31 research outputs found

    Resilience of an embedded architecture using hardware redundancy

    Get PDF
    In the last decade the dominance of the general computing systems market has being replaced by embedded systems with billions of units manufactured every year. Embedded systems appear in contexts where continuous operation is of utmost importance and failure can be profound. Nowadays, radiation poses a serious threat to the reliable operation of safety-critical systems. Fault avoidance techniques, such as radiation hardening, have been commonly used in space applications. However, these components are expensive, lag behind commercial components with regards to performance and do not provide 100% fault elimination. Without fault tolerant mechanisms, many of these faults can become errors at the application or system level, which in turn, can result in catastrophic failures. In this work we study the concepts of fault tolerance and dependability and extend these concepts providing our own definition of resilience. We analyse the physics of radiation-induced faults, the damage mechanisms of particles and the process that leads to computing failures. We provide extensive taxonomies of 1) existing fault tolerant techniques and of 2) the effects of radiation in state-of-the-art electronics, analysing and comparing their characteristics. We propose a detailed model of faults and provide a classification of the different types of faults at various levels. We introduce an algorithm of fault tolerance and define the system states and actions necessary to implement it. We introduce novel hardware and system software techniques that provide a more efficient combination of reliability, performance and power consumption than existing techniques. We propose a new element of the system called syndrome that is the core of a resilient architecture whose software and hardware can adapt to reliable and unreliable environments. We implement a software simulator and disassembler and introduce a testing framework in combination with ERA’s assembler and commercial hardware simulators

    Designing Flexible, Energy Efficient and Secure Wireless Solutions for the Internet of Things

    Full text link
    The Internet of Things (IoT) is an emerging concept where ubiquitous physical objects (things) consisting of sensor, transceiver, processing hardware and software are interconnected via the Internet. The information collected by individual IoT nodes is shared among other often heterogeneous devices and over the Internet. This dissertation presents flexible, energy efficient and secure wireless solutions in the IoT application domain. System design and architecture designs are discussed envisioning a near-future world where wireless communication among heterogeneous IoT devices are seamlessly enabled. Firstly, an energy-autonomous wireless communication system for ultra-small, ultra-low power IoT platforms is presented. To achieve orders of magnitude energy efficiency improvement, a comprehensive system-level framework that jointly optimizes various system parameters is developed. A new synchronization protocol and modulation schemes are specified for energy-scarce ultra-small IoT nodes. The dynamic link adaptation is proposed to guarantee the ultra-small node to always operate in the most energy efficiency mode, given an operating scenario. The outcome is a truly energy-optimized wireless communication system to enable various new applications such as implanted smart-dust devices. Secondly, a configurable Software Defined Radio (SDR) baseband processor is designed and shown to be an efficient platform on which to execute several IoT wireless standards. It is a custom SIMD execution model coupled with a scalar unit and several architectural optimizations: streaming registers, variable bitwidth, dedicated ALUs, and an optimized reduction network. Voltage scaling and clock gating are employed to further reduce the power, with a more than a 100% time margin reserved for reliable operation in the near-threshold region. Two upper bound systems are evaluated. A comprehensive power/area estimation indicates that the overhead of realizing SDR flexibility is insignificant. The benefit of baseband SDR is quantified and evaluated. To further augment the benefits of a flexible baseband solution and to address the security issue of IoT connectivity, a light-weight Galois Field (GF) processor is proposed. This processor enables both energy-efficient block coding and symmetric/asymmetric cryptography kernel processing for a wide range of GF sizes (2^m, m = 2, 3, ..., 233) and arbitrary irreducible polynomials. Program directed connections among primitive GF arithmetic units enable dynamically configured parallelism to efficiently perform either four-way SIMD GF operations, including multiplicative inverse, or a long bit-width GF product in a single cycle. This demonstrates the feasibility of a unified architecture to enable error correction coding flexibility and secure wireless communication in the low power IoT domain.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137164/1/yajchen_1.pd

    Fault tolerance core: a framework for application-aware reliability

    Get PDF
    As processor manufacturers keep pushing the limits of the transistor, the reliability of computer systems has become an increasing concern. Various fault tolerance techniques have been developed in an effort to provide reliable computing in the presence of faults. These approaches suffer from either a high resource cost or high performance overhead. This thesis presents a design for a Fault Tolerance Core (FTC) that uses configurable application-aware hardware modules for improving reliability. Application-aware fault tolerance is achieved by detecting perturbations in application execution through the monitoring of processor pipeline signals. This approach leverages hardware resources more efficiently than replication. The FTC achieves low overhead by placing fault tolerance hardware separately from the processing core, minimizing the processor data collection hardware, and by performing fault detection in the background. This thesis presents work that has been completed towards the achievement of a FTC. This work includes a hardware assisted incremental checkpoint, an application hang detector and a preliminary FTC framework for integrating these into a Leon3 microprocessor. All modules have been implemented and tested on a Leon3 synthesized atop a Stratix III FPGA running a Linux environment. A hardware fault injector capable of modifying 9 distinct processor pipeline signals has been implemented for performing validation experiments on the modules

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Dependable design for low-cost ultra-low-power processors

    Get PDF
    Emerging applications in the Internet of Things (IoT) domain, such as wearables, implantables, smart tags, and wireless sensor networks put severe power, cost, reliability, and security constraints on hardware system design. This dissertation focuses on the architecture and design of dependable ultra-low power computing systems. Specifically, it proposes architecture and design techniques that exploit the unique application and usage characteristics of future computing systems to deliver low power, while meeting the reliability and security constraints of these systems. First, this dissertation considers the challenge of achieving both low power and high reliability in SRAM memories. It proposes both an architectural technique to reduce the overheads of error correction and a technique that uses the nature of error correcting codes to allow lower voltage operation without sacrificing reliability. Next, this dissertation considers low power and low cost. By leveraging the fact that many IoT systems are embedded in nature and will run the same application for their entire lifetime, fine-grained usage characteristics of the hardware-software system can be determined at design time. This dissertation presents a novel hardware-software co-analysis based on symbolic simulation that can determine the possible states of the processor throughout any execution of a specific application. This enables power-gating where more gates are turned off for longer, bespoke processors customized to specific applications, and stricter determination of peak power bounds. Finally, this dissertation considers achieving secure IoT systems at low cost and power overhead. By leveraging the hardware-software co-analysis, this dissertation shows that gate-level information flow security guarantees can be provided without hardware overheads

    Contributions to the fault tolerance of soft-core processors implemented in SRAM-based FPGA Systems.

    Get PDF
    239 p.Gracias al desarrollo de las tecnologías de diseño y fabricación, los circuitos electrónicos han llegado a grandes niveles de integración. De esta forma, hoy en día es posible implementar completos y complejos sistemas dentro de un único dispositivo incorporando gran variedad de elementos como: procesadores, osciladores, lazos de seguimiento de fase (PLLs), interfaces, conversores ADC y DAC, módulos de memoria, etc. A este concepto de diseño se le denomina comúnmente SoC (System-on-Chip). Una de las plataformas para implementar estos sistemas que más importancia está cobrando son las FPGAs (Field Programmable Gate Array). Históricamente la plataforma más utilizada para albergar los SoCs han sido las ASICs (Application- Specific Integrated Circuits), debido a su bajo consumo energético y su gran rendimiento. No obstante, su costoso proceso de desarrollo y fabricación hace que solo sean rentables en el caso de producciones masivas. Las FPGAs, por el contrario, al ser dispositivos configurables ofrecen, la posibilidad de implementar diseños personalizados a un coste mucho más reducido. Por otro lado, los continuos avances en la tecnología de las FPGAs están haciendo que éstas compitan con las ASICs a nivel de prestaciones (consumo, nivel de integración y eficiencia). Ciertas tecnologías de FPGA, como las SRAM y Flash, poseen una característica que las hace especialmente interesantes en multitud de diseños: la capacidad de reconfiguración. Dicha característica, que incluso puede ser realizada de forma autónoma, permite cambiar completamente el diseño hardware implementado con solo cargar en la FPGA un archivo de configuración denominado bitstream. La reconfiguración puede incluso permitir modificar una parte del circuito configurado en la matriz de la FPGA, mientras el resto del circuito implementado continua inalterado. Esto que se conoce como reconfiguración parcial dinámica, posibilita que un mismo chip albergue en su interior numerosos diseños hardware que pueden ser cargados a demanda. Gracias a la capacidad de reconfiguración, las FPGAs ofrecen numerosas ventajas como: posibilidad de personalización de diseños, capacidad de readaptación durante el funcionamiento para responder a cambios o corregir errores, mitigación de obsolescencia, diferenciación, menores costes de diseño o reducido tiempo para el lanzamiento de productos al mercado. Los SoC basados en FPGAs allanan el camino hacia un nuevo concepto de integración de hardware y software, permitiendo que los diseñadores de sistemas electrónicos sean capaces de integrar procesadores embebidos en los diseños para beneficiarse de su gran capacidad de computación. Gracias a esto, una parte importante de la electrónica hace uso de la tecnología FPGA abarcando un gran abanico de campos, como por ejemplo: la electrónica de consumo y el entretenimiento, la medicina o industrias como la espacial, la aviónica, la automovilística o la militar. Las tecnologías de FPGA existentes ofrecen dos vías de utilización de procesado- res embebidos: procesadores hardcore y procesadores softcore. Los hardcore son procesadores discretos integrados en el mismo chip de la FPGA. Generalmente ofrecen altas frecuencias de trabajo y una mayor previsibilidad en términos de rendimiento y uso del área, pero su diseño hardware no puede alterarse para ser personalizado. Por otro lado, un procesador soft-core, es la descripción hardware en lenguaje HDL (normalmente VDHL o Verilog) de un procesador, sintetizable e implementable en una FPGA. Habitualmente, los procesadores softcore suelen basarse en diseños hardware ya existentes, siendo compatibles con sus juegos de instrucciones, muchos de ellos en forma de IP cores (Intellectual Property co- res). Los IP cores ofrecen procesadores softcore prediseñados y testeados, que dependiendo del caso pueden ser de pago, gratuitos u otro tipo de licencias. Debido a su naturaleza, los procesadores softcore, pueden ser personalizados para una adaptación óptima a diseños específicos. Así mismo, ofrecen la posibilidad de integrar en el diseño tantos procesadores como se desee (siempre que haya disponibles recursos lógicos suficientes). Otra ventaja importante es que, gracias a la reconfiguración parcial dinámica, es posible añadir el procesador al diseño únicamente en los casos necesarios, ahorrando de esta forma, recursos lógicos y consumo energético. Uno de los mayores problemas que surgen al usar dispositivos basados en las tecnologías SRAM o la flash, como es el caso de las FPGAs, es que son especialmente sensibles a los efectos producidos por partículas energéticas provenientes de la radiación cósmica (como protones, neutrones, partículas alfa u otros iones pesados) denominados efectos de eventos simples o SEEs (Single Event Effects). Estos efectos pueden ocasionar diferentes tipos de fallos en los sistemas: desde fallos despreciables hasta fallos realmente graves que comprometan la funcionalidad del sistema. El correcto funcionamiento de los sistemas cobra especial relevancia cuando se trata de tecnologías de elevado costo o aquellas en las que peligran vidas humanas, como, por ejemplo, en campos tales como el transporte ferroviario, la automoción, la aviónica o la industria aeroespacial. Dependiendo de distintos factores, los SEEs pueden causar fallos de operación transitorios, cambios de estados lógicos o daños permanentes en el dispositivo. Cuando se trata de un fallo físico permanente se denomina hard-error, mientras que cuando el fallo afecta el circuito momentáneamente se denomina soft-error. Los SEEs más frecuentes son los soft-errors y afectan tanto a aplicaciones comerciales a nivel terrestre, como a aplicaciones aeronáuticas y aeroespaciales (con mayor incidencia en estas últimas). La contribución exacta de este tipo de fallos a la tasa de errores depende del diseño específico de cada circuito, pero en general se asume que entorno al 90 % de la tasa de error se debe a fallos en elementos de memoria (latches, biestables o celdas de memoria). Los soft-errors pueden afectar tanto al circuito lógico como al bitstream cargado en la memoria de configuración de la FPGA. Debido a su gran tamaño, la memoria de configuración tiene más probabilidades de ser afectada por un SEE. La existencia de problemas generados por estos efectos reafirma la importancia del concepto de tolerancia a fallos. La tolerancia a fallos es una propiedad relativa a los sistemas digitales, por la cual se asegura cierta calidad en el funcionamiento ante la presencia de fallos, debiendo los sistemas poder soportar los efectos de dichos fallos y funcionar correctamente en todo momento. Por tanto, para lograr un diseño robusto, es necesario garantizar la funcionalidad de los circuitos y asegurar la seguridad y confiabilidad en las aplicaciones críticas que puedan verse comprometidos por los SEE. A la hora de hacer frente a los SEE existe la posibilidad de explotar tecnologías específicas centradas en la tolerancia a fallos, como por ejemplo las FPGAs de tipo fusible, o, por otro lado, utilizar la tecnología comercial combinada con técnicas de tolerancia a fallos. Esta última opción va cobrando importancia debido al menor precio y mayores prestaciones de las FPGAs comerciales. Generalmente las técnicas de endurecimiento se aplican durante la fase de diseño. Existe un gran número de técnicas y se pueden llegar a combinar entre sí. Las técnicas prevalentes se basan en emplear algún tipo de redundancia, ya sea hardware, software, temporal o de información. Cada tipo de técnica presenta diferentes ventajas e inconvenientes y se centra en atacar distintos tipos de SEE y sus efectos. Dentro de las técnicas de tipo redundancia, la más utilizada es la hardware, que se basa en replicar el modulo a endurecer. De esta forma, cada una de las réplicas es alimentada con la misma entrada y sus salidas son comparadas para detectar discrepancias. Esta redundancia puede implementarse a diferentes niveles. En términos generales, un mayor nivel de redundancia hardware implica una mayor robustez, pero también incrementa el uso de recursos. Este incremento en el uso de recursos de una FPGA supone tener menos recursos disponibles para el diseño, mayor consumo energético, el tener más elementos susceptibles de ser afectados por un SEE y generalmente, una reducción de la máxima frecuencia alcanzable por el diseño. Por ello, los niveles de redundancia hardware más utilizados son la doble, conocida como DMR (Dual Modular Redundancy) y la triple o TMR (Triple Modular Redundancy). La DMR minimiza el número de recursos redundantes, pero presenta el problema de no poder identificar el módulo fallido ya que solo es capaz de detectar que se ha producido un error. Ello hace necesario combinarlo con técnicas adicionales. Al caso de DMR aplicado a procesadores se le denomina lockstep y se suele combinar con las técnicas checkpoint y rollback recovery. El checkpoint consiste en guardar periódicamente el contexto (contenido de registros y memorias) de instantes identificados como correctos. Gracias a esto, una vez detectado y reparado un fallo es posible emplear el rollback recovery para cargar el último contexto correcto guardado. Las desventajas de estas estrategias son el tiempo requerido por ambas técnicas (checkpoint y rollback recovery) y la necesidad de elementos adicionales (como memorias auxiliares para guardar el contexto). Por otro lado, el TMR ofrece la posibilidad de detectar el módulo fallido mediante la votación por mayoría. Es decir, si tras comparar las tres salidas una de ellas presenta un estado distinto, se asume que las otras dos son correctas. Esto permite que el sistema continúe funcionando correctamente (como sistema DMR) aun cuando uno de los módulos quede inutilizado. En todo caso, el TMR solo enmascara los errores, es decir, no los corrige. Una de las desventajas más destacables de esta técnica es que incrementa el uso de recursos en más de un 300 %. También cabe la posibilidad de que la salida discrepante sea la realmente correcta (y que, por tanto, las otras dos sean incorrectas), aunque este caso es bastante improbable. Uno de los problemas que no se ha analizado con profundidad en la bibliografía es el problema de la sincronización de procesadores soft-core en sistemas TMR (o de mayor nivel de redundancia). Dicho problema reside en que, si tras un fallo se inutiliza uno de los procesadores y el sistema continúa funcionando con el resto de procesadores, una vez reparado el procesador fallido éste necesita sincronizar su contexto al nuevo estado del sistema. Una práctica bastante común en la implementación de sistemas redundantes es combinarlos con la técnica conocida como scrubbing. Esta técnica basada en la reconfiguración parcial dinámica, consiste en sobrescribir periódicamente el bitstream con una copia libre de errores apropiadamente guardada. Gracias a ella, es posible corregir los errores enmascarados por el uso de algunas técnicas de endurecimiento como la redundancia hardware. Esta copia libre de errores suele omitir los bits del bitstream correspondientes a la memoria de usuario, por lo que solo actualiza los bits relacionados con la configuración de la FPGA. Por ello, a esta técnica también se la conoce como configuration scrubbing. En toda la literatura consultada se ha detectado un vacío en cuanto a técnicas que propongan estrategias de scrubbing para la memoria de usuario. Con el objetivo de proponer alternativas innovadoras en el terreno de la tolerancia a fallos para procesadores softcore, en este trabajo de investigación se han desarrollado varias técnicas y flujos de diseño para manejar los datos de usuario a través del bitstream, pudiendo leer, escribir o copiar la información de registros o de memorias implementadas en bloques RAMs de forma autónoma. Así mismo se ha desarrollado un abanico de propuestas tanto como para estrategias lockstep como para la sincronización de sistemas TMR, de las cuales varias hacen uso de las técnicas desarrolladas para manejar las memorias de usuario a través del bitstream. Estas últimas técnicas tienen en común la minimización de utilización de recursos respecto a las estrategias tradicionales. De forma similar, se proponen dos alternativas adicionales basadas en dichas técnicas: una propuesta de scrubbing para las memorias de usuario y una para la recuperación de información en memorias implementadas en bloques RAM cuyas interfaces hayan sido inutilizadas por SEEs.Todas las propuestas han sido validadas en hardware utilizando una FPGA de Xilinx, la empresa líder en fabricación de dispositivos reconfigurables. De esta forma se proporcionan resultados sobre los impactos de las técnicas propuestas en términos de utilización de recursos, consumos energéticos y máximas frecuencias alcanzables

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF

    Fault and Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices

    Get PDF
    This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a fault and defect tolerant (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required hardware redundancy is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy. Previous models are extended to account for dependence between the inputs and produce more accurate results

    Dynamic Partial Reconfiguration for Dependable Systems

    Get PDF
    Moore’s law has served as goal and motivation for consumer electronics manufacturers in the last decades. The results in terms of processing power increase in the consumer electronics devices have been mainly achieved due to cost reduction and technology shrinking. However, reducing physical geometries mainly affects the electronic devices’ dependability, making them more sensitive to soft-errors like Single Event Transient (SET) of Single Event Upset (SEU) and hard (permanent) faults, e.g. due to aging effects. Accordingly, safety critical systems often rely on the adoption of old technology nodes, even if they introduce longer design time w.r.t. consumer electronics. In fact, functional safety requirements are increasingly pushing industry in developing innovative methodologies to design high-dependable systems with the required diagnostic coverage. On the other hand commercial off-the-shelf (COTS) devices adoption began to be considered for safety-related systems due to real-time requirements, the need for the implementation of computationally hungry algorithms and lower design costs. In this field FPGA market share is constantly increased, thanks to their flexibility and low non-recurrent engineering costs, making them suitable for a set of safety critical applications with low production volumes. The works presented in this thesis tries to face new dependability issues in modern reconfigurable systems, exploiting their special features to take proper counteractions with low impacton performances, namely Dynamic Partial Reconfiguration

    The 1992 Research/Technology report

    Get PDF
    The 1992 Research & Technology report is organized so that a broad cross section of the community can readily use it. A short introductory paragraph begins each article and will prove to be an invaluable reference tool for the layperson. The approximately 200 articles summarize the progress made during the year in various technical areas and portray the technical and administrative support associated with Lewis technology programs
    corecore