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Abstract Suppose N is a phylogenetic network indicating a complicated relationship
among individuals and taxa. Often of interest is a much simpler network, for example,
a species tree T , that summarizes the most fundamental relationships. The meaning
of a species tree is made more complicated by the recent discovery of the importance
of hybridizations and lateral gene transfers. Hence, it is desirable to describe uniform
well-defined procedures that yield a tree given a network N .

A useful tool toward this end is a connected surjective digraph (CSD) map φ :
N → N ′ where N ′ is generally a much simpler network than N . A set W of vertices
in N is “restricted” if there is at most one vertex u /∈ W from which there is an arc
into W , thus yielding a bottleneck in N . A CSD map φ : N → N ′ is “restricted”
if the inverse image of each vertex in N ′ is restricted in N . This paper describes
a uniform procedure that, given a network N , yields a well-defined tree called the
“restricted tree” of N . There is a restricted CSD map from N to the restricted tree.
Many relationships in the tree can be proved to appear also in N .

Keywords Digraph · Network · Tree · Connected · Hybrid · Phylogeny ·
Homomorphism · Restricted · Phylogenetic network

1 Introduction

Since Darwin, phylogenetic trees have been utilized to display the evolutionary rela-
tionships among taxa. Extant taxa correspond to the leaves of the trees. In principle,
the trees are directed in the direction of increasing time, and there is a single root
indicating the common ancestry of all the taxa in question.
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The underlying reality is often a much more complicated network than a tree. If
every vertex corresponds to an individual and the species are sexually reproducing,
then the underlying graph has vast numbers of vertices, each with indegree 2. This
underlying reality is too complicated to reconstruct. The species phylogenetic tree is
a dramatic simplification which summarizes the underlying reality.

More recently, events such as hybridization and lateral gene transfer have been
recognized increasingly to be relevant (Doolittle and Bapteste 2007; Dagan et al.
2008). Such possibilities have called into question the adequacy of a phylogenetic
species tree as a tool. Coalescence methods (Rosenberg and Tao 2008; Degnan and
Rosenberg 2006) have modeled relationships between species trees and gene trees
making use of a presumed network of the underlying reality. Moreover, specific
biological networks have been proposed for certain systems (Dagan et al. 2008;
Jin et al. 2007).

Once we start to consider networks more general than trees, we must be concerned
about the assumptions that can be made about these networks. There are astronomi-
cally more networks than even the large number of trees with a given leaf set. Hence,
it becomes important to narrow the collection in a useful manner. General frameworks
for networks are discussed in Bandelt and Dress (1992), Baroni et al. (2004), Moret
et al. (2004), Morrison (2009), and Nakhleh et al. (2004). Typically, these frameworks
model phylogenies by acyclic rooted directed graphs.

Particular kinds of networks have been studied in various papers. Wang et al.
(2001) and Gusfield et al. (2004) study “galled trees” in which all recombination
events are associated with node-disjoint recombination cycles. van Iersel et al. (2009)
generalized galled trees to “level-k” networks. Baroni et al. (2004) introduced the idea
of a “regular” network, which coincides with its cover digraph. Cardona et al. (2009)
discussed “tree-child” networks, in which every vertex not a leaf has a child that is
not a reticulation vertex. Moret et al. (2004) define a reduction R(N) of a network N

of use in analyzing displayed trees.
The possibilities of very complicated networks raise anew the question of the re-

lationship between the hugely complex underlying reality and the phylogenetic trees
and networks which simplify and summarize possible relationships.

Dress et al. (2010) give several abstract constructions of manners in which a very
general network can give rise to trees, or, more generally, hierarchies. For example,
they define notions of tight clusters and strict clusters and show that these produce
trees or hierarchies. Both notions identify a kind of bottleneck in the underlying net-
work and produce trees.

In Willson (2010), the current author described a general approach giving relation-
ships between a complicated underlying network N and a much simpler network N ′,
both with the same leaf set X. For example, N might be the largely unknown directed
graph showing the underlying reality while N ′ might be the species tree. The basic
tool is a connected surjective digraph map or, more briefly, a CSD map φ from N

to N ′. The idea is that every vertex v of N is taken to a vertex φ(v) of N ′ in such a
manner that the following hold:

(a) If (u, v) is an arc of N , then either φ(u) = φ(v) or else (φ(u),φ(v)) is an arc
of N ′.

(b) The map is surjective both on vertices of N ′ and on arcs of N ′.
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Fig. 1 Two X-networks N and N ′ with X = {1,2,3,4,5,6,7,8,9} and N ′ = ResTr(N). There is a CSD
map from N to N ′

(c) For each vertex v′ of N ′, the set of vertices of N mapping to v′ forms a connected
set.

Details are given in Sect. 2.
Figure 1 displays two X-networks N and N ′. There is a CSD map φ : N → N ′

which takes every vertex of N to the vertex of N ′ with the same name except that 12,
13, 14, 15, 16, 17, and 18 are all taken to R′(16). In this example, N ′ = ResTr(N)

where ResTr(N) is constructed from N by a specific procedure described in this
paper.

Many properties of CSD maps are given in Willson (2010). While (a) is very
similar to the notion of a homomorphism of digraphs (Hahn and Tardif 1997; Hell
and Nešetřil 2004), the essential new condition is (c). Without (c), knowledge of N ′
gives very little information about N ; the notion without (c) is too general. With (c),
the notion is much more rigid, and information about N ′ implies structure in N . For
example, if N ′ is a binary tree and φ : N → N ′ is a CSD map, then there is a wired
lift of N ′ into N , showing that as an undirected network N ′ embeds in N . If, instead,
φ : N → N ′ satisfied merely (a) and (b), then when N ′ is a binary tree, N could still
be a star tree. Further details are given in Sect. 2 and Willson (2010).

The cluster of a vertex v in a network N is the set of leaves which can be
reached by directed paths starting at v. A network N is successively cluster-distinct
if whenever (u, v) is an arc, then u and v have distinct clusters. In Willson (2010),
I gave a construction, given any network N , of a successively cluster-distinct network
ClDis(N). I showed that there is a CSD map φ : N → ClDis(N), and moreover that φ

had a certain “universal” property. I argued that it was therefore reasonable to restrict
one’s attention to networks that were successively cluster-distinct.

In this paper, I elaborate further. Given a network N , I describe a general method
to construct a restricted tree denoted ResTr(N) such that there is always a CSD map
φ : N → ResTr(N) with interesting properties. Figure 1 shows a particular N and
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ResTr(N). Note that ResTr(N) is indeed a tree. The construction will be described in
Sect. 3 and details for this particular example will be given in Sect. 4.

In some ways, the procedure resembles that given in Dress et al. (2010) of tight
clusters in that it detects bottlenecks of a certain sort. The construction differs, how-
ever, in that it always yields a CSD map φ : N → ResTr(N); there are examples in
which the construction in Dress et al. (2010) lacks this property.

Another related construction of a tree from a network is given in Proposition 1
of Baroni et al. (2006), consisting of the rooted tree whose clusters consist of X, the
singleton leaf sets, and the clusters of all vertices not on any undirected cycle. The tree
of Baroni et al. (2006) will often have less resolution than ResTr(N). Indeed, the tree
of Baroni et al. (2006) for N in Fig. 1 will not contain the cluster {2,3,4,5,6,7,8,9}
present in ResTr(N). It can be shown that, for any N , each cluster from the tree
of Baroni et al. (2006) for N is a cluster of ResTr(N) as well. Thus, the present
construction gives a procedure for identifying which clusters of vertices on some
undirected cycle can be included in addition to the clusters used in Baroni et al.
(2006).

ResTr(N) will typically have more resolution when the network N is already suc-
cessively cluster-distinct.

The heart of the construction is the notion of a restricted set B , given in Sect. 3.
Such a set B is a set of vertices in N such that there is at most one vertex u for which
there is any arc (u,w) with u /∈ B but w ∈ B . Such a vertex identifies a bottleneck in
the network N . It is shown in Sect. 3 how to construct the smallest restricted set R(v)

containing a given vertex v. These sets are utilized to construct ResTr(N).
Section 4 focuses on properties of restricted CSD maps—those CSD maps for

which the inverse image of each point is a restricted set. It is shown that any such map
defined on N factors through ResTr(N), making ResTr(N) “universal” for such maps.
Thus, ResTr(N) not only permits wired lifts into the network N , but any restricted
map factors through ResTr(N). Hence, ResTr(N) is an invariantly defined tree with
interesting universal properties.

2 Fundamental Concepts

A directed graph or digraph N = (V ,A) consists of a finite set V of vertices and a
finite set A of arcs, each consisting of an ordered pair (u, v) where u ∈ V , v ∈ V ,
u �= v. Sometimes we write V (N) for V . We interpret (u, v) as an arrow from u to v

and say that the arc starts at u and ends at v. There are no multiple arcs and no loops.
If (u, v) ∈ A, we say that u is a parent of v and v is a child of u. A directed path is
a sequence u0, u1, . . . , uk of vertices such that for i = 1, . . . , k, (ui−1, ui) ∈ A. The
path is trivial if k = 0. Write u ≤ v if there is a directed path starting at u and ending
at v. Write u < v if u ≤ v and u �= v. The digraph is acyclic if there is no nontrivial
directed path starting and ending at the same point. If the digraph is acyclic, it is easy
to see that ≤ is a partial order on V .

The digraph (V ,A) has root r if there exists r ∈ V such that for all v ∈ V , r ≤ v.
The graph is rooted if it has a root.

The indegree of vertex u is the number of v ∈ V such that (v,u) ∈ A. The outde-
gree of u is the number of v ∈ V such that (u, v) ∈ A. If (V ,A) is rooted at r then
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r is the only vertex of indegree 0. A leaf is a vertex of outdegree 0. A normal (or
tree-child) vertex is a vertex of indegree 1. A hybrid vertex (or recombination vertex
or reticulation node) is a vertex of indegree at least 2.

Let X denote a finite set. Typically in phylogeny, X is a collection of species. In
this paper, an X-network N = (V ,A, r,X) is a digraph (V ,A) with root r such that

(1) there is a one-to-one map φ : X → V such that the image of φ is the set of all
leaves of (V ,A), and

(2) for every v ∈ V there is a leaf u and a directed path from v to u.

Thus, the set of leaves of N may be identified with the set X; every vertex is ancestral
to a leaf. We do not necessarily assume that an X-network is acyclic. If, however, the
X-network N is acyclic, note that (2) is immediate.

In biology, most X-networks are acyclic. The set X provides a context for N ,
giving a hypothesized relationship among the members of X. For convenience, we
will write x for the leaf φ(x).

An X-tree is an X-network such that the underlying digraph is a rooted tree.
If N = (V ,A, r,X) is an X-network and v ∈ V , the cluster of v, denoted cl(v), is

{x ∈ X : v ≤ x}. We say that N is successively cluster-distinct provided that, when-
ever (u, v) is an arc, then cl(u) �= cl(v).

Let N = (V ,A, r,X) and N ′ = (V ′,A′, r ′,X) be X-networks. An X-isomorphism
ψ : N → N ′ is a map ψ : V → V ′ such that

(1) ψ : V → V ′ is one-to-one and onto,
(2) ψ(r) = r ′,
(3) for each x ∈ X, ψ(x) = x,
(4) (ψ(u),ψ(v)) is an arc of N ′ iff (u, v) is an arc of N .

We say N and N ′ are isomorphic if there is an X-isomorphism ψ : N → N ′.
A graph (or, for emphasis, an undirected graph) (V ,E) consists of a finite set

V of vertices and a finite set E of edges, each consisting of a subset {v1, v2} where
v1 and v2 are two distinct members of V . Thus, an edge has no direction, while an
arc has a direction. If G = (V ,E) is a graph and W is a subset of V , the induced
subgraph G[W ] is the graph (W,E[W ]) where the edge set E[W ] is the collection
of all {v1, v2} in E such that v1 ∈ W and v2 ∈ W . Thus, G[W ] contains all edges both
of whose endpoints are in W .

A graph G = (V ,E) is connected if, given any two distinct v and w in V there
exists a sequence v = v0, v1, v2, . . . , vk = w of vertices such that for i = 0, . . . ,

k − 1, {vi, vi+1} ∈ E. A subset W of V is connected if the induced subgraph G[W ]
is connected.

Given a digraph G = (V ,A) define Und(G) = (V ,E) where E = {{u,v}: there
is an arc (u, v) ∈ A}. Then Und(G) is an undirected graph with the same vertex set
as G and with edges obtained by ignoring the directions of arcs. A subset W of V

is connected if Und(G)[W ] is connected. Thus, a connected subset of G is defined
ignoring the directions of arcs.

Let N = (V ,A, r,X) and N ′ = (V ′,A′, r ′,X) be X-networks whose leaf sets are
identified with the same set X. An X-digraph map f : N → N ′ is a map f : V → V ′
such that
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(a) f (r) = r ′,
(b) for all x ∈ X, f (x) = x, and
(c) if (u, v) is an arc of N , then either f (u) = f (v) or else (f (u), f (v)) is an arc

of N ′.

Call f connected if for each v′ ∈ V ′, f −1(v′) is a connected subset of N , i.e., if
the induced subgraph Und(N)[f −1(v′)] is connected. Call f surjective if for each
v′ ∈ V , f −1(v′) is nonempty and for each arc (a, b) of N ′ there exist vertices u and
v of N such that (u, v) is an arc of N , f (u) = a, and f (v) = b. The kernel of f is
the partition {{f −1(v′)} : v′ ∈ V ′} of V .

We are interested primarily in X-digraph maps that are both connected and sur-
jective. They will be called connected surjective digraph maps or CSD maps. Many
of their properties are analogous to properties of homomorphisms (Hell and Nešetřil
2004) but properties involving the leaf set X and connectivity require special atten-
tion.

The following basic results are in the paper (Willson 2010).
Let N = (V ,A, r,X) be an X-network. If ∼ is an equivalence relation on V ,

denote by [v] the equivalence class of the vertex v. An equivalence relation ∼ on V

is called leaf-preserving provided that no two distinct leaves are equivalent, and, in
addition, for every x ∈ X whenever u ∈ [x] and (u, v) is an arc, then v ∈ [x].

Let N = (V ,A, r,X) be an X-network. Suppose ∼ is an equivalence relation
on V . Let P = {[v] : v ∈ V } be the partition of V into equivalence classes. Define
the quotient digraph N ′ by N ′ = (V ′,A′, r ′,X) where

(i) V ′ is the set of equivalence classes [v].
(ii) r ′ = [r].

(iii) The member x ∈ X corresponds to [x]; i.e., the identification is given by φ′ :
X → V ′ by φ′(x) = [φ(x)].

(iv) Let [u] and [v] be two equivalence classes. There is an arc ([u], [v]) ∈ A′ iff
[u] �= [v] and there exists u′ ∈ [u] and v′ ∈ [v] such that (u′, v′) ∈ A′.

Alternative notations for N ′ will be N/ ∼ or N/P .

Theorem 2.1 Let N = (V ,A, r,X) be an X-network. Suppose ∼ is a leaf-preserving
equivalence relation on V . Let N ′ = N/ ∼ = (V ′,A′, r ′,X) be the quotient digraph.
Then

(1) N ′ is an X-network.
(2) The natural map φ : N → N ′ given by φ(u) = [u] is a surjective X-digraph map

with kernel the set of equivalence classes under ∼.
(3) If each equivalence class [u] is connected in N , then φ is connected.

Theorem 2.2 Let N = (V ,A, r,X) and N ′ = (V ′,A′, r ′,X) be X-networks. Sup-
pose f : N → N ′ is a surjective X-digraph map. Define the relation ∼ on V by
u ∼ v iff f (u) = f (v). Then ∼ is a leaf-preserving equivalence relation and the
equivalence classes are [u] = f −1(f (u)). Moreover, the quotient digraph N/ ∼ is
isomorphic with N ′ via the map φ : N/ ∼ → N ′ given by φ([u]) = f (u).
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Theorem 2.3 Let N and N ′ be X-networks. Let f : N → N ′ and g : N ′ → N ′′ be
X-digraph maps.

(a) The composition g ◦ f : N → N ′′ is an X-digraph map.
(b) If f and g are surjective, then g ◦ f is surjective.
(c) If f and g are connected and surjective, then g ◦ f is connected and surjective.

Suppose N = (V ,A, r,X) is an X-network. A partition Q of V is subordinate to
a partition P of V provided, for each A ∈ Q, there exists B ∈ P such that A ⊆ B .

Theorem 2.4 Let N = (V ,A, r,X) and N ′ = (V ′,A′, r ′,X) be X-networks. Let f :
N → N ′ be a surjective X-digraph map with kernel P = {f −1(v) : v ∈ V ′}. Suppose
Q is a partition of V that is subordinate to P .

(1) There exist surjective X-digraph maps g : N → N/Q and h : N/Q → N ′ such
that f = h ◦ g.

(2) If in addition f is connected and each member of Q is connected, then both h

and g are connected.

Let N = (V ,A, r,X) and N ′ = (V ′,A′, r ′,X) be X-networks. Suppose f : N →
N ′ is a surjective digraph map. A wired lift of N ′ is a subgraph M = (W,E) of
Und(N) such that the following hold:

(1) For each arc (u′, v′) of N ′ there is exactly one arc (u, v) of N such f (u) = u′,
f (v) = v′, and {u,v} is an edge of M . The set of all edges {u,v} so obtained
will be denoted E1 and the set of all vertices which occur in any of the arcs
(u, v) ∈ E1 will be denoted V ′

1. Let V1 = V ′
1 ∪ X.

(2) Every edge {a, b} ∈ E either lies in E1 or else satisfies f (a) = f (b).
(3) For each vertex u′ of N ′, let V (u′) = {w ∈ V1 : f (w) = u′}. The induced sub-

graph M[f −1(u′) ∩ W ] is a tree with leafset contained in V (u′).

We call E1 the set of nondegenerate edges of M , since the image under f of
each such edge is an edge of N ′, not just a single vertex. Note that W ⊆ V and
E ⊆ E(Und(N)).

Intuitively, M is a subgraph of Und(N) that is a resolution of Und(N ′) in that for
each vertex v′ of N ′, [f −1(v′)] ∩ W consists of the vertices of a tree, not necessarily
a single point, all of whose vertices map to v′. The name “lift” suggests that N ′ is
being lifted into the domain of f .

In Fig. 1, a wired lift of ResTr(N) consists of all of N except for the arc (11,18).
Another wired lift consists of all of N except for the arc (11,12).

The following theorem gives sufficient conditions for a wired lift to exist given
any choice of E1. The essential property is that f be connected.

Theorem 2.5 Let N = (V ,A, r,X) and N ′ = (V ′,A′, r ′,X) be X-networks. Sup-
pose f : N → N ′ is a CSD map. For each arc (u′, v′) of N ′ choose an arc (u, v) of
N such that φ(u) = u′, φ(v) = v′. Let E1 denote the set of edges {u,v} of Und(N) so
obtained. Then f has a wired lift M for which E1 is the set of nondegenerate edges.
Each such wired lift M is a resolution of Und(N ′).
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3 Restricted Sets

Let N = (V ,A, r,X) be a rooted acyclic X-network. We seek natural methods to
assign standard networks of various sorts to N . For example, even if N has many
hybridization events, we might be able to assign some standard tree that might corre-
spond to some consensus species tree.

This section proposes one such construction, which will be denoted ResTr(N).
An example is given in Sect. 4. ResTr(N) will have the form N/ ∼ for a certain
equivalence relation ∼ on the vertices of N . Because of the construction, there will
be a CSD map f : N → ResTr(N). Consequently, by Theorem 2.5, ResTr(N) will
have a wired lift into N .

In this section, we shall assume that N = (V ,A, r,X) is a rooted acyclic network
with leaf set X. We shall sometimes assume that every leaf is tree-child (with inde-
gree 1).

The construction involves identifying subsets of V here called “restricted subsets.”
A set B of vertices is called closed if, whenever b1 and b2 are in B and b1 < b2,

then every vertex v such that b1 < v < b2 also lies in B .
A nonempty set B of vertices not containing r has restricted entry or is restricted

if there exists a unique vertex w′ such that

(1) w′ /∈ B ,
(2) for some b ∈ B there is an arc (w′, b),
(3) whenever (w,b) is an arc, w /∈ B , b ∈ B , then w = w′.

We call this unique vertex w′ the anchor of B and write Anc(B) = w′. A set B of
vertices containing r has restricted entry or is restricted if there is no arc (w,b) with
b ∈ B and w /∈ B .

Lemma 3.1 A restricted set B is closed.

Proof Suppose first that B does not contain r . Suppose b1 < v < b2 with b1 ∈ B ,
b2 ∈ B , v /∈ B . We may assume (v, b2) is an arc, whence v = Anc(B). But since r is
the root, there is a directed path P from r to b1; since r /∈ B and b1 ∈ B , Anc(B) lies
on P . It follows Anc(B) < b1 < Anc(B), so that N has a directed cycle, contradicting
that N is acyclic.

To see that B is closed if B contains r , suppose b1 < v < b2 with b1 ∈ B , b2 ∈ B ,
v /∈ B . We may assume (v, b2) is an arc, contradicting that B is restricted. �

Lemma 3.2 Let N = (V ,A, r,X) be an acyclic X-network. Suppose B is restricted
and r /∈ B . For every b ∈ B there is a directed path from Anc(B) to b such that all
vertices on the path except Anc(B) itself lie in B .

Proof Choose a path from r to b, say r = u0, u1, . . . , uk = b. Since r /∈ B and uk ∈ B ,
there exists i such that ui /∈ B , ui+1 ∈ B . Since B has an anchor, it follows ui =
Anc(B). Since ui+1 ∈ B and uk ∈ B , every vertex on the path from ui+1 to uk lies in
B because B is closed by Lemma 3.1. �
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Theorem 3.3 Let N = (V ,A, r,X) be an acyclic X-network. Suppose B and C are
restricted subsets and B ∩ C is nonempty. Then B ∪ C is restricted.

Proof Assume w ∈ B ∩ C. We prove the result via three cases.
Case 1. Suppose r is in neither B nor C. Then both B and C have anchors. I claim

first that either Anc(B) ∈ C or Anc(C) ∈ B or Anc(B) = Anc(C). To see this, suppose
Anc(B) /∈ C. Since w ∈ B by Lemma 3.2 there is a directed path P from Anc(B) to w

such that all vertices after the first lie in B . Since Anc(B) /∈ C, there is a vertex v on
the path P which is not in C but whose child on the path lies in C. Hence v = Anc(C).
It follows that either Anc(C) = Anc(B) or else Anc(C) ∈ B . This proves the claim.

Now there are three subcases:
Subcase (1a). Suppose Anc(B) ∈ C.

To show that B ∪ C is restricted, since r /∈ B ∪ C, it suffices to show that Anc(C)

is an anchor for B ∪ C. To see this, suppose (u, d) is an arc with d ∈ B ∪ C and
u /∈ B ∪ C. If d ∈ C, then u = Anc(C). If d ∈ B , then u = Anc(B), but this implies
u ∈ C, contradicting that u /∈ B ∪ C; so this latter case cannot occur.

Subcase (1b) Suppose Anc(C) ∈ B . Then Anc(B) is an anchor for B ∪ C and
B ∪ C is restricted by arguments like those in subcase (1a).

Subcase (1c) Suppose Anc(B) = Anc(C). I claim Anc(B) is an anchor for B ∪ C.
To see this, suppose (u, d) is an arc with d ∈ B ∪ C and u /∈ B ∪ C. If d ∈ B then
u = Anc(B). If d ∈ C then u = Anc(C) = Anc(B).

Hence the result is true in Case 1.
Case 2. Suppose B has an anchor but r ∈ C. I claim B ∪ C is restricted. Since

r ∈ B ∪ C, we suppose (u, d) is an arc with u /∈ B ∪ C but d ∈ B ∪ C, and we derive
a contradiction. Since C is restricted and contains r , it follows d /∈ C. Hence d ∈ B

and u = Anc(B).
Since B has an anchor and w ∈ B , by Lemma 3.2 there is a path from Anc(B) to w

such that all vertices after the first lie in B . Since r is the root, we obtain a path from
r to Anc(B) and then to w. Since w ∈ C and C is closed by Lemma 3.1, it follows
Anc(B) ∈ C. This contradicts that Anc(B) = u /∈ B ∪ C. Hence the result is true in
Case 2.

Case 3. Suppose r ∈ B and r ∈ C. I claim B ∪ C is restricted. Since r ∈ B ∪ C we
suppose (u, d) is an arc with u /∈ B ∪C but d ∈ B ∪C, and we derive a contradiction.
Note that we cannot have d ∈ B since B is restricted, and we cannot have d ∈ C since
C is restricted. Hence the situation is not possible. �

Another way to combine restricted sets into a new restricted set is given in the next
result:

Lemma 3.4 Suppose B and C are restricted sets and there is an arc (b, c) with b ∈ B

and c ∈ C. Then B ∪ C is restricted.

Proof If B and C intersect, then the result follows from Theorem 3.3. So we may
assume that B and C are disjoint. Since b /∈ C and C is restricted, it follows that
b = Anc(C). Now suppose that (u, v) is an arc with v ∈ B ∪ C and u /∈ B ∪ C. If
v ∈ C, then u = Anc(C), so u ∈ B , a contradiction. Hence v ∈ B , so r /∈ B and
u = Anc(B). Since u is uniquely determined, B ∪ C is restricted. �
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Now, whenever v ∈ V , we construct an interesting restricted set denoted R(v). It
will turn out that R(v) is the smallest restricted set that contains v.

The basic construction is the following:

Algorithm Smallest restricted set

Input. An acyclic X-network N = (V ,A, r,X) and v ∈ V .
Output. A subset R(v) of V .
Procedure: Define a sequence of sets Ri of vertices as follows:

(1) Let R0 = {v}.
(2) Recursively, given Ri perform the following: Suppose there exist u /∈ Ri and

w ∈ Ri with arc (u,w). Let Ri+1 := Ri ∪ {u} if either of the following holds:
(a) there exists w′ ∈ Ri such that u � w′;
(b) there exist u′ ∈ V − Ri , v′ ∈ Ri , u′ �= u, and arc (u′, v′) such that u � u′.
(3) Iterate the procedure until for some m, Rm has been constructed and there

are no further changes possible according to (2). Define R(v) = Rm.

An example of the algorithm is given in Sect. 4.
In step (2), if there are two vertices u and u′ not in Ri , u �= u′, and arcs (u, v′),

(u′, v′′) with v′ and v′′ in Ri , then we cannot have both u ≤ u′ and u′ ≤ u since that
would force u = u′. Hence at least one of u and u′ will be adjoined to Ri . It is possible
that both u and u′ will be adjoined to Ri in separate steps.

It is easy to see that R(v) is well-defined. This assertion means that when the algo-
rithm terminates, the result R(v) is independent of the order in which the operations
were carried out as long as they were legitimate when performed.

Here I outline the proof. Suppose at a certain time we have u1, u2 not in Ri ,
v1 ∈ Ri , v2 ∈ Ri , u1 �= u2, and arcs (u1, v1), (u2, v2). If there exists w ∈ Ri and
u1 � w, we could adjoin u1. Alternatively if we are able to adjoin u2 first and then
consider u1, it is still true that w ∈ Ri and u1 � w, so we can still adjoin u1. Another
possible scenario is that u1 � u2 and u2 � u1, so either could be adjoined first. Then
we may adjoin u1 and at a later stage u2 still meets the criterion for adjoining u2
since now w′ = u1 applies for (2a). Other cases are handled similarly.

Note that if u has indegree 1, then R(u) = {u} since no operation of type (2) can
be carried out.

Theorem 3.5 Let N = (V ,A, r,X) be an acyclic X-network. For each v ∈ V , R(v)

is restricted.

Proof Suppose first that r ∈ R(v). We must show that there is no vertex w, w /∈
R(v), such that there is an arc (w,b) with b ∈ R(v). Otherwise, if such w exists,
then there is a path from r to w then to b with w /∈ R(v). Note that R(v) = Rm for
some m. Moreover w � r since this can happen only when w = r and w /∈ Rm but
r ∈ Rm. Hence step (2a) could be used to define Rm+1 := Rm ∪ {w}, contrary to the
assumption that no more operations of type (2) can be performed.

Now suppose that r /∈ R(v). We show that R(v) has an anchor. Since r /∈ R(v)

there is a path from r to some member b ∈ R(v) and a vertex w on the path which is
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not in R(v) but such that the next vertex on the path lies in R(v). This proves there
exists w /∈ R(v) and an arc (w,b) with b ∈ R(v). To have an anchor, this vertex w

must be unique, in which case R(v) is restricted. Suppose there were two vertices w1
and w2 with arcs (w1, b1) and (w2, b2), w1 �= w2, w1 /∈ R(v), w2 /∈ R(v), b1 ∈ R(v),
b2 ∈ R(v). Note that R(v) = Rm for some m. If w1 � w2 then step (2b) could be used
to enlarge Rm by adjoining w1, and similarly if w2 � w1 then Rm could be enlarged
by adjoining w2. Hence w1 ≤ w2 and w2 ≤ w1, implying w1 = w2. This proves that
the vertex w is unique, so R(v) is restricted. �

The sets R(v) have other nice properties. The next result shows that R(v) is the
smallest restricted set that contains v.

Theorem 3.6 Let N = (V ,A, r,X) be an acyclic X-network. Suppose B is a re-
stricted set and w ∈ B . Then R(w) ⊆ B .

Proof Let the sequence Ri be used to compute R(w). Initially R0 = {w} ⊆ B . The
proof will be by induction. We will assume Ri ⊆ B but the algorithm does not termi-
nate with Ri . We will prove Ri+1 ⊆ B . It is immediate that R0 ⊆ B .

Note that Ri+1 arises from Ri . Hence there exist u /∈ Ri , v ∈ Ri , and arc (u, v)

such that u is adjoined to Ri in one of two ways. We must show that u ∈ B .
Suppose (2a) applies. Hence there exists w′ ∈ Ri such that u � w′; we show u ∈ B .

If not, then since v ∈ B and B is restricted, it follows u = Anc(B). Since w′ ∈ Ri , we
have w′ ∈ B since Ri ⊆ B , whence by Lemma 3.2, u ≤ w′, a contradiction. Hence
u ∈ B so Ri+1 ⊆ B .

Suppose instead (2b) applies. Hence there exist u′ /∈ Ri , u �= u′, v′ ∈ Ri , and arc
(u′, v′), such that u � u′. We show u ∈ B . If not, then u = Anc(B) since v ∈ B .
We cannot have u′ /∈ B , since then u′ = Anc(B) = u. Hence u′ ∈ B , whence by
Lemma 3.2, u = Anc(B) ≤ u′, a contradiction. This proves u ∈ B so Ri+1 ⊆ B . �

Corollary 3.7 If u ∈ R(v), then R(u) ⊆ R(v).

Proof By Theorem 3.5, R(v) is restricted. The result follows now from Theo-
rem 3.6. �

In fact, given any subset B of V , the algorithm computes the smallest restricted
set that contains B provided that we use R0 = B .

In general, it need not be the case that a restricted set B is connected. For example,
suppose that N is an X-tree and the leaves x and y form a cherry, so there are a vertex
u and arcs (u, x), (u, y) with no other arcs into x or y. Then {x, y} is restricted with
anchor u but is not connected. Consequently, the following result that each set R(v)

is connected is of interest.

Lemma 3.8 For v ∈ V , if w ∈ R(v), then there is a directed path in R(v) from w to
v. Moreover, R(v) is connected.

Proof We show by induction that the required properties hold for each Ri used to
define R(v). Initially R0 = {v} and the properties are immediate. Each operation (2a)
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or (2b) applied to Ri results in a connected set Ri+1 and adds a vertex with a path to
v inside Ri+1. �

Let Q = {R(v) : v ∈ V }. Note that Q does not need to be a partition of V , but each
v ∈ V lies in at least one member of Q.

We now make some modifications of Q to create a partition P of V . Roughly we
merge together members of Q that have nonempty intersection until no more such
merges can be performed.

More precisely, if R(v) and R(w) are in Q, define R(v) ∼ R(w) if R(v) ∩
R(w) �= ∅. Define R(v) ≈ R(w) iff there exist v = v0, v1, . . . , vk = w such that for
i = 0, . . . , k, R(vi) ∈ Q and for i = 0, . . . , k − 1, R(vi) ∼ R(vi+1). Then ≈ is an
equivalence relation. Define R′(v) = ∪{R(w) : R(v) ≈ R(w)}, so R′(v) is the union
of sets equivalent to R(v). Let P = {R′(v)} be the set of distinct sets R′(v). It is clear
that P is a partition of V . For v ∈ V , R′(v) is the member of P containing v.

Lemma 3.9 Each set R′(v) is a restricted subset of V and is connected.

Proof The fact that R′(v) is restricted follows from Theorems 3.3 and 3.5 by an
obvious induction. That R′(v) is connected follow from a similar induction, also
using Lemma 3.8. �

Let ResTr(N) = N/P be the quotient X-network. The map φ : N → ResTr(N)

given by φ(v) = R′(v) will be called the natural projection map.

Theorem 3.10 Suppose N = (V ,A, r,X) is a rooted acyclic network with leaf set
X such that every leaf has indegree 1. Then ResTr(N) is an X-network. The natural
projection map φ : N → ResTr(N) is a CSD map.

Proof For x ∈ X, since x has indegree 1, it follows R(x) = {x}. If v is not a leaf,
then each w ∈ R(v) satisfies w ≤ v by Lemma 3.8; it follows that a leaf x cannot
lie in R(v) when v is not a leaf. Hence R′(x) = {x}. By Theorem 2.1, it follows that
ResTr(N) is a rooted digraph with leaf set X. By Theorem 2.1 and Lemma 3.9, the
natural projection map φ : N → N ′ is a CSD map. �

It will turn out (Theorem 4.1) that ResTr(N) is an X-tree, and we will call it
the (standard) restricted tree of N . The corresponding kernel P will be called the
restricted tree kernel.

4 Restricted Maps

A CSD map f : N → N ′ with kernel Q is restricted if each member of Q is restricted.
Equivalently, f is restricted if for each vertex v′ of N ′, f −1(v′) is a restricted set.

The natural projection map φ : N → ResTr(N) is a restricted map since each
member of the kernel P is a restricted set.

Suppose a network N is successively cluster-distinct. Then a restricted set B is
a natural generalization of a taxon unit in a tree. Each restricted set B corresponds
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to a connected collection of taxa all deriving from the single taxon Anc(B). If N

is a tree, then each vertex is already restricted; the image of a restricted map thus
generalizes the notion of a tree. Note that Dress et al. (2010) argues that the extant
human population forms a tight cluster. If N is successively cluster-distinct, the same
argument would suggest that it forms a restricted set.

A restricted CSD map f : N → N ′ is universal (for restricted maps) provided
that given any restricted map g : N → N ′′ there is a unique restricted CSD map
h : N ′ → N ′′ such that g = h ◦ f .

We shall see below that the natural projection map φ : N → ResTr(N) is universal
for restricted maps.

The first result is that the image of a restricted map is always a tree.

Theorem 4.1 Let N = (V ,A, r,X) be an acyclic X-network and let T = (V ′,A′,
r ′,X) be an X-network. Assume f : N → T is a restricted CSD map. Then T is a
tree.

Proof We show that T has no hybrid vertices. Suppose otherwise, so we may assume
V ′ contains distinct vertices u′

1, u′
2, and u′

3 while A′ contains arcs (u′
1, u

′
3), (u′

2, u
′
3).

Let Bi = f −1(u′
i ). Since f is restricted, each Bi is a restricted set. Since f is a

CSD map, there exist u1 ∈ B1, w1 ∈ B3, u2 ∈ B2, and w2 ∈ B3 such that (u1,w1)

and (u2,w2) are arcs of N . Note u1 /∈ B3 and u2 /∈ B3. Since B3 is restricted, it
follows u1 = Anc(B3) and u2 = Anc(B3). Hence u1 = u2 so u′

1 = f (u1) = f (u2) =
u′

2, a contradiction. �

Corollary 4.2 Let N = (V ,A, r,X) be an acyclic X-network such that every leaf
has indegree 1. Then ResTr(N) is an X-tree.

Proof The natural projection map φ : N → ResTr(N) is a restricted CSD map. �

The next result shows that many relationships among leaves observed in ResTr(N)

are also present in N .

Corollary 4.3 Let N = (V ,A, r,X) be an acyclic X-network. There is a wired lift of
ResTr(N) into N .

Proof This follows from Theorem 2.5. �

Restricted maps have interesting functorial properties, as seen in the next results.

Lemma 4.4 Suppose N = (V ,A, r,X) and N ′ = (V ′,A′, r ′,X) are X-networks.
Suppose f : N → N ′ is restricted. If B ⊆ V ′ is restricted and connected, then
f −1(B) is restricted.

Proof Let B = {w′
1,w

′
2, . . . ,w

′
m} ⊆ V ′. Since B is connected, for some p there ex-

ist p arcs (w′
i1
,w′

j1
), . . . , (w′

ip
,w′

jp
) such the arcs connect the members of B . Now

each set f −1(w′
i ) is restricted. Since f is a CSD map for each k there is an arc
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(wik ,wjk
) with wik ∈ f −1(w′

ik
) and wjk

∈ f −1(w′
jk

). The result now follows from
Lemma 3.4. �

Theorem 4.5 Suppose N = (V ,A, r,X), N ′ = (V ′,A′, r ′,X), and N ′′ = (V ′′,A′′,
r ′′,X) are X-networks and f : N → N ′ and g : N ′ → N ′′ are restricted CSD maps.
Then the composition g ◦ f : N → N ′′ is restricted.

Proof Suppose v′′ ∈ V ′′. We must show that (g ◦ f )−1(v′′) = f −1(g−1(v′′)) is re-
stricted. Since g is a restricted CSD map, g−1(v′′) is restricted and connected. Since
f is restricted, f −1(g−1(v′′)) is also restricted by Lemma 4.4. �

We also have the following partial converse of Theorem 4.5:

Theorem 4.6 Suppose N = (V ,A, r,X), N ′ = (V ′,A′, r ′,X) , and N ′′ = (V ′′,A′′,
r ′′,X) are X-networks, and g : N → N ′ and h : N ′ → N ′′ are CSD maps. Let f =
h ◦ g. Suppose f is restricted. Then h is restricted.

Proof Let w′′ ∈ V ′′. We show that h−1(w′′) is restricted.
Case 1. Suppose r ′ ∈ h−1(w′′). We show there is no arc (u′, v′) with v′ ∈ h−1(w′′)

but u′ /∈ h−1(w′′). Otherwise, either h(u′) = h(v′) or (h(u′), h(v′)) ∈ A′′. In either
event, h(r ′) = w′′ = r ′′ since h is a CSD map. In the former case, h(u′) = h(v′) =
w′′ so u′ ∈ h−1(w′′), a contradiction. In the latter case, (h(u′), h(v′)) = (h(u′), r ′′),
which is impossible since the root r ′′ has indegree 0.

Case 2. Suppose r ′ /∈ h−1(w′′). Suppose there exist w′
1 ∈ h−1(w′′), w′

2 ∈ h−1(w′′),
u′ ∈ V ′, and v′ ∈ V ′ such that u′ /∈ h−1(w′′), v′ /∈ h−1(w′′), u′ �= v′, and there exist
arcs (u′,w′

1), (v′,w′
2). We obtain a contradiction.

Since g is surjective, there exist u, v, w1, w2 in V such that g(u) = u′, g(v) =
v′, g(w1) = w′

1, g(w2) = w′
2, and (u,w1) and (v,w2) are arcs of N . But f (w1) =

h(g(w1)) = h(w′
1) = w′′ and similarly f (w2) = w′′. Note u �= v since g(u) �= g(v).

Since f is restricted, f −1(w′′) is restricted, whence at least one of u and v lies in
f −1(w′′). Without loss of generality, we may assume v lies in f −1(w′′), so w′′ =
f (v) = h(g(v)) = h(v′), contradicting that v′ /∈ h−1(w′′). �

We can now prove the universality property of ResTr(N).

Theorem 4.7 Let φ : N → ResTr(N) be the natural projection map. Then φ is uni-
versal for restricted maps.

Proof Let g : N → T be a restricted map with kernel Q. Let P denote the kernel of φ.
Note that each member B ∈ P is restricted and each member C ∈ Q is restricted.

We use Theorem 2.4 to define a CSD map h : ResTr(N) → T such that g = h ◦ φ.
We first show that P is subordinate to Q. Let B ∈ P . We must show that there exists
a member C ∈ Q such that B ⊆ C.

For any vertex v of N, there exists C(v) ∈ Q such that v ∈ C(v) since Q is a
partition. Since C(v) is restricted, R(v) ⊆ C(v) by Theorem 3.6. If R(v′) intersects
R(v), then C(v) intersects C(v′), whence because Q is a partition it follows C(v) =
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C(v′); hence R(v) ∪ R(v′) ⊆ C(v). A simple induction then shows that the member
B ∈ P that contains v satisfies B ⊆ C(v). This shows that P is subordinate to Q, and
h exists by Theorem 2.4.

There remains to show that h is restricted. This follows from Theorem 4.6. �

For an example, consider again the network N shown in Fig. 1. We demonstrate
the construction of ResTr(N), also shown in Fig. 1. Let v be a vertex of N . If v /∈
{14,16}, then R(v) = {v} since v has indegree 1. To compute R(16), initially R0 =
{16}. Since (15,16) and (17,16) are arcs and 15 � 17, we can add 15 to R0 by
(2b) yielding R1 = {15,16}. Since 17 � 15, we can add 17 to R1 by (2a), yielding
R2 = {15,16,17}. Since (12,15) is an arc and 12 � 17, we can adjoin 12 by (2a),
so R3 = {12,15,16,17}. Since (18,17) is an arc and 18 � 12, we can adjoin 18 by
(2a), so R4 = {12,15,16,17,18}. Now the only arcs (u, v) with v ∈ R4 and u /∈ R4

are (11,12) and (11,18), so we cannot adjoin 11 using (2b). For all v ∈ R4, 11 ≤ v

so we cannot adjoin 11 by (2a). Hence, the algorithm terminates with R(16) = R4 =
{12,15,16,17,18}.

Similarly, R(14) = {13,14,15}. Since R(16) ∩ R(14) = {15} is nonempty,
R′(14) = R′(16) = R(14) ∪ R(16) = {12,13,14,15,16,17,18}. For all v /∈ R′(16),
R′(v) = R(v) = {v}. Now ResTr(N) is the quotient digraph.

As promised, ResTr(N) is a tree. Note that the resolution of the cluster {3,4} in
N is lost while that of {5,6} is preserved; this is because the hybrid vertex 16 had
outdegree 1 while the hybrid vertex 14 had outdegree 2. The natural projection map
φ takes φ(v) = v except that for v ∈ R′(16), φ(v) = R′(16).

To illustrate the universality of the map φ in this example, consider the map f :
N → T where Fig. 2 shows N and T in which each vertex v of N has been labelled
by the vertex f (v) of T in order to display the map f . One checks that f is restricted.
For example, f −1(a) is the set of vertices in N labeled a and is restricted. Then f

Fig. 2 A restricted map f : N → T for N as in Fig. 1 is given by the labeling of the vertices of N . The
map factors through ResTr(N)
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factors as f = g ◦ φ where g : ResTr(N) → T satisfies that g(R′(16)) = a = g(19),
g(11) = 10, g(20) = b, and for other vertices v of ResTr(N), g(v) = v.

It is interesting that the vertex 11 in ResTr(N) cannot be removed from ResTr(N)

by contracting the arc (11,R′(16)) and still retain universality. In the example of
Fig. 2, both 11 and 10 in ResTr(N) are mapped to 10 in T . But a simple modification
could yield an example in which 11 and 10 in ResTr(N) must go to distinct vertices
of the modified T .

The network ResTr(N) detects narrow bottlenecks in N . Perhaps it is most appro-
priate to apply to ClDis(N) (see Willson 2010) rather than to N itself, since large re-
gions in N of vertices all with the same cluster can become bottlenecks in ClDis(N).
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