1 Common Patterns of Failures at Multiple Levels
	2.2 TeCSMART Framework
	2.2.1 Perspective I: Equipment View Layer
	2.2.2 Perspective II: Plant View Layer
	2.2.3 Perspective III: Management View Layer
	2.2.4 Perspective IV: Market View Layer
	2.2.5 Perspective V: Regulatory View Layer
	2.2.6 Perspective VI: Government View Layer
	2.2.7 Perspective VII: Societal View Layer

	2.3 Failure Analysis and Comparison
	2.4 TeCSMART Case Studies
	2.5 Chapter Conclusions

	3 Process Systems Engineering as a Modeling Paradigm for Analyzing Systemic Risk in Financial Networks
	3.1 Financial Systems and its Instability
	3.2 Financial Network as a Process Plant: Systems Engineering Framework
	3.3 SDG Modeling Framework for Financial Networks
	3.4 Bank-Dealer Case Study
	3.4.1 Fire Sales
	3.4.2 Funding Runs

	3.5 Semiquantitative Analysis
	3.6 Chapter Conclusions

	4 An Ontology-Driven Knowledge Management Framework for Emerging Infectious Diseases Preparedness and Response
	4.1 Systemic Risk Management for Public Health
	4.2 Ontology-driven Knowledge Management Framework
	4.2.1 Overall Architecture
	4.2.2 Function-based Knowledge Representation
	4.2.3 Ontology Development

	4.3 Results
	4.3.1 Ontology Evaluation
	4.3.2 Answering Queries
	4.3.3 West Nile Virus Outbreak Case Study

	4.4 Discussion
	4.4.1 Limitations
	4.4.2 Future Work

	4.5 Chapter Conclusion

	5 Modeling Emergent Phenomena of Dynamical Sociotechnical Systems
	5.1 Emergent Behaviors in Dynamical Sociotechnical Systems
	5.2 Define Emergence: A Journey from Philosophy to Science
	5.3 Teleodynamics: the Dynamics of Sociotechnical Systems
	5.4 A Formal Representation for Sociotechnical Systems
	5.4.1 Object
	5.4.2 Attribute
	5.4.3 Value
	5.4.4 State
	5.4.5 Function
	5.4.6 Phase Space

	5.5 Modeling Emergent Behaviors – Control Examples
	5.5.1 A Level Control Tank
	5.5.2 Nonlinear Level Control Tank
	5.5.3 The Bank-Dealer System

	5.6 QSIM Comparison
	5.7 Chapter Conclusion

	6 Conclusion Remarks
	6.1 The Roles of Teleology, Feedback, and Emergence
	6.2 Significance of the Work
	6.3 Future Directions
	6.4 Final Remarks

	Bibliography
	Appendix A TeCSMART Failure Analysis Tables
	A.1 Bhopal Gas Tragedy
	A.2 Space Shuttle Challenger Accident
	A.3 Piper Alpha Disaster
	A.4 SARS Epidemic
	A.5 Space Shuttle Columbia Accident
	A.6 Northeast Blackout
	A.7 BP Texas City Refinery Explosion
	A.8 Subprime Crisis
	A.9 BP Deepwater Horizon Oil Spill
	A.10 Upper Big Branch Mine Explosion
	A.11 San Esteban Mine Collapse
	A.12 Fukushima Nuclear Plant Disaster
	A.13 India Blackouts

	Appendix B Ontology Screenshots from Protégé
	Appendix C OntoPH SWRL Rules
	C.1 SWRL Rules for H1N1 Lessons
	C.1.1 Rule 1.1
	C.1.2 Rule 1.2
	C.1.3 Rule 1.3
	C.1.4 Rule 1.4
	C.1.5 Rule 2.1
	C.1.6 Rule 2.2
	C.1.7 Rule 2.3
	C.1.8 Rule 2.4
	C.1.9 Rule 2.5
	C.1.10 Rule 2.6
	C.1.11 Rule 2.7
	C.1.12 Rule 2.8

	C.2 SWRL Rules for WHO Pandemic Preparedness Guide
	C.2.1 Rule 3.1
	C.2.2 Rule 3.2
	C.2.3 Rule 3.3
	C.2.4 Rule 3.4


	Appendix D Construct QDE for Level Control Tank System
	D.1 Construct QDE
	D.2 Propagation from Initial State: Scenario I
	D.3 Propagation from Initial State: Scenario II


