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Abstract

As processor manufacturers keep pushing the limits of the transistor, the
reliability of computer systems has become an increasing concern. Various fault
tolerance techniques have been developed in an effort to provide reliable computing
in the presence of faults. These approaches suffer from either a high resource cost
or high performance overhead. This thesis presents a design for a Fault Tolerance
Core (FTC) that uses configurable application-aware hardware modules for
improving reliability. Application-aware fault tolerance is achieved by detecting
perturbations in application execution through the monitoring of processor pipeline
signals. This approach leverages hardware resources more efficiently than
replication. The FTC achieves low overhead by placing fault tolerance hardware
separately from the processing core, minimizing the processor data collection
hardware, and by performing fault detection in the background.

This thesis presents work that has been completed towards the achievement
of a FTC. This work includes a hardware assisted incremental checkpoint, an
application hang detector and a preliminary FTC framework for integrating these
into a Leon3 microprocessor. All modules have been implemented and tested on a
Leon3 synthesized atop a Stratix III FPGA running a Linux environment. A hardware
fault injector capable of modifying 9 distinct processor pipeline signals has been

implemented for performing validation experiments on the modules.
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1 Introduction

As processor manufacturers keep pushing the limits of the transistor, the
reliability of computer systems in industry has become an increasing concern. With
each new generation of manufacturing technology the susceptibility of processors to
hardware faults has increased, as described by [1]-[5]. These faults, referred to as
soft faults, are generally caused by particle strikes or excessive heat in the chip, and
are manifested by changing the state of transistors unpredictably. In turn these
hardware faults can affect the software executing on the system and cause a crash,
hang or a silent data corruption. With the number of faults in time (FIT) of
processors increasing with each generation, there is a growing necessity to develop
fault tolerant techniques to prevent most of these hardware faults from manifesting
at the software level.

Many fault tolerance techniques have already been developed to provide
reliable computing in the presence of soft faults. These techniques can be divided
into different categories based on two criteria. The first criterion refers to the
method used for correcting errors. There are methods that perform forward error
correction and methods that perform backward error correction. Fault tolerance
techniques that fall under the forward error correction category are those that hold
off committing a result until error checking has been performed and the result has

been validated. Backward error correction techniques perform checks with a certain



delay or only perform checks at certain locations requiring the program to re-
execute a section of the code. Re-execution can be performed with the use of a
checkpoint process. The second criterion is founded on the resource used for
detecting or correcting the error. It classifies fault tolerance techniques into three
categories: hardware-based, software-based, and hardware software co-design.

To our knowledge all hardware-based fault tolerance techniques perform
forward error recovery. Several of these have been adopted in mission critical
applications. Triple modular redundancy [6] computes the same process on three
separate computing systems and uses a voting mechanism for ensuring correct
computation. This approach has been implemented in the computing system used
on seven space vehicles including Skylab and Space Shuttle [7]. IBM has used a
hardware duplication technique in the S390 G5 processor [8]. In this architecture
the instruction fetch and execution units are duplicated to allow for redundant
execution of every instruction. Before committing the instruction there is a
comparator to determine whether the instruction has succeeded or not. Upon
failure the instruction is re-executed.

Other hardware fault tolerance techniques include parity schemes for
protecting register files, caches, and buses. This protection method has become the
standard for server processors. Intel Xeon [9] and AMD Opteron [10] processors
have multi-bit protection on all of their busses and register files. Parity protection
has also been used in verifying arithmetic operations in the execution unit using

BHC code [11].



With the exception of the parity schemes, all of the hardware duplication
techniques mentioned above suffer from a high hardware overhead. The parity
schemes do not perform full duplication and therefore require much less than 100%
resource overhead. However, techniques like TMR are very expensive - more than
three times the hardware cost of a single machine - because they require a voting
mechanism in addition to three separate machines. The hardware duplication
adopted by IBM also requires a significant hardware overhead because it essentially
duplicates the entire processor pipeline.

With the appearance of multicore processors, another hardware approach
has been developed, Simultaneously and Redundantly Threaded (SRT) processors
[12]. In this design two threads - one leading, and one trailing - are launched to
complete the same task. The trailing thread is used to perform the same
computations as the main thread and checks in hardware are performed before each
instruction commit to ensure both threads reach the same results. In essence, this
technique is similar to the IBM redundant pipeline except that this method is more
flexible because it allows the cores to be used either for running redundant threads
or for running additional threads for increased performance. The approach
described above has a significant hardware cost as well, but it can also be configured
to provide higher performance depending on system requirements.

The hardware methods discussed so far will retry any instruction that was
not performed correctly. It is important to note that not all hardware faults manifest
at the software level. For any clock cycle the CPU does not use all of the transistors

on a chip simultaneously. This implies that many hardware faults are inherently



masked by the architecture of the system. Similarly, not all parts of an application
are critical for correct application execution. For example, let us assume that certain
variables are corrupt but are used only when a program reaches a certain state B. If
the program never reaches state B, the corrupt variables will never be used and the
application will execute without any errors. This means that many hardware faults
that occur at a low level are likely to be masked by the layers above and may never
affect the execution of a program. Previous research has shown that 5% of logic
faults propagate to application [13], [14]. The fault tolerance methods mentioned
thus far would retry faulty instructions that will not manifest at the software level,
and perform redundant operations that are not required.

Various software fault tolerance techniques have been implemented which
focus more on errors found in the software. These are more accessible because they
require no hardware modification. The traditional approach is N-Version
programming [15] and was first proposed in 1978. This approach involves
executing multiple versions of the same program on separate machines
simultaneously or on the same machine at different times and then comparing the
results of the two runs. The correct result is selected based on voting. Another
version of this approach is process level redundancy (PLR) [16]. In this scenario all
redundant threads and checking are performed automatically, transparently to the
user and application, allowing easy handling of the redundant threads. This
approach falls under the forward error correction category because a result is
always selected from the N versions without re-execution. Similar to the ones above,

this approach also costs a significant overhead. It either requires N times more



hardware resources or N times more execution time to complete executing a
program.

Other techniques that use software and hardware to perform fault tolerance
involve perturbation-based detection. An example of this approach is found in [17],
which shows how software is used to determine patterns in the execution process.
These patterns include variable range values, historical variable values, TLB misses,
and other patterns. Hardware is added to the processor pipeline to monitor a select
set of application variables. Error detection is performed in the hardware to alert
the system of any possible faults. Another example founded on the same method is
the Reliability Security Engine (RSE) [18]. The RSE is novel in that it provides a
generic framework that performs data collection and can be used with multiple fault
detectors. This method is unique as well because it relies on application specific
configuration. Each application is manually or automatically analyzed for specific
patterns that can be used to provide indications of possible faults. These methods
leverage hardware resources better and require much less resource overhead than
the previously mentioned techniques. The main downside of these proposals is that
they alter the CPU core’s longest path, requiring a slower clock cycle. This is a result
of tapping pipeline signals and adding area directly into the processor’s core. By
adding more area inside of the CPU core it complicates routing and causes a longer
path. The discussed techniques are both backward error correction mechanisms
and require a checkpoint and recovery mechanism to resolve any detected errors.
Since faults are not expected to occur often, the overhead incurred from rollback is

not a concern.



Much work has been done on recovering either applications or full systems
from faults using a checkpoint/recovery process. A few examples of these are BLCR
[19], CoCheck [20], MPICH-V [21], TICK [22], Pickpt [23], and [24]. These techniques
work on the basis of taking snapshots of the application state repeatedly at a certain
time interval, and use various fault alarms to determine when the application
requires recovery to a previously stored checkpoint. Fault alarms are usually
exceptions detected either by the architecture or the operating system. These
alarms could be caused by an application jumping out of scope or an arithmetic
exception. Software inconsistencies, such as sanity checks, can also be used to
trigger a recovery. The reliability of any computing system with a checkpoint
mechanism is highly dependent on the accuracy of its fault detection mechanism.

The biggest challenge in providing a reliable computing system is keeping the
overhead costs down. Triple redundancy systems provide very good reliability but
come at a very high hardware cost. Software-based fault detection is generally
achieved by time redundancy, which significantly degrades the system performance.
Perturbation based fault detection appears to be the most efficient in terms of
resource overhead at the present time. However, the current methods require
modifications to the CPU pipeline, which leads to an increase in the critical path and
results in decreased computational performance.

Because of the efficient use of hardware resources, we propose to use a
perturbation-based approach for providing fault tolerance. In order to overcome the
limitations of the previous techniques, we propose utilizing a separate

heterogeneous core named Fault Tolerance Core (FTC) for providing reliability in a



single or multicore computing system. The proposed FTC is composed of a set of
hardware modules that provides various fault tolerance services for executing
applications. These modules are application aware and can be configured by
software.

Data collection hardware is added to each of the standard computational
cores to collect runtime information. The hardware is kept to a minimum, and is
negligible compared to the existing CPU cores. This collection hardware simply taps
some of the pipeline signals from the CPU and forwards them to the dedicated FTC.
We believe this new design is able to overcome the limitations of the RSE because
the small amount of hardware will have a negligible impact on the critical path.

All collected data from the CPU cores is forwarded to the FTC. The FTC is
aware of the application executing on each core and uses the collected data to detect
any perturbations in software execution. All of the fault tolerance computation is
performed directly in hardware on this FTC. By performing this computation on a
separate core we will limit its impact on the functionality of the existing CPU cores.
In addition we provide a backward error recovery mechanism in order to allow
application execution to progress while fault detection is performed in parallel with
execution. These three features eliminate the runtime overhead incurred by fault
detection.

Similar to the RSE, the proposed FTC is application aware in order to provide
efficient fault detection. Each application benefits from a different set of fault
detection techniques. It is important to only enable fault detectors that will benefit

the application in order to maximize the reliability while minimizing the



computational overhead. By being application aware the FTC can be programmed to
protect only critical applications. It can even protect only critical parts of
applications to use the available fault tolerance resources in the most efficient
manner. By performing fault detection at the application level, the FTC will not
detect and attempt recovery from the large number of benign faults which are only
visible at the hardware level [13], [14]. Recovery from these errors will affect
performance and is unnecessary since the errors will not have an effect on the
execution of the application.

The contribution of this thesis is an application aware framework for
providing fault tolerance similar to RSE, but with a smaller performance overhead.
This thesis describes a novel FTC design and exhibits the whole body of work that
has been done towards achieving this goal. Three hardware modules have been
implemented on an FPGA for the Leon3 [25] processor as proof of concept, and are
described in the following chapters. Chapter 2 describes the design of the FTC.
Chapter 3 presents a hardware aided recovery mechanism to be used with the FTC.
Chapter 4 describes a hardware-based application hang detector. Chapter 5 shows a
fault injector that was developed for validating the recovery and hang detection

mechanisms.



2 Reliability Framework

This thesis provides a novel approach for improving the reliability of multi-
core computing systems in the presence of hardware faults. The existence of these
faults and their effects on hardware logic have been researched and well
documented [1]-[5]. The traditional approach for overcoming these errors has been
to replicate various hardware components and perform the computation of these
components in parallel. Examples of this approach are [6], [8] and [12]. Such
approaches benefit from a low performance overhead and high fault coverage but
suffer from high hardware cost. Only replicating the instruction and execution unit
of every core will incur 35% overhead [8]. Similarly re-executing an application
thread on a separate core essentially incurs 100% overhead since the second core is
dedicated to executing the same code.

Due to the fact that only a small number of hardware errors manifest at the
application level [13], [14] it is not necessary to protect against all hardware errors.
Instead, if all application errors can be detected, it means that the same reliability
can be guaranteed. Various reliability methods that focus on application level faults
have been investigated, for example [17] and [18]. Both approaches rely on
monitoring application behavior by collecting runtime information. Reliability is
improved by detecting execution anomalies based on knowledge about the
application. The application information is either determined statically or
dynamically. In [17] variable values are collected through a software mechanism. In

[18] internal CPU pipeline signals are monitored continuously giving the reliability



engine a very detailed view of the execution behavior. The two approaches suffer
from a significant performance overhead. In the first case software is used for data
collection and analysis requiring significant CPU execution time for reliability. In the
second example the reliability engine is tightly coupled with the pipeline. Multiple
signals are collected from the pipeline requiring either complex routing from the
core or for the RSE to be placed next to the pipeline. Both solutions will have a
significant impact on the critical path in the pipeline. In turn this will require a
reduction of the clock speed, and degrade computing performance. Moreover the
proposed RSE does not scale well in a multi-core environment since a dedicated
engine will be instantiated for each core.

This chapter presents a novel solution for improving computing reliability.
Similar to RSE, our approach is to detect execution anomalies by dynamically
monitoring application behavior using dedicated hardware. The goal is to improve
the reliability of computing without impacting execution performance with a
minimal hardware cost. For this purpose we propose the use of a dedicated Fault
Tolerance Core (FTC). This core should be utilized as a custom hardware block that
is fabricated on the same die as a commercial off-the-shelf CPU. This core is
responsible for improving the reliability of a collection of applications executing on
any of the CPU cores. We believe that decoupling the reliability engine from the core
pipeline reliability can be achieved with negligible performance impact at an
acceptable hardware cost. The FTC proposed in the present paper should be capable
of servicing multiple CPU cores and therefore should scale well with larger

computing systems. The remainder of the chapter describes the proposed
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conceptual design and a possible implementation along with a summary of the work

completed in this direction.

2.1 Fault Tolerance Core Concept Design

For the purpose of improving the reliability of computing systems we
propose the use of a newly designed FTC. This component is responsible for
providing reliability services to select applications executing on the CPU’s cores. The
core is composed of a set of custom hardware controllers called service modules
(SM) that perform perturbation based application monitoring similar to [17] and
application checkpoint/recovery. Examples of such controllers include: hang
detection, variable range checking, memory access pattern, etc. FTC also contains
data collection hardware that has access to the CPU bus and a few CPU pipeline
signals. This collection hardware is shared across all service modules. Collected data
is forwarded to the service modules based on configuration parameters. The
controllers receive application data and perform the monitoring passively in
parallel with the application. This approach should be able to perform checking
passively, allowing execution to continue and faults to be detected with a certain
delay after they occur. As long as the FTC has enough resources to keep up with the
average application execution, the passive monitoring should not delay application
execution and therefore should not incur a performance overhead.

Each service module is application aware and can be configured to monitor
specific applications. For the design presented here we assume that each service
module will only be configured to monitor one application at a time. We believe that

each service module can be implemented to support multiple applications by
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instantiating multiple sets of its hardware blocks and some extra logic. However,
this is outside of the scope of this paper.

In order for the FTC to keep pace with the multi-core processing, only critical
applications should be monitored. Additionally, the reliability improvements of each
application will vary differently with each service module; therefore applications
that do not offer a substantial benefit from service modules should be omitted.
Monitoring should be configured for each system and workload to maximize the
usage of each service module, but should be limited to keep up with the real-time
requirements.

The rest of this chapter is divided into three sections. The first describes how
the configuration and software flow should be performed. The second section
describes what application data should be collected and how to integrate the FTC
into a multi-core CPU. The final part describes the proposed FTC architecture and

how it analyses monitored applications.

2.1.1 Target Application Execution Flow

This section describes how monitored applications should be executed in the
presence of the FTC. Details about the proposed core’s functionality are presented in
the following sections. The FTC performs fault detection at the application level;
therefore each service module requires information about its target application.
Depending on the reliability service provided, either specific variable addresses or
function locations are necessary for fault detection. These service modules are
configured with application specific parameters such as variable addresses and
function locations.

12
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Figure 1 presents an outline for executing an application in the presence of
the FTC. The process starts with either automatic or manual profiling of the
application to determine parameters for the specific reliability service that will be
provided. For example, if function-level hang detection will be performed, the
profiling would result in a list of virtual addresses indicating function locations.

On the system with the FTC, a software stub should be employed for
launching the target application. This software stub is responsible for reading the
application parameters generated in the parsing step and for configuring the
hardware for the target application. In addition the target application’s PID may also
be passed to the hardware if the service module requires it. As described in the
following section the FTC controller is configured via the CPU bus. Since user level
applications do not have access to peripheral address space, configuration can be
performed by a kernel module, which has access to the FTC controller’s memory
space. Alternatively, the application stub can perform an mmap system call to
configure the peripheral address within its address space.

At runtime the FTC collects relevant application information via the data
acquisition module. This data gets forwarded to the service module that performs
the necessary fault detection and has the ability to raise an interrupt to indicate a

fault was detected. This process is described in more detail in the following sections.
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2.1.2 Data Collection

The service modules in the FTC require runtime information from the
monitored applications executing on the CPU cores. The required data is composed
of control flow information, and specific variable values. In this section we give a
description of the specific runtime data required and explain how to integrate the
FTC core into a multi-core system in order to be able to collect the same data with
no effect to the critical path.

The control flow information required for application monitoring consists of
the process ID (PID), process state register (PSR), and program counter (PC). The
PID is used for determining what application is currently executing on the CPU. The
service modules use this information to determine whether or not to collect
application data, and to look up configuration information about the application.
The PSR register is used to determine when the core is executing in kernel or user
space. This register is employed in conjunction with the PC by service modules that
track application control flow. All of these registers need to be collected directly
from the CPU cores.

Collection of specific application variable values is crucial in performing
range checking and other perturbation based analysis. Variables to be collected have
to be specified and configured in the FTC before the application is executed.
Variables are monitored on the memory bus and therefore are identified based on a
physical address. This address can be determined at the OS level through a kernel
module. An example of how this works can be found in the checkpoint service

chapter.
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In Figure 2 we depict how the FTC core should be integrated into a multi-core
system. The interconnection will vary slightly for integration into other
architectures. As displayed in Figure 2, the FTC is composed of various service
modules, a data acquisition unit, and a controller. Both the data acquisition and the
controller have a connection to the AMBA Bus. The FTC controller has a bus slave
interface and is allocated its own memory space. This connection gives the
processor visibility to the FTC configuration registers and can be configured like any
traditional peripheral component. In addition, the slave interface has an interrupt
associated with it. Whenever a fault is detected or the controller requires servicing,
it is able to initiate a request to the processor via the interrupt.

The Data Acquisition module collects control flow data through a dedicated
interface to each core. Variable values are collected through an AMBA slave bus that
performs sniffing. The FTC controller will be configured with the physical addresses
for various variables to be monitored. Whenever the data acquisition module
detects the monitored function’s address on the bus it stores the variable value and
forwards it to the appropriate service module.

As displayed in Figure 2, a small piece of hardware is added to each
processing core. This hardware module is simply used to pass the PSR, PC, and PID
to the data acquisition. The shown hardware consists of three sets of extra registers
to pipeline the values coming from the core’s registers. This set of pipelined
registers is a standard hardware technique for simplifying the routing inside the
core and allowing the placement of the extra registers to be far away from the actual

core. The method will not affect the critical path of the core since it only adds one
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fanout to each of the three monitored registers. The pipelined registers are
acceptable in this design because the monitoring is done passively and the data
acquisition can receive the data a few cycles late.

Figure 2 shows the connection between the data acquisition and the
hardware cores. The FTC receives the collected data from each core simultaneously
over one dedicated path for each core. The paths are one-directional and are
allowed to have a multi-cycle delay (through pipelining). This implies that they have
a very low routing priority and will have a minimal impact on the existing layout of

the CPU.

2.1.3 Fault Tolerance Core Architecture

The FTC is a custom hardware optimized to provide various reliability
services for applications executing on a multi-core system. Since each application
will benefit differently from the various service modules, the amount of processing
done by each service module will vary with different workloads. In order to
maximize the amount of reliability provided given a certain FTC hardware footprint,
we suggest the use of a shared ALU/Local Storage hardware block that can be
dynamically reassigned to different service modules.

Figure 3 depicts the FTC being composed of four blocks: a data acquisition
unit, a fault tolerance controller, a set of service modules, and a shared hardware
block. As described in the previous section, the FTC controller has both a bus master
and slave connections. The slave reserves a dedicated address space and is

configured directly by the CPU.
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The configuration indicates what application(s) each service module should monitor
and any specific application parameters that each service module requires. If
specific variables require monitoring, the controller will program their addresses
into the data acquisition module. For control flow, checking the data acquisition will
require the PID for these applications to forward only those PC values to the
appropriate service module. Moreover the FTC controller is responsible for
allocating the shared resources appropriately to each service module. The FTC
controller has a bus master for any service module that requires access to memory
storage.

The data acquisition module is responsible for sniffing the memory bus for
specific physical addresses specified by the controller. For each physical address,
the acquisition module keeps track of which service module requires the value of
this variable. Whenever one of the configured variables is detected the address and
value of the variable are forwarded to the appropriate service module. For control
flow monitoring, the data acquisition module is configured with the application PID
to be monitored and any PC value received for that specific PID is forwarded to the
appropriate service module. Since multiple cores are being monitored
simultaneously, the acquisition module has to keep track of each core’s PID and
forward all of the PC values from each core to the service module. In the Leon3,
pipeline stages typically require multiple clock cycles to complete. This implies that
PC values are not generated at the clock cycle rate. Through buffering, the service

modules should be able to keep pace with the PCs from the multiple cores.
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The service modules contain all the hardware resources required to perform
the specific reliability service. Later in the thesis, two implemented service modules
are described for check pointing and hang detection. The other service module
examples are not covered by this thesis.

The shared hardware resources block is comprised of ALU and local storage
units that can be used differently by each service module. Depending on the service
modules implemented, the ALU units in this block may not require sharing. The
sharing technique can be a simple FIFO of requests with a tag for which module
made the request. When the computation is complete the tag will indicate which
service module requested the operation. The local storage should be implemented
as sets of block rams. The controller can configure each block ram to be multiplexed

by a specific service module.

2.2 Completed Work

In order to better understand the optimal FTC architecture and the data
acquisition requirements, research is first performed on designing and testing
custom hardware to provide various reliability services. The service module needs
are used to determine the requirements of the FTC. At this stage, every service
module should be implemented with its own interconnect to the CPU, to enable it to
function correctly. The FTC simply provides a shared interconnect and local storage
for all of the service modules to use. Once the service modules are designed and
evaluated, the FTC constraints will be apparent and the optimal design can be

implemented.
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For the purpose of implementing and testing a system with the proposed FTC
core, we used the Leon3, an open source SparcV8 CPU. The processor has been
selected because it is described in VHDL and has a well-established community with
good technical support. The Leon3 processor also has a number of supported Linux
distributions available. The CPU is synthesized and executed on an Altera Stratix III
FPGA. All experiments have been executed in a Linux environment executing atop a
single-core Leon3 processor.

The Linux distribution used was Sparc Linux 3.4.4. This version is built
around the 2.6.36 Linux Kernel. The distribution comes with Busy Box and cross
compilers for building other applications and libraries. The said distribution also
includes an SSH and SCP which was used to transfer files between the Leon3 and
x86 host machine. All test applications are cross-compiled on an x86 machine with
the cross compilers provided with the Linux distribution. The binaries and other
input files were all copied over to the Leon3 environment using SCP.

Figure 4 depicts the completed work and the way it was integrated into the
Leon3 system. The completed service modules are presented in the remainder of
this thesis; they are a checkpoint/recovery service, and a low granularity hang
detector. The above components have been integrated to work on the same system.
The hardware setup displayed in Figure 4 is the same for all experiments referenced
in this thesis.

A simplified FTC controller has been implemented to allow the processor to
access both of the service module’s control registers over the same AMBA Bus. The

Leon3 core is modified with a small hardware collection block. The block is used to
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collect PC and PID information from the CPU and is passed through a dedicated lane
to the FTC. The hang detector requires this data to monitor control flow. In addition
to these service modules, a hardware fault injector has been developed for
evaluating the functionality of our modules. The fault injector is also displayed in
Figure 4. This injector is contained fully within the Leon3 pipeline and is described

in Chapter 4.
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3 Checkpoint

In computing systems checkpoint is an essential mechanism for ensuring
system availability. Checkpoint enables the system to continuously take snapshots
of running applications; in the presence of a fault, the application can be rolled back
to the most recent snapshot and continue execution with minimal downtime. Under
error free execution, checkpoint incurs performance overhead. To make
checkpointing attractive, the performance overhead must be minimized.

All checkpoint mechanisms work on the basis of taking a snapshot of the
running application. The snapshot required to recover an application consists of all
application memory, opened files, sockets and 10 devices. This chapter focuses on
checkpointing applications that only require memory state recovery. The
application memory state has the largest footprint and therefore will be the most
time-consuming. Saving sockets and IO device states are outside the scope of this
thesis and have been addressed in ReVivel /O [26]. In this work the [/0 traffic is
buffered during each checkpoint and if a recovery is required the 1/0 is played back
so that the application receives the same input during the second execution.

The biggest factor to affect the performance overhead is the method adopted
for the memory duplication process. The most rudimentary approach is to perform
a full memory copy of the application at each checkpoint interval. This strategy,
however, causes a great performance overhead since it requires a large amount of
memory bandwidth. For this reason, the most widely accepted approach is to

duplicate only a select region of application memory during each checkpoint. This

25



approach is called incremental checkpoint [19]-[23]. The method of selecting which
data to save and at what time interval varies between the different checkpoint types.

Application checkpoint can be performed either fully within the application,
semi-transparently by the application with the help of the operating system, or fully
within the operating system transparent to the application. Checkpoints performed
at the application level can take advantage of the execution process and the known
critical data to take snapshots when the least amount of data is required. However,
the transparent checkpoint is the most desired method since it requires no
modifications or knowledge of the application.

The most efficient transparent checkpoint approach is to save state
incrementally. It is accomplished by duplicating only data that has changed from the
previous checkpoint. The operating system keeps a secondary copy of the complete
application state, which is updated at the rate of the desired checkpoint interval.
The efficiency of this approach comes from its small checkpoint footprint, especially
for applications with temporal memory locality. In checkpoint mechanisms the
amount of data transfer per checkpoint interval is directly related to the
performance overhead.

This thesis advances on the incremental checkpoint mechanism by using
hardware DMA (direct memory access) to reduce the performance overhead. This
new approach allows the CPU to be used for normal execution while the memory
copy is performed. Furthermore, the backup copy is stored in local memory,
allowing for minimal checkpoint overhead. The rest of this chapter describes the

design and implementation of our checkpoint mechanism.
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3.1 Design Choices

In order for the proposed checkpoint mechanism to be easily incorporated
into existing systems, it must work with unmodified binaries. The technique
advanced here provides application recovery transparent to the application. This
has been achieved by implementing the newly created design into a kernel module,
which has complete access to the application’s execution state and memory space.
Whenever the kernel module saves or recovers the state of the target application, it
puts the application in the frozen state (removed from the schedule list). The state
of the frozen application can be reverted to a previous state without corrupting the
application’s execution.

To reduce performance overhead incurred by checkpointing, we minimize
the amount of data to checkpoint. This is achieved by implementing an incremental
checkpoint mechanism where only the dirty pages within the checkpoint interval
are saved.

The dirty bits in the page table entries are used to determine which pages
have been modified since the last interval. These bits are automatically set by the
MMU hardware whenever a write is performed to the corresponding virtual
memory. The operating system has the option to use these bits. Typically, operating
systems employ these bits for performing memory swapping to the hard drive. In
our Linux environment, our memory swapping is disabled and therefore modifying
these dirty bits has no consequence. In order for this checkpoint mechanism to be
incorporated into a computing system with memory swapping enabled, one needs

to add another set of identical dirty bits that get set by the MMU in the same fashion.
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The operating system will be free to manipulate one set for swapping and one set
for checkpointing.

Most of the checkpoint process is performed in software. We developed a
kernel module to determine memory pages that requires duplication. A hardware
module was developed for performing the grunt work of copying the application
memory to a back up location in local memory. We believe local memory is the best
place to backup application memory because it is fast, and with Chip Kill, and
various ECC [27], [28] techniques, memory is a reliable storage location. In addition
RAM is relatively inexpensive and can be added to computing systems to
accommodate for the larger memory footprint. The hardware DMA module
implemented for this checkpoint mechanism copies memory at the page size
granularity of 4KB. Hardware configuration is accomplished by specifying arrays of
source and destination memory addresses. By using this DMA module, the
performance impact of the checkpoint is reduced by freeing the processor to
perform other tasks.

Performing an incremental checkpoint requires the bookkeeping of all
application memory pages and their backup location. Tracking is performed with a
linked list where each node holds the source and destination addresses for one
memory page. The nodes are kept in an ascending address value similar to the
application’s virtual memory map; this allows easy traversal and insertion of new
memory pages.

This checkpoint technique allows very short checkpoint intervals of 1

second. Incrementally backing up memory results in a proportional relationship
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between checkpoint size and interval, thereby reducing checkpoint interval results
in a quicker backup of data. In addition, saving the backup copy to memory is fast,

resulting in minimal application downtime.

3.2 Implementation

This section describes the implementation of our checkpoint mechanism. Our
design consists of two software components: a hardware module, and a few kernel
modifications. A user level application stub is used for starting the target program
and invoking the checkpoint at the desired interval. A kernel module is utilized for
keeping track of the application memory pages, and for programming the DMA
hardware. Finally, a hardware module performs the memory copy.

A total of four kernel modifications were made to enable our checkpoint and
recovery mechanism. Two flags were added to the task_struct: one to mark the
process as being checkpointed (PF_CHECKPT) and a second to mark the process as
being in recovery. Another flag was added to the vim_area_struct to prevent the
kernel from overwriting the dirty bits of the pages we checkpoint. Finally, we

modified the fault handler to invoke the rollback mechanism upon a failure.

3.2.1 Checkpoint
The checkpoint process is displayed in Figure 5. The steps described in the text refer

to the steps in the figure. In step (1) the application stub performs a fork to execute
two separate processes. The child process first writes its PID to a pipe and then

executes the target application.

29



MITAIIA0 ssadoad Jurodypay) :G aunSig

dem 3|qe3 aded
Sulinp ssasoud 198.e)
JO uonndaxa ey (g)

Ajuo
peaJ se wayj yJew pue
paldod aq 01 sassalppe
Aowaw Anip puss ()

uonedlddy
19316

9IINISS
jutoddayd

uopedjdde 198.4e3

pue 92IAJ43S Julodyaayd

03 UOLINIAXD SHI0} gN3s
ay1 dnueis up (1)

dnyiels

qnis 24emyos

91EMYOS

jutodydayd

J3|pueH
1dnJua1u|

|

puodas AJand
jujodydayd
e s3sanbay ()

9|NPOIA
EIVE)

J

3|qeuunu
se uopeo|dde
19841 4eA (£)

919|dwod s| \6_07J

(Vina)
aJempJeH

julodydayd

aJempJeH
J14

o]

Aowaw uaym

1dnuiaqul asiey (9)
J

Adod Aslowsw
9y} wuoydd (s)

30



The parent process reads the child PID from the pipe and in step (2) invokes the
checkpoint function of the kernel module every second until the child process
terminates.

The following steps repeat every time a checkpoint is invoked. In step (3) the
kernel module first checks if the target process exists and is not halted. Afterwards,
the task_struct flag PF_CHECKPT is set. Our modified kernel prevents this task from
being scheduled when the flag is set. Since we are executing in a single core
environment, we can be certain that the target process is not currently executing. If
we were executing in a multi-core environment the kernel would require further
modifications to first mark the process as checkpoint pending and only enable the
PF_CHECKPT flag once the task is no longer executing.

In step (4) the kernel module manually copies the target application’s
task_struct to a backup location allocated by the kernel module. The task structure
backup is required because it contains the application state at the time it was
removed from execution by the scheduler. Afterwards the kernel module walks the
application’s page table, creates a temporary list of all dirty pages, and clears their
dirty flag. Furthermore these pages are also added to a permanent linked list that
keeps track of source and destination addresses to ensure every application page
has a unique backup page. After the temporary list is complete it configures the
DMA hardware with the source and destination addresses. The hardware module
has a block ram for holding these addresses. Once the block ram is populated, the
software writes a register to specify the number of entries in the block ram and

another register to invoke the memory copy.
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In step (5) the hardware DMA performs the memory copy. A state machine is
used to look through the specified number of entries in the block ram and performs
a copy from the source to the destination memory pages. Upon memory copy
completion in step (6), the state machine raises an interrupt and the CPU returns
execution to the kernel module. In the final step (7), the kernel clears the

PF_CHECKPT flag to allow for the process to be scheduled.

3.2.2 Recovery

In order to validate our checkpoint mechanism we developed a recovery
mechanism that is triggered by the operating system’s fault handler. In the following
section we describe the validation experiments performed with a hardware fault
injector (described in chapter 4 of this thesis). The recovery process is depicted in
figure 6. When the application crashes our recovery process starts with the
invocation of the modified fault handler in step (1). If the fault handler determines
the crashed application is being checkpointed, the process continues with step (2).
In this step, the fault handler sends a rollback signal to the checkpoint service and
runs schedule() to halt the execution of the target application process. In step (3),
when the checkpoint service process becomes active, the rollback signal is received.
This signal will cause the checkpoint service to invoke the kernel module’s
rollback() function which initiates the memory rollback process.

In step (4), the kernel module sets the PF_CHECKPT flag to prevent the

scheduling of the target process. The permanent linked list of page addresses
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referred to in step (4) of the checkpoint process includes all of the application’s
memory pages and their backup location. This list contains all of the necessary
information for restoring all of the application’s active memory space. The
addresses from this linked list are configured into the hardware DMA module; for
each memory page the backup address is used as the source and the original
address is used as the destination. In step (5) of the recovery process, the memory
copy is performed by the DMA hardware. Upon completion, an interrupt is raised to
return execution to the kernel module. At this point the kernel module completes
the rollback by manually restoring the application’s task_struct from the backup
location used by the checkpoint process. In step (6), the kernel module clears the
PF_CHECKPT flag to allow the target application to continue execution.

If the rollback was successful, when the target application is scheduled again, it
will start executing from the state that it was last checkpointed in. If, however,
rollback was not successful, the application will return to the fault handler step (7),
which was called when the application first crashed. In this case we allow the fault

handler to continue with killing the target application.

3.3 Validation Experiments

In order to test the functionality of our checkpoint mechanism, experiments
were performed for validating the hardware DMA module and the successful
application recovery. All experiments from this and the following section are
performed on the Leon3 system displayed in Figure 4 from section 2.2. The

experiments are executed in a Linux environment as described in section 2.2. All
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applications are cross-compiled on an X86 machine and transferred to the Leon3
system via SCP.

All experiments are performed with a checkpoint interval of 1 second on
three different applications: matrix multiplication, GCC compiler, and BZ
compression. All of these applications write their outputs to a file. These output files
are compared against a golden run to validate the correct output of the program.
Matrix multiplication was always executed on an input of two 400x400 matrices.
The application was chosen because it has a simple control flow that is resilient to
faults. In the development process this application was useful because even after
memory corruption due to improper rollback, we were able to pinpoint errors by
performing a diff of the incorrect output to the golden output.

The GCC compiler was selected because it has a very complex control flow
and has a very large memory footprint. This application is very susceptible to
memory corruption faults due to incorrect checkpoint/rollback. Due to the
complexity of the application, we believe this to be a wholesome test for validating
rollback functionality. The input chosen for the compiler is an OGG encoder. This
application has one of the largest single file source codes with oggenc.c being 1.7
MB. The full compilation of this application requires about 4 minutes on the Leon3
and allows us to take a significant amount of checkpoints at 1 second intervals
throughout the execution of the program.

The BZ compression was selected because it has a large memory footprint
and it is memory-intensive. The BZ compression was executed on a 119 MB tar file

containing all of the GCC binaries and libraries. This application generated an
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average of 50 dirty 4KB memory pages per second requiring a large number of
memory transfers during every checkpoint. Since the checkpoint overhead scales
with the amount of dirty pages requiring backup, this memory-intensive application
is a good test for evaluating the performance of our checkpoint.

The hardware DMA needs to correctly copy every memory byte on top of
regular CPU bus traffic. This process was verified by adding a software checker
function to the kernel module. This function compares every byte of memory that
the DMA module copied for each checkpoint. When enabled, this software routine is
called immediately after the hardware interrupt that indicates all memory copy has
been performed. By executing this software function after every checkpoint memory
transfer, we can ensure the validity of our hardware module. This software
validation experiment was performed with all three test applications. Each
application was executed ten times. In all test cases the software validation test
reports all checkpointed memory is copied successfully.

To validate the functionality of our entire design, experiments of recovery
under faults are also performed. Specific application errors are injected into
checkpointed programs using the Hardware Fault Injector. The fault type selected
for this experiment is a PC bit flip for the bit in position 28. The injection is
performed on a random location in the code. This injection type is selected because
it ensures the application PC will jump out of scope causing an immediate
application to crash. As a result the OS will invoke the Linux fault handler, which is
modified to invoke the application rollback to the last checkpoint performed as

described in the previous section. The current design only supports rolling back to
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the last checkpoint; therefore low latency fault detection is required. The recovery
experiment is performed with the three applications mentioned above.

The rollback tests were executed ten times with each application. The
injection time during each run was different to ensure successful recovery from
various states. During all 30 test runs the application output matched the golden
run. Under the aforementioned PC fault, the only way for the application to
complete execution correctly is by restoring the full application state to the most
recent checkpoint and re-executing that section of the application. The successful
application completion after the injected fault indicates that our checkpoint and

rollback mechanisms function properly.

3.4 Performance Experiments and Analysis

The overhead of our checkpoint mechanism is evaluated by measuring
execution time of the three test applications with and without the checkpoint. The
programs used for performance experiments were the same as the ones listed in the
previous section: matrix multiplication, GCC compiler, and BZ compression. All
applications were checkpointed at intervals of one second, and run ten times. The
inputs for these applications are the same as the ones used in the previous section.

The variation between all ten runs of the same test never exceeded one
second. Table 1 shows the average runtime with and without checkpoint for every
application. The matrix multiplication, GCC, and BZ compression, had 15, 20, 50
average number of dirty pages per checkpoint. The performance overhead is related

to the average number of dirty pages per checkpoint. More dirty pages per
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checkpoint will require the hardware DMA to copy more pages bottlenecking the

memory bandwidth for a longer period of time during each checkpoint.

Table 1 Average Checkpoint Overhead

Average Normal
Execution (s)

Average Checkpoint
Execution (s)

Overhead (%)

Matrix 88.6 91.6 3.4%
Multiplication

GCC Compiler 236.4 243.8 3.1%
Bzip Compression 1514.5 1582 4.5%

The overhead of our checkpoint mechanism is no larger than 4.5% even for

memory intensive tasks. This result is very difficult to compare to existing

checkpoint mechanisms since none of these have been implemented on the Leon3
processor. The architectural and memory bandwidth difference make it impossible
to determine which method is best. In high performance machines the bandwidth is
extremely large and the time required to copy all of the extra data is much smaller.
The maximum theoretical memory bandwidth of the Leon3 processor used in our
experiment is 2GB/s compared to an Intel Core i7 that is 21GB/s. This difference in

memory bandwidth will have an effect on the performance of our technique if it is

implemented on an Intel machine.

This mechanism stores checkpoints in RAM to reduce overhead. The fact

allows for very small checkpoint intervals of one second. In addition, the hardware

DMA module is optimized to use the full available bus bandwidth for transferring
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checkpoint data. The Leon3 CPU cannot attain the same performance since it
requires extra memory operations for maintaining variables and fetching
instructions.

We believe the new checkpoint mechanism can perform very well in a
multitasking environment on a commercial CPU where the memory bandwidth is
much larger than the application requirements. The DMA hardware uses lost cycles
in the memory bus, and checkpointing can be performed in parallel with other
applications executing on the CPU. We believe that in such an environment the

performance impact on the overall system is much less than 4.5%.
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4 Application Hang Detection

The most challenging task in providing fault tolerant computing is detecting
errors when they occur. The only faults that require detection are those that
manifest themselves at the software level. Hardware faults can lead to one of three
errors at the application level: crash, hang, or silent data corruption. Crashes are
often caused by the application jumping out of scope and are detected by the
operating system. Silent data corruption errors are considered the most challenging
to detect and the most crucial for the correction functioning of the application. In
this particular case, an application may complete with no indication of anything
malfunctioning and still the produced result will be incorrect. Application hangs can
be difficult to detect since the application continues to execute instructions.
However, the application is stuck and keeps executing the same piece of code
forever.

For the purpose of accurately detecting hangs, we implemented an
application hang detector in hardware that monitors the number of instructions
executed by specific functions. The number of instructions executed within a code
block can be statistically bounded [29]. The hang detector relies on this principle by
comparing the instruction count of the currently executing function against
historical values that are maintained for each monitored function. Historical values
are readjusted based on the instruction count at the exit of the specific function. The
instruction count is performed directly in hardware and does not affect the

execution of the target application. The new hardware provides detection at no
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performance impact. We believe that monitoring the application at this level of

granularity can achieve a very high detection accuracy.

4.1 Design Choices

Application hangs can occur in various ways. The three most common are:
dead locks, infinite loops, and incorrect function parameters. In all of these cases the
application becomes stuck executing the same code section forever. In order to
detect these cases the hang detector was designed to monitor how long the
application spends in either all or a set of user-defined functions. Our method of
detection guarantees that any hang occurring in the monitored functions will
eventually be detected. Depending on the regularity of the application, this type of

function level monitoring can achieve low latency hang detection.

Figure 7: Simple function call graph example

Our monitoring hardware requires storage for each tracked function. To reduce area
overhead, monitored functions can be grouped together. To illustrate this concept,

we refer to the simple function call graph, displayed in Figure 7. Here all arrows
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represent a function call. For example, since function a() points to function b() it
means that within function a() function b() is called. Functions in a given application
such as function a(), b(), and c() in the graph can be grouped together by only
monitoring their parent, function a(). This grouping produces the best results when
the sum of the instruction counts across the grouped functions does not vary
significantly across various executions. For high-varying functions, monitoring
should be performed for individual functions to increase detection coverage and
decrease detection latency.

The hardware module that performs the hang detection requires the access
to the processor’s PC, privilege status register (PSR), and process ID (PID). The PC is
required to determine function entry/exit points, and to count the number of
instructions executed. Monitoring of the PSR is performed to ensure that only
instructions executed in the application space are counted. The PID register is
required to ensure that only instructions executed by the monitored application are
tracked. Our dedicated hardware uses a set of counters to maintain instruction
counts across function calls. The hardware is configured with all of the monitored
function entry and exit points before the application is executed. The points are
used to determine which function is currently active and which counters are to be
enabled. The following section describes the hang detector hardware in more detail.

A hang is declared whenever the instruction counter goes beyond a
historically determined threshold multiplied by a configurable coefficient. When the
application is launched the threshold for each monitored function should be a very

large user-defined value, which is adjusted for every function whenever the function
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completes. The equation used for evaluating the new threshold value is a simple
weighted average function with an alpha value:

(old threshold) * a + (new threshold) * (1-a).
The alpha can be selected as 0.5 or 0.75 to use shifters instead of multiplier and save

hardware resources. Further discussion of this variable is provided in section 4.4.

4.2 Implementation

The hardware setup used for implementing the hang detector is displayed in
Figure 4 from section 2.2. The hang detection process is outlined in Figure 8. The
hang detector is comprised of three software components and a hardware module.
The first software component is a Python parsing script that reads the target
application’s assembly file and prints all the functions with their entry and exit
locations. The second and third software components are displayed in Figure 8 as
one block. A software stub is used to perform a fork in which the parent reads the
text file generated by the script and invokes the kernel module, which configures the
hardware control registers. The child of the software stub invokes the target
application. The Hang Detector HW from Figure 8 is shown in further detail in
Figure 9. This component monitors the execution of the target process and raises an
interrupt upon hang detection.

A Python script was written to parse the assembly file on a host x86 machine.
The assembly file contains the virtual address for every instruction in the program.
Virtual addresses are used since those correspond to the PC value during execution,

therefore the PC is the register the hang detector monitors.
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The script walks through every instruction and searches all function entries. For
each function found it stores the address of the first instruction as the entry point.
Every RET instruction that is encountered is treaded as an exit location for the
corresponding function.

In step (1) of Figure 8, the Python script writes the results to a file that can be
read by the application stub. This file contains as many entries as there are functions
found. For each function entry there is one address for the function start, 6
addresses for function exits, and 1 value for the threshold value. The threshold value
is a configurable constant value that is used across all functions. This value should
start with a very high value. Through multiple runs this variable will adjust itself
based on the method described in the previous section.

The entries generated by the script for each function will be programmed
directly to the hardware control registers. Therefore, the number of addresses for
exit locations needs to match the hardware. The value of 6 exit addresses was
chosen to contain each function entry within a group of 8 values. Each of these
values corresponds to a hardware configuration register. Having this group size will
ensure that every function entry will have its address aligned to 8 locations, and
therefore simplify the configuration register lookup. None of the applications
examined in this paper contained more than 4 exit locations; this is why we believe
6 exit locations to be sufficient. If needed, this value can be expanded to 14 to keep
the entries in groups of 16.

In step (2) of Figure 8, the application stub performs a fork in which the child

process writes its PID to a pipe, sleeps for 2 seconds, and executes the target
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application. The parent reads the child’s PID and the script with entry/exit locations
to determine the correct configuration for the hardware. Since the CPU interfaces
with the hang detector over the standard AMBA bus as displayed in Figure 4, a
kernel module was implemented for accessing the hardware configuration registers.
The software stub invokes the kernel module with the correct configuration
parameters. Once configured, the hardware performs all necessary monitoring. In
this step the child process is required to sleep for 2 seconds to ensure that the
parent has finished programming the hardware before the target application is
executed.

As depicted in Figure 9, the hardware contains a register file of multiple sets
of 8 32-bit entries. Each set contains a function entry point address, 6 exit point
addresses, and a threshold value (duration). The hardware can be instantiated with
a variable number of register sets at the expense of hardware resources. In addition
to the storage overhead, there is an extra comparator instantiated for each register
set to allow the monitoring of all entry functions simultaneously. The number of
register sets instantiated in the register file will determine the amount of functions
that can be monitored by the hardware.

The hang detector also uses another storage structure of multiple sets of 2
32-bit entries called the queue. Each set is comprised of a pointer that is the index
into the register file for the monitored function and a counter for the number of
instructions executed by that function. The hardware has a register that keeps track
of the active queue index called queue_ptr. Every time a function entry is found, the

queue index (queue_ptr) is incremented and the index of the new function is
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entered in the queue at the new position (ptr). The counting is performed until
either a new function entry or the current function’s exit is detected.

For every function exit, the instruction counter (count_val) in the active
position along with the corresponding function’s threshold value is used to
determine the new threshold value as described in the previous section. The result
overwrites the threshold value in the register file. When the function exits the
queue, the index also gets decremented. If the active counter (count_val) exceeds
twice the threshold value, the hardware raises an interrupt to inform the operating
system that a hang has been detected.

The size of the queue is configurable and the only overhead is the number of
registers instantiated for the structure. Consequently, a large queue can be
instantiated without running out of resources or overcomplicating the hardware. If
the function call depth is larger than the queue, the detector will loose track of the
function calls. This will cause the hang detector to enter an unrecoverable state
where it may miss detection or cause false alarms. In this case, the hang detector
will require a reset, which is performed automatically when the configuration
process is executed.

The hang detector process has also been implemented to allow the execution
of a training phase where the hang detection is disabled and the hardware simply
updates the threshold value during runtime. When the application exits, the
threshold values are used to overwrite the values in the application parameter list
generated by the Python script. This allows the target application to be tested with

historical values from previous runs instead of random large numbers.
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In order for the hang detector to keep track of the current PID, we modified
the scheduler code. Whenever there is a context switch to a new process, the
modified code configures our hardware with the active PID. This method simplifies
the interconnect between CPU and hang detector as compared to the fault injector
described in the following chapter. This method uses the CPU bus to configure the
hardware and since we only add one bus write for every context switch, the

overhead is insignificant.

4.3 Validation Experiments

Experiments are performed in order to test the correct functionality of our
hang detector. All tests from this section are performed on the Leon3 system
displayed in Figure 4 from section 2.2. The experiments are executed in a Linux
environment as described in section 2.2. All applications are cross-compiled on an
X86 machine and transferred to the Leon3 system via SCP.

The functionality is evaluated with three simple applications: matrix
multiplication, quick sort, and LU reduction. The applications are kept small to
ensure all of the functions fit within the hardware register set. Small applications
are also employed because it is easier to understand of the applications’ control flow
to perform fault injections.

Hangs are invoked with the use of the hardware fault injector described in
the next chapter. In every application the faults injected are ALU bit flips. The faults
are injected at the first increment of certain loop counters. The 31st bit is always

flipped to cause the counter to become an extremely large negative number. This
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causes the injected function to execute for a much longer period of time, thus
simulating a hang.

For the experiments in this section the initial threshold value for each
application is determined by first executing each application in a training phase as
described in the previous section. Experiments for each application are performed
with the same input as the one used in the training phase. By using the same inputs
we believe the threshold instruction counts to be very accurate to the instruction
counts during a normal execution of these tests.

For each application three different loops from different functions are
targeted for injection. Each injection simulates an infinite loop hang. The three
applications are each executed 15 times with 5 runs for each injection location. For
all injections the hang detector correctly raises the hang interrupt. The same
applications are also executed with the hang detector 5 times each without any fault

injection. In this scenario the hang detector does not indicate any hang.

4.4 Analysis

The false alarm and detection accuracy of this module cannot be quantified
since they will vary greatly with the application and function you select to monitor.
The best results can be achieved by choosing the correct set of functions to monitor
for each application and even the application input. This section will describe the
expected false alarm and detection accuracy based on the application behavior.

For large applications the hang detector cannot monitor all of the functions
due to hardware limitations. In this scenario the correct set of functions need to be

selected to maximize the detection accuracy and minimize the false alarms. All
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monitored functions need to have an upper bound to the instruction count.
Functions that depend on input size or loop forever should be either omitted or the
code should be refactored to call an auxiliary function inside of the (infinite) loop,
and the monitoring should be performed on the auxiliary function. This should
allow the main function to loop forever without the detector raising any alarm while
still monitoring a large amount of the executing code.

When a function is selected for monitoring, the hang detector counts the
instructions executed by all of that function’s children as well, unless the child
function is also selected for monitoring. This allows the user to analyze more
functions than the number of selected functions.

Detection accuracy can be maximized by analyzing functions that take the
largest execution time in the program. These functions are the most susceptible to
faults since they spend the most time on the CPU. Since the hang detector raises an
alarm once an upper bound of executed instructions is reached, any hang contained
within the monitored functions should be detected. Dead locks can be detected as
well since these operations often execute the same few instructions until the lock is
released. If the lock is not released these instructions will loop forever.

False alarms can be minimized using a high multiplier for the instruction
count threshold. The hang detector raises an alarm every time the instruction count
is larger than the multiplier * threshold value. With a higher multiplier the hang can
be declared at a much later time increasing the detection latency. A true hang can
still be detected because the instruction count goes up forever and the multiplier *

threshold will eventually be reached.
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For any function that is not monitored and whose callers are not monitored,
a hang will go undetected. Likewise, if the control flow jumps between two
monitored functions, the hang detector will not be able to detect this problem. In
order to avoid this missed detection, the hang detector can be extended to count
multiple functions simultaneously. When entering specific child functions, the
instruction counter of the parent can continue counting. This is analogous to
grouping the parent function with the children. However this method will reduce

detection time by also monitoring at a low granularity.
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5 Fault Injector

This chapter presents the design and implementation for two fault tolerance
modules. In order to validate these mechanisms, it is crucial to have a controlled test
environment to simulate faults as they occur in real systems. For this purpose we
developed a hardware fault injector for use with the Leon3 processor. This fault
injector allows us to modify bits in various signals of the processor’s pipeline during
the execution of any specific instruction within a target application. Injections can
be performed in the program counter (PC), decoded instruction, memory
read/write data, and various other data path signals. This injector also allows us to
perform bit flips, stuck at 0, or stuck at 1 faults, and supports both single and multi-
cycle injections. The injector performs injections without interfering with the
execution flow.

Typically, injectors fall into two categories: hardware-based such as [30]-
[33] and software-based fault injectors such as [34]-[38]. Hardware injectors can be
either based on radiation induced injections or pin induced injections. Software
methods normally function by halting execution at a trigger point, modifying the
value of a variable in memory, register, or disc location and resuming execution.
This model is acceptable because it relies on the principle that any hardware fault
that affects an application will ultimately cause a modification to a value in memory.
While this principle holds true in most scenarios, it does not simulate the more
complex ways in which a single hardware fault could affect multiple memory

locations. An example of this case is a fault that changes an arithmetic operation
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stored to a register used as a memory pointer. Such an error could affect a select set
of memory locations and the same set may not be simulated with this model by
modifying the pointer in memory. A control flow error, such as a PC injection in a
random code location, is also impossible to simulate with this model. In addition, a
multi-cycle error may affect consecutive instructions in different ways, due to
hardware sharing across different instruction types. Such an error cannot be
simulated by a single memory injection.

Hardware fault injectors simulate faults more accurately than software-
based injectors [39]. Software injectors can only modify values that software has
access to like memory locations or registers. Our hardware injector supports
various injection types directly into pipeline signals. Through this method we can
produce a behavior in the CPU similar to that which occurs during a hardware fault.

The fault injector presented in this paper can provide more accurate
performance analysis than the software injectors. The injector presented here is
configured before the application is executed and injections are performed fully
within hardware without affecting the control path; therefore, no extra instructions
need to be executed after the application is started. Software methods cannot
achieve the same execution accuracy because they require a system call and extra
software to perform the injection.

In the following sections, we describe the design and an implementation of
our hardware fault injector in the Leon3 system as described in section 2.3. The
chapter also describes how the fault injector can be used, and some validation

experiments that were performed.
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5.1 Design Choices

In an effort to achieve the most accurate simulation environment for
evaluating software behavior under faults, we developed a hardware fault injector.
This fault injector allows for the modification of specific data path signals during the
execution of one or multiple instructions in the target application. We believe this
approach of injecting faults directly into the data path to model faults is better than
the traditional memory manipulation approach.

In real systems, faults most often behave as single-cycle bit flips in a random
positioned logic gate. Depending on which gate is affected, the code execution could
be affected in various ways. The application could suffer a small data error, or it
could modify a counter variable, resulting in a hang or significant application error.
Hardware errors can even affect the program counter, causing the execution path of
the program to change drastically. Our design allows the injection of faults into
various pipeline signals. The signals that we allow injection to are: Program
Counter, Instruction Register, Source Operand1, Source Operand2, ALU result,
Memory Data Write, Memory Address, Memory Data Read, and Register Result.

The fault injector we designed is able to inject faults in the target application
passively, without interfering with the order of operations executed. The fault
injector contains a configurable number of control register sets. These registers are
programmed prior to the execution of the target application and trigger
automatically on the pre-configured instruction. This guarantees that the control
flow of the injected program will behave identically to how it would in the presence

of the same fault in a real environment.
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In the injection of multiple errors in one run, the hardware can be
synthesized with a configurable number of control register sets. Each control
register set can be preconfigured with one injection target. The target FPGA type
used is the limiting factor to the number of sets that can be instantiated. With the
addition of each set, the timing becomes tighter and the hardware resources used
increase.

When investigating the behavior of hardware faults, we find that the most
common faults are caused by radiation particles hitting transistors in the chip.
Usually, these faults only cause errors for a short time (around one clock cycle).
However, it has been observed that with smaller transistors, the charge takes longer
to discharge; sometimes it can last for multiple clock cycles. Even though these
faults occur less often (only high energy particles can cause this) [40], we believe
that it is necessary to be able to inject this type of fault. This is the reason why we
support the injection of long duration faults. The user can specify the amount of
clock cycles to modify the injected signal for.

Software-based fault injectors rely on flipping bits to ensure that an error
was introduced. However, when injecting long duration faults one cannot simply flip
the value of the bit during each cycle of the error; this does not follow real system
behavior. Affected paths (depending on the circuit) behave like a stuck at 0 or stuck
at 1 bit for the duration of the fault. In our design we consider this behavior and
allow the specification of 3 different types of injection: bit-flip, stuck at 0, and stuck
at 1. Software-based fault injectors cannot achieve this [41]. In addition, the fault

injector also supports the injection of multiple bits of the injection signal.
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The fault injector presented in this paper was designed to allow for an
accurate simulation of a large variety of fault types on any target application
without introducing extra experimental variables. We achieve this by using a robust
injection controller that is tightly coupled with the processor pipeline and is

configured from software before the target application is executed.

5.2 Implementation

This section describes the implementation details of our hardware fault
injector. An outline of the hardware and its integration into the pipeline is displayed
in Figure 10. The injector hardware is composed of three components: the injection
blocks, the controller, and a Process ID (PID) monitor. The injector consists of 9
injection blocks; each one is responsible for modifying one of the pipeline signals we
allow injection to: Program Counter, Instruction Register, Source Operand1, Source
Operand?2, ALU result, Memory Data Write, Memory Address, Memory Data Read,
and Register Result. The PID monitor is used to determine the active process being
executed by the processor. The controller contains multiple sets of control registers
and a configuration interface (described later) that allows software full access to the
registers. The control register set(s) are used for specifying all of the parameters
required for injection. Each register set consists of an injection location (PC value),
injection type, injection duration, and a bit-mask. When enabled, the controller
continuously checks the pipeline PC signal against all PC injection control registers.
[f the trigger condition matches any of the control sets and the configured PID

matches the active PID, an injection occurs.
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In addition to the injector, Figure 10 shows multiple 2-1 multiplexors added
to the data-path, one for each injected signal. These injection multiplexors are used
to select between the normal signal and the injected signal. The controller is
connected directly to the select line of the multiplexors, and selects the injected
signal whenever the controller is triggered; otherwise, the original signal is passed
through.

The injectors are responsible for modifying the pipeline signal as specified by
the controller. Figure 10 displays each of the injectors being continuously fed with
its specific 32-bit original (not modified) signal coming from the pipeline. For each
injection block, the controller specifies the injection type (stuck at 1, stuck at 0, or
bit flip), and the injection bit-mask. The Bit-Mask is used as a bit-enable to
determine which bits of the data path signal should be modified. All supported
injection types - bit flip, stuck at 0, and stuck at 1 - are generated in parallel through
an XOR, AND, and OR gate, respectively. The outputs of the 3 gates pass through a
multiplexer, which uses the injection type from the controller to determine which
injected signal to output. The injection blocks continuously provide their specific
injected signals back into the pipeline. Whenever the controller is triggered, it
enables the appropriate injection multiplexor in the pipeline to select the injected

signal instead of passing the original signal.
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Figure 10: Fault injector hardware outline and integration into Leon3 pipeline

As shown in Figure 11, the injector controller is composed of control register

sets and control blocks. The control register sets are used for specifying injection
parameters. Each set is used to specify one injection. The number of register sets
can be specified before synthesis. This number will represent the number of
injection targets the injector will support. Each register set is composed of 5 32-bit
registers. Register 0 specifies the Program Counter value at which the injection
should occur. Register 1 is used as a mask value to indicate which bits in the data
path signal to enable injection for. Register 2 specifies the type of injection to
perform. The type register indicates single or multiple cycle error, and the location
of the fault (which data path signal to modify). Register 3 is only used for multiple
cycle error types; it indicates the number of cycles to assert the error for. Register 4

is used to indicate the PID of the process to inject.
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Figure 11: Fault injector controller block outline

The controller contains one control block for each supported injection signal. These
control blocks are responsible for triggering an injection whenever both the
injection PC location and configured PID match the active PC and PID of the
processor. Each control block compares the processor’s PC against all of the
configured PC injection values (from the register sets) in parallel. If a match is found
by any of the control blocks, the matched register set’s injection type and bit-mask
are forwarded to all of the injection blocks. In addition, the active control block will
enable its appropriate injection multiplexor to select the signal from the injector.

In addition, the controller also comprises a configuration interface. The
configuration interface gives software access to the control registers. The registers
can be accessed from software by the SparcV8 CPOP1 instruction as depicted in
Figure 12. The communication interface monitors the instruction register, and
various operand data for every operation executed in the pipeline. When the op
code matches the CPOP1 instruction, it triggers a read or a write operation
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(depending on bit 8) to the fault injector registers. The field [6:0] of the instruction
indicates which of the injector registers to access. Upon a write to the fault injector,
the data written is read from a register in the CPU register file specified by bits
[18:14] of the instruction. On a read instruction, the data from the fault injector is
stored into the CPU register specified by bits [29:25] of the instruction. This is
accomplished with the use of an additional multiplexor added to the destination

register data.

Leon3 Pipeline

write data

Register
File

write data
read data

Register Sets

Fault Injector

Figure 12: Fault injector configuration interface

We developed a small module to keep track of the active PID on the
processor. This module works by monitoring the SPARC alternate store instruction
to address 0x200. The SPARC Memory Management Unit (MMU) uses this value to
determine the index into the Page Directory for the active process. The Linux
operating system we used utilizes the same index as the PID value. By keeping track

of this value, we always know the active PID on the processor.
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In order to use this injector easily with any application, a software stub was
written, which programs the injector with the desired injection location and
executes the target program. The Injection PC, fault type, mask, duration, and target
application can all be specified in the command line. In order to ensure the injection
is performed in the target application, the software stub performs a fork. The child
process writes its PID to a pipe and executes the target. The parent application

receives the PID and programs the fault injector accordingly.

5.3 Validation Experiments

The fault injector was evaluated on the hardware setup displayed in Figure 4
from section 2.2. To validate the fault injector, a small software routine was written
that performs each injection signal type and checks if the correct injection was
performed. For each of the 9 supported injections a small test code with a sanity
check was written to test the functionality of the injector. Under normal execution,
the sanity check prints “fail”. However, with the correct injection in the test code the
sanity check prints “success”.

For each injection type, the test application first configures the hardware
registers with the appropriate injection location and type. The injection type and
location are manually selected to alter the execution in a controlled manner. After
configuration, the test code is executed. During execution, the configured injection
occurs and modifies the behavior of the test code. At the end of the test code, a
sanity check is performed and a print statement is generated to indicate whether
the injection was successful or not. As an example following the test case for the ALU

injection check:
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1:inta=2,b=1,c,d;

2:c=a+b;

3:d=a;

if(d == c){ success}else{fail}

For this test code, the injector was configured to flip the LSB of the ALU
output during the execution of line 2. Under normal operation c will equal 3 but with
the injected fault the result should be 2. Every injected pipeline signal was validated
in a similar fashion. The tests succeeded for all injection types.

In addition to the above test, we also validated the long duration faults. This
test was performed using the Altera hardware debugger provided in the Quartus
toolset called Signal Tap. This hardware allowed us to view a snapshot of the real
time signals from the injector and processor pipeline. The long duration fault was
executed with all injection types, using the same software routine as before, but
with the long duration fault enabled. In all cases the Signal Tap waveforms showed
the injection assertion and the pipeline bits being manipulated for the configured

number of clock cycles.
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6 Related Work

This thesis presents a technique for providing fault tolerance through the use
of a Fault Tolerance Core. Three modules used to describe this topic are presented: a
checkpoint recovery process, an application hang detector, and a fault injector. This

section provides a list of related work to all of the four topics covered in this paper.

6.1 Related Work on Fault Tolerance Core

The Fault Tolerance Core uses perturbation based error detectors. These
detectors are aware of certain patterns in execution for each application and collect
runtime information to determine any irregularities in execution. The work
presented in [17] is a related work that is based on the same concept. In this thesis
four perturbation based detectors are presented: historical variable value, dynamic
variable value, bit-invariance, and a bloom filter. This thesis presents the coverage
of using such detectors; however, it does not address the issue of collecting the
runtime information in a way to minimize performance overhead. The FTC is
designed to be an interface for using such perturbation based hardware modules.
The FTC collects runtime information from the CPU and delivers it to the hardware
modules in a way to designed to minimize the impact on the CPU core.

The work most closely related to the FTC described in this paper is the
Reliability and Security Engine (RSE) [18], a hardware reliability framework for
integrating programmable hardware modules that provides application aware fault
tolerance. The hardware modules used by the RSE are configured for each

application to provide the most efficient fault tolerance. The hardware modules
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receive runtime information, which is used for determining any perturbations in the
execution. The general concept of this design is very similar to the FTC. The main
difference here is that the RSE is tightly coupled with the CPU pipeline and
significantly impacts the critical path. This component is designed to receive signals
directly from the CPU pipeline. This requires the RSE to be incorporated in the CPU
core, requiring internal pipeline signals to pass trough an additional number of
gates. In addition, the number of transistors added to the core will complicate
routing and placement, which will increase the critical path. The proposed FTC only
collects a small number of pipeline signals, and routes them away from the core.
This allows the FTC to be located away from the core. The FTC uses buffers for the
collected pipeline signals to allow the processor to execute freely ahead of the fault

detectors.

6.2 Related Work on Checkpoint Recovery

The second fault tolerance topic that is addressed in this paper is the
Checkpoint Recovery (C/R) module described in chapter 3. A significant amount of
research has been devoted to this topic. Berkley Labs Checkpoint Restart (BLCR)
[19] is one of the most well-known application checkpoint mechanisms. This C/R
implementation uses kernel and user level support for providing checkpoint
transparent to the application. Applications can be checkpointed without any
modification. This mechanism checkpoints the application’s registers, virtual
address space, and open files. The original implementation was a rudimentary full
application checkpoint. Various extensions have been developed for this C/R

mechanism including an incremental checkpoint extension. The said extension
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propagated the dirty bit of the page table entries to the user level through a kernel
patch. In this fashion the user level checkpoint service can make use of this data to
determine the application’s dirty pages within a checkpoint interval. Another
incremental checkpoint mechanism is TICK [22]. This C/R implementation performs
systemwide incremental or full checkpoint. It only supports uniprocessor systems
and is implemented as a kernel thread. This mechanism is fully implemented in the
kernel, and maintains the state of the entire system. Pickpt [23] is a page-level
incremental checkpoint process. This implementation stores checkpoints to disk,
and incorporates some space-efficient techniques for minimizing disk space usage.
The checkpoint mechanism in [24] is very similar to the proposed checkpoint in
Chapter 3. It is an incremental transparent application checkpoint. It relies on kernel
modifications to determine pages requiring checkpointing. This implementation
also uses internal memory for storing the checkpoint data. The difference between
this checkpoint and the one proposed in this thesis is that ours uses a hardware
DMA module for performing the copy of the checkpointed memory.

In message passing parallel applications checkpointing is a more complex
problem. Messages can be sent and received out of order and it becomes difficult to
ensure the whole application’s state is checkpointed correctly. In this category there
are two types of checkpointing mechanisms: coordinated and uncoordinated.
CoCheck [20] is a coordinated C/R mechanism for checkpointing message passing
parallel systems. This mechanism checkpoints every thread of the process and takes
a snapshot of the state of the inter process messages. The threads are checkpointed

using checkpoint libraries used in Condor [42]. The CoCheck system uses a resource
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manager that receives checkpoint requests and coordinates all of the threads and
the messaging protocol to achieve a state that can be saved and later restored.

An uncoordinated checkpoint mechanism for message passing applications is
MPICH-V [21]. This mechanism does not require any coordination of the messaging
protocol. Through message logging, the C/R implementation can checkpoint the full
application at any time. The out of order messages are known at the time of the
checkpoint from the log. A hardware assisted uncoordinated checkpoint mechanism
for shared memory multiprocessors is REVIVE [43]. In this C/R implementation the
directory controller is modified to perform direct logging of memory writes. The

logs are kept as part of a checkpoint and are replayed in case of a rollback.

6.3 Related Work on Application Hang Detection

Traditional crash and hang detectors have been implemented as watchdog
mechanisms. Gouda and McGuire [44] provide descriptions and analysis of various
heartbeat protocols. These detectors function with the use of a watchdog timer
process that requires repeated heartbeat messages from the target application or
system to determine whether it is still functioning.

Other hang detectors have been designed to use OS information to determine
the health of an executing program. An example is [45], which uses system calls to
determine hangs. In this implementation, application profiling is used to determine
normal system call patterns. If the system call pattern is violated or no calls occur, a
fault is declared. The detector implemented in [46] uses a very similar principle for
detecting application hangs but with more OS monitors. Besides system calls, the

mentioned implementation uses OS signals, task schedule timeout, waiting times on
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semaphores, holding times on critical sections, process exit codes, and [/0
throughput.

Hang detectors have also been implemented using hardware performance
counters [47]. These performance counters are available in most modern off-the-
shelf CPUs. The counters indicate time and can be controlled through software. In
[47] the performance counters are used to determine execution time required for
various blocks of code. For each monitored code section additional functions are
called to configure the performance counter, one for the entry and one for the exit.
Each block of code has a maximum execution time determined through profiling.
This approach is very similar to the hang detector described in this thesis. The
difference is that the performance counter method requires execution overhead for
controlling the counters. The hang detector described in this thesis does not require
any modifications to the application and does not incur any overhead other than the

initial hardware configuration.

6.4 Related Work on Fault Injection

For a long time, fault injectors have been used to validate the dependability
of computing systems. Fault injectors can be categorized in two main classes:
software-based and hardware-based. Hardware-based fault injectors mainly use
radiation or manipulating voltages at the pins of a CPU. This type of fault injection is
better at providing an accurate simulation of faults because it can modify bits in
locations that cannot be accessed by other means.

RIFLE [30] is an example of a hardware fault injector that performs

injections through CPU pins. This framework produces deterministic faults that can
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be reproduced. It is flexible enough to be adapted to a range of target systems.
MESSALINE [31] is another pin-level fault injector. This system allows stuck-at and
long duration faults to be injected in the target CPU. It has a management module
used to automatically generate fault injection sequences.

FIST [32] is an injector that uses radiation to cause single or multiple bit-
flips. This design enables the injection of faults deep within a CPU in locations that
are inaccessible to software code or pins. Moreover, it has a very random
distribution of faults similar to real errors. The downside of this injector is that
there is no control over the injection. This means that the same injection cannot be
performed twice.

Reference [33] describes a fault injector designed for VHDL simulation. This
injector is integrated into a commercial simulator and can perform gate, register, or
chip level injections. It provides automatic injection into target models. It supports a
variety of fault models like bit-flips, stuck-at, and long duration faults. This
mechanism allows for a very detailed view of the fault propagation and error
manifestation. This tool cannot be used for full CPU VHDL models. It can only handle
less medium-complexity models.

Many software fault injectors have been used in validation. Software
injectors are easier to integrate into systems, and can still provide valuable details of
the dependability of the target system. FERRARI [34] can inject memory and bus
faults. It uses software traps to perform injections. Faults can be injected either
based on a timer or a program counter value. The fault types supported are

permanent or transient in a memory address, or a data line. FTAPE [35] is another
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software-based fault injector. This injector can introduce bit-flip faults into user-
accessible registers, memory locations, and the disk subsystem. FTAPE uses fault
injection drivers added to the operating system to perform the injections. XCEPTION
[36] is an injector that uses the processor’s exception to trigger faults at specific
addresses. It is implemented as an exception handler. This injector uses a mask to
modify either single or multiple bits in either a register or a memory location. The
mask is used to determine which bits of the signal to modify with a stuck-at or bit-
flip fault. EXFI [37] uses trace exceptions common in commercial CPU’s. The trace
exception handler is modified to perform injections. This tool can inject single bit-
flip transient faults in any part of the application or user registers.

NFTAPE [38] is a more versatile fault injector designed to test a full
heterogeneous distributed system by supporting a large variety of injectors. This
injector uses a common control mechanism and triggers to manage injections across
the whole system. It uses various injectors including a hardware-based LAN injector,
driver-based injectors, debugger-based injectors, target-specific injectors, and
performance-fault injectors. It can inject faults in the form of bit-flips in registers,
kernel and application virtual memory, random physical memory, LAN connections,
and [/O communication. This injector also supports a complete variety of trigger

types: path-based, time-based, and event-based.
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7 Conclusions

This thesis presents a novel approach for providing fault tolerance through
the use of a heterogeneous Fault Tolerance Core (FTC). This core is designed as a
framework for incorporating various application-aware fault tolerance hardware
modules. It collects application runtime information directly from the processor
pipeline and forwards it to the hardware modules. The hardware modules use this
data for determining perturbations in target applications.

A hardware-assisted checkpoint module, and an application hang detector
hardware module have been developed towards achieving the goal of a FTC. All
hardware modules have been implemented and tested on an open source Sparc V8
Leon3 processor synthesized on an Altera Stratix III FPGA. The operating system
used for the experiments was the Sparc Linux 3.4.4 distribution built around the
2.6.36 Linux Kernel.

The checkpoint module provides incremental checkpoint services to
applications with an overhead no larger than 4.5% with a 1 second checkpoint
interval. This checkpoint mechanism is implemented as an incremental checkpoint
and uses the dirty page bits in the page table entries for determining dirty pages
during each checkpoint interval. The checkpoint mechanism was validated by
checkpointing and recovering the GCC compiler.

The application hang detector monitors the number of instructions executed
inside each user-defined function. This module runs in the background and does not

interfere with application execution; therefore it does not incur any overhead. This
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mechanism requires no modifications to the target application. The hang detector
has been validated with the use of a hardware fault injector also described in this
thesis.

For validating the functionality of our fault tolerance modules a hardware
fault injector has been developed for the Leon3 system. The fault injector can inject
faults directly into the processor pipeline. It supports bit flip, stuck at 0, stuck at 1,
long and short duration faults in 9 pipeline signals. This injector has been used in all

validation experiments described in this thesis.
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