1,231 research outputs found

    Restricted trees: simplifying networks with bottlenecks

    Get PDF
    Suppose N is a phylogenetic network indicating a complicated relationship among individuals and taxa. Often of interest is a much simpler network, for example, a species tree T, that summarizes the most fundamental relationships. The meaning of a species tree is made more complicated by the recent discovery of the importance of hybridizations and lateral gene transfers. Hence it is desirable to describe uniform well-defined procedures that yield a tree given a network N. A useful tool toward this end is a connected surjective digraph (CSD) map f from N to N' where N' is generally a much simpler network than N. A set W of vertices in N is "restricted" if there is at most one vertex from which there is an arc into W, thus yielding a bottleneck in N. A CSD map f from N to N' is "restricted" if the inverse image of each vertex in N' is restricted in N. This paper describes a uniform procedure that, given a network N, yields a well-defined tree called the "restricted tree" of N. There is a restricted CSD map from N to the restricted tree. Many relationships in the tree can be proved to appear also in N.Comment: 17 pages, 2 figure

    Finding genomic differences from whole-genome assemblies using SyRI

    Get PDF
    Genomic differences can range from single nucleotide differences (SNPs) to large complex structural rearrangements. Current methods typically can annotate sequence differences like SNPs and large indels accurately but do not unravel the full complexity of structural rearrangements that include inversions, translocations, and duplications. Structural rearrangements involve changes in location, orientation, or copy-number between highly similar sequences and have been reported to be associated with several biological differences between organisms. However, they are still scantly studied with sequencing technologies as it is still challenging to identify them accurately. Here I present SyRI, a novel computational method for genome-wide identification of structural differences using the pairwise comparison of whole-genome chromosome-level assemblies. SyRI uses a unique approach where it first identifies all syntenic (structurally conserved) regions between two genomes. Since all non-syntenic regions are structural rearrangements by definition, this transforms the difficult problem of rearrangement identification to a comparatively easier problem of rearrangement classification. SyRI analyses the location, orientation, and copy-number of alignments between rearranged regions and selects alignments that best represent the putative rearrangements and result in the highest total alignment score between the genomes. Next, SyRI searches for sequence differences that are distinguished for residing in syntenic or rearranged regions. This distinction is important, as rearranged regions (and sequence differences within them) do not follow Mendelian Law of Segregation and are therefore inherited differently compared to syntenic regions. Using SyRI, I successfully identified rearrangements in human, A. thaliana, yeast, fruit fly, and maize genomes. Further, I also experimentally validated 92% (108/117) of the predicted translocations in A. thaliana using a genetic approach

    A Note on Encodings of Phylogenetic Networks of Bounded Level

    Full text link
    Driven by the need for better models that allow one to shed light into the question how life's diversity has evolved, phylogenetic networks have now joined phylogenetic trees in the center of phylogenetics research. Like phylogenetic trees, such networks canonically induce collections of phylogenetic trees, clusters, and triplets, respectively. Thus it is not surprising that many network approaches aim to reconstruct a phylogenetic network from such collections. Related to the well-studied perfect phylogeny problem, the following question is of fundamental importance in this context: When does one of the above collections encode (i.e. uniquely describe) the network that induces it? In this note, we present a complete answer to this question for the special case of a level-1 (phylogenetic) network by characterizing those level-1 networks for which an encoding in terms of one (or equivalently all) of the above collections exists. Given that this type of network forms the first layer of the rich hierarchy of level-k networks, k a non-negative integer, it is natural to wonder whether our arguments could be extended to members of that hierarchy for higher values for k. By giving examples, we show that this is not the case

    Kernelizations for the hybridization number problem on multiple nonbinary trees

    Get PDF
    Given a finite set XX, a collection T\mathcal{T} of rooted phylogenetic trees on XX and an integer kk, the Hybridization Number problem asks if there exists a phylogenetic network on XX that displays all trees from T\mathcal{T} and has reticulation number at most kk. We show two kernelization algorithms for Hybridization Number, with kernel sizes 4k(5k)t4k(5k)^t and 20k2(Δ+1)20k^2(\Delta^+-1) respectively, with tt the number of input trees and Δ+\Delta^+ their maximum outdegree. Experiments on simulated data demonstrate the practical relevance of these kernelization algorithms. In addition, we present an nf(k)tn^{f(k)}t-time algorithm, with n=Xn=|X| and ff some computable function of kk

    Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN) that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge.</p> <p>Results</p> <p>We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC) devoted to BN structure learning.</p> <p>Conclusion</p> <p>We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.</p
    corecore