59 research outputs found

    Stress-Induced Delamination Of Through Silicon Via Structures

    Get PDF
    Continuous scaling of on-chip wiring structures has brought significant challenges for materials and processes beyond the 32 nm technology node in microelectronics. Recently three-dimensional (3-D) integration with through-silicon-vias (TSVs) has emerged as an effective solution to meet the future interconnect requirement. Thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper examines the effect of thermal stresses on interfacial reliability of TSV structures. First, the three-dimensional distribution of the thermal stress near the TSV and the wafer surface is analyzed. Using a linear superposition method, a semi-analytic solution is developed for a simplified structure consisting of a single TSV embedded in a silicon (Si) wafer. The solution is verified for relatively thick wafers by comparing to numerical results obtained by finite element analysis (FEA). Results from the stress analysis suggest interfacial delamination as a potential failure mechanism for the TSV structure. Analytical solutions for various TSV designs are then obtained for the steady-state energy release rate as an upper bound for the interfacial fracture driving force, while the effect of crack length is evaluated numerically by FEA. Based on these results, the effects of TSV designs and via material properties on the interfacial reliability are elucidated. Finally, potential failure mechanisms for TSV pop-up due to interfacial fracture are discussed.Aerospace Engineerin

    Study of through-silicon-vias (TSVs) induced transistor variation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 83-85).As continued scaling becomes increasingly difficult, 3D integration has emerged as a viable solution to achieve higher bandwidth and power efficiency. Through-siliconvias (TSVs), which directly connect stacked structures die-to-die, is one of the key techniques enabling 3D integration. The process steps and physical presence of TSVs, however, may generate a stress-induced thermal mismatch between TSVs and the silicon bulk. These effects could further perturb the performance of nearby electronic structures, particularly transistors, diodes, and associated circuits. This thesis presents a comprehensive study to characterize, analyze and model the impact of TSV-induced stress impact on device and circuit performance and its interaction with polysilicon and shallow-trench-isolation (STI) layout pattern density. A test chip is designed with multiplexing test circuits providing measurements of key parameters of a large number of devices. These devices under test (DUTs) have layouts that explore a range of TSV and device layout choices in the design of experiments (DOEs). The test chip uses a scan chain approach combined with low-leakage and low-variation switches and Kelvin sensing connections, which provide access to detailed analog device characteristics in large arrays of test devices. A test circuit and an Ioff measurement method is designed to perform off-chip wafer probe testing measurement. In addition, a finite element analysis model is constructed to mimic realistic TSV structures and processes. A complete flow and methodology to analyze transistor characteristics and circuit performance under the influence of TSV stress is proposed. An efficient algorithm is also proposed to simulate full-chip circuit variation under the impact of TSV stress based on a grid partition approach. Test cases corresponding to the aforementioned test chip are simulated for comparison with measurement data.by Li Yu.S.M

    Laser-driven micro-transfer printing for MEMS/NEMS integration

    Get PDF
    Heterogeneous materials integration, motivated by material transfer processes, has evolved to address the technology gap between the conventional micro-fabrication processes and multi-layer functional device integration. In its basic embodiment, micro-transfer printing is used to deterministically transfer and micro-assemble prefabricated microstructures/devices, referred to as “ink,” from donor substrates to receiving substrates using a viscoelastic elastomer stamp, usually made out of polydimethylsiloxane (PDMS). Thin-film release is, in general, difficult to achieve at the micro-scale (surface effects dominate). However, it becomes dependent on the receiving substrate’s properties and preparation. Laser Micro-Transfer Printing (LMTP) is a laser-driven version of the micro-transfer printing process that enables non-contact release of the microstructure by inducing a mismatch thermal strain at the ink-stamp interface; making the transfer printing process independent from the properties or preparation of the receiving substrate. In this work, extensive studies are conducted to characterize, model, predict, and improve the capabilities of the LMTP process in developing a robust non-contact pattern transfer process. Using micro-fabricated square silicon inks and varying the lateral dimensions and thickness of the ink, the laser pulse duration required to drive the delamination, referred to as “delamination time,” is experimentally observed using high-speed camera recordings of the delamination process for different laser beam powers. The power absorbed by the ink is measured to estimate the total energy stored in the ink-stamp system and available to initiate and propagate the delamination crack at the interface. These experiments are used as inputs for an opto-thermo-mechanical model to understand how the laser energy is converted to thermally-induced stresses at the ink-stamp interface to release the inks. The modeling approach is based on first developing an analytical optical absorption model, based on Beer-Lambert law, under the assumption that optical absorption during the LMTP process is decoupled from thermo-mechanical physics. The optical absorption model is used to estimate the heating rate of the ink-stamp system during the LMTP process that, in turn, is used as an input to the coupled thermo-mechanical Finite Element Analysis (FEA) model. Fracture mechanics quantities such as the Energy Release Rate (ERR) and the Stress Intensity Factors (SIFs) are estimated using the model. Then, the thermal stresses at the crack tip, evaluated by the SIFs, are decomposed into two components based on originating causes: CTE mismatch between the ink and the stamp, and thermal gradient within the PDMS stamp. Both the delamination time from the high-speed camera experiments and thermo-mechanical FEA model predictions are used to understand and improve the process’s performance under different printing conditions. Several studies are conducted to understand the effect of other process parameters such as the dimensions and materials of the stamp, the ink-stamp alignment, and the transferred silicon ink shape on the process performance and mechanism. With an objective of reducing the delamination time, the delamination energy, and the temperature of the ink-stamp interface during printing, different patterned stamp designs (cavity, preloading, and thin-walls) have been proposed. Cavity, preloading, and thin-wall stamps are designed to generate thermally-induced air pressure at the ink-stamp interface, to store strain energy at the interface, and to generate thermally-induced air pressure at the preloaded interface, respectively. Cohesive Zone Modeling (CZM) based models are developed to estimate the equilibrium solution of the collapsed patterned stamp after the ink pick-up process, and to evaluate the patterned stamps’ performance during the LMTP process. The patterned stamps show significant improvements in delamination times and delamination energies (up to 35%) and acceptable improvement of the interface temperature at the delamination point (up to 16%) for given printing conditions

    Design, fabrication, and reliability study of second-level compliant microelectronic interconnects

    Get PDF
    Free-standing off-chip interconnects have high in-plane and out-of-plane compliance and are being pursued in academia and industry to reduce die stresses and to enhance interconnect reliability. The geometry of the compliant interconnect, its dimensions, and the material and processes used for fabricating the interconnect influence its mechanical and electrical characteristics, fabrication and assembly yield, thermo-mechanical and drop-impact reliability, and cost of fabrication. Although studies have examined various compliant interconnect designs, a multi-objective and multi-physics design optimization of the compliant interconnect has not been adequately pursued and implemented in prototypes. The first objective of this thesis is to develop a second-level multi-path compliant interconnect for microelectronic systems by performing compliance analysis and multi-physics design optimization using analytical and numerical models; The second objective of this thesis is to develop dry-film based sequential processes to fabricate such compliant interconnects on a silicon wafer, and to assemble singulated silicon substrates on organic printed circuit boards. In particular, in this work, the fabricated interconnects form a 45 × 45 array on the 18 mm × 18 mm silicon substrate. Several variations of the interconnects have been fabricated with the arcuate beam having a width of 10, 15, and 20µm on a footprint of 280µm, and with a pitch of 400µm. The third objective of this work is to experimentally demonstrate the thermal cycling reliability of the assemblies, and to validate the results from numerical models. The fourth objective is to experimentally demonstrate that compliant interconnects can effectively isolate the silicon substrate from the board under drop impact conditions, and to determine the reliability of the interconnects under drop impact conditions. It is seen that the compliant interconnects are able to isolate the silicon substrate from the board, and the board-to-substrate strain ratios are 21.55, 9.53 and 7.01 for compliant interconnects with arcuate beam width equal to 10μm, 15μm and 20μm, respectively, compared to 2.46 for solder ball interconnects. The experimental drop impact results are used for validating the drop-impact simulation predictions. Overall, by combining cleanroom fabrication, assembly, thermal cycling and drop-impact testing with analytical and numerical models as well as design optimization, this work provides a comprehensive insight into the development of multi-path copper structures as second-level microsystem interconnects.Ph.D

    Micro/Nano Structures and Systems

    Get PDF
    Micro/Nano Structures and Systems: Analysis, Design, Manufacturing, and Reliability is a comprehensive guide that explores the various aspects of micro- and nanostructures and systems. From analysis and design to manufacturing and reliability, this reprint provides a thorough understanding of the latest methods and techniques used in the field. With an emphasis on modern computational and analytical methods and their integration with experimental techniques, this reprint is an invaluable resource for researchers and engineers working in the field of micro- and nanosystems, including micromachines, additive manufacturing at the microscale, micro/nano-electromechanical systems, and more. Written by leading experts in the field, this reprint offers a complete understanding of the physical and mechanical behavior of micro- and nanostructures, making it an essential reference for professionals in this field

    Thermal Isolation of High Power Devices in Heterogeneous Integration

    Get PDF
    Heterogeneous integration (HI) technologies present an important development in the pursuit of higher performance and reduced size, weight, power and cost of electronic systems (SWAP-C). HI systems, however, pose additional challenges for thermal management due to the disparate operating conditions of the devices. If the thermal coupling between devices can be reduced through a strategy of thermal isolation, then the SWAP-C of the accompanying thermal solution can also be reduced. This is in contrast to the alternative scenario of cooling the entire package to the maximum reliable temperature of the most sensitive devices. This isolation strategy must be implemented without a significant increase in device interconnect distances. A counter-intuitive approach is to seek packaging materials of low thermal conductivity – e.g. glass – and enhance them with arrays of metallic through-layer vias. This dissertation describes the first ever demonstration of integrating such via-enhanced interposers with microfluidic cooling, a thermal solution key to the high power applications for which HI was developed. Among the interposers tested, the best performing were shown to exhibit lower thermal coupling than bulk silicon in selective regions, validating their ability to provide thermal isolation. In the course of the study, the via-enhanced interposer is modeled as a thermal metamaterial with desirable, highly-anisotropic properties. Missing from the supporting literature is an accurate treatment of these interposers under such novel environments as microfluidic cooling. This dissertation identifies a new phenomenon, thermal microspreading, which governs how heat couples into a conductive via array from its surroundings. Both finite element analysis (FEA) and a new analytic solution of the associated boundary value problem (BVP) are used to develop a model for describing microspreading. This improves the ability to correctly predict the thermal behavior of via-enhanced interposers under diverse conditions
    • …
    corecore