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Abstract 

Scaled Earthquake Resistant Structures 

Muhammed Atar, 2021 

For the degree of PhD/Faculty of Science and Engineering 

The University of Manchester 

Because testing facilities are limited, and small-scale models are more 

economically viable, small-scale models are commonly employed to evaluate the 

seismic performance of buildings. Similarity laws are provided that are assumed 

to characterise the system of interest, and a smaller or bigger model is created 

from the related circumstances that will behave in a predictable manner if the 

scaling laws are accurate. Scaled experiments in earthquake-resistant structural 

testing have a fundamental problem. Unfortunately, dimensional analysis kind of 

similitude seldom applies to complicated systems, which is especially 

troublesome when scaling ratios are significant. The present study provides a 

novel method to reconstruct full-scale behaviour without the use of any additional 

techniques such as additional mass, makeshift scaling rules, and artificially high 

accelerations on experimental models, which are common in traditional scaling 

approaches. This study aims to present two different types of similitude as part of 

a new scaling theory called finite similitude for earthquake-resistant structures 

and structural dynamics. This method is not based on dimensionless forms but 

rather on the assumption that scaling may be seen as an imaginary process in 

which space is constricted or extended. The projection of the governing physics, 

defined on a scaled space, onto the original full-scale space lies at the heart of the 

new method. It is shown here how the notion may be utilised to build 

experiments, with numerical and analytical studies used to validate the single and 

two scaled experiments. This research shows how one and two scaled 

experimentations can be applied to classical linear and non-linear continuous and 

discrete structural systems, and practical structural dynamics case studies such as 

high-rise steel buildings equipped with nonlinear-fluid viscous dampers under 

earthquake loadings. Furthermore, it has been also shown that the presented 

scaling technique can more easily deal with the scaled experimentations when the 

geometrical similarity is broken. 
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Chapter  

ONE 

1.  Introduction 

1.1 Motivation 

Population growth in cities and rapid urbanisation worldwide has necessitated a 

continuous increase in demand for high-rise buildings for satisfying commercial and 

residential needs. The cities like New York and London, where the population 

density is very high, can be shown as an example of the origin of high-rise buildings 

[1, 2]. Accordingly, some important regulations have been drawn to protect human 

lives at the same time ensuring the safety and reliability of structures. In order to 

ensure the reliability of such buildings in terms of human life and their reliable 

operation under certain loads, especially under lateral loads such as earthquake and 

wind loads, it is compulsory to study the behaviour of such buildings. Considering 

future increment in population and significance of the residential buildings, it 

becomes essential to detect and determine the characteristic behaviour of such 

structures. Under the light of the obtained information related to buildings could 

play a crucial role in designing future buildings. Those investigations require various 

type of analysis such as analytical, numerical or experimental. However, the rapid 

increment in engineering systems and complex structures makes it difficult to 

conduct required analyses, especially in the structural dynamics field. Indeed, 

physical experimentations might be costly, time-consuming and challenging to 

conduct analysis when the model is too large or small; on the other hand, analytical 

and numerical studies might be computationally expensive. One of the most 

common research types in the case of earthquake field is laboratory tests, 

particularly for massive and high-rise structures that spread worldwide. However, 

these types of analyses are more challenging and harder to apply. Therefore, scaled 

experimentation can be defined as a more convenient approach for such structures 
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since this type of tests are more applicable and cost-effective compared to full-scale 

laboratory tests. Sized tests are particularly advised as one of the few experimental 

methods in cases where testing an actual prototype is impractical [3]. In the last few 

years, similitude theory has been used to provide useful tools, which can derive laws 

for designing a scaled-up or down model of a prototype. These similarity laws allow 

reconstructing the full-scale model’s behaviour from that of the scaled model (or 

vice versa). As a result of applying these sets of criteria and scaling rules, it is 

possible to construct a more convenient model to test and progress towards 

analytical or numerical domains with more computationally sufficient resolution. 

Because testing facilities are restricted and small-scale models are more 

economically practical, scaled-down models are routinely employed to examine the 

seismic performance of structures. 

Scaled experimentation for parts and products continues to play an important role in 

process, product development, and assessment, but it is realised that it has 

considerable limitations. One of the major obstacles to scaling is the nonlinear 

relationships between full-scale and scaled processes, which cause changes in 

physical behaviour with scale. With geometric measurements of length, area, and 

volume scaling linearly, quadratically, and cubically, geometric scale relationships 

are easily obvious. Surface forces and body forces are important changes affected by 

changes in geometric measurements in structural analysis, with the latter dropping at 

a quicker pace than the former increasing scale. The occurrence of scale effects, 

combined with the growing complexity of computational modelling, has lowered the 

value of scaled testing in recent years, has invariably hastened this reduction. 

Understanding the challenge early in the design process aids in the embedding of the 

most appropriate simulation technology for the task. When a problem can be solved 

analytically, for example, a mathematical model can be employed and constructed. 

The characteristic equations that characterise and implement the system must be 

established. Often, this necessitates the use of simplifying assumptions in order to 

resolve the mathematical models describing the system's behaviour. The fact that 

this procedure does not necessitate any experimental labour is a significant 

advantage However, if the solution requires a significant number of simplifying 

assumptions, the mathematical method can be challenging. Also, due to the 

complexity of the mathematical equations, complications can develop when the 
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analytical solution believed essential cannot be followed [3]. Simplicated models, of 

course, need experimental confirmation to verify the numerous simplifying 

assumptions that are considered in practical modelling [4]. 

 

Figure 1.1: Flowchart for analysing a problem using experimental or simulated 

techniques [3]. 

The advent and widespread usage of very powerful digital computer hardware and 

software has had a significant influence on design skills and methods [5]. Computer 

simulation enables sensitivity analysis by examining system reaction to changes in 

starting and boundary conditions, as well as system characteristics [6][7]. When a 

discrete system is thought to give a realistic representation of a physical system, 

experimental validation is required to justify the numerous simplifications that are 

sometimes required for practical modelling [4]. Due of various simplifications on 

microstructure and boundary conditions, it is frequently insufficiently accurate and 

always necessitates post-process analysis, i.e. correction of boundary conditions and 

constitutive models. 

Scaling, which reduces buildings to a fraction of their original size for testing 

purposes, is a theoretical solution to the size limitation imposed by laboratory 

research. In a broad sense, scaled experimentation is primarily concerned with the 

development of scaling rules that allow for the transfer of data from the scaled 

experiment to the full size. Although the focus is on earthquake seismic testing, 

scaling constraints are also acknowledged. Practical restrictions might include the 

lack of materials with the desired characteristics, as well as the availability of 

appropriate experimental equipment. A shaking table is a crucial piece of equipment 

for seismic testing and is used often. Because perfect similarity is rare, well-
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researched scaling restrictions are frequently enforced when using shake-table 

experiments. To better understand the behaviour of buildings during seismic 

excitations, several scaled experiments have been done and papers have been 

published. In order to transmit information from the scaled model to the full-scale 

model, similarity laws between full-scale and trial models are necessary prior to the 

shaking table test. Similarity rules can be classified either directly from the 

equations defining a system, which define the relationships between the system's key 

variables and parameters, or indirectly using dimensional analysis [8]. The problem 

with most scaled experimental investigations is that they are all restricted by 

dimensional analysis' inability to account for improvised scaling rules that are 

required to accommodate scale effects in order for the scaled experiment to be 

meaningful. Weight and body forces are one example, as is the scaling need for mass 

to be added to the scaled model [9]. Masses are typically provided in the form of 

blocks attached to slabs, however solving one problem almost always leads to 

another, as it is expected that the supporting frame's behaviour would be incorrect 

during collapse. Under deformation situations, the mass blocks might move and 

even clash, resulting in atypical behaviour. When it comes to shrinking dimensions 

while keeping the prototype's material characteristics, extra mass is frequently 

required. However, the additional bulk has disadvantages since it makes movement 

and control more difficult [10,11]. Because increased mass has the potential to cause 

overturning moments, controlling the simulator becomes more challenging. This 

frequently necessitates the use of larger scaling factors and control methods in 

specimen design in order to handle the foregoing disadvantages to some extent, 

depending on the payload capacities of the shaking table [10]. It is obvious that 

adding mass causes issues, therefore another approach is to use similarity laws to 

enhance acceleration. Unfortunately, this approach has a flaw in that it requires huge 

accelerations to simulate the behaviour of high-rise structures. Because of the 

limitations of laboratory shake tables, this is a tough task to do. All of these studies 

are constrained by dimensional analysis' inability to account for scale effects and the 

ad hoc nature of the scaling rules required to expand the study. 

This thesis investigates finite similitude, a novel concept for scaled experimentation 

that aims to systematise the integration of trials at two scales for the first time. The 

current research builds on prior work on scaling (now referred to as zeroth-order 
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finite similitude) that has been applied to impact mechanics, powder compaction, 

biomechanics, and metal forming, and includes only one scaled experiment. The 

study described here uses a more sophisticated version of the finite-similitude theory 

and two scaled experiments to apply finite similitude to seismic research. The finite 

similitude theory begins with a notion that cannot be physically implemented: space 

scaling.  The theory demonstrates how metaphysical-space scaling is the foundation 

theory for scaling theory, providing an intuitive view of scaling. Space scaling 

mathematics is quite straightforward, and it eventually enables us to investigate 

scaled structural mechanics. The projection of transport equations developed on the 

trial space (where the scaled experiment is located) onto the physical space is the 

most important step in the finite similitude theory (where the full-scale structure 

resides). 

1.2 Aims and objectives. 

The primary aim of this research is to examine the application of first-order finite 

similitude theory, which enables more accurate reconstruction of full-scale 

behaviour using two scaled experiments, and to examine the limitations of zeroth-

order finite similitude in the field of structural dynamics and earthquake engineering. 

This assertion will be supported by the introduction of a novel first-order 

methodology that replicates the full-scale model using two trial models. The trial's 

physical behaviour and physical spaces are connected via a new innovative scaling 

methodology based on transport equations.  

A set of equations called transport equations describes the transport of variables such 

as displacement, mass, entropy, energy, and momentum. Transport equations can be 

used to determine the physics and behaviour of any scaled model and, more 

importantly, the dynamics of the full-scale process. Both transitioning from a small 

to a full scale and vice versa reveal information about how the model should be at 

the former stage in order to demonstrate the latter stage more accurately. While the 

literature establishes that scaled processes are not identical, it is established that 

good scaled designs can be created through the selection of appropriate materials, 

boundary conditions, and precise simulation. In the field of structural dynamics, the 

reality of scaled experimentation is that the scaled processes are not identical and 
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require additional techniques to extract information from scaled models. A sufficient 

scaled model can be designed using zeroth or first order finite similitude in 

accordance with finite similitude theory. Several of the primary objectives in relation 

to the study's primary objective are as follows:  

1. On the basis of two scaled experiments, a new form of finite similitude has 

been established and introduced as first-order similitude theory. Prior to 

applying first-order finite similitude, the limitations of zeroth-order finite 

similitude theory, also known as classical dimensional analysis with 

additional advantages, were examined and evaluated. These analyses were 

conducted on equivalent models and structural elements when subjected to 

dynamic loads such as cyclic, ground motion, and so on.  

2. The first-order theory is evaluated using practical structural and earthquake 

engineering applications by combining two independent zeroth-order scaled 

designs that accurately capture the physical model behaviour. These methods 

have been validated using equivalent models and then applied to high-rise 

buildings to determine the proposed design's capability.  

3. Apply the first-order finite similitude equations to create a second trial model 

design, keeping the first model as created by the zeroth order untouched. In 

addition, different materials have been selected for trial models in order to 

show the ability of the proposed novel theory. This objective has been 

formed by application of the zeroth and first-order similitude in discrete 

dynamic systems in order to obtain scaling parameters for a physical problem 

to set physical experimental set up. 

4. Two trial models are created from scratch independently from the first order 

similitude equations. This method was investigated numerically because it 

allows for simultaneous fixation of the young's modulus and yield stress 

values, which is not possible with zeroth-order or dimensional analysis. This 

novel similitude approach has been developed in differential form, allowing 

the results of two scaled experiments to be combined to predict the behaviour 

of a full-scale model. As a result, it enables the use of additional material 

properties for matching between virtual and physical full-scale models, as 

explained previously.  
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5. To demonstrate the finite similitude's ability to deviate from the traditional 

definition of geometric similarity, the theory was applied to a thin-walled 

beam model, where the theory successfully captured the exact global 

behaviour of the full-scale despite the wall thickness not following geometric 

scaling. Analytical and numerical analysis were performed using similarity 

rules based on first-order finite similitude. 

1.3 Thesis outline 

The following seven chapters make up this thesis: 

The rationale for the research is presented in Chapter 1, as well as the research's 

aims and objectives. 

Chapter 2 discusses the historical evolution of dimensional analysis, which is the 

foundation of similitude methods, as well as the similitude model's concept. It also 

includes a thorough literature analysis that summarises prior research that has used a 

scaled model in seismic testing models. This chapter also discusses the limitations of 

dimensional analysis and why it is necessary to develop a new similitude theory. 

Chapter 3 details the reconstruction of physical model behaviour by means of two 

distinct scaled experiments of a selected beam, column and multi-storey frame when 

exposed to various loading conditions. This chapter consists of the first-time 

publication of a new approach to finite similitude theory, which demonstrates the 

merits of the proposed method. For the first time, a theory is able to fix the material 

properties, which have the same dimensions, and enables us to set the scaling 

parameters accordingly. 

Chapter 4 consists of another publication discussing the scaling of discrete elements 

and the change of their behaviour with scaling. Single and two scaled 

experimentations have been shown for the different case studies numerically and 

analytically. Linear spring and fluid viscous damper have been investigated and the 

system exposed to friction force is demonstrated in order to present the ability of two 

distinct scaled experimentation. 

Chapter 5 presents the scaling of nonlinear structural dynamic systems. This 

publication illustrates the benefits of the finite similitude theory when the nonlinear 

springs, dashpots and friction system are exposed to scaled experimentations for a 

range of loading conditions. 
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Chapter 6 considers the application of first-order finite similitude in structural 

mechanics and earthquake engineering. This publication demonstrates the practical 

applicability of the proposed theory for high-rise buildings and presents another 

ability of the approach in the case of breaking geometric similarity for scaled 

experimentation. 

 

The relative benefits of the finite similitude method are summarised in Chapter 7, 

along with recommendations for further research. 

It's critical to emphasise how each publication's coherent body is connected to and 

complements one another. The first journal publication (chapter 3) looked at the 

importance of current scaling theories and their limits, as well as offering a novel 

scaling theory approach. Scaled experimentation has been used for the design of 

earthquake-resistant (aseismic) structures since it was discovered. This chapter 

proposes a new theory based on the metaphysical idea of space scaling for the 

analysis of earthquake-resistant constructions (beams, substructures, or buildings). 

The benefits of the new scaling theory were detailed in the first article. After 

recognising the benefits and advantages of the new scaling theory in Chapter 3, it 

was decided to investigate the benefits of the new concept further in Chapter 4 using 

discrete mechanical dynamic systems that are commonly used in structural 

engineering, such as equivalent models consisting of mass-spring-damper systems. 

These systems are thought to be used to establish the applicability of first-order 

finite similitude for situations where existing scaling theories are insufficient, as well 

as to commence scaling parameters in a new scaling theory. It was thought that if a 

discrete system accurately represents a physical system, experimental verification is 

always required to support the various simplifications that are common in practical 

modelling. As a result, this research (Chapter 4) investigates discrete elements and 

how their behaviour changes as they scale. Following the publication of chapter 4, 

more research into nonlinear discrete systems and their behaviour under nonlinear 

loading conditions was required in chapter 5. The use of single and two-scaled 

experimentations to nonlinear structure dynamics was the motivation for this journal 

publication. Nonlinear behaviours are always an issue, and this is a study and 

application topic that poses significant challenges to scaled testing, as demonstrated 

by seismic experiments. Because the behaviour of such systems is complex and 

sophisticated, very comprehensive scaled-model designs that may yield practical 



29 
 

results are required. By considering nonlinear damper, spring, and friction all 

together, as well as gravitational acceleration, which has a significant impact on 

friction, the article shows how the new exact similarity rules provided by the new 

theory provide necessary precision for the prediction of full-scale model behaviour. 

For the implementation of physical modelling under earthquake loadings, Chapter 5 

recommends several scaling rules based on nonlinear discrete dynamics models. The 

research was finished in the final publications by applying scaling rules discovered 

in earlier chapters to develop an optimal scaling design to use in this paper for 

buildings subjected to seismic loads. The new idea of scaling suggests new means of 

planning and testing buildings and structures, which is also the subject of Chapter 6. 

The selected complicated case studies demonstrated that the suggested scaling 

theory is simple to apply, and that full-scale model behaviour may be reconstructed 

with greater accuracy. In this chapter, the capability of the finite similitude theory 

has been demonstrated by examining structural elements under various loadings and 

high-rise buildings under earthquake excitation. In the example of breaking 

geometric similarity for a thin-walled beam, another key aspect of the first-order 

finite similitude is provided, where the first-order theory caught the global behaviour 

of the full-scale model with an exact match. 
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Chapter  

TWO 

2.  Literature review 

2.1 Introduction 

Along with its application in other sectors, the principle of similitude is used in 

structural engineering, seismic engineering, and contact concerns. The continued use 

of sub-scale testing models benefits engineers because it enables them to accurately 

estimate the performance of larger prototypes using scaling rules applied to the test 

results. According to Chambers [12], NASA's forerunner, the NACA, has been a 

pioneer in model testing for over 80 years. NACA and NASA used specialised 

models to improve aeronautical vehicles in nearly every technological subject 

examined, including aerodynamics, structures, and materials. Indeed, Chambers 

asserts that almost all advancements in recent technology have been documented in 

reports or publications that were either written on contract or as part of authorised 

research projects. NASA's Technical Reports Server (NTRS) has seen an increase in 

the number of reports submitted over the last year, the majority of which are related 

to scale models, structural similitude, and/or scale design studies [13]. Several of the 

studies described in this case study have reached a level of complexity that far 

exceeds the vast majority of the current literature. 

 

Figure 2.1: A chronological review of the most important developments, techniques, 

and case studies involving the application of scale models [13]. 
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Complex technological issues can be solved by using model tests that employ 

scaling methods and related rules. Development time and expenses for the 

manufacturing of prototypes can be greatly reduced if the use of such approaches is 

applied. Full-scale complex systems are modelled using the physical modelling 

approach in the engineering sector in order to investigate their basic processes and 

behaviour. More precisely, earthquake engineering employs physical modelling 

techniques commonly referred to as shaking table and centrifuge tests. This method 

entails the construction of a full-scale model and a scaled model, with the full-scale 

model referred to as the "prototype." A "scaled model" is a laboratory-built 

representation of the "prototype" in a reduced size. Laboratory scale model testing 

enables greater control over model features and a faster response time than full-scale 

testing [14].  

Physical modelling is well-suited for analysing seismic engineering challenges, such 

as [14]:  

• Under controlled parameters, highly complicated, unusual, and three-dimensional 

issues can be modelled. 

 • Modelling full-scale systems is frequently a cost-effective and relatively rapid 

method of analysing them. 

 • The physical modelling approach provides a highly regulated database in which 

high-quality cases and prototype testing are uncommon for engineering issues.  

• Scale model experimentation may be utilised for analytical procedures, or the 

response of a prototype construction may be predicted by use of calibration 

benchmarks. 

Despite these advantages, physical modelling techniques have significant 

limitations:  

• "Prototype" characteristics of the soil (i.e., shear modulus and shear wave speed) or 

the gravity of a tiny laboratory model might be challenging to measure correctly.  

• In some cases, measurement scale effects can be relevant (i.e., accelerometers, 

pressure transducers, displacement monitors) 
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The similarity between laboratory scale model and prototype and the sets of scaling 

relations (i.e. similarity laws) should be determined between material properties in 

the model and the prototype for the physical modelling approach to give high quality 

and relevant findings.  

2.2 Similarity Theory and its applications 

A similarity or similitude theory, which may be applied in several sectors, including 

vibrational issues, impact, and structural design or damage, is recognised as part of 

engineering science. In particular, when phenomena are novel and requires thorough 

experimental verification that enables engineers to comprehend a new concept [15]. 

This hypothesis is based on the notion that in principle the results of the scaled 

model parameters may properly anticipate all the boundary conditions and 

mechanical characteristics of a full-scale process. The relationship between two 

models is termed a similarity that is determined by multiplying the physical amount 

of the model by a scaling factor to transfer it to the scale model [16]. The 

relationship between the models is defined as full and scaled models. Similar 

processes are produced by physics however, in practise, it is not simple to scale the 

complicated processes and the dimensionless quantities can seldom be perfectly 

matched. Two techniques allow for the resemblance between the two systems; direct 

analysis and dimensional analysis [17]. A mathematical model is used for direct 

analysis to analyse the model when any variables and factors impacting the system 

can be found. The limits and conduct of the systems are obtained directly from the 

system's governing equations. A variety of scaling approaches [4], [18] have also 

been implemented during the course of the year, including energy methods (EM), 

resemblances and asymptotic modelling for structural acoustic research applications 

(SAMSARA), sensitivity analysis (SA) and empirical similarity method (ESM). 

Each has its own benefits and demerits, but none corresponds to the simplicity and 

predominant of the dimension analysis and under the table the major aspects of the 

methods presented are demonstrated [19].  

Table 2:1: An overview of scaling approaches, including how they take into account 

size effects and nonlinearity [19]. 
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Method Description Main scope 
Size 

effects 
Nonlinearity 

Dimensional 

analysis 

Dimensionless key 

ratios are derived 

from a dimension 

matrix based on a 

relevance list with 

system-specific 

variables. 

Many fields 

of 

engineering, 

from fluid 

mechanics up 

to structural 

engineering. 

Systems with 

unknown 

behavior 

No No 

Differential 

Equations 

Based on the 

definition of scale 

factors which are 

inserted into the 

governing 

differential 

equations to derive 

similarity 

conditions 

Similar to 

dimensional 

analysis 

(more 

physical 

meaning). 

Any system 

with 

available 

governing 

equations 

No 
For simple 

case studies 

Empirical 

Similitude 

Transformation 

matrices are used to 

merge the 

empirically 

determined data of 

the geometrical and 

material changes. 

Separate scaling of 

material properties 

and geometric 

properties 

Rapid 

Prototyping 

of models. 

Partially No 

Energetic 

Approach 

Using energy 

equations. Potential 

total energy of a 

similarly scaled 

model has to be 

proportional to that 

of a full-size 

structure and 

corresponds to the 

Linear Static 

deflection 

and free 

vibration. 

Use of 

relationships 

between 

mode shapes, 

natural 

Partially No 
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The second condition is dimensional analysis, used to reorganise the models 

variables into independent dimensionless variables, with the same dimensions for all 

the terms of full scale and the scaled models. This approach is based on dimensional 

homogeneity in order to achieve similarity requirements. A suitable scaling law 

principle of energy 

conservation 

frequencies 

and damping 

loss factors. 

Statistical 

Size Effect 

Transfer of fatigue 

life data with the 

statistical size 

effect and the 

Basquin equation to 

predict lifetime of 

scaled components 

Reliability 

Engineering 
Yes Yes 

Artificial 

Intelligence 

Parameter 

reduction and 

associated 

simplification of 

equations and 

contexts that result 

from the 

dimensional 

analysis 

Genetic 

algorithms, 

case-based-

reasoning, 

design 

evaluation, 

neural 

networks and 

pattern 

recognition. 

No No 

Sequential 

Similitude 

Method 

Similarity 

conditions can be 

established for a 

structure subjected 

to different loading 

situations, provided 

that each loading 

event is simulated 

independently. 

Structures 

subjected to 

sequentially 

loading 

situations. 

Yes Yes 

Sensitivity 

Analysis 

Combining the 

governing equation 

and sensitivity 

analysis to derive 

similitude 

conditions for 

distorted models 

Linear static 

and 

frequency 

analysis 

No No 
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relates the prototype structure to a physical model as crucial to success in physical 

modelling. Dimensional analysis and similarity theory are two key approaches 

utilised for deriving the proper scaling law [20]. Dimensional analysis is a way to 

produce dimensional groups that are examined for physical phenomena. This 

approach involves identifying all major variables that influence the physical 

phenomena and obtain non-dimensional groupings. The idea of similarity first 

specifies forces acting in system and system geometric characteristics. In addition, it 

uses dimensionless analysis in order for model and prototype to create and link 

dimensional terms [21]. 

2.2.1 Dimensional Analysis 

Dimensional analysis is a significant tool in the design and brief explanation of the 

experimental data for scientists and engineers [22]. The genesis of current 

dimensional analysis theory goes back to the notion of geometric similarity 

employed for the first time by Galileo, which Euler first explored in 1765 with the 

significance of quantity, units and dimensional homogeneity. In 1822, Fourier laid 

the foundations for dimension analysis, one of the first to be recognised for the 

existence of dimensional groups [23], on the basis of the Euler work, and Lagrange 

and Laplace articulated the principles of dimensional analysis. Carvalho, Vashi and 

Riabouchinsky did a great deal of work before the pi-theorem was created in 1914 

by Buckingham [24]. In fact, some writers claim that the pi-theorem is best credited 

to Vashy when he issued a paper in 1892 extremely similar to the pi-theorem in its 

structure [25]. In this theorem, the physical relations are investigated in the context 

of similarities [24], Bridgman, Brickhoff, Langhaar, Van Driest, and Brand analysed 

and updated this theorem [26]. Several publications, such as the book by Sonin [27], 

give a thorough understanding of the procedure, providing further explanation and 

examples of the dimension analysis process. The simplest dimensional analysis is 

founded on the basic assumption "Mother Nature is consistent in dimensions." 

The simplest type of dimensional analysis incorporates four fundamental 

dimensions: length [L], time [T], mass [M], and force [F] [22]. Newton's second law 

is concerned with force, mass, time, and length. Force [F] can be substituted for 

[M][L]/[T]. Thus, the three fundamental independent dimensions of length [L], time 

[T], and mass [M] may be used to derive the dimensionless physical phenomenon 



36 
 

terms. The application of the Buckingham Pi theorem entails a more complicated 

form of dimension analysis. The Buckingham (Pi) theorem is a formalisation of 

Rayleigh's approach of dimensional analysis and is a crucial theorem in dimensional 

analysis. Buckingham proved in 1941 that the number of (Pi) quantities left after 

dimensional analysis is equal to the difference between the number of quantities 

entering the problem and the greatest number of these that are dimensionally 

independent [74]. The number of fundamental dimensions required to express all 

dimensional equations will always be equal to or less than the maximum number of 

dimensionally independent quantities [74]. 

As a general rule, the Buckingham Pi theorem can be broken down into the 

following steps [74]: 

1. The Buckingham Pi theorem is a formula for calculating the number of 

dimensionless numbers (also known as's) to predict. The number of independent 

dimensionless groups equals the difference between the number of variables that 

make them up and the number of individual dimensions involved, according to the 

theorem. From a practical standpoint, the theorem's flaw is that it is based on the 

least number of dimensions that might have been employed rather than the actual 

number. 

2. The first step is to determine which variables are involved in the situation. A 

dimensional analysis may occasionally reveal that one of the selected variables 

should not be there because it involves a dimension not shared by any of the other 

variables; however, most of the time, if the wrong variables are entered, the 

erroneous dimensionless numbers are produced. 

3. Including variables whose influence is already implicitly accounted for is a error 

to avoid when choosing variables. One may claim that the liquid temperature is a 

significant variable in studying the dynamics of a liquid flow. It is significant only in 

terms of its influence on other qualities, such as viscosity, and thus should not be 

included alongside them. 

4. When applied to the actual number of dimensions used, the Buckingham Pi 

theorem merely states that at least a certain number of dimensionless integers must 

be involved. Unless one employs one of the time-consuming methods for 

determining the minimum number of dimensions required, the theorem provides 



37 
 

little assurance that all dimensionless numbers have been discovered - assurance that 

can be obtained quickly using the step-by-step approach. 

5. The dimensional analysis method is based on the evident truth that each term in an 

equation involving any system must have the same dimension. 

These concepts are embodied in the Buckingham Pi theorem, which covers the 

construction of dimensional groups based on a number of dependent and distinct 

variables deemed significant to the occurrence of a given event [22]. Where P1, 

P2,...,Pn are physical factors affecting the specific physical phenomena, Pn may be 

written as  

f1 (P1, P2,...,Pn)= 0         (2.1)  

while f1 is describing involved parameters and even it can describe a governing 

equation. It is believed that a list (P) of (n) variables (P1, P2,...,Pn) may characterise 

the phenomena examined. Pn as indicated in Eq.(2.1) is possible to build using 

Buckingham Pi's total inspection technique (m) independent physical quantities 

dimensionless products P1, P2,...,Pn [22]. Then, this physical relation may be 

expressed as a relation of (n-k) dimensionless products (called Π product) and is 

presented as follows: 

f2 (Π1, Π2,…, Πn-k) = 0        (2.2)  

where each Π product is a non-dimensional product of a set of k physical variables 

plus one other physical variable. Let k equals the number of essential dimensions 

necessary to describe the physical variables (e.g., mechanics: mass, length, and time; 

thus k=3) [74]. Let P1, P2,...,Pk be the selected set of k physical variables, Then 

different Π groups can be set as  

Π1= f3 (P1, P2,...,Pk+1) 

Π2= f4 (P1, P2,...,Pk+2) 

. 

. 

. 

.  

Πn-k= f5 (P1, P2,...,Pk, Pn) 

The selection of the repeating variables P1, P2,...,Pk should be in a way that they 

involve all the k dimensions used in the physical problem. In addition, the dependent 

variable should found in only one of the Π products [74]. 
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There is no single Pi term applicable to a particular problem. It is critical to 

recognise the relevant variables and generate the Pi terms correctly for scale 

modelling challenges [21]. Each dimension in Eq. 2.2 must be identical between the 

model and prototype in order to achieve full dimensional similarity.  

The similarities rules developed by Kim et al. [28] are included in Table 2.2 to 

facilitate the application of dimensional analysis or the Buckingham pi theorem to 

seismic technology applications such as shake table testing. To accurately recreate 

the gravity and inertia force of a structure in detail, the acceleration factor for 

dynamic issues must be unity, as the authors state. However, because weight and 

time scale factors are proportional to s2 and s0.5, additional weight is required for 

dynamic trials in a small-scale model, and test time should be reduced. Another 

example to demonstrate the non-uniqueness of setting scaling rules is that scaling 

relationships have been devised for investigating the seismic reactions of tunnels, 

and gravity distortion models are frequently utilised because adding extra weights is 

difficult [72]. Table 2.3 has been incorporated to set the experimentation based on 

the dimensions of the model box and the depth of the tunnel. As illustrated in Table 

2.3, the applied acceleration must be increased, and material selection is critical due 

to the fact that the stress-strain curve and young's modulus must be scaled according 

to defined similarity rules. 

Table 2:2: Derived Similitude Laws [28] 

Quantity Dimensions Scale factor 

Length L s 

Mass M s2 

Time T s0.5 

Stress ML-1T-2 1 

Velocity LT-1 s0.5 

Acceleration LT-2 1 

Force MLT-2 s2 

Stiffness MT-2 s 

Damping MT-1 s3/2 

Added mass - s2.(mp-ms) 
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Table 2:3: Similarity relations and similarity constants [72] 

Physical parameters Similarity relations 

Length 𝐶𝑙 

Density 𝐶𝜌 = 1 

Elastic modulus 𝐶𝐸 

Stress 𝐶𝜎 = 𝐶𝐸𝐶𝜀
 

Strain 𝐶𝜀=1 

Poisson’s ratio 𝐶𝜇 = 1 

Internal friction angle 𝐶∅ = 1 

Time 𝐶𝑡 = 𝐶𝜌
0.5𝐶𝐸

−0.5𝐶𝑙 

Displacement 𝐶𝐷 = 𝐶𝑙 

Velocity 𝐶𝑣 = 𝐶𝜌
0.5𝐶𝐸

−0.5 

Acceleration 𝐶𝑎 = 𝐶𝜌
−1𝐶𝑙

−1𝐶𝐸 

 

2.2.2 Theory of Similarity Principles 

The concept of similarity emphasises the importance of defining similarity variables 

between model and prototype. While similar processes provide adequate physics, 

scaling complicated processes is not straightforward, and dimensional quantities are 

rarely precisely matched. Three conditions for similarity can be identified that, when 

satisfied, result in complete similarity between the full model and the scaled model 

[15, 20]. Langhaar [29] and Westine et al. [73] emphasised the importance of scaled-

down models being geometrically, dynamically, kinematically, and constitutively 

similar to the full-scale model. 
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Figure 2.2: Schematic representation of complete similarity 

Geometric Similarity: Two systems are considered geometrically similar if all 

matching lengths and angles are identical [30]. The ratio = Lm/Lp is constant across 

all dimensions of the systems. Where L denotes any dimension in a system and m 

and p denote models and prototypes, respectively [29].  

Kinematic Similarity: The two system movements (model and prototype) are 

comparable when there is kinematic similitude. Kinematic similitude means that in 

the model and prototype systems the respective speed and accelerate components are 

comparable [29]. 

Dynamic similarity: The dynamic similarity exists if the acting forces on the 

system have the same ratio in full-scale and trial systems. This similarity imposes 

the acting forces at all corresponding points, and the duration, which is affecting 

both models, have the same ratio [31]. When systems exhibit kinematic similarity 

with identical mass distributions, this can serve as evidence for dynamic similarity 

[25].  

Constitutive Similarity: What does "constitutive similarity" mean? That is, the 

constitutive properties of model and prototype materials, such as their stress-strain 

curves, are identical. While the majority of modellers define similarity in geometric, 

kinematic, and dynamic terms, other similarities may exist. For instance, 

homologous constitutive properties can be defined for materials [73]. Models need 

not be constructed from the same material as the prototype. A model composed of 

homologous materials at homologous locations in corresponding structures can be 

created for structural response studies. As with the drop test, a dissimilar material 
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model can be created if the materials' non-dimensional stress-strain curves are 

similar, a concept referred to as constitutive similarity [73]. Constitutive similarity 

refers to the similarity of materials' stress-strain curves or constitutive properties, 

which is especially important in soil dynamics. 

2.2.3 The use in earthquake engineering of dimension analysis and theory of 

similarity in the model scale 

Given that replica models have been used as supplements and substitutes for design 

and analysis in civil engineering for many years, this review of the literature is 

limited to articles deemed extremely helpful in the research effort. It focuses on 

identifying prior research on construction structures and materials, particularly those 

that deal with or contain information that could be used in dynamic model studies.  

The intricacy and transitory nature of earthquakes' mathematical models need testing 

of entire buildings. Historically, these effects could only be tested by utilising 

building size models. These model scale tests were subsequently contrasted with 

analytical simulations. Scale models of building structures subject to diverse loads 

are facing the same challenges as those under static stresses. They also employ the 

same sort of methods to get the characteristics of prototypes-like materials like 

micro-concrete. The following can be summarised in [32]: 

• Dead loads are lowered linearly in functioning, undistorted models and hence 

dead load stresses are considerably lower than in their reference prototypes. 

Additional loads are conceivable in models of scale to prevent this inconvenience. 

• Scale models have lower tolerance values than equivalent prototypes and thus 

achieve a higher level of construction quality control, except when the scale ratio is 

large, as in a centrifuge test where the scale ratio is 1:100.  

• Concrete behaves differently at various scales. In particular, with the decrease 

in size the perceived strength of the concrete rises. This is a result of the scaling of 

the combined substance or the use of micro concrete. However, when the concrete is 

not scaled, strength increases owing to the microscopic internal fractures of the scale 

model are less likely, such that, according to Keith, the existence of vulnerabilities is 

proportionate to the volume [32]. When the strength is increased relative to loads, 

their rigidity will rise in consideration of reinforced concrete structures in scale 
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models. Since rigidity is one of the major seismic calculus problems, this should be 

taken into account in seismic testing. 

• Typically, curled reinforcing bars are replicated in scale models using plain 

wires to minimise internal fractures.  

• With increased moisture transmission and scale models, shrinkage and creep 

have a greater volume of transfer surfaces available [33]. According to White and 

Chowdhury [34], the absence of fractures in scale models does not result in 

detectable changes in moments and deflections.  

In 1959, previsions of precision through small-scale testing were addressed at the 

RILEM [35] Symposium in Madrid that dealt with broad elements of dynamic 

theory of modelling and material behaviour. Similar techniques were provided for 

motion testing like high mercury tanks for water simulation, brass simulation of 

steel, hanging loads or springs for simulation of wall stiffness. Techniques such as 

the 'shaken tables' example had been used until 1968 to perform scale models under 

load movements.  

 

Grant used shake tables in conjunction with electrical equipment to more accurately 

replicate seismic movements in his PhD thesis [32]. UC Berkeley's Istituto 

Sperimentale modelli, Bergama's Istituto Sperimentale Strutture (Strutture), Lisbon's 

Laboratorio Nacional de Engenharia Civil, and Ljubljana, Yugoslavia's Materials 

Research and Testing Institute all conduct shaking table tests [35]. When the 

gravitational effect is negligible, the model without additional gravity forces will be 

adequate in comparison to the seismic effects. A perfect analogy should be obtained 

in cases where the influence of gravity and inertia are both significant [35]. In such 

situations, when the physical phenomena is complicated, dimensional analysis offers 

an alternative to matching model and prototype [32]. Dimensional analysis provides 

similitude and the performance of the criterion of identical pi-parameters is the 

perfect match between prototype and scale model. When any of them are not 

satisfied, the modification of other pi-parameters should be considered in order to 

preserve the similarity, which causes model distortion. The inertial and restoring 

force is critical in seismic testing for dynamic answers [36]. The reaction would be 

the similar if the ratio between the two is identical in the prototype and the scale 

model. Two techniques may be used by the use of dimensional analysis: either to 

utilise Cauchy's likeness or Froude's similitude [32]. The similarity with the Cauchy 
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means the usage of the free factor of mass scale, but the temporal variability affects 

the acceleration of the model in scale. It therefore affects:  

• Horizontal acceleration, which may very readily be increased by applied 

horizontal acceleration. 

• Vertical (gravitational) acceleration: difficult to apply. Certain techniques 

create additional loads, though not exactly as gravity does. If the floor is made of 

steel, a magnetic field can be used to increase the weight of the model by a small 

amount. Additionally, a centrifuge rotating force may be applied, although this is 

difficult to accomplish [32]. The issue with all of the above-mentioned scaled 

experimental investigations is that they are unable to account for precise scaling 

restrictions necessary to accommodate scale effects and make the scaled experiment 

beneficial. One example is weight and physical strength, as well as the scaling 

requirement to add mass to the scale model [37]. Masses are normally introduced as 

blocks attached to a platform, however the solving of one problem always generates 

another since it can be predicted that the behaviour. Under situations of deformation, 

the mass blocks can move and even clash and the outcome may be non-

representative behaviour. When the dimensions are reduced while the prototype 

material characteristics are preserved, more mass is frequently needed. However, the 

additional bulk has disadvantages since it increases the complexity of movement and 

control [38, 39]. Control of the simulator gets harder since the extra mass might 

generate revolutionary moments. In many cases, this means that specimens must be 

conceived by utilising larger factors of scaling and must include control mechanisms 

so that the aforementioned disadvantages may be handled to a certain amount in 

accordance with the payload capacity of an operated shaking table [37]. The system 

was designed to enable the mass movement of the wires up to the maximum 

displacement limit at which point it stopped the further motion. The scaled system 

cannot unfortunately be described as genuinely realistic and was especially impacted 

by the load and overall stiffness of the scaled model [40]. Additional mass was 

needed in another study [41] concerning the seismic performance of a high bridge 

utilising a shaking table test. By use of repeated numerical tests, the accurate 

distribution of the mass may be established by a pier height in order to complete the 

mass location. The increased bulk is obviously caused by issues and there is an 

alternate way to boost the speed via matching legislation. However, this approach 
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has its own deficiency because it is necessary to use large structures to ensure their 

representational behaviour. This approach comes with a significant drawback in that 

huge accelerations are required for high-rise building representative behaviours. It is 

nearly impossible to put together, as there are only a certain number of laboratories 

shaking tables to work with. 

 

Figure 2.3: The scaled model produced for shake table test in laboratory 

environment [49]. 

To examine a three-story scale model, researchers such as Sharma et al. [42] applied 

scaling rules and dimensional analysis theory to identify model behaviour. Likewise, 

Guerrero et al. [43] created a scaled model for their study, which had dimensions 
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that were 10% of the full-size construction due to size restrictions and equipment 

costs. According to Guerrero et al., the prototype structure is located in Mexico City. 

It was also done on a single-story, single-bay steel building, by Nader and Astaneh-

Asl [44], using shake-table testing and experiments. Another example can be given 

as it can be seen from the figure above, a 34-storey 1:20 scale micro-concrete high-

rise building [49]. The engineers also conducted experiments on steel structures to 

see how they would perform when subjected to various seismic loadings, which 

could only be tested at lower sizes. 

As demonstrated by the preceding data, dimensional analysis has provided 

information in the past by examining other approaches previously discussed. 

According to Pawelski's [45] findings, the problem of approaching but not quite 

matching complete and perfect similarity solutions occurs fairly frequently. Due to 

the limitations of dimensional analysis in accounting for scale effects, all of these 

studies suffer from a fundamental scaling issue: the ad hoc nature of the scaling rules 

required to expand the study. 

 

(a) 
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(b) 

Figure 2.4: (a) Full-scale container crane (Gwangyang port in South Korea) (b) 

Overall photo of scaled-down model with a scale factor of 1/20 [46]. 

2.3 Limitations of Dimension Analysis and the need for a new 

similitude method 

One of the difficulties with dimensional analysis is its incompatibility with modern 

simulation methods [47]. On one level, it is considered independent from the 

analytical process, as the generation of dimensionless quantities occurs 

independently of direct analysis. There are, however, several alternative approaches, 

one of which is straightforward rescaling of the governing partial differential 

equations. It is possible to rewrite these equations in such a way that critical non-

dimensional quantities become coefficients. While the technique provides 

information about the functional relationship between non-dimensional variables, it 

makes no significant improvements to numerical analysis. Scaled studies, including 

dimensional analysis, are critical, though their applications are limited (for the 

reasons stated below).  Following are the advantages and disadvantages of 

performing dimensional analysis [22, 48]:  
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• Dimensional analysis has the potential to significantly reduce the number of 

identities that must be counted in an empirical study.  

• It can assist in the development of experimental models.  

• It can deliver scaling rules and relationships for test models  

• It is effective in checking dimensional consistency of equations 

• It is useful for "generalising" dimensionless equations and converting them 

to dimensionless form.  

• It is not capable of establishing relationships between variables.  

• Variables cannot be distinguished by their relative significance.  

• It is unable to determine the most useful type of dimensionless variables.  

• It is trial-and-error technique, as non-dimensional groupings are non-unique. 

• A highly trained analyst with a thorough understanding of the problem is 

required.  

2.4 Summary 

To determine a mathematical model, the equations derived through dimensional 

analysis have been applied to models subjected to various types of seismic motion. 

To begin, it must be recognised that replicating all of the characteristics that 

influence the behaviour of structures during dynamic operations is nearly 

impossible. The emphasis of this work is on the identification of critical factors and 

feasible model test types that allow for the most precise replication.  

With the primary objective of universal applicability in mind, attention was given to 

prototype investigations of uniform isotropic materials, such as steel. One might 

conclude from the findings of this study that a wide variety of steel constructions can 

be successfully simulated. Only through a series of model tests, which can be 

directly compared to prototype investigations, can an answer be achieved. The 

fundamental objective of a model analyst is to choose the correct sort of model for 

the project and to accept the required level of approximation. In the major general 

case of a complex 3D structure, where gravity and inertia have equivalent effects of 

importance, the optimum choice in this instance is a real replica model, if a suitable 

model material can be obtained. When precision in model testing is not attainable, it 
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is frequently possible to get the same level of accuracy by using model tests with 

additional mass technique. 

Scaling theory recently developed, dubbed 'Finite similitude,' introduces an entirely 

new approach to scaled experiments. It enables us to determine the scaling factors 

for desired experiments in relation to the transport equations and space scaling. The 

proposed theory was initially discovered in single experimentation called zeroth-

order finite similitude; it has since been successfully applied in a variety of fields, as 

detailed in the references [50-56]. While the initial theory of finite similitude 

provides scaling factors comparable to those found in dimensional analysis, it is not 

based on dimensionless forms. Additionally, it demonstrates how scaling can be 

viewed as an imagined process accomplished by contracting or expanding the space 

itself. Since the zeroth-order finite similitude comes across similar issues when 

gravity and inertia are important for the test model, there appear similar limitations 

and it requires additional degree of freedoms to capture scale effects. Therefore, the 

following chapters examine both zeroth-order and first-order finite similitude, a 

novel approach to applications of finite similitude theory in structural mechanics and 

dynamics.  
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Chapter  

THREE 

3.  Paper one: A first order finite similitude approach to 

scaled aseismic structures  

Overview  

After exploring numerous investigations, it was inferred that dimensional analysis 

was the vital hypothesis for scaled experimentations up until now. For many 

decades, scaled experimentation has been used for the design of earthquake-resistant 

(aseismic) structures, and those experiments have been conducted under the light of 

the theory of dimensional analysis. Although scaled experiments still have a 

significant impact, they are considered to have limitations, specifically when the 

scale ratio is large. This article discusses a new theory for the analysis of 

earthquake-resistant structures (beams, substructures, or buildings) that is founded 

on the metaphysical concept of space scaling. Those structures are contracted 

through the concept of space contraction with the evaluation of a new scaling theory. 

The new scaling theory has some advantages, which are explained in detail in this 

article. 
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Abstract 

For many decades the designs of earthquake-resistant (aseismic) structures have 

been influenced by scaled experiments, underpinned by the theory of dimensional 

analysis.  Although scaled experiments still play an important role, they are 

recognised to suffer shortcomings, which are particularly severe when scaling ratios 

are pronounced.  The issue is one of scale effects and the inability of dimensional 

analysis to offer any solution in their presence. 

This paper is concerned with a new theory for the analysis of aseismic structures that 

is founded on the metaphysical concept of space scaling, where beams, substructures 

or buildings etc. are contracted through the mechanism of space contraction.  

Although space contraction is evidently practically impossible the theory describes 

the effects of such a process on the underpinning governing mechanics involved.  

Unlike dimensional analysis the approach which is termed finite similitude embraces 

scale effects and accounts for them by linking experiments at more than one scale. 

It is demonstrated in this work how it is possible to reconstruct full-scale behaviour 

by means of two scaled experiments of a selected beam, column and multi-storey 

structure when subjected to dynamic loading conditions.   

 

Keywords: finite similitude, aseismic structures, dimensional analysis, earthquakes, 

scaled experimentation. 
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3.1. Introduction 

For massive structures like sturdy long bridges and skyscrapers, earthquake testing 

methods such as spot tests or indoor tests have become more challenging and less 

feasible.  In such cases, testing scaled models is more practical, easier to implement 

and is a cost-effective option and can often be the only solution where testing the 

real-life prototype is impossible. Scaled experimentation continues to play a 

significant role in process, product design and testing for components and products 

but is recognized to suffer from severe limitations.  The difficulty with scaling rises 

mainly from the non-linear relationships between the physical constraints imposed 

on any scaled physical system.  The most readily observable changes that take place 

are those associated with geometric measures with length changing linearly, area 

quadratically and volume cubically with scale.  This means for example that under a 

scaled contraction, the body forces will lessen at a much faster rate than the forces 

on the surface.  The complexity of the multitude of changes involved cast a 

significant shadow over the reliability of scaled experimentation and this issue along 

with the rise of computational modelling has undoubtedly led to a diminution of 

scaled physical modelling trials in recent times. 

The issue is well appreciated by the academic and industrial communities and the 

founding bedrock of modern-scaled experimentation is dimensional analysis and the 

concept of similarity.  Similar structures behave identically and through the 

application of dimensional analysis, similarity can be sought [2].  Rather 

unfortunately similarity is seldom possible and dimensional analysis provides no 

solution when any two structures are not similar.  In some respects, the theory that 

underpins scaled experimentation has not changed fundamentally for over a century 

and dimensional analysis remains the only ubiquitous scaling theory.  Dimensional 

analysis is underpinned by the Buckingham Pi theorem [3] and should the 

dimensionless quantities (Pi groups) coincide for the full-scale and scaled systems, 

then the two processes are denoted similar.  However, this seldom happens in 

practice [4] and the approach has to-date had little success in complex structural 

applications.  Although structural engineering has been a field of study for many of 

hundreds if not over a thousand years, earliest attempts at scaled experimentation 

prior to the adoption of scaling rules were somewhat rudimentary and highly 

inaccurate.  The work of Buckingham [2] provided the foundation for more realistic 
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scaled models and the first application of the scaled method can again be attributed 

to him [5], although for a purely theoretically study.  A significant increase in the 

number of publications about scaled methods followed the seminal work of 

Buckingham [2].   

A number of scaling approaches [6,7] have materialised over the year and these 

include: energy methods (EM), similitude and asymptotic models for structural 

acoustic research applications (SAMSARA), empirical similarity method (ESM) and 

sensitivity analysis (SA).  Each has their own merits and demerits, but none match 

the simplicity and ubiquity of dimensional analysis.  Moreover, a fundamental 

concern with all these approaches is that they cannot accommodate to any significant 

degree scale effects.  Scale effects are those changes in behaviour that take place 

with scale. and recent attempts (e.g. empirical similarity [7], model variation [8], 

sensitivity analysis [9]) to address the problem of scale effects are to a large extent 

unsatisfactory being founded on perturbations around the standard definition of 

similarity [6].  The difficulty associated with scale effects has meant modern-day 

researchers adopting altogether different methodologies with the application and 

development of sophisticated computational approaches.  Computation however 

does not altogether bypass experimentation and for those processes involving 

complex material behaviour, uncertainties, unknown behaviour etc., experimentation 

still plays a critical role.  As noted by Simitses and Rezaeepazhand [10], some 

systems are so complex making it almost impossible to make simplifying 

assumptions for direct simulation.  Complex material behaviour has led to the 

emergence of a plethora of constitutive models and multi-scale approaches [11–13].  

It is beyond contention that computational approaches have led to significant 

advances but solving the problem of scale effects should provide alternative 

complementary approaches.   

Full-scale structural experiments have the advantage of being able to replicate to 

good accuracy the exact environment and realistic conditions of any situation and 

represent a very direct approach for the analysis of physical phenomena.  Thus, 

despite the complexities of the physics involved, experiments at full scale can 

provide precise and valuable data.  However, with every increasing advances taking 

place in engineering and technology, the requirements for most experiments are 

becoming more involved with financial and time requirements increasing 
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accordingly.  This is particularly acute in the case of damage-test experiments, 

which for any realistic structure can be expensive to perform as repetition is often 

required. 

In the case of seismic structural testing the transfer of information from the scaled 

model to the structure is required to follow scaling rules if results are to be 

meaningful.  Scaling however has its own limitations, where several aspects of the 

structure cannot always be scaled as a result of constraints on testing equipment (e.g. 

shake table) or unavailability of materials with the required properties etc.  In order 

to understand the behaviour of the structure under earthquake loading, present-day 

tests are carried out and interpreted with the application of well-researched scaling 

relationships.  There exist many interesting seismic structural studies involving 

shake tables, the application of scaling rules and dimensional analysis.  Sharma et al. 

[14] for example analysed a three-storey scaled model by applying scaling laws and 

dimensional analysis theory to investigate the behaviour of the model.  Similarly, a 

scaled model was constructed by Guerrero et al. [15], which was limited to 1/10 of 

the full-size structure due to size limitations and the cost of the experimental 

equipment.  The prototype structure analysed in this reference is located in Mexico 

City as stated by Guerrero et al. [16].  Similarly, shake-table testing and studies have 

been carried out on a one-storey, single-bay steel frame by Nader and Astaneh-Asl 

[17].  They analysed the performance of steel structures under varying earthquake 

loadings simulated at smaller scales experimentally. In reference [10] an 

investigation into the effects of various material and section-level parameters on the 

structural response metrics was achieved by utilising the financial and logistical 

benefits offered by small-scale testing (1/8-scale factor).  Other studies involving 

shake table testing are those done on: one-bay, two-storey steel frames, investigating 

such things as second-order inelastic behaviours [18]; scaling guidelines for modern 

unreinforced masonry buildings with hollow clay brick units (1/2 scale factor) [19] 

and; testing of a 1/50 scaled model under one and two dimensional base excitations 

and gradually increased amplitudes [20].  The main difficulty with all these studies 

is that they are limited by the inability of dimensional analysis to account for scale 

effects and the ad hoc nature of the scaling rules needed to extend the analysis. 

This paper is concerned with a completely new concept for scaled experimentation 

termed finite similitude [21–26] and attempts for the first time to link experiments at 
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more than one scale in a systematic manner. The work here builds on earlier work on 

scaling (now termed zeroth-order finite similitude) that has been applied in the areas 

of impact mechanics [25], powder compaction [21], biomechanics [24] and metal 

forming [23], and involves only one scaled experiment.  The work presented here is 

the first application of finite similitude to seismic studies with a more advanced 

version of the finite-similitude theory involving two scaled experiments. 

The finite similitude theory is founded on the metaphysical concept of space scaling 

which is introduced in Section 2.  The focus on space leads to an analysis method 

that is innately tied to the effects of space contraction, i.e. it naturally leads to 

control volume concepts in Section 2.2.  At first sight the focus on control volumes 

and transport equations might appear somewhat removed from structural analysis 

but it is simply a consequence of the path the theory takes to move from space, to a 

moving region of space (control volume) to transport equations (laws of nature) to 

field identities and ultimately to structural analysis.  The most critical step in the 

finite-similitude approach as discussed in Section 2.3 for structural mechanics is the 

projection of the trial-space (where the scaled experiment resides) physics onto the 

physical space (where the full-scale structure resides).  This projection reveals in one 

form or another, scale dependences, explicitly for geometric measures such as area 

and volume but implicitly for scalar, vector and tensor fields such as density, 

displacement and stress, respectively.  The problem of scaling becomes one of 

finding these dependencies, which is achieved in this paper through a new form of 

similarity (first-order finite similitude) as described in Section 3.  The solving of the 

new differential similarity identity is shown in Section 3.1, where physically 

intuitive field relationships are revealed.  One of the features of finite similitude is 

that it does not concern itself with constitutive equations as it reconstructs all fields 

in the physical space; this along with application practicalities for the theory are 

presented in Section 3.1 and Appendix A.  Sections 4, 5 and 6 examine the 

behaviours of a beam, column and three-storey structure, respectively when subject 

to dynamic excitation to illustrate how the theory can replicate full-scale behaviours.  

Introduced in Section 5.2 and Appendix B is a new proportional-fields assumption 

for the determination of similitude parameters.  The paper ends with a conclusions 

section. 
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3.2. The theoretical foundation of finite similitude 

The finite similitude theory is founded on a metaphysical concept that cannot be 

physically enacted.  However, the purpose of metaphysical space scaling is 

threefold; firstly it is to provide a physically intuitive approach to scaled 

experimentation, where it is possible to imagine the structure of interest being 

contracted or expanded by the contraction or expansion of space.  Secondly, it 

facilitates the precise mathematical description of scaling, where its effect can be 

precisely relayed to the underpinning physics of a structure.  Thirdly, since in 

principle, space can be metaphysically distorted in different ways, it introduces a 

high degree of flexibility, which is simply absent from competing methods. 

3.2.1. The metaphysics of space scaling 

The analysis of any structure begins with the identification of the inertial frame but 

at least two inertial frames are involved with scaling, one for the physical and 

another for the trial space.  The starting point therefore is the specification of the 

trial-space coordinate system (denoted by tsx ) along with a physical-space 

coordinate system (denoted by psx ), where the subscripts “ts” and “ps” refer to trial 

and physical space, respectively.  It is assumed here that the coordinate frames, 

linked to these systems, are orthonormal.  It should be appreciated however that 

structures in the scaled space are viewed from the viewpoint of an external observer, 

i.e. one unaffected by the scaling process and the choice of coordinate frame is 

therefore essentially a matter of choice.  The overall concept of space scaling is 

presented in Fig. 1, where the orthonormal coordinate frames for the physical space 

 iG  and the trial space  
i

g  are depicted.  Shown in the figure are two measures of 

time pst  and tst  for the physical and trial spaces, respectively.  Since Newtonian 

mechanics is the focus here the existence of absolute time is assumed and it is 

assumed further that pst  and tst  are related, i.e. a function relationship ps tst t  

exists, which in differential terms is of the form ts psdt gdt= , where g  is a positive 

parameter.  As indicated in the figure, metaphysical scaling is quantified 

mathematical by a temporally invariant affine map of the form ps tsx x , which can 

be represented in differential terms by ts psd F d= x x , where in suffix notation this is 
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i i j

ts j psdx F dx= .  Here the matrix F  is both spatially and temporally invariant to 

reflect the focus on scaled experimentation.   

 

Figure 3.1: Metaphysical space-scaling concept and inertial coordinate systems 

The nature of the space scaling is dictated by the matrix F  and anisotropic scaling is 

indeed possible where geometric similarity as it is traditionally known can be 

broken.  The focus here however is on isotropic scaling with F I= , where I  is a 

unit matrix and   is a positive parameter that dictates the extent of linear scaling 

taking place.  The effect of   on the physical space is illustrated in Fig. 2, with 

0 1   indicating contraction, 1 =  for no scaling and 1   for expansion. 
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Figure 3.2: The role played by   in space scaling. 

With the establishment and quantification of space scaling it is now possibly to 

relate the differential-geometric measures of volume and area, i.e. 
3

ts psdV dV=  and 

2

ts ts ps psd d = n n , where, tsdV  tsd  and tsn  refer to volume and area measures, 

and a unit normal vector, respectively in the trial space; subscript “ps” identifies like 

quantities in the physical space.  

3.2.2. The mathematics of control volume motion 

To relate analyses of structures in the trial and physical spaces it is first necessary to 

be able to identify connections between two regions of space.  This can be achieved 

by means of control volumes, which are regions of space that are allowed to move 

and distort.  Control volumes invariably lead to transport equations which at first 

sight may appear somewhat remote from traditional structural analysis, which is the 

focus of study here.  However, transport equations provide the correct description of 

the underlying laws of nature as they incorporate directly the changes in geometric 

measures.  The motion of a trial-space control volume 
*

ts  can be described 

mathematically using a velocity field 
*

tsv  and by contrasting its location with to a 

reference control volume 
*ref

ts .  The basic idea is depicted in Fig. 3 and also shown 

is the map 
*

ts tsx  with 
*ref

ts ts  and 
* *

ts tsx . 
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Figure 3.3: The kinematics of a moving control volume
*

ts . 

The idea presented here is very similar to that employed to describe the motion of a 

body of mass but in this case mass is not involved and the body is a moving region 

of space.  The coordinate point 
*

tsx  is attached to 
*

ts  and its velocity 
*

tsv  is defined 

by the partial derivative 

* * *
*

*

ts

ts ts
ts

ts ts

D

D t t


= =



x x
v



       (1) 

where the derivative 
*

*
ts

D

D t
 is used here to signify a temporal derivative with the 

reference coordinate ts  held constant. 

Since a control volume is nothing more than a region of space it is affected in 

precisely the same manner as the accompanying scaled space and the identity 

* *

ts psd d=x x  is assumed to apply.  Moreover, in view of the temporal relationship 

ts psdt gdt=  it follows that control-volume velocity fields are related by 

* 1 *

ts psg −=v v         (2) 

which provides synchronous motion of the control volumes 
*

ts  and 
*

ps . 

The overall picture displaying the connectivity between reference and moving 

control volumes in the two spaces along with the synchronous motion is depicted in 

Fig. 4.  Note that the identity 
* *

ts psd d=x x  can be contrasted again the space-scaling 
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identity ts psd d=x x  where it is appreciated that the former unlike the latter is 

relating moving points.   

 

Figure 3.4: Synchronous motion of control volumes 
*

ts  and 
*

ps . 

Eq. (2) is closely related to the law-of-volume identity  

* *

*
* * *

*
0

ts ts

ts ts ts ts

ts

D
dV d

D t
 

−   =  v n      (3) 

which is an equation not considered in structural mechanics as it has no field 

associated with it but nevertheless plays a significant role in finite similitude theory. 

It is relatively straightforward to prove that this equation is proportional to the 

physical space equation 
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* *

*
* * *

*
0

ps ps

ps ps ps ps

ps

D
dV d

D t
 

−   =  v n      (4) 

on substitution of 
* 3 *

ts psdV dV=  and 
* 2 *

ts ts ps psd d = n n  (which follows from 

* *

ts psd d=x x ) and ts psdt gdt=  along with Eq. (2) to give 

* * * *

* 3 *
* * * * * *

* *
0

ts ts ps ps

ts ts ts ts ps ps ps ps

ts ps

D D
dV d dV d

D t g D t



   

 
 −   = −   =
 
 

   v n v n  (5) 

which evidently confirms proportionality. 

The whole idea of the metaphysical space-scaling approach is encapsulated by Eq. 

(5), where the solution of an equation in one space confirms the solution of the 

corresponding equation in another. 

3.2.3. Scaled structural mechanics in transport form 

The transport equations important to structural mechanics for finite similitude are 

those concerned with continuity, momentum and movement and take the form 

( )
* *

*
* * *

*
0

ts ts

ts ts ts ts ts ts ts

ts

D
dV d

D t
 

 

+ −   =  v v n      (6a) 

( )
* * * *

*
* * * * *

*
0

ts ts ts ts

ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts

ts

D
dV d d dV

D t
  

   

+ −   −   − =   v v v v n n b  

                                                                                                                      (6b) 

( )
* * *

*
* * * *

*
0

ts ts ts

ts ts ts ts ts ts ts ts ts ts ts ts

ts

D
dV d dV

D t
  

  

+ −   − =  u u v v n v   (6c) 

where ts  is mass density, tsv  is material velocity, tsu  is material displacement, ts  

is Cauchy stress and tsb  is specific-body force (i.e. force per unit mass). 

It is usual not to involve the continuity equation in structural mechanics as density is 

often assumed fixed but in the context of scaling and physical modelling, materials 

can be substituted and it is necessary to understand what substitutions are allowable 

hence the reason for its inclusion here.  Likewise a separate equation for movement 

is generally not a feature and this was introduced in reference [27] to bring 

displacement into the family of transport equations and it is particularly convenient 

to include this here as displacement is central to describing structural deformation. 
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The next step and most critically important along the path to scaling identities is the 

projection of Eqs. (6) onto the physical space, as it is through this mathematical 

operation that scale dependencies are exposed.  Consider then the substitution of 

* 3 *

ts psdV dV= , 
* 2 *

ts ts ps psd d = n n , ts psdt gdt=  and Eq. (2) into Eq. (6) (and Eq. (3) 

for completeness) and multiplication throughout by g .  In addition, Eq. (3) and each 

of Eqs. (6) are multiplied throughout by non-zero scaling parameters 
1

0 , 0

 , 0

v  

and 0

u , respectively; the role of which will be made clear.  These operations 

provide the following four equations: 

( )
* *

*
1 1 1 3 * 1 3 * *

0 0 0 0*
0

ps ps

ps ps ps ps

ps

D
T dV d

D t
     

 

= −   =  v n   (7a) 

( ) ( )
* *

*
3 * 3 * *

0 0 0 0*
0

ps ps

ts ps ts ps ps ps ps

ps

D
T dV d

D t

          
 

= + −   =  V v n    

(7b) 

( ) ( ) ( ) ( )
* *

*
1 3 * 1 3 * *

0 0 0 0*

ts ps

v v v v

ts ps ts ts ps ts ps ps ps

ps

D
T g dV g d

D t
         − −

 

= + −   V V V v n  

* *

2 * 3 *

0 0 0

ps ps

v v

ts ps ps ts ts psg d g dV    
 

−   − = n b             (7c) 

( ) ( ) ( ) ( )
* *

*
3 * 3 * *

0 0 0 0*

ps ts

u u u u

ts ts ps ts ps ps ps ps ps

ps

D
T dV d

D t
         

 

= + −   U U V v n  

( )
*

3 *

0 0

ps

u

ts ps psdV   


− = V                         (7d) 

where 
1

ps tsg −=V v  and 
1

ps ts −=U u . 

The importance of Eqs. (7) should not be understated as they capture all scale 

dependencies that are a feature of scaled structural mechanics.  The appearance of 

3  and 
2  are explicit and are recognised to arise from the change in geometric 

measures of volume and area.  Other dependencies are hidden, which include the 

fields ( )ps V  and ( )ps U  along with other fields.  In this context scaling has been 

transformed into a problem of revealing the behaviour of hidden fields and unlike 

dimensional analysis embraces the changes that take place in scaled 

experimentation.  The process for revealing hidden dependencies can take one of 
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two routes, with one requiring additional information (i.e. scale effects, boundary 

condition etc.) about the specific problem under consideration and the other 

effectively assuming how things behaviour in a global sense on application of a 

scale invariance.  This latter approach is the focus here and is particularly well suited 

to physical modelling where the idea is to design physical-trial experiments to 

satisfy the scale invariance imposed. 

3.3. The mathematics of scale invariances 

The transport Eqs. (7) are of the general form 0 0 0T  = , with   set to 1,  , v  and 

u .  An obvious  –invariance for scaling is that ( )0 0T    does not depend on  , 

which in mathematical terms is 

( )0 0 0
d

T
d

 


         (8) 

where the equality sign “ ” signifies that the derivative is identically zero. 

Zeroth-order finite similitude refers to a system of transport equations that satisfies 

this particular identity and details on its application can be found in reference [21–

23,25,26].  The “initial conditions” for Eq. (8) are taken to be the physical system at 

0 1 = = .  Note for Eqs. (7) that the requirement for ( )0 0 1 0T  =  to match the 

physical system imposes the following constraints on the scaling parameters: 

( ) ( ) ( ) ( )1

0 0 0 01 1 1 1 1v u   = = = =  along with ( )1 1g =  since 

( ) ( )1 1ts ps psdt g dt dt= = .  Similarly the fields are required to satisfy: ( )1ts ps = , 

( )1ps ps=V v , ( )1ps ps=U u , and ( )1ts ps=   and so on for other fields.  In the 

presence of scale effects, Eq. (8) will not be satisfied and ( )0 0T    will therefore 

depend on   but prior to examining this situation it is important to examine how 

attempting to satisfy this equation impacts on the scaling parameters ( )0

  .  Note 

that integration of Eq. (8) between 1  and 0 1 =  provides 

( ) ( ) ( )0 0 1 0 0 0 0 1T T T        = , i.e. the transport equations at any arbitrary scale 1  

match the full-scale system, which of course is very similar to the invariance offered 

in dimensional analysis where dimensionless-governing equations do not change 
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with scale.  Note also that   is eliminated from Eq. (7a) on setting ( )1 3

0   −= , 

which satisfies as required ( )1

0 1 1 = .  The condition ( )1 3

0   −=  is a necessary 

and sufficient requirement for the law of volume to be satisfied at any scale.  

Turning attention now to Eq. (7b) it is apparent that a necessary but not sufficient 

condition for satisfying Eq. (8) with  =  is that 
3

0ps ts

   = .  This condition is 

not sufficient as Eq. (8) additionally requires ps ps=V v , which is assumed not to be 

satisfied here.  Examination of Eqs. (7c) and (7d) provide the necessary (but not 

sufficient) relationships 
1

0 0

v g   −=  and 
1

0 0

u   −= .   

The identities 
3

0ps ts

   = , 
1

0 0

v g   −=  and 
1

0 0

u   −=  are to be taken forward 

to the next level of finite similitude termed first-order finite similitude. The 

observation that the scaling parameters ( )0

   have the role of attempting to 

eliminate   from ( )0 0 0T   =  suggests that a way forward is to consider the 

scaling of the identity 

( )1 0 0

d
T T

d

  


=         (9) 

with new scaling parameters ( )1

   (satisfying ( )1 1 1 = ) and consider then 

( ) ( )1 1 1 0 0 0
d d d

T T
d d d

      
  

 
=  

 
     (10) 

which is the scaled invariance for first-order finite similitude and was first 

introduced in reference [28] for impact mechanics. 

This approach can lead to higher forms with 

( )2 1 1

d
T T

d

  


=         (11) 

etc. but it will become clear that Eq. (10) leads to the requirement of two scaled 

structural experiments, so is sufficient for our purposes here. 

It is important to note that should Eq. (8) be satisfied (i.e. zeroth-order finite 

similitude), then Eq. (10) is automatically satisfied which is a desirable feature.  

Also expanding the derivative on the left hand side of Eq. (10) gives 
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( ) 1 1
1 1 1 1 0

d dTd
T T

d d d

 
   

 
  

= +       (12) 

which is an expansion of the derivatives of 
0 0T  , which at any arbitrary 1 =  can 

represent (by means of osculation) any other linear combination of the derivatives of 

0 0T   (up to the same order), which is sufficient for scaling purposes and illustrates 

that there is no better alternative to Eq. (10). 

The form of Eq. (10) happens to be ideal for integration by means of divided 

differences as discussed in the following section, which provides added justification 

for its form. 

3.3.1. First-order solutions 

Prior to examining the solution to Eq. (10) for transport Eqs. (7) it is judicious to 

substitute the constraints 
3

0ps ts

   = , 
1

0 0

v g   −=  and 
1

0 0

u   −=  to provide 

( ) ( )
* *

*
* * *

0 0 *
0

ps ps

ps ps ps ps ps ps ps

ps

D
T dV d

D t

    
 

= + −   =  V v n      (13a) 

( ) ( )
* *

*
* * *

0 0 *

ts ps

v v

ps ps ts ps ps ts ps ps ps

ps

D
T dV d

D t
   

 

= + −   V V v v n  

* *

* * 0

ps ps

ts ps ps ts psd dV
 

−   − = n B               (13b) 

( ) ( )
* *

*
* * *

0 0 *

ps ts

u u

ps ts ps ps ps ps ps ps ps

ps

D
T dV d

D t
   

 

= + −   U U v v n
*

* 0

ps

ps ps psdV


− = V

                   (13c) 

where 
2

0

v

ps tsg =  , 
3 2 1

0

v

ts ts ts tsg g    −= =B b b  and where the transfer 

( )*

ps ps ps− V v n  in the momentum and movement equations is approximated by the 

zeroth-order expression ( )*

ps ps ps− v v n  to reflect the fact that the term ( )ps ps psV V n  

is negligible in structural mechanics but also to avoid the necessity to consider 

higher forms of similitude.  

The approach to solving Eq. (10) is to apply divided differences first to Eq. (9) along 

with a mean-value theorem for integration to provide 

( ) ( )
( ) ( )0 0 1 0 0 21 1

1 1 2 1 2

1 2

   

  
   

   
 

−


−

T T
T     (14a) 
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( ) ( )
( ) ( )0 0 0 0 0 10 0

1 1 1 1 1

0 1

   

  
   

   
 

−


−

T T
T     (14b) 

where 1

2 2 1     and 0

1 1 0     with 2  and 1  being scales for trial-space 

experimentation and 0 1 =  being at full scale. 

In view of Eq. (10) the next divided difference gives zero or equivalently 

( ) ( )0 1

1 1 1 1 1 2T T       , which on substitution of Eqs. (14) provides after some 

manipulation 

( ) ( ) ( ) ( )( )0 0 0 0 0 1 1 0 0 1 0 0 2R                + −T T T T    (15) 

where 

( )
( )

1

1 2 0 1
1 0

1 21 1

R







   

  

  −
 =  
  −  

       (16) 

with Eq. (15) providing the sought expression for relating trial-space experiments to 

the full-scale structure, and where 1R
 takes on the form of a parameter due to 

indeterminacy of 
1

 . 

Application of Eq. (15) to Eqs. (13) provides the following field identities: 

( ) ( ) ( )( )1 1 1 2ps ps ps psR  + −v = V V V      (17a) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −v = V V V      (17b) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + − =         (17c) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −b = B B B      (17d) 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −u = U U U      (17e) 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −v = V V V      (17f) 

where to arrive at a consistent velocity expression it is required that 

1 1 1 1

v uR R R R= = = , which is achieved on setting 1 1 1

v u  = = , and where as 

mentioned above 
1

ps tsg −=V v , 
1

ps ts −=U u , 
2

0

v

ps tsg =   and 
2 1

ts tsg  −=B b . 
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The condition 1 1 1

v uR R R = =  provides a physically-intuitive solution for Eq. (15) in 

that it indicates that the differences between the experiments as described by 

transport Eqs. (7) are proportional.  The theory provides the fields in Eqs. (17) 

whose differences are also proportional.  The final solution to the scaling problem is 

rather elegant in its simplicity and all that remains is the details of its application. 

3.3.2. Consistency and applicability 

One of the features of the transport approach is that it does not depend on nor utilise 

constitutive laws as it provides all the physical fields needed for the physical space.  

In small deflection theory for example the identities 

( ) ( )1 1

1 1 2 2

i i i

ps ps psdx dx dx   − −= =  and Eq. (17e) provide the strain relationship  

( ) ( ) ( )( )1 1 1 2ps ts ts tsR  + − =         (18) 

which confirms that with first-order finite similitude, strains are not required to be 

identical, which is a feature of dimensional analysis. 

Note also that Eq. (17f) and (17e) are consistent since division of the latter by 

1 1

1 1 2 2ps ps psDt g Dt g Dt− −= = , with ( )i ig g =  and ( )ts i ts it t =  gives 

( ) ( ) ( )( )1 1

1 1 1 1 1 1 1 2

1 1 1

ps ps ps

ps ps ps

ps ts ts ts

D D D D
g R g g R

Dt Dt Dt Dt
  

 
= + − = + − 

 

psu U U U
V V V  

          (19) 

as expected, where 
ts

D
Dt

 and 
ps

D
Dt  means material derivatives. 

Before discussing the practical application of the theory, it is useful at this point to 

tabulate for both zeroth and first-order theories the important relationships, which 

are brought together in Table 1.  It is worth noting that despite the relative 

complexity involved in the derivation of the field relationships in Table 1, their 

application transpires to be relatively straightforward. A detailed set of instructions 

for the application of both zeroth and first order finite similitude is presented in 

Appendix A.  A particularly nice feature of the proposed similitude approach is that 

it can be applied directly to theoretical, numerical, and experimental results.  The 

examples presented in the next three sections are purposely chosen to illustrate this 
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point but also to demonstrate the relative ease of applicability for problems of 

increasing complexity. 

 

 

 

Table 3:1: Important zeroth and first-order finite similitude identities. 

Finite similitude relationships 

Density 

0th-order 
3

01 1 1ps ts

   =  

1st-

order* 
( )3 3 3

01 1 1 1 01 1 1 02 2 2ps ts ts tsR           = + −  

Displacement 

0th-order 
1

1 1ps ts −=u u  

1st-order ( )1 1 1

1 1 1 1 1 2 2ps ts ts tsR  − − −= + −u u u u  

Strain 

0th-order 1ps ts=   

1st-order ( )1 1 1 2ps ts ts tsR= + −     

Stress 

0th-order 
2

01 1 1 1ps tsg =   

1st-order 
( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsg R g g       = + −   

 

* Not derived in this work 

3.4. The scaling of a beam: an analytical study 

This section serves to provide an initial test on a problem of some simplicity to 

illustrate the practical implementation of the zeroth and first-order finite similitude 

theory by the scaling of a cantilever beam.  The cantilever beam is depicted in Fig.5 

and the goal here is to ascertain whether it is possible to capture the dynamic 

response of the beam using either one (zeroth-order) or two (first-order) trial-space 

tests.  The behaviour of the cantilever beam in the physical space is assumed to be 

known in this analysis although in practice this might not be the case.  It is assumed 
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here that the free vibration response of the cantilever is described by the well-known 

Euler-Bernoulli solution [29]: 

( ) ( ) ( )
1

, cos ; ,n n n

n

w x t a t x L  


=

=       (20a) 

where the eigenfunctions ( ); ,nx L   are 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

sinh sin
; , cosh cos sinh sin

cosh cos

n n

n n n n n

n n

L L
x L x x x x

L L

 
     

 

 −
= − − −        + 

          (20b) 

 

Figure 3.5: Uniform cantilever beam in the physical space 

and where n L  represents the frequency coefficient [29], ( ) ( )
2 4

n nL EI AL  =  

are natural frequencies, with Young’s modulus E , second moment of area 

31
12

I bh= , cross sectional area A bh= , mass density   and na  are set to capture the 

initial configuration. 
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Figure 3.6: Projected trial and physical space models for the cantilever beam. 

An overall view of the scaling process with one or two trial experiments involved is 

presented in Fig. 6.  Shown in the figure is how space scaling is used to project the 

“real” trial-space experiments into the physical space and their subsequent 

combination using Eq. (15).  Shown also is the effect of space scaling on the load at 

the free end of the beam with the aim that on combination of the projected beams the 

force 
psF  is returned.  In the tests that follow three designs are considered at 

selected scales 1
2 5

 =  and 1
1 2
 = , and are labelled Designs I, II and III.  Design I is 

limited zeroth-order finite similitude with the same material used for both physical 

and trial space.  Design II is also for identical materials but applies first-order 

scaling with Design III looking at alternative materials typical to physical modelling. 

3.4.1. Design I: Zeroth-order with identical beam materials 

Applying the zeroth-order procedure presented in Appendix A provides: 

(i) The physical space cantilever is made of steel with properties listed at Table 2 

and has dimensions 0.05 ps psa b m= =  and 1 psL m=  (see Fig. 6.).  The initial 

condition assumed to apply is obtained on setting constantna = for all 1n   with the 

constant specified so that ( ),0 0.1mps psw L =  and consequently the transient 

response is described by 
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( )
( )( ) ( )( )

( )( )
1

1

cos ; ,

, 0.1

; ,

ps ps ps ps psn n
n

ps ps ps

ps ps psn
n

t x L

w x t

L L

  

 



=



=

=



   (21) 

where the function   is given in Eq. (19). 

(ii) The dimensional scaling factor 1
1 2
 =  and consequently the steel (properties in 

Table 2) trial-space cantilever beam has dimensions 1 1 0.025 mts tsa b= =  and 

1 0.50 mtsL =  as shown in Fig. 6. 

(iii) The density and elastic modulus are chosen to be fixed. 

(iv) The density and time scaling factors are determined and equate to 01 8.0 =  

and 1 0.5g =  so that the identities 
3

01 1 1ps ts

   =  and 
2

01 1 1 1ps tsE g E =  are 

satisfied. (see Table 1),  

(v) The initial deflection of the beam at the free end is set to ( )1 1,0 0.05mts tsw L =  

in accordance with the displacement identity in Table 1. 

(vi) By testing the trial model, its deflection-time behaviour satisfies 

( )
( )( ) ( )( )

( )( )

t 1 1 1 1 1

1
1 1 1

1 1 1

1

cos ; ,

, 0.05

; ,

s ts ts ts tsn n
n

ts ts ts

ts ts tsn
n

t x L

w x t

L L

  

 



=



=

=



             (22) 

(vii) The final procedure is the lifting of the trial model response to predict the 

physical model (e.g. 
1

1 1ps tsw w −= ).  

The results of this study are presented in Fig. 7 with the deflection at the free end 

captured as function of time; there is perfect match between the projected trial and 

physical results. 

3.4.2. Design II: First-order with identical beam materials 

Applying the zeroth-order procedure presented in Appendix B provides: 

(i) The steel cantilever beam (properties in Table 2) in the physical space is again 

considered as in Section 4.1 with initial deflection satisfying Eq. (22) at time 0pst = .  

(ii) The dimensional scaling factors for the two trial-spaces are set to be 1
1 2
 =  

and 1
2 5

 =  making the dimensions of the two steel cantilevers (properties listed in 
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Table 2) to be 1 1 0.025 ts tsa b m= = , 1 0.50 tsL m= , 2 2 0.01 ts tsa b m= =  and 

2 0.20 tsL m= , as illustrated in Fig. 6. 

(iii) The density scaling factors 
01

  and 
02

  are set on the basis of zeroth-order 

assumptions and equate to 01 8 =  and 02 125 =  so that the relationships 

3

01 1 1ps ts

   =  and 
3

02 2 2ps ts

   =  are satisfied. 

(iv) The elastic modulus and the initial (or loading) conditions, which are 

displacement and the force required to cause this displacement are selected to be 

fixed. 

(v) The temporal and first-order scaling factor 1g , 2g  and 1R  are found to equate 

to 
1 0.5g = , 2 0.2g =  

1 0.12R = − .  These are arrived by solving the following three 

algebraic equations:  

( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsE g E R g E g E       = + −     

(23a) 

( )2 1 2 1 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsF g F R g F g F       − − −= + −   (23b) 

( )1 1 1

1 1 1 1 1 2 2

end end end end

ps ts ts tsw w R w w  − − −= + −     (23c) 

where the end forces are set to 
2 0.10ts psF F= , 

1 0.20ts psF F=  (see Fig. 6) and the 

initial end displacements 
2

end

tsw  and 
1

end

tsw  are determined on the basis of these forces 

at static equilibrium. 

(vi) The initial conditions for the first and second trial models are set on the basis 

of end deflections 
2

end

tsw  and 
1

end

tsw , i.e. ( )2 2 2,0 end

ts ts tsw L w=  and ( )1 1 1,0 end

ts ts tsw L w= . 

(vii) Transient deflection of the beams in the trial space satisfy similar looking 

equations to Eq. (22) and explicitly are 

( )
( )( ) ( )( )

( )( )

t

1

1

cos ; ,

,

; ,

si tsi tsi tsi tsin n
end n

tsi ts i ts i tsi

tsi tsi tsin
n

t x L

w x t w

L L

  

 



=



=

=



  (24) 

where 1i =  or 2 . 
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(viii) The final step is the combining of the trial-model prediction to produce a 

virtual model for comparison with the response of the beam in the physical space 

(e.g. ( )1 1 1

1 1 1 1 1 2 2ps ts ts tsw w R w w  − − −= + − ) in accordance with Table 1. 

The results of this study are presented in Fig. 7 with the deflection at the free end 

captured as function of time; there is perfect match between the virtual and physical 

results. 

3.4.3. Design III: First-order with different beam materials 

The results of Design-III are depicted in Fig. 7 for the situation of completely 

different materials used for physical (steel) and trial-models 1 (aluminium) and 2 

(copper); see Table 2 for properties.  In Design-III, the applied forces at the free end 

in the physical and trial spaces are determined on the basis of the maximum yield 

stress in the outer fibres of each beam, i.e. on the basis of 2endF YI Lh= , where Y  

is yield stress.  These forces are used for initiation purposes and the determination of 

initial end deflections at static equilibrium.  Following an identical procedure as 

discussed for Design II the following results are obtained: 1 0.51g = , 2 0.27g =  and 

1 0.78R = − .  The results of the Design III study are presented in Fig. 7 with the 

deflection at the free end captured as function of time; there is again a perfect match 

between projected trial and physical results. 

 

Table 3:2: Material properties of steel, aluminum and copper [29],[30],[31]. 

Material 
Density:   

          ( 3kg m ) 

Young Modulus: E  

(GPa ) 

Steel (S355) 7850 210 

Aluminium               2700 70 

Copper 8920 130 
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(a)  

 

(b) 

Figure 3.7: Predicting the (a) spatial ( 0.015pst =  s) and (b) temporal response of the 

physical model using zeroth and first-order finite similitude theories in three designs. 

3.5. Seismic loading of a column: numerical study 

This section investigates the application of zeroth and first-order finite similitude to 

the earthquake loading of a relatively simple structure. A column is selected as the 

case study in order to focus the analysis on how the finite-similitude theory can be 

applied in seismic situations.  Three possible column designs are considered for 

first-order and two for zeroth-order; each design is discussed in the subsections 

below.  In order to give the study a degree of realism the Kocaeli Earthquake (1999) 
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is applied in this study as the time-acceleration ground motion, which is depicted in 

Fig.8 [30]. 

 

Figure 3.8: Acceleration – Time graph for Kocaeli earthquake. 

3.5.1. First-order Finite Similitude: steel column 

The application of the first-order finite similitude theory to a steel column housed in 

the physical space, where three combinations of different materials for trial models 

are examined.  The purpose is to reveal how well the selected trial experiments 

capture the behaviour of the steel column.  The dimensions of the steel column are 

provided in Fig. 9 and consist of a square section 0.1mps psa b= =  and height 4psl =

m.  Geometric dimensions of the trial models for both zeroth and first-order finite 

similitude depend on 1  and 
2 , which are set to 1

1 4
 =  and 1

2 10
 = .  It is possible 

to let 1  and 
2  remain unknown and determine them as part of the analysis but this 

aspect is not featured here as reasonable order-of-magnitude results are found 

possible on the basis of the selections made.  As alluded in Appendix B, the 

determination of scaling parameters is on the basis of what physical quantities are 

considered important to be targeted (e.g. stress, acceleration etc.)  In seismic case 

studies the applied acceleration is an important physical quantity and matching 

applied acceleration (i.e. 1 2ps ts ts= =A A A ) is often considered [31] as it can provide 

realistic and practical designs.  Laboratories and devices for the application of 

seismic loads are of course limited in both size and load capacity and consequently 

constrain what is possible.  
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(a) 

 

(b) 
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Figure 3.9: Deformed shapes in (a) trial space and (b) physical at synchronised times 

for Design II. 

As in Section 4, the problem reduces to finding the temporal scaling parameters 1g  

and 2g  along with the first-order parameter 1R .  Three equations are selected for this 

purpose which are: 

2 1 2 1 2 1

1 1 1 1 1 1 1 2 2 2( )ps ts ts tsg R g g  − − −= + −A A A A      (25a) 

2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2( )ps ts ts tsg R g g       = + −        (25b) 

1 1 1 2( )ps ts ts tsR= + −           (25c) 

which are first-order approximations for acceleration, stress and strain, and where 

the expression for acceleration is readily derived by temporal differentiation of 

velocity in Eq. (17) and noting that 
1 1

1 1 2 2ps ts tsdt g dt g dt− −= = . 

In all the tests considered the zeroth-order density is applied, i.e. 

3 3

01 1 1 02 2 2ps ts ts

       = = , where 01

  and 02

  are set to match the density of the 

selected trial-space materials.  The behaviour of both trial and physical-space 

columns is achieved numerically by means of the commercial finite-element 

software ABAQUS [32]; meshes and element type are depicted in Fig. 9.  In practice 

of course, physical experiments would be undertaken but trialling the similitude 

theory is the focus here and numerical results are sufficient for this purpose. 

3.5.2. The proportional fields assumption 

In order to run scaled experiments in the trial space it is first necessary to specify 
1g  

and 
2g , yet according to Eqs. (25), their solution is dependent on fields that are only 

available once the experiments have been run.  To avoid the need for a time-

consuming and somewhat impractical iterative approach to resolve this issue, a 

proportional-fields assumption is made.  Recall that both dimensional analysis and 

zeroth-order finite similitude involve proportional fields, assumed ab initio for 

dimensional analysis and obtained as an output from finite similitude.  The first-

order theory on the other hand involves proportional differences as apparent in Table 

1 for particular fields.  With the knowledge that zeroth-order solutions are contained 
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in first order (see Appendix B), it is a reasonable assumption therefore that the fields 

in Eqs. (25) are all proportional in the sense: 

1 1
ˆ

ts psaA = A          (26a) 

2 2
ˆ

ts psaA = A          (26b) 

1 1
ˆ

ts psb=           (26c) 

2 2
ˆ

ts psb=           (26d) 

1 1̂ts psc=           (26e) 

2 2
ˆ

ts psc=  ,          (26f) 

where it is understood that these relationships do not constrain the fields in Eqs. (25) 

as their purpose is only to aid the determination of 
1g , 

2g  and 
1R , and where the 

hat “^” terms are non-zero dimensionless parameters. 

Substitution of Eqs. (26) into Eqs. (25) provides 

2 1 2 1 2 1

1 1 1 1 1 1 1 2 2 2
ˆ ˆ ˆ1 ( )g a R g a g a  − − −= + −                 (27a) 

2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 1
ˆ ˆ ˆ1 ( )g b R g b g b       = + −                (27b) 

1 1 1 2
ˆ ˆ ˆ1 ( )c R c c= + −                   (27c) 

which can in principle be solved for 
1g , 

2g  and 
1R  on specifying ˆ

ia , ˆ
ib  and îc , 

1,2i = . 

To set the parameters ˆia , ˆib  and îc , considered here is the situation of a uniaxial rod 

in each space subjected to the same uniform acceleration and stretched to attain yield 

stress (i.e. 
psY , 1tsY  and 2tsY ) and yield strain (i.e. ps

ps

YY

ps E
 = , 1

1
1

ts

ts

YY

ts E
 =  and 2

2
2

ts

ts

YY

ts E
 =

).  This situation is possibly one of the simplest but substitution into Eqs. (26) for 

this case gives 1 2
ˆ ˆ 1a a= = , 1

1
ˆ ts

ps

Y

Y
b = , 2

2
ˆ ts

ps

Y

Y
b = , 1

1̂

Y
ts

Y
ps

c



=  and 2

2
ˆ

Y
ts

Y
ps

c



= . 

3.5.3. Application of the theory 

Three designs are considered, where are labelled Design I, Design II and Design III, 

the details of which are provided in Table 3.  Design I is the case where the same 
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grade of steel (i.e. S355 [26]) is used in all spaces for the columns.  Design II applies 

different grades of steel (see [28] and [29]) in each space as indicated in Table 3.  

Design III on the other hand again uses different materials with different grades of 

steel in the physical and trial-space one but aluminium for trial-space two. 

For all three designs the applied acceleration 1A  in x-direction is the same and the 

yield stresses (
psY , 1tsY  and 2tsY ) and yield strains (

Y

ps , 
1

Y

ts  and 
2

Y

ts ) for the three 

designs can be found in Table 3.  A feature of Design I is that 1 2
ˆ ˆc c= , which 

removes Eq. (27c).  The two remaining equations Eq. (27a) and Eq. (27a) have too 

many unknowns and to resolve the situation, so the zeroth-order condition 2 1

1 11 g  −=  

(i.e. first two terms in Eq. (27a)) is assumed to apply, which gives 1
1 1 2

g = = .  

The remaining values (i.e. 
2g  and 

1R ), calculated using Eq. (27a) and (27b), can be 

found in Table 3.  Qualitative results for the distribution of the displacement 

magnitude are provided in Fig. 9. along with a detailed model description. Design II 

involves three grades of steel [28] provides values 1 0.365g = , 2 0.173g =  and 

1 2R =  on solution of Eqs. (27).  Design III on the other hand did not provide a 

solution to Eqs. (27), so was resolved in the same manner as Design I, i.e. by setting 

1
1 1 2

g = =  and solving for 2g  and 1R , which provided 2 0.316g = , and 1 0.5R =  

as recorded in Table 3.  With the determination of 
1g , 

2g  and scaling parameters, 

the trial models result results were obtained, projected to the full scale and combined 

by means of the first-order theory. The results for the top-story drift of the column 

for all three designs are presented in Fig. 10.  Show in the figure are the virtual 

results obtained on application of the first-order theory along with those determined 

by virtue of direct simulation of the full-scale model in the physical space. 

Table 3:3: Material properties of three models and calculated time scaling and 

values. 

Designs Models Material Density 

(kg/m3) 

Young’s 

Modulus 

(𝟏𝟎𝟏𝟏  𝐏𝐚) 

Yield 

Stress 

(𝟏𝟎𝟖  Pa) 

Yield 

Strain 

(𝟏𝟎−𝟑) 1g  2g  1R  

Design I 

Full-scale 

Model 
S355 7850 2.1 3.55 1.69 

0.5 0.316 0.5 
Trial-1 

Model 
S355 7850 2.1 3.55 1.69 

Trial-2 

Model 
S355 7850 2.1 3.55 1.69 
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Design II 

Full-scale 

Model 
S355 7850 2.1 3.55 1.69 

0.365 0.173 2 
Trial-1 

Model 
S275 7850 2.1 2.75 1.31 

Trial-2 
Model 

S235 7850 2.1 2.35 1.12 

Design 

III 

Full-scale 

Model 
S355 7850 2.1 3.55 1.69 

0.5 0.316 
0.088

2 
Trial-1 
Model 

S275 7850 2.1 2.75 1.31 

Trial-2 

Model 
Al 2770 0.7 3.37 4.814 

 

 

Figure 3.10: First-order predicts and direct-full scale simulation. 

It is apparent on examination of Fig. 10 that the different designs provide different 

outputs and there are also in place significant differences between the virtual-model 

predictions and the direct full-scale simulation.  It is possibly not too surprising that 

the scaled models were unable to fully capture the precise full-scale behaviour of an 

earthquake event.  However, considered in the next section, are single-trial space 

models to better highlight the significant improvement achieved by the new theory. 

3.5.4. Zeroth-order finite similitude design 

Each of the trial models at scales 1
1 4
 =  and 1

2 10
 =  (introduced in Section 5.3) are 

reconsidered here using the zeroth-order theory, hence only one trial model per 

analysis.  The zeroth order relationship 
2 1

ps tsg  −=A A  with proportionality gives 

2 1 ˆ1 g a −=  and on setting ˆ 1a =  provides g = .  Other zeroth-order scaling 

identities are provided in Table. 1.  For the trial models that same materials as in 

Section 5.3 are used and details are provided in Table 5.  Note that two test cases are 
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considered (test cases I and II) with each consisting of two trial models (trial models 

I and II) corresponding to the two scales (i.e. 1
1 4
 =  and 1

2 10
 = ).  The projected 

models correspond to the projection of the trial models into the physical space and 

the salient projected material properties are tabulated in Table 4.  Shown in Fig. 11 

is the temporal response of top displacement, which is recognised to be important for 

the comparison of building models under seismic loading. 

 

Table 3:4: Zeroth-order Finite Similitude scaling parameters and material properties. 

 

T

h

e

 

g

r

a

p

h

s

 

i

n Fig. 11(b) illustrate the marked improvement achievable on application of the first-

order finite similitude theory.  The results for first-order Design I are much 

improved over those corresponding to Case I for both trial modes.  Likewise first-

order Design II outperforms all case and although fails to capture all aspects of the 

full-scale simulation it is vastly superior to single-space trial models.  The advantage 

offered by first-order finite similitude theory in seismic studies is that it provides an 

ability to fix not only acceleration but also other material properties.  Zeroth-order is 

limited in only enabling the fixing of acceleration and as revealed in Table 4, with 

other material properties not matched. 

Test 

Cases Models  

Density 

(kg/m3) 

Young’s 

Modulus 
(𝟏𝟎𝟏𝟏  𝐏𝐚) 

Yield 

Stress 
(𝟏𝟎𝟖  Pa)   01

  
g =

 

 

Test 

Case I 

Trial 

Model 1 
S355 7850 2.1 3.55 1/4 64 2 

Trial 

Model 2 
S355 7850 2.1 3.55 1/10 1000 10  

Projected 

Model-1 
 

 

7850 

 

8.4 

 

14.2 
   

Projected 

Model-2 
 

 

7850 

 

210 

 

35.5 
   

 

Test 

Case II 

Trial 

Model 1 
S275 7850 2.1 2.75 1/4 64 2 

Trial 

Model 2 
S235 7850 2.1 2.35 1/10 1000 10  

Projected 

Model 1 
 

 

7850 

 

8.4 

 

11 
   

Projected 

Model 2 
 

 

7850 

 

210 

 

23.5 
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(a) 

 

(b) 

Figure 3.11: Performance of zeroth and first-order finite similitude designs. 

To demonstrate the practical applicability of the new theory a more realistic 

structure is examined in the next section. 

3.6. Multi-storey frame exposed to cyclic loading: a numerical 

study 

Different forms of seismic or environmental loading can impact on the performance 

of a structure.  Because of the inherent uncertainty associated with these types of 

load it is common practice in models to load systems quasi-statically with 
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consistently increasing loads.  Although recognising that this approach does have its 

limitations [34] engineering structures must have the capacity to resist thousands of 

loading cycles to withstand disasters such as earthquakes [33].  Cyclic thermal and 

mechanical loads can push systems past the elastic region wherein plastic straining 

occurs [34] and it is important therefore that systems remain safe and serviceable 

under such conditions.  

It is of interest therefore to examine the behaviour of structures under cyclic loading 

and for this reason, a steel frame consisting of two bays and three storey is modelled 

and the analysis executed by applying cyclic displacement loads at the top corner of 

the structure.  The beam and column cross-sections are HSS 127 mm × 127 mm × 

9.5 mm and the storey height is 0.8m while the bay is 1.25 m [35].  Scaled models 

are also created to test out the ability of scaling to capture in this case the effects of 

cyclic loading on a building structure.  A schematic diagram is presented in Fig. 12 

showing the real full-scale and trial models along with the projected trial models and 

their combination to form the full-scale virtual model.  The scales selected for the 

study are 1
1 4
 =  and 1

2 6
 =  as indicated in Fig. 12.  Both zeroth and first-order 

theory is applied and details are presented in Tables 5 and 6, respectively.  Analysis 

of the full-scale and trial models is performed model using Abaqus explicit and for 

consistency a transient-cyclic analysis is performed. 

Table 3:5: Zeroth-order material properties and scaling parameters. 

Design Model Mat. 

Density 

 

(kg/m3) 

Young’s 

Modulus 
(𝟏𝟎𝟏𝟏  𝐏𝐚) 

Yield 

Stress 
(𝟏𝟎𝟖  Pa) 

    g  

Design 

I 

Trial 

Model 1 
S235 7850 2.1 2.35 1/4 64 0.30727 

Trial 

Model 2 
Al 2770 0.7 3.37 1/4 181 0.15242 

Projected 

Model 1 
 

 

7850 

 

3.17 

 

3.55 
   

Projected 

Model 2 
 

 

7850 

 

0.737 

 

3.55 
   

Design 

II 

Trial 

Model 1 
S235 7850 2.1 2.35 1/4 64 0.25 

Trial 

Model 2 
Al 2770 0.7 3.37 1/4 181 0.257 

Projected 

Model 1 
 

 

7850 

 

2.1 

 

2.35 
   

Projected        
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The material used in the full-scale structure is steel S355 and the targeted-physical 

quantities for the projected trial models are density and yield stress and/or Young’s 

modulus.  For zeroth order this involves the relationships 
3

01 1 1ps ts

   =  and 

2

01 1 1 1ps tsY g Y =  or 
2

01 1 1 1ps tsE g E = , respectively. With 1
1 4
 =  the values of 01

  

and 1g  can be determined and their values are provided in Table 5 for the different 

material combinations.  As regards first-order, the proportional method of Section 

5.1 is applied leading to the equations 

2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 1
ˆ ˆ ˆ1 ( )g b R g b g b       = + −      (28a) 

2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2
ˆ ˆ ˆ1 ( )g e R g e g e       = + −      (28b) 

arising for stress and stiffness considerations with 1

1
ˆ ts

ps

Y

Y
b = , 2

2
ˆ ts

ps

Y

Y
b = , 1

1̂
ts

ps

E

E
e =  and 

2

2
ˆ ts

ps

E

E
e = , and in order to solve these two equations for 2g  and 1R , it is necessary to 

set 1g . 

This is done by means of zeroth-order theory and the consequential values of 2g  

and 1R  obtained from Eqs. (28) are provided in Table 6.  Note the common values 

of 1g  in Tables 5 and 6 indicating that Design I is the design taken forward to first-

order analysis.  The boundary and loading for each of the full scale and trial models 

are presented in Fig. 13 along with mesh details for the analysis. 

Model 2 7850 2.1 10.1 
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Figure 3.12: Scaled models for a two-bay, three-storey structure.  
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Table 3:6: First-order material properties and scaling parameters. 

Designs  Mat. Density 

(kg/m3) 

Young’s 

Modulus 

(𝟏𝟎𝟏𝟏  𝐏𝐚) 

Yield 

Stress 
(𝟏𝟎𝟔  Pa) 

1g  2g  1R  

 

 

 

Design I 

Full-scale 

Model 

S355 7850 2.1 3.55 

 

 

 

 

 

0.3073 
 

 

 

 

 

0.1894 
 

 

 

 

 

-2.324 
 

Trial 

Model 1 

S235 7850 2.1 2.35 

 

Trial 

Model 2 

S275 7850 2.1 2.75 

 

 

 

Design 

II 

Full-scale 

Model 

S355 7850 2.1 3.55 

 

 

 

 

0.153 
 

 

 

 

0.205 
 

 

 

 

-0.845 
 

Trial 

Model 1 

Al 2770 0.7 3.37 

 

Trial 

Model 2 

S235 7850 2.1 2.35 

 

 

 

Figure 3.13: Boundary and loading for physical and trial models. 
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The mesh densities are those obtained from a mesh-sensitivity study and provide 

converged solutions.  The loading applied in this study consists of a cyclically load 

generally increasing with amplitude as time progresses as shown in Figs. 13 and 14 

(see references [36] and [37] for details).  The results from the mesh-sensitivity 

study under the loading depicted in Fig. 14 are presented in Fig. 15.  It is clear that 

the mesh size/number of elements had negligible influence on the results obtained.  

Note that the choice of loading is similar to that of an earthquake with increasing 

amplitudes with time.  It can be seen from Fig. 15 that the loading consists of a form 

of generally increasing sharp waves punctuated by periods of constant amplitudes.  

 

Figure 3.14: Applied cyclic displacement-time graph (based on [38]). 

 

 

Figure 3.15: Mesh sensitivity analysis at point P shown in Fig. 13. 

The results of the study are presented in Figs. 16 to 19, with zeroth-order results 

presented in Figs. 16 and 17.  The results of Figs. 16 and 17 indicate that Design I 

(Trial 1) as defined in Table 6 provides the best approximation from the cases 
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considered.  Examination of the values for yield stress, density and Young’s 

modulus for the projected model indicate the reason for this, since these are closest 

to those of the full-scale model.  However, the match is not perfect as indicated by 

the inclined portion of the graph which does not coincide. 

 

Figure 3.16: Zeroth order cyclic analysis of Design I models. 
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Figure 3.17: Zeroth order cyclic analysis of Design II models. 

The percentage errors indicated in these figures refers to the differences in the areas 

enclosed by the last complete loop between the virtual and full-scale models.  In 

view of the failure of the zeroth-order theory to provide a sufficiently close-enough 

match first-order theory is applied to both Designs I and II and the results presented 

in Fig. 18.  A marked improvement is revealed in this figure with both designs 

providing an improved level of accuracy.  This result provides good evidence for the 

benefits of two scaled experiments over one and confirms that the finite similitude 

theory is able to interpret the information arising from the two experiments. 
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Figure 3.18: First-order cyclic analysis of Design I and II models. 

 

Figure 3.19:  Zeroth and first-order cyclic analysis of Design I and models. 

A final comparison between the best zeroth-order and first-order finite similitude 

designs is provided in Fig. 19. The figure confirms that the first-order theory 

provides better predictions than zeroth order and the differences can be marked. 
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3.7. Conclusion 

The paper is concerned with the assessment of a new scaling theory for the 

investigation of the aseismic behaviour of structures.  The new approach involves 

two scaled experiments and is founded on the metaphysical concept of space scaling.  

The following conclusions can be drawn from the work presented in the paper: 

1. A new scaling theory has been established that captures either explicitly or 

implicitly all scale dependencies that arise in structural mechanics. 

2. A new form of similarity has been established (termed first-order finite 

similitude) in differential form (see Eq. 10), which can be integrated exactly using 

finite differences to combine results from two scaled-trial experiments to predict 

full-scale structural behaviour. 

3. The new theory has been trialled on analytical and numerical models and 

provides predictions (sometimes markedly) superior to a single-scale trial 

experiment. 

4. Scale effects as previously defined by dimensional analysis can up to a limited 

degree be accommodated (e.g. dimensionless strain need not be constant). 

5. A new proportional theory has been established that has been shown to 

provide an efficient means to determine scaling parameters and avoid the need for 

expensive iterative procedures. 

More specifically for the trial experiments performed it has been show that: 

1. The first-order scaling theory was able to target more material properties for 

matching between the virtual and physical full-scale model (e.g. yield stress, 

Young’s modulus and density were matched in earthquake resistant structures).  

2. The benefit of matching yield stress and Young’s modulus for the cyclic 

loading of a two bay, three story structure was significant and confirmed the 

improvements possible with the new approach. 

3. The investigation of aseismic structures is improved using two scaled 

experiments as opposed to a single scaled experiment.  For a cyclically loaded three-

storey building, the proposed methodology reduced an overall error of 9.47% with a 

single scaled experiment to 0.65% with the combination of two scaled experiments.  
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3.9.  Appendices 

3.9.1. Appendix A: Procedures for application 

 

Presented in this section are the procedures followed in Sections 4, 5 and 6 in order 

to apply zeroth and first order finite theories.  The zeroth-order theories follows the 

instruction set: 

(i) Determine the geometrical and material properties and also boundary and 

initial (i.e. loading) conditions of the physical model; 

(ii) Determine the dimensional scaling factor 1  (thus, geometrical properties), 

material properties and boundary conditions for the trial model; 

(iii) Determine which properties must be fixed; 

(iv) Determine the independent density and time scaling factors (i.e. 
01

  and 1g ); 

(v) Calculate the initial (i.e. loading) conditions for the trial model; 

(vi) Conduct experimental tests on the trial model and; 

(vii) Lift the trial model response to predict the physical model response. 

A similar looking set of instruction apply for the first-order finite similitude theory 

and these are: 

(i) Determine the geometrical and material properties and also boundary and 

initial (i.e. loading) conditions for the physical model; 

(ii) Determine the dimensional scaling factors 1  and 2  (thus, geometrical 

properties), material properties and boundary conditions for the first and second trial 

models; 

(iii) Determine the density scaling factors (i.e. 
01

  and 
02

 ) using the zeroth order 

finite similitude relations (i.e. 
3

01 1 1ps ts

   =  and 
3

02 2 2ps ts

   = ); 

(iv) Determine which properties must be fixed; 

(v) Determine the time scaling factors (i.e. 1g  and 2g ) and also 1R  by restricting 

the intended properties and also initial (i.e. loading) conditions; 

(vi) Calculate the initial (i.e. loading) conditions of the first and second trial 

models; 

(vii) Conduct the experimental tests on the first and second trial models and; 

(viii) Combine trial models to produce a virtual model to predict the physical model 

behaviour. 
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3.9.2. Appendix B: Field restrictions 

In this section a general understanding is provided pertaining to the proportional-

fields assumption of Section 5.2 and the various restrictions placed on the fields for 

zeroth and first-order theories.  The solution spaces on which each depends are zo , 

lin , 
fo  and 

dp , where zo  is zeroth-order solutions, lin  is proportional 

solutions (e.g. Eq. (26)), 
fo  is first-order solutions (e.g. Eqs. (17)) and 

dp  is 

solutions with proportional differences (e.g. ( )1 1 2
ˆ

ps ts ts tsb= − −    ).   

It is assumed here that the elements of these spaces are drawn from vector spaces 

over the real field  .  More specifically for non-zero  , 
1 1zo ps   =h h h  

with   restricted to scalars provided by zeroth-order theory (see Table 1.)  For the 

space lin  however, 
1 1zo ps   =h h h  for 0    and evidently zo lin   .  

Similarly for the space 
fo , ( )1 2 1 1 2, fo ps   − = −h h h h h h , and where 

psh , 1h , 

2h  and   are restricted to be those common fields and scalars provided by first-

order theory (see Eq. (17)).  Finally ( )1 2 1 1 2, dp ps   − = −h h h h h h , 

0    and any common field types 
psh , 1h  and 2h ; evidently 

fo dp   . 

Proposition B.1  

The solution spaces satisfy 
zo lin dp      and 

zo fo dp     . 

Proof B.1  

zo  is a proper subset of lin  since for example 
1

1 1ps ts −=u u  and 1ps ts= −u u  are in 

lin  but only 
1

1 1ps ts −=u u  is in zo .  lin  is a subset of 
dp  since 1 1

ˆ
ts psb=   and 

2 2
ˆ

ts psb=   provide ( )1 1
ˆ1ps ts psb= − −    and ( )1 2 1 2

ˆ ˆ
ts ts psb b− = −   .  It is a 

proper subset since for any arbitrary non-zero 
psd  not proportional to 

ps  the 

relationships 1
ˆ

ts ps psb= − d   and ( ) ( )1

2
ˆ ˆ1 1ts ps psb b−= − + − d   are not in lin  but 

satisfy ( )1 1 2
ˆ

ps ts ts tsb= − −    , so belongs to 
dp .  In addition 

fo  is a proper 

subset of 
dp  since for example ( )1 1 1

1 1 1 1 1 2 2ps ts ts tsR  − − −= + −u u u u  belongs to 
fo  
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but ( )1 1

1 1 1 1 2 2ps ts ts tsR  − −= − + −u u u u  does not.     

  

A question remains about the relationship between lin  and 
fo  but solutions of lin  

can belong to 
fo  since zo lin    but also there exists solutions that do not.  An 

example is 1ps ts= −h h  and 2ps ts= −h h  since 1 2ps ts ps− =h h h  and ( )1 1 2ts tsR − = 0h h , 

so does no belong to 
fo  since 1 0R  . 
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Chapter  

FOUR 

4.  Paper two: A Study of Scale Effects in Discrete 

Scaled Dynamic Systems 

Overview  

Once the benefits and advantages of the new scaling theory were recognised, the 

following step was considered to show how discrete mechanical dynamic systems, 

which have common usage in structural engineering, for example, equivalent models 

consisting of mass-spring-damper systems. These systems can be utilised to initiate 

scaling parameters in a new scaling theory and to establish the appropriateness of 

first-order finite similitude for circumstances where traditional scaling theories are 

not sufficient. If a discrete system is considered to provide a true representation of 

the physical system, an experimental verification is always required to support the 

many simplifications generally required for practical modelling. Therefore, this 

article studies discrete elements and the change of their behaviour with scaling. 
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Abstract 

Scaled experimentation is an important experimental approach for the investigation 

of complex systems. Unfortunately, scaling suffers scale effects, where changes in 

behaviour with scale can be so significant to undermine any scaled investigation. 

The state-of-the-art in scaled experimentation remains dimensional analysis, which 

unfortunately offers no solution to scale effects and consequently scaled experiments 

although important provide only limited usefulness at the present time. 

This paper is concerned with a new approach to scaled experimentation founded on 

the theory of finite similitude applied to discrete mechanical systems. The new 

theory applies the metaphysical concept of space scaling, where objects, prototypes, 

systems, experimental apparatus and facilities are scaled by the means of space 

contraction or expansion. Although space scaling is clearly practically impossible, 

what is possible is an assessment of the effects of space scaling on the governing 

physics and a comparison with real experimental behaviours. It is shown in the paper 

how the new theory accounts for all scale dependencies and unlike dimensional 

analysis is able to accommodate known scale effects. It provides also alternative 

scale-invariances that cater for the situation where scale effects are present but 

unknown. This aspect is the focus here with application of first-order finite 

similitude to simple mechanical-dynamic systems, an approach that requires two 

scaled experiments at two distinct scales. It is demonstrated how it is possible by 

means of two scaled experiments to represent behaviours at the full scaled that 

hitherto would have been deemed impossible with traditional dimensional analysis. 

Keywords: 

scaling, dynamics, finite similitude, trial experimentation 
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4.1. Introduction 

Modern methods for the analysis of mechanical-based dynamic systems invariably at 

some point turn to computer simulation to investigate such things as kinematics, 

stability, long-term behaviour and control [1][2][3][4]. Computer simulation 

provides great scope for all manner of investigations and facilitates sensitivity 

analysis with the scrutinization of system response to changes in initial and 

boundary conditions but also system properties [5][6]. In cases where the discrete 

system is deemed to provide a realistic representation of a physical system, then 

experimental validation is invariably required to support the many simplifications 

that are often necessary for practical modelling to take place [7]. Discrete 

representations find common usage in structural engineering for example where 

equivalent models consisting of mass-spring-damper systems are used to 

approximate and investigate the overall response of structures under loading. Such 

studies include the response of passive control systems [8], the behaviour of the 

buildings exposed to the seismic or base excitations [9, 10, 11], and the 

determination of metal-metal contacts between two one-storey buildings exposed to 

seismic loading [12]. The literature is replete with such studies supported by 

experimental evidence in order to justify there use, involving what might appear at 

first sight to be somewhat controversial looking simplifications [13][14]. 

Experimental studies take three distinct forms depending of the nature of the 

problem under consideration. Whole-system investigations can be performed for 

example in situations where such an investigation is practical and available. This 

type of study can involve instrumentation and examination of inputs and outputs to 

the system. Subsystem analysis is a similar type of study that is particularly pertinent 

to situations where interest is more focused or where the complexity of the whole 

system is such that makes this approach unavoidable. Included in this type of 

investigation is single component analysis but beyond this is sub-component 

investigations possibly related to material characterisation and behaviour with the 

intended aim being the development of sophisticated constitutive equations. There 

exists however other forms of experimental investigation that involve the physical 

representation of a system but at a reduced scale. This approach although having the 

advantage of reduced cost can suffer uncertainties since it is recognised to be 

affected by scale effects, which can diminish the benefits offered. Design of scaled 

experiments is aided by the theory of dimensional analysis, which is founded on an 
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invariance principle, where it is assumed that the dimensionless governing equations 

do not change with scale [15]. A particular advantage of dimensional analysis is the 

characterisation of dominant physics by a pertinent subset of dimensionless 

parameters, i.e. the Pi groups [16][17]. A severe disadvantage however is the 

reliance on an invariance principle that in all but the most rudimentary of systems 

seldom applies [7][18]. In a situation where scale effects are significant then 

dimensional analysis provides no solution and it would appear also that scaled 

experimentation provides little benefit either [19]. This is presently the situation but 

recently a new theory has emerged that unlike dimensional analysis embraces scale 

effects in the sense that it assumes these are present and attempts to accommodate 

their presence. The new approach is called finite similitude and is founded on the 

metaphysical concept of space scaling [20][21][22][23][24][25]. The word 

”metaphysical” is applied here in the sense that it cannot be achieved practically but 

can be imagined and mathematically defined. It is evident that space scaling cannot 

be done practically (hence metaphysical) but its effect on governing equations can 

be interrogated to reveal what scale dependencies are present. The focus on space 

naturally leads to a focus on physical descriptions that relate to a portion of space 

(i.e. a control volume). The basic idea is the representation of the governing physics 

pertaining to a trial space (where the scaled experiment resides) in the physical space 

(where the full-scale experiment resides). This representation has 

the effect of qualifying scale dependencies either explicitly or implicitly. 

Geometrical measures such as vol- ume and area are explicitly revealed yet other 

scalar, vector and tensor fields are implicit. The problem of scaling in this 

formulation effectively reduces to finding a means to reveal the implicit scale 

dependencies. This paper focuses on an alternative scaled invariance for doing this, 

which involves scaled experimentation at two distinct scales.  A particular novel 

aspect of the study is the modelling of the two scaled experiments with discrete 

elements which leads to connected continuous dynamical systems. Of principle 

interest is the lifting of information from these two scaled systems to the physical 

space along with the implications the process has on experimental design and 

process parameters. The focus here on discrete systems addresses two particular 

weaknesses with the application of the new similitude rules. Firstly, they provide a 

quick and convenient vehicle for setting free similitude parameters, which are 

required to be set in order to link scaled experiments. Secondly, they provide the 
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means to check the appropriateness of a particular similitude identity for a scaled 

experimental trial. A particular difficulty with the similitude approach is that there is 

no guarantee that the results obtained from a series of scaled experiments belong to a 

particular similitude identity. It is shown in the paper how discrete systems provide 

the means to investigate the fitness of a similitude rule prior to any experiments 

being performed.  It is recognised that discrete systems are approximate 

representations but also it is clear from the open literature and the works mentioned 

above that they have a place in the analysis of continuous structural systems. The 

work presented here builds on the benefits offered by this approach to connect 

scaled experiments in an efficient manner. The concept of metaphysical space 

scaling is discussed in Sec. 2, where anisotropic scaling [26] is mentioned but the 

principal focus is on isotropic scaling. Coordinate systems are introduced pertaining 

to two inertial frames, one residing in the physical space and the other in the trial 

space. The focus on space naturally leads to the control volume concept, i.e. a 

moving/deforming region of space and the kinematics of a control volume is 

presented in Sec. 2.2. Mechanics in transport form is introduced in Sec. 2.3, where 

the important step of projecting trial-space transport equations onto the physical 

space is considered. This particular mathematical process has the effect of exposing 

scale dependencies and is critical to the whole approach. In Sec. 3 it is demonstrated 

how it is possible reveal hidden-scale dependencies by defining different forms of 

similarity (termed zeroth-order and first-order finite similitude). In Sec. 4 the theory 

is applied  to a linear mass-spring-dashpot system to reveal that no improvement is 

provided by first-order for these relatively simple systems. Scale dependencies in 

springs and dashpots are investigated both analytically and numerically in Sec. 5; the 

difference between structural and viscous damping is revealed. Finally, first-order 

systems are examined in Sec. 6 to reveal the benefits of a second scaled experiment 

for systems involving friction forces. The paper ends with a list of conclusions. 

4.2. Recapping the finite similitude theory 

The theoretical foundations underpinning finite similitude were first introduced by 

Davey et al.   in reference [20] and subsequently applied to impact mechanics 

[23][24][27], biomechanics [22][28], powder compaction [21] and metal forming 

[29] but it is convenient nonetheless to recap the ideas here prior to extending the 

approach to discrete mechanical systems. The theory of finite similitude begins with 
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the imagined concept of space scaling, which can be quantified by relating the 

coordinate coefficients in the physical space 
i

psx  to those in the trial space 
i

tsx . In 

essence an affine mapping of the form ps tsx x is assumed to exist, which in 

differential terms is of the form d F dts ps= x x  or equivalently 
i i i

ts j psd x F d x= , where 

i i j

j ts psF x x=   . The basic idea is presented in a 2-D frame in Fig. 1, where 

allowance is also made for time running at a different rate in the two spaces. 

Formally, the map ps tst t  is assumed to exist, which in differential terms is 

ts psdt gdt= , where g  is assumed both temporally and spatially invariant. Shown in 

the figure is the unit vector basis associated with the inertial frames for the two 

spaces, i.e.  iG and  
i

g . It is important to appreciate that scaled experimentation 

is from the viewpoint of an external observer, so scaling of the basis vectors is not a 

feature and it is assumed here that i i
G g= . 

4.2.1. Isotropic Scaling 

Under the assumption that the two frames  iG and  
i

g  are orthonormal, then the 

restriction F I=   is termed isotropic space scaling with 0   and I  a unit matrix.  

The parameter  as illustrated in Fig.1 quantifies the extent of the scaling involved  

with 1   for contraction, 1 = indicating no scaling, and  1   for expansion. 

Shown in Fig. 1 is the effect space scaling has on a simply dynamic system and 

clocks are included to emphasise that time can run at different rates in the spaces. 

Note also that anisotropic space scaling is possible, where geometric similarity as it 

is traditional known is lost, but this aspect is not explored further here (further 

details can be found in reference [26]). It is apparent though that even at this early 

stage that space scaling provides certain advantages over dimensionless approaches 

as it made clear in an intuitive physical sense how scaling is being achieved be it 

isotropic or anisotropic. 

The focus in this paper is on the situation involving two scaled experiments at 

distinct scales 1  and 2  as illustrated in Fig. 1. The idea being that by some means 

the behaviour of the two scaled experiments are to be combined to produce the 

expected behaviour of a full-scale system at 0 1 = = . The theory underpinning the 
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combination of scaled experimentation is presented in subsequent sections but first it 

is necessary to consider the effect scaling has on control-volume kinematics. 

 

Figure 4.1: Inertial coordinate systems for physical and trial spaces where each 

space includes both reference and current moving control volumes, which here are 

tracking a moving and vibrating system. The geometric scaling factors   and   dictate 

the extent of the space scaling involved. The various maps depicted include maps 

between spatial points, and control volumes in different spaces along with reference 

4.2.2. Kinematics of a moving control volume 

To investigate the relationships between scaled experimentation and full-scale 

systems necessitates a description of the underpinning mechanics that is readily 

influenced by the act of scaling;  in particular   it must incorporate geometrical 

measures. A natural description therefore is a control-volume approach, where 

physical transfers are defined and related on a moving distorting region of space. 

The focus on space and control-volume descriptions may at first sight appear 

somewhat remote from the multi-body dynamics involving discrete elements that is 

the focus of this study. However, space considerations ultimately lead to point-based 
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identities and therefore to descriptions that are commonly applied in a Lagrangian 

frame of reference. 

The  motion  of  a  control  volume  in  the  trial  space  is  described  here  by  

means  of  the  velocity  field  
*

tsv , which itself is definable in terms of the temporal 

derivative 

ts

*

*

ts ts

D

D t t



=


where ts  is a coordinate point in reference control volume 

*ref

ts .  The basic idea is depicted in Fig.  1, where the motion of control volume 
*

ts  

is portrayed relative to the stationary reference control volume 
*ref

ts .  The motion of 

the control volume 
*

ts  is described by two equivalent means,  first as the map 

( ) *

ts ts ts,t x ,  where  
*ref

ts ts  ,  and second as the solution to the differential 

equation 

* *
*ts
ts*

ts

D

D t
=

x
v           (1) 

with 
*

tsx  being a point attached to the control volume and 
*

tsv specified along with 

initial conditions. The unique solution to this differential equation for appropriate 

initial conditions is guaranteed by Frobenius’s theorem. With the apparatus for the 

motion of a control volume in the trial space now defined, attention turns to its 

connectivity in the physical space. The control volume region effectively acts as a 

lens for that part of the trial space that is to be examined. It can be made as small or 

as large as required and can in principle be composed of many parts. The exact 

same apparatus can be defined for the physical space with 

* *

ps *

ps*

ps

D

D t
=

x
v           (2) 

where  
*

psx  being  a  point  attached  to  the  control  volume  in  the  physical  space  

and  to reflect  that  fact  that space scaling is involved the identity 
* *

ts psd d=x x   is 

assumed to apply. 

Note the similarity between the space identity ts psd d=x x and that between the 

control volumes in the two spaces, where unlike the former the latter 
* *

ts psd d=x x  
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relates moving points.  Taking into consideration the two time scales involved and 

the identity ts psdt gdt= an important velocity field relationship 

1* *

ts psg −=v v          (3) 

is found to apply, which confers synchronous motion on the controls in the two 

spaces. Greater detail on this is available in reference [20] but with the kinematics 

of the two moving control volumes defined it is now possible to examine the critical 

equations in scaled dynamics. 

4.2.3. Scaled mechanics in transport form 

Particular transport equations pertinent to mechanics are introduced in this section. 

Volume conservation forms part of the discussion along with mass, although hardly 

critical to solid mechanics they do feature in finite similitude. Six additional 

equations are needed, three describing the critical conservation law of momentum 

and three concerned with the non-conserved concept of movement. Movement (first 

introduced in reference [30]) like volume is not common to classical work due to its 

elementary nature but included nonetheless to bring the displacement field into the 

family of transport equations. The transport equations of interest are: 

v
* *
ts ts

*
* * *

ts ts ts ts*

ts

D
dV d

D t
 

=    n        (4a) 

( )- 0
* *
ts ts

*
* * *

ts ts ts ts ts ts ts*

ts

D
dV d

D t
 

 

+   =  v v n      (4b) 

( )- 0
ts

* * * *
ts ts ts ts

*
* * * * v *

ts ts ts ts ts ts ts ts ts ts ts ts ts ts*

ts

D
dV d d dV

D t
   

   

+   −   − =   v v v v n n b  (4c) 

( )- 0
* * *
ts ts ts

*
* * * *

ts ts ts ts ts ts ts ts ts ts ts ts*

ts

D
dV d dV

D t
  

  

+   − =  u u v v n v   (4d) 

where ts is mass density, ts  is Cauchy stress, tsu is displacement, 
v

tsb represents 

specific-body force (i.e. force per unit mass), and tsn   is the outer pointing unit 

normal on the boundary 
*

ts  of control volume 
*

ts . The basic idea is to project 

scaled versions of these equations into the physical space, which is achieved on  
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substitution  of  
3* *

ts psdV dV= , 
2* *

ts ts ps psd d = n n and  and  on  multiplication  by  

g  and respectively 
1

0 , 0

 , 0

v  and 0

u  to provide 

( )1 1 1 3 1 3

0 0 0 0 0
* *
ps ps

*
* * *

ps ps ps ps*

ps

D
T dV d

D t
     

 

= −   =  v n    (5a) 

( ) ( )3 3

0 0 0 0 0
* *
ps ps

*
* * *

ts ps ts ps ps ps ps*

ps

D
T dV d

D t

          
 

= + −   =  V v n  (5b) 

( ) ( ) ( ) ( )1 3 1 3

0 0 0 0

2 3

0 0                                                                  0

* *
ps ps

* *
ps ts

*
v v v * v * *

ts ps ps ts ps ps ps ps ps*

ps

v * v v *

ts ps ps ts ps ps

D
T g dV g d

D t

g d g dV

         

    

− −

 

 

= + −   −

  − =

 

 

V V V v n

n b V

          (5c) 

( ) ( ) ( ) ( )

( )

3 3

0 0 0 0

3

0                                                                                       0

* *
ps ps

*
ts

*
u u u * u * *

ts ps ps ts ps ps ps ps ps*

ps

u *

ts ps ps

D
T dV d

D t

dV

         

   

 



= + −   −

− =

 



U U V v n

V

          (5d) 

where 
1

ps tsg −=V v ,
1

ps ts −=U u  and critically important scalars 
1

0 , 0

 , 0

v  and 0

u  

(whose role is made clear below) along with g are assumed to be functions of  . 

Eqs. (5) capture scaling from a somewhat different perspective, where the 

dependency on   is either explicitly or implicitly exposed. The presence of 
3 and 

2  is explicit arising from geometrical measures, but implicit is the behaviour of the 

fields, i.e. ( )ps V , ( )ps U , ( )ts   and so on. The scaling problem has been 

transformed into one where the objective is to discover hidden  − dependencies. 

There are two routes to uncovering hidden behaviours, with one requiring additional 

information arising from the physics of the problem under study (i.e. size effects, 

boundary conditions etc.) or another with the application of scale invariances; this 

latter approach is the focus of this paper. 
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4.3. Finite similitude identities 

The application of scale invariances to Eqs. (5) is in many respects about 

assuming how things are changing with  , which for an arbitrary problem will 

invariably be incorrect. A question of some interest however is whether it is 

possible to design scaled experiments to satisfy the scale invariance applied. The 

problem becomes one of design-of-experiments and the scaled invariance 

provides the vehicle for this design process. 

The approach adopted here is the establishment of differential identities where 

Eqs. (5) are to be differentiated with respect to  . The” initial conditions” for 

this process are deemed to be at 0 1 = = ,  which immediately impacts on Eqs. 

(5), which must match the physical-space equations at 0 . The following 

identities follow on examination of these equations: 

( ) ( ) ( ) ( )1

0 0 0 01 1 1 1v u   = = =  along with ( )1 1g =  since ( ) ( )1 1ts psdt g dt=  and 

( )1ts ps = ,  ( )1ps ps=V v , ( )1ps ps=U u ,  ( )1ts ps = and  so  on  for  other fields. 

The first scale invariance of interest is the one that is the most obvious and is 

where Eqs. (5) have no variation with respect to  , which in mathematical 

terms is simply 

( )0 0 0
d

T
d

 


          (6) 

where  can be set to 1,  , v  or u and the equality sign ”≡” means that the 

transport equation is identically zero; the satisfaction of this identity is termed 

zeroth-order finite similitude. 

Note that integration of this equation between the limits 0 and 1 1 =  provides 

( ) ( ) ( )0 0 1 0 0 01 1T T T       = . This equality is essentially what dimensional 

analysis provides as it effectively confirms that the trial-space transport 

equations do not change with scale. Here, no attempt is made to form 

dimensionless equations as the scalars 0

  are providing the means to treat all 

the transport equations in a unified manner. The significant advantage of the 

finite similitude approach is that it is not limited to a single invariance and Eqs. 

(5) are purposely of a form that embraces scale effects. Eq. (6) is the case were 
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scale effects are assumed absent but in most cases this is not satisfied and 0 0T 

changes with  . A natural way forward in this case is to set ( )1 0 0

d
T T

d

  


=  

and scale these equations with a new set of scalars 1

 and consider the identity 

( ) ( )1 1 1 0 0 0
d d d

T T
d d d

      
  

 
=  

 
      (7) 

which when satisfied is termed first-order finite similitude. 

Although higher-order forms are evidently possibly following the same pattern 

(i.e. setting ( )2 1 1
d

d
T T  


= , etc.), focus here is limited Eq. (7) as it will become 

apparent that two scaled experiments are involved in this case.  Two features are 

important to note and the first is that zeroth-order solutions are contained within 

the set of first-order ones since any solution of Eq. (6) automatically satisfies 

Eq. (7). Second, the form of Eq.  (7) for arbitrary differentiable 1

  (as a 

function of  ) can represent any linear combination of the derivatives of the 

0 0T   up to second order at any arbitrary point 1 . This is relatively easy to 

prove and its importance lies in the irrelevance of alternative identities that 

contain derivatives of 0 0T  . 

4.3.1. The first-order solution to scaling 

As mentioned above in the context of Eqs. (5), scaling is solved once all  −

dependencies are revealed. The definition Eq. (7) is designed for the purpose of 

revealing said dependencies but in the absence of know behaviours (size effects, 

boundary changes) is unlikely to capture such changes. In the context of 

physical modelling, Eq. (7) has the potential to facilitate the design of these 

experiments. In order to do this however Eq. (7) is required to be replaced by a 

discrete form but prior to that it is prudent to consider first the outcomes from 

trying to satisfy Eq. (6). 

Note then that Eq. (5a) satisfies identity Eq. (6) with 1 =  on setting uniquely 

1 3

0  −= , which evidently satisfies ( )1

0 1 1 = . In fact 
1 3

0  −=  is a necessary and 

sufficient solution for Eq. (6) and consequently Eq. (5a) is automatically 

satisfied in first-order theory. It is worth mentioning here that this result is 



115 
 

facilitated by Eq. (3) and in fact enforces this condition. Turning attention now 

to Eq. (5b) a necessary (although not sufficient) condition for satisfying Eq. (6) 

with  =  is 
3

0ps ts

   = . Similarly for Eq. (5c) a necessary (but not 

sufficient) condition is 
1

0 0

v g   −= . Likewise Eq. (5d) requires 
1

0

u   −=  or 

alternatively 0 0

v ug = . The identities: 
3

0ps ts

   = , 
1

0 0

v g   −=  and 

1

0

u   −=  are taken forward to first-order theory. Note that these scalars are 

set in an attempt to eliminate   from transport Eqs. (5b) 

to (5d).  Similarly, therefore, 1

   has an identical role to play but for the 

transport equations 1 1 0T  =  with ( )1 1 1 = , hence providing further 

justification for the form of identity Eq. (7). 

The solving of first-order finite similitude requires the integration of Eq. (7), 

which happens to be of a form that is ideal for the application of divided 

differences. Note first the identity 

( ) ( )( ) ( )
( ) ( )0 0 1 0 0 21 1 1

1 1 2 1 0 0 2 1 2

1 2

T Td
T T

d

   

         
      

  

−
= 

−
 (8a) 

( ) ( )( ) ( )
( ) ( )0 0 0 0 0 10 0 0

1 1 1 1 0 0 1 1 1

0 1

T Td
T T

d

   

         
      

  

−
= 

−
 (8b) 

with 
1

2 2 1    ,
0

1 1 0    , where a mean-value theorem is utilised to 

provide exact identities. 

Note however that the first-order assumption means that ( ) ( )0 1

1 1 1 1 1 2T T      

, which on substitution of Eqs. (8) provides 

( )
( ) ( )

( )
( ) ( )0 0 0 0 0 1 0 0 1 0 0 20 1

1 1 1 2

0 1 1 2

T T T T       

        
   

   

− −


− −
 (9) 

which after some manipulation provides 

( ) ( ) ( ) ( )( )0 0 0 0 0 1 1 0 0 1 0 0 2T T R T T                + −    (10) 

where 



116 
 

( )
( )

1

1 2 0 1
1 0

1 21 1

R







   

  

  −
 =  
  −  

       (11) 

And it is recognized that 1R
 takes the form of a parameter since 1

  remains 

indeterminate. 

4.3.2. First order field relationships 

A feature of transport Eqs. (5c) to (5d) is a relative transfer flux of the form 

( )*

ps ps− V v n   at  the boundary of each equation. With focus on solid dynamics 

as opposed to fluid dynamics and in order to avoid higher forms of similitude it 

is reasonable to approximate this expression with ( )*

ps ps− v v n .  With this 

approximation in place the application of Eq. (10) to transport Eqs. (5b) to (5d) 

provides relationships of the form 

( ) ( ) ( )( )1 1 1 2ps ps ps psR  = + −v V V V      (12a) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  = + −v V V V      (12b) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR   = + −Σ Σ Σ      (12c) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  = + −b B B B      (12d) 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  = + −u U U U      (12e) 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  = + −v V V V      (12f) 

where 
1

ps tsg −=V v , 
1

ps ts −=U u ,
2

0

v

ps tsg  =Σ  and 
2 1

ps tsg  −=B b , and for a 

consistent expression of velocity it is required that 1 1 1 1

v uR R R R= = = . 

Note how the displacement expression Eq. (12e) is consistent with velocity Eq. 

(12f), since differentiation of the former with respect to time (i.e. 
ps

D
Dt ) and 

substitution of 
1 21 2ps ts ts

D D D
Dt Dt Dt

g g= =  gives the latter, where ( )i ig g = , 

( )tsi ts it t =  and 
ps

D
Dt means material derivative. The condition 1 1 1

v uR R R = =  

reveals the physical interpretation that Eqs. (10) and (12) infer, i.e. the 
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differences between transport equations and certain fields are proportional. The 

theory provides the fields, (i.e. psV , psU , psΣ   and psB ) and the  result is 

evidently a departure from dimensional analysis and zeroth-order finite 

similitude, which involve proportional fields only. Note additionally that all the 

differences in the right-hand bracket in Eqs. (12) are identically zero if zeroth-

order happens to apply as is required. 

4.4. Similitude for mass-spring-dashpot components 

The important identities pertinent to dynamics are provided in Tab. 1, where 

included for completeness is the small strain relationship, which is derivable 

from the displacement identity (12e) on division by 
1 1

1 1 2 2

i i i

ps ts tsdx dx dx − −= = . 

Table 4:1: Important finite-similitude identities for zeroth and first-order. 

Properties Zeroth-order First-order identities 

Density 3

01 1 1ps ts

   =  ( )3 3 3

01 1 1 1 01 1 1 02 2 2ps ts ts tsR           = + −  

Displacement 1

1 1ps ts −=u u  ( )1 1 1

1 1 1 1 1 2 2ps ts ts tsR  − − −= + −u u u u  

Velocity 1

1 1 1ps tsg  −=v v  ( )1 1 1

1 1 1 1 1 1 1 2 2 2ps ts ts tsg R g g  − − −= + −v v v v  

Acceleration 1 2

1 1 1ps tsg −=a a  ( )1 2 1 2 1 2

1 1 1 1 1 1 1 2 2 2ps ts ts tsg R g g  − − −= + −a a a a  

Strain 
1ps ts =  ( )1 1 1 2ps ts ts tsR   = + −  

Stress 2

01 1 1 1ps tsg   =  ( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsg R g g           = + −  

Force 
01 1 1

v

ps tsg=F F  ( )01 1 1 1 01 1 1 02 2 2

v v v

ps ts ts tsg R g g  = + −F F F F  

 

In a mass-spring-dashpot system (in the trial space) the damping force 

d

ts ts tsc= −F v  and spring force 
s

ts ts tsk= −F u  act along with the inertial ”force” 

i

ts ts tsm=F a . The scaling identity for force in Tab. 1 indicates how these forces 

should be treated. Multiplication throughout by 0

v g provides after some 

reorganisation ( )( )1

0 0

v d v

ts ts tsa g a c g  −= −F v , ( )( )1

0 0

v s v

ts ts tsa g a g k  −= −F u  and 

( )( )1 1 2

0 0

v i v

ts ts tsa g a g m g − −=F a  and recall that 
1

0 0

va g a− =  and consequentially 
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the inertial force equation reduces to ( )( )1 2

0 0

v i

ts ts tsa g a m g  −=F a . The first-order 

theory endeavours (in this case) to combine the two equations 

1 1 1 1 1 0ts ts ts ts ts tsm c k+ + =a v u        (13a) 

1 2 2 2 2 0ts ts ts ts ts tsm c k+ + =a v u        (13b) 

by first multiplying by 01 1

va g  and 02 2

va g , respectively and then forming 

( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )

( )( )

1 2 1 2 1 2

01 1 1 1 1 1 01 1 1 1 1 02 2 2 2 2

1 1 1

01 1 1 1 1 1 1 01 1 1 1 1 1 02 2 2 2 2 2

1

01 1 1 1 1 1 01 1

               

                       

ts ts ts ts ts ts

v v v

ts ts ts ts ts ts

v v

ts ts

a m g R a m g a m g

a c g R a c g a c g

a g k R a g

    

     



− − −

− − −

−

 + − +
 

 + − +
 

+

a a a

v v v

u ( )( ) ( )( )( )1 1

1 1 1 02 2 2 2 2 0v

ts ts ts tsk a g k − − − =
 

u u

          (14) 

in an attempt to match the equation 

0ps ps ps ps ps psm c k+ + =a v u        (15) 

Which provides the following identities 

( )( ) ( )( ) ( )( )( )1 1 21 2 1 2 1 2

01 1 1 1 1 01 1 1 1 02 2 2 2
ts ts ts

ps ps ps

m m m

ps ts ts tsm m m
g R g g       − − −= + −a a a a  (16a) 

( )( ) ( )( ) ( )( )( )1 1 21 1 1

01 1 1 1 1 1 01 1 1 1 1 02 2 2 2 2
ts ts ts

ps ps ps

c c cv v v

ps ts ts tsc c c
g R g g        − − −= + −v v v v (16b) 

( )( ) ( )( ) ( )( )( )1 1 11 1 1

01 1 1 1 1 1 01 1 1 1 1 01 1 1 1 1
ts ts ts

ps ps ps

k k kv v v

ps ts ts tsk k k
g R g g        − − −= + −u u u u (16c) 

but comparison with the corresponding identities in Tab. 1 yields the zeroth-

order identities in Tab. 2. 

First-order identities for the material properties of the type presented in Tab. 2 

offer little advantage for these linear systems as the satisfaction of zeroth-order 

identities (if possible) will lead to superior outcomes. 

Table 4:2: Important material finite-similitude identities for mass-spring-dashpot 

systems 

Properties Zeroth-order First-order identities 

Mass 
01 1 02 2ps ts tsm m m  = =  ( )01 1 1 01 1 02 2ps ts ts tsm m R m m    = + −  
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Damping 
01 1 1 02 2 2

v v

ps ts tsc c c   = =

 

( )01 1 1 1 01 1 1 02 2 2

v v v

ps ts ts tsc c R c c     = + −  

Stiffness 
01 1 1 1

v

ps tsk g k =  ( )01 1 1 1 1 01 1 1 1 02 2 2 2

v v v

ps ts ts tsk g k R g k g k     = + −

 

 

In order to apply an appropriate level of approximation it is necessary to have 

some some understanding of the scale dependences of tsm , tsc and tsk . In the 

section that follows it is shown that 
2

ts psc c= or ts psc c= (or some combination 

of these two) and ts psk k= .  

Consider then replica materials for all models and zeroth-order approximations 

for all material properties and set 
3

0a  −=  to match densities in Tab. 1, which 

provides 
3

ts psm m= , i.e. mass reduces in accordance with volume. Recall the 

zeroth-order identity 
1

0 0

v g   −= , which becomes 
4

0

v g  −=  and consequently 

1 3

ts psc g c−= , which suggests g =  or 
2g =  but since 

1 2

ts psk g k−= , it is 

required therefore to set g = . Thus zeroth order conditions are satisfied for 

2

ts psc c= , which transpires to be pertinent to structural damping with g = . 

The condition ts psc c=  is possibly countered with the added flexibility 

provided by using alternative materials (i.e. physical modelling). Application of 

the first-order approximation for the damping coefficient in Tab. 2 with 

4 3

0

v g  − −= =  provides 

1

1
1 1 1

1 2

1
R



 

−

− −

−
=

−
        (17) 

but such an approach is approximate and will not provide an exact match.  

The reason for this is that zeroth-order conditions for the fields provides in Eq. 

(14) 

( ) ( )

( ) ( )

( ) ( )

01 1 1 01 1 02 2

01 1 1 01 1 02 2

01 1 1 1 1 01 1 1 1 02 2 2 2

                  

                                      0

ts ts ts ps

v v v

ts ts ts ps

v v v

ts ts ts ps

m R m m

c R c c

g k R g k g k

    

     

     

 + − +
 

 + − +
 

 + − =
 

a

v

u

(18) 
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where the first-order identities in Tab. 2 would at first sight confirm the 

matching of Eqs. (15) and (18). 

Unfortunately, zeroth-order conditions for the fields are dependent on zeroth-

order conditions for the material properties, i.e. it is not possible to simply 

assume zeroth-order conditions for the fields as these are constrained by Eqs. 

(13). On the other hand, application of zeroth-order properties (see Tab. 2) is not 

constrained by these equations and reduce Eq. (14) to 

( )( )

( )( )

( )( )

1 2 1 2 1 2

1 1 1 1 1 1 1 2 2 2

1 1 1

1 1 1 1 1 1 1 2 2 2

1 1 1

1 1 1 1 1 2 2

                          

                                                   

ps ts ts ts

ps ts ts ts

ps ts ts ts

m g R g g

c g R g g

k R

  

  

  

− − −

− − −

− − −

+ − +

+ − +

+ −

a a a

v v v

u u u

 (19) 

 

and the identities in Tab. 1 confirm the match with Eq. (15) and for this case the 

match is exact although the fields collapse further to zeroth order.  

The key to successful scaling of these linear systems is an understanding of 

scale dependencies and good approximations for zeroth-order entities. 

4.5. Scale dependencies of physical components 

Despite the relative complexity involved in arriving at the identities in Tabs. 1 

and 2, the application of the finite-similitude theory turns out to be relatively 

straightforward. However, prior to application of the theory to discrete-

mechanical systems it is first necessary to acquire information on how the 

discrete elements change with scale. This section investigates both analytically 

and numerically how springs, materials and dashpots are affected by scale.  

4.5.1. Spring dependencies 

The zeroth-order finite similitude theory is applied to a mass-spring system 

consisting (separately) of cylindrical and conical springs with constant pitch and 

circular wire, which have widespread use in engineering systems. The stiffness k 

of a cylindrical spring is readily determined using the expression [31],  

4

38

Gd
k

D n
=          (20) 
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where G is the shear modulus, D is the mean diameter of the coil, d is the wire 

diameter and n is the number of active coils. 

Note that unlike the cylindrical springs, which operate predominantly in a linear 

phase, conical-compression springs possess both linear and nonlinear phases. 

Stiffness pertaining to the linear phase is readily determined using [32], 

( )( )

4

2 2

1 2 1 22

Gd
k

n D D D D
=

+ +
       (21) 

where 1D and 2D  are the mean diameter of the smallest and largest active coils, 

respectively. 

Although no analytical solution exists to describe the nonlinear phase precisely, 

Rodrigues et al. did manage to develop an approximate continuous analytical model 

to describe the nonlinear load-deflection response of conical-compression springs. In 

this study the load-deflection response of both spring types is examined using the 

commercial finite element software ABAQUS, and is compared against know 

solutions in Figs. 2 and 3. The geometrical dimensions and material proprieties of 

both springs are detailed in Table 3. The results show that the ABAQUS simulation 

of the load-deflections are in good agreement with the research of Rodrigues et al. 

and Yang et al. [31]. 

The validated finite-element model provides the means to assess the influence of 

scaling on spring stiffness. This is achieved here by loading the springs at full-size 

(full scale model) and then by comparing with springs scaled down by 0 5. =  and 

scaled up by  2 =  (see Fig. 5). It is revealed in Fig. 5 for cylindrical springs (and 

similarly for conical springs) that the stiffness is linearly proportional to  . For the 

linear phases of the cylindrical and conical springs, using expressions Eqs. (20) and 

(21), this relationship is immediately apparent on substitution of  ts psd d= and 

ts psD D=  for the diameters to obtain ts psk k=  (for ts psG G= ). Although a linear 

relationship with   is a convenient it is not sufficient relate the vibration of real 

mass-spring systems of different sizes; the problem is energy dissipation. 
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Figure 4.2: (colour online) Verification of the FE simulation results for the force-

deflection of the linear cylindrical spring-mass system by comparison against 

numerical and analytical results presented in the literature. Based on the mesh 

sensitivity analysis, the spring CAD model has been discretised using 42777 

linear hexahedral (C3D8R) and 19918 quadratic tetrahedral (C3D10) 

elements. The average number of the elements through the radius of  the 

spring  is  3 with  average element  size of  1  mm. 
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Figure 4.3: (colour online) Evaluation of the presented numerical results for the 

linear and nonlinear behaviour of the conical spring-mass system by comparison 

against numerical and analytical results presented in the literature. In order to 

guarantee the convergence of the numerical solution and avoid the mesh sensitivity 

of the results, the minimum number of elements for the discretised conical spring is 

47839 with average size of 1 mm. The average number of elements in radial 

direction is 4 elements. 

Table 4:3: Characteristics of both cylindrical and conical springs 

Parameters Cylindrical 

Spring 

Conical 

Spring 

1D (mm) 50 8.97 

2D (mm) 50 13.3 

d (mm) 6 1.2 

0L (mm) 88 37.2 

an  3.5 7.13 

G (MPa) 82030 80000 
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4.5.1.1. Structural damping of springs 

All engineering structures show some degree of energy dissipation during free 

vibration due to inherent losses arising from internal friction in structural materials. 

A convenient pragmatic approach to deal with the complex sources of energy loss is 

the inclusion of a viscous-type damper to simplify the mathematical treatment [33, 

34]. Of interest here is the damping-size dependency of the mass-cylindrical spring 

system depicted in Fig. 4. For this purpose, ABAQUS analysis is implemented for 

the three sizes depicted, i.e.  the full-size system, the scaled-down system ( 0 5. = ) 

and scaled-up system ( 2 = ). The geometrical dimensions, material proprieties and 

initial conditions of the systems are presented in Tab. 4. Prior to presenting the 

results of the numerical simulation, it is appropriate to briefly review the analytical 

framework of the damped free vibrations of a mass-spring system. To account for 

structural damping of the springs an external damper is added to the spring systems 

depicted in Fig. 4. The value of the damping coefficients c are unknown in these 

systems but for free vibration the equation of motion is  

( )3
0mM x cx kx+ + + =        (22) 

 

Figure 4.4: (colour online) Scale dependency of the stiffness of the linear helical 

spring. The orange, green and blue lines represent the FE numerical results for the 

displacement-force values of full-scale ( 0 1 = ), scaled down ( 1 1 2 = ) and scaled 
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up ( 2 2 = ) models where the slope of the line parts is inverse of the 

stiffness value. 

 

Figure 4.5: (colour online) Physical, trial 1 and trial 2 spaces which includes both 

cylindrical and conical spring-mass systems as scalable objects. The geometrical 

scaling factors for the trial 1 and trial 2 models are 1 and 2 , respectively. 

Table 4:4: Geometrical,material characteristics and initial condition of mass-

cylindrical spring systems 

Parameters Full scale 

system 

Scaled down 

system 

Scaled up 

system 

D (mm) 50 25 100 

d (mm) 6 3 12 

0L (mm) 150 75 300 

Initial Exitation 

(mm) 

50 25 100 

an  6 6 6 

E (MPa) 210000 210000 210000 

Poisson ratio ( v ) 0.28 0.28 0.28 

Density(kg/mm3) 67 8 10. −  67 8 10. −  67 8 10. −  

Massspring (kg) 0.206 0.0257 1.648 

Massbody (kg) 0.050 0.00625 0.400 

 

where k is the spring stiffness, c is the viscous damping value, M is mass of the rigid 

body, and m is the mass of the spring. There are three critical quantities which are 
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necessary for describing the dynamic response of the system, i.e. the undamped 

natural frequency n , obtained from the following expression [35], 

3

n m

k

M
 =

+
        (23) 

the critical damping constant ( )3
2 m

c nc M = + , and the damping ratio 
c

c
c

 = , which 

is a dimensionless measure that is related to the logarithmic decrement   describing 

how oscillations in a system decay following a disturbance and is observable in 

experiments. 

For spring steel the damping ratio   can be assumed to be appropriately 0.0013, 

where it might vary between 0.001 and 0.002 [36]. Understanding how the damping 

ratio   (structural damping) changes with scale is of critical interest here. 

According to the book by Lazan [37], energy dissipation D can for the most part can 

be related to stress amplitude a , through a relationship of the type  
n

aD J= , 

where J and n are material properties. In the situation of a uniform rod (of modulus 

E) subjected to an axial stress  , the elastic energy density 
2

1
2 E

U =  and the 

damping ratio is 

2

2

1
2

1 1

4 4 2

n
n

E

D J JE

U 


 

  

−= = =                 (24) 

where n takes up values between 2 and 4 [37, 38]; typically, n = 2.3 for spring steel. 

It is clear that stress plays a critical role in the determination of the damping ratio 

and from Eq. (24),  it can be deduced that for structural damping it will remain 

reasonably invariant for an identical material provided stress levels are also similar. 

The situation is presented in Tab. 5 for the cylindrical-spring systems depicted in 

Fig. 4 and note that although   is constant the damping coefficient c invariably 

changes. Note that the zeroth-order conditions 0ps tsM M= , 0ps tsm m= , 

ps tsg = and consequently ( ) ( )0c cps ts
c g c=  from the relationship 

( )3
2 m

c nc M = + .  Thus for ps ts = to be satisfied it follows that 0ps tsc gc=  and 

for identical materials and identical stress levels it follows (from Tab. 1) that 

3

0

  −=  and 
2

0 1g  =  and consequently  g =  and 
2

ps tsc c −=  as observed in 
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Tab.  5.  Note that a relationship between  psc   and tsc can be obtained directly on 

consideration of force, since 0

v

ps ps ts tsc gc=v v , which on substitution of  

1

ps tsg −=v v provides 0

v

ps tsc c =  and finally on substitution of  
1

0 0

v g   −=  

gives 0ps tsc gc= , which for g =  and  
3

0

  −=  returns to 
2

ps tsc c −= ; see 

analysis in Sec. 4 and Tab. 2. 

Table 4:5: Dynamic Characteristics of cylindrical mass-spring system 

Parameters Full scale system Scaled down 

system (Trial 

model I) 

Scaled up 

system (Trial 

model II) 

Scaling Factor (  ) 1 0.5 2 

Time Scaling Factor ( g ) 1 0.5 2 

Stiffness (N/mm) 17.718 8.859 35.436 

n  (1/s) 386.413 772.826 193.206 

( )crc N.s mm  
391 7087 10. −  322 9272 10. −  3366 8347 10. −  

  0.0013 0.0013 0.0013 

( )c N.s / mm  
30 1192 10. −  30 0298 10. −  30 4768 10. −  

 

4.5.1.2.  Numerical spring-system analysis 

In the following, the dynamic response characteristics of the full-scale and trial 

models for mass-cylindrical spring system are obtained using finite element analysis. 

The finite element software ABAQUS with dynamic solver [39] is used for the 

simulations comprising of 7056 linear hexahedral elements (C3D84) and 3011 

quadratic tetrahedral elements (C3D10). In addition, 280 bilinear rigid-quadrilateral 

elements (R3D4) have been used for modelling the mass and additionally the 

damper is defined as a dashpot element. In Fig. 6 the scaled-down and scaled-up 

systems are termed trial models I and II, respectively. To predict dynamic response 

of the full scale model with a good accuracy, Young’s modulus and density are 

considered as fixed parameters and satisfy the following zeroth-order relationships: 

2

0ps tsE g E = and 
3

0ps ts

   = , which for identical materials returns 
3

0

  −=  

and g =  in accordance with Tab. 5. The Abaqus results presented in Figs. 6 and 7 
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provide a clear indication that the” projected” trial models predict the dynamic 

response of the full-scale model to good accuracy. Note that the trial model results in 

Fig. 6 are all projected onto the physical space to facilitate a direct comparison with 

the full-scale results. 

 

Figure 4.6: (colour online) Vibration amplitude of full-scale and projected trial 

mass-cylindrical spring system. The geometrical and temporal scaling factors for 

projecting the trial 1 and trial 2 model results onto the physical space are 

respectively ( 1 11 2 1 2,g = = ) and ( 2 22 2,g = = ) for the same materials. 
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Figure 4.7:(colour online) Phase-space for full-scale and projected-trial models of 

the mass-cylindrical spring system. The blue line, black circular and cross pointers 

demonstrate that the velocity-displacement behaviour of the full-scale, projected trial 

model 1 and projected trial model 2, respectively, exactly follow the same path and 

set of data. For the sake of the clarity, the data from the three models is reduced and 

replaced by dashed lines that lead ultimately to a fixed point of attraction. 

The exact same analysis is repeated for the dynamic response of the mass-conical 

spring. The conical spring is modelled in SOLIDWORKS software [40] and 

discretized with 31997 linear hexahedral elements (C3D8R) and 15842 quadratic 

tetrahedral elements (C3D10) in ABAQUS. Geometrical features for the full scale 

and trial models based on the scaling factors ( 0 5. =  for trial Model I and 2 =  

for trial model II), material properties and systems initial excitation are tabulated in 

Tab. 6. Fig. 4 shows the CAD models of the full-scale model, trial models I and II. 

As above Young’s modulus and density are targeted and the dynamic response for 

the full scale and projected-trial models are presented in Figs. 8 and 9. Again good 

accuracy is returned providing good evidence that zeroth-order scaling is able to 

predict the scaled behaviour of linear mass-spring systems. 

Table 4:6:Geometrical, material Characteristics and initial condition of mass- 

conical spring system 
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Parameters Full-scale 

System 

Scaled Down 

System (Trial 

Model I) 

Scaled Up 

System (Trial 

Model II) 

1D (mm) 50 25 100 

2D (mm) 23.75 47.50 11.875 

d (mm) 6 3 12 

0L (mm) 150 75 300 

Initial Exitation 

(mm) 

50 25 100 

an  6 6 6 

E (MPa) 210000 210000 210000 

Poisson ratio ( v ) 0.28 0.28 0.28 

Density(kg/mm3) 67 8 10. −  67 8 10. −  67 8 10. −  

Massspring (kg) 0.155 0.019375 1.240 

Massbody (kg) 0.050 0.00625 0.400 

 

 

Figure 4.8: (colour online) Vibration amplitude of full-scale and projected trial 

models of the nonlinear conical spring system. The geometrical and temporal scaling 

factors for projecting the trial 1 and trial 2 model results onto the physical space are 

respectively ( 1 11 2 1 2,g = = ) and ( 2 22 2,g = = ) for the same materials. 
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Figure 4.9: (colour online) Phase-space for full-scale and projected-trial models of 

mass-conical spring system. The blue line, black circular and cross pointers 

demonstrate that the velocity-displacement behaviour of the full-scale, projected trial 

model 1 and projected trial model 2, respectively follow exactly the same path 

towards the origin (point of attraction). 

4.5.2.  Viscous-Damper dependencies 

In the previous subsection the scaled behaviour of structural damping was examined 

and it was revealed that for an identical material the relationship 
2

ts psc c=  applied. 

The reality of scaling for a system involving a physical dashpot is something 

altogether different and scale dependencies are required. A particular design for the 

dashpot is depicted in Fig. 10, which consists of a viscous damper filled with 

Newtonian fluid of viscosity  , which is allowed to move from one side of the 

chamber to the other with movement of the piston. 
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Figure 4.10: (colour online) 3-D and 2-D CAD models of the fluid viscous damper.  

The orange parts represent the viscous fluid while the grey parts depict the rigid 

piston and the rigid walls of the cylindrical container. 

Note that   is the fluid density, L  is piston head width, iR  is piston head radius, h  

is orifice width (which fluid passes through) and finally the cylinder velocity x   

[41].  The pressure drop across the piston under the assumption of laminar flow is. 

3

6 iLxR
P

h


 =          (25) 

and on multiplication of P  by the piston cross-sectional area a relationship for 

damping force 
dF  is obtained, i.e. 

3

6d iLxR
F x cx

h

 
= = 
 

       (26) 

where c  is the sort damping coefficient and observe from the quotient 
3 3

iLR h  that 

ts psc c=  (for ts ps = )[41], which can be contrasted with the relationship for 

structural damping 
2

ts psc c= . To confirm the veracity of Eq. (26) a numerical 

model (identical to that of Hou (2008) [41]) is created within the commercial finite 

element software ABAQUS/CFD [39]. The piston rod is not included (assumed 

small) and an outline of the model is presented in Fig. 10. The analysis approach 

adopted here is identical to that presented Hou (2008) [41] and involves a stationary 

piston head (none-slip boundary conditions applied) and the velocity of the fluid 

dictated by the cylinder motion. The maximum velocity of the flow is defined as 

maxx a= ,  where     is the angular frequency and  a  is the oscillation amplitude  

[42].  The flow velocity is assumed to behave sinusoidally according to the equation 

maxx x sin t= .  For this specific test case, the applied frequency is 10 Hz with 10 

mm amplitude of displacement [41] [42].  The cylinder is filled with incompressible 
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silicon oil with properties: 970 kg/m3 density with 1 kg/ms dynamic viscosity (see 

Fig. 10) and the physical dimensions of the damper is defined in Tab. 7. 

Table 4:7:Physical dimensions of damper models (mm). 

Parameters Full-scale 

System 

Scaled-down 

System 

Scaled-up 

System 

Radius of piston head ( R ) 24.45 12.225 48.9 

Width of piston head ( L ) 15 7.50 30 

Width of orifice ( h ) 0.55 0.275 1.1 

Radius of cylinder ( cR ) 25 12.5 50 

Length of cylinder ( cL ) 110 55 220 

 

 

Figure 4.11: (colour online) Verification of the FE simulation results for the force-

velocity of the linear fluid viscous dashpot by comparison against numerical and 

analytical results presented in the literature. 

 

The finite-element results (see Fig. 11) show that the force-velocity relationship is 

linear and provides a good match with Eq. (26) and the results of Hou (2008). The 

verified finite-element model provides the means to investigate the effects of scaling 
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and dimension scaling parameter is therefore selected as 1 2 =  and 2 =  for 

scaled-down and scaled-up dampers, respectively. The physical parameters of both 

scaled models are depicted in Tab. 7 and same materials (liquid, steel etc.) were used 

for all three models. In this analysis 
2g =  in accordance with the discussion in 

Sec. 4, so as to ensure zeroth-order scaling is in force. The scaling parameters, 

boundary conditions, and the model designed in the ABAQUS software and a 

depiction is provided in Fig. 12. The finite element software results also confirm that 

the linear fluid viscous damper damping coefficient c changes with respect to 
1 −
 as 

depicted in Fig. 13. 

 

Figure 4.12: (colour online) Full and scaled down ( 1 1 2 = ) and up ( 2 2 = ) model 

of the dashpot models which includes both fluid (brown) and rigid parts (light blue). 
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Figure 4.13: (colour online) Scale dependency of the damping coefficient of the 

linear fluid viscous damper. The blue, brown and grey lines represent the FE 

numerical results for the force-velocity values of full-scale ( 0 1 = ), scaled down (

1 1 2 = ) and scaled up ( 2 2 = ) models where the slope of the line parts is inverse 

of the damping coefficient value. 

4.5.2.1.  Numerical analysis of viscous-damper system 

To investigate further the scaling behaviour of the linear fluid viscous damper, a 

mass-spring-damper system was designed [43], with 1 2 =  for the scaled-down 

model. The material properties of the full-scale and scaled-down models are 

tabulated in Tab. 8. As the scaling of spring stiffness and density was studied in the 

previous sections, the obtained material properties are defined in the same table. 

Table 4:8: Physical properties of mass-spring-dashpot model for full-scale and 

scaled models  

Parameters Full Scale 

System 

Scaled Down System 

(Trial Model) 

Dimension scaling factor (  ) 1 0.5 

Time scaling factor ( g ) 1 0.5 

Stiffness ( N / m ) 100 50 
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Damping coefficient 

( )c N.s / m  

10 5 

Mass (kg) 50 6.25 

Applied displacement (m) 0.1 0.05 

 

 

 

Figure 4.14:(colour online) Temporal displacement response of zeroth-order mass-

spring dashpot system. The green line represents the projected trial model behaviour 

of the trial model scaled using identical materials including the damper fluid while 

the orange line represents the projected trial model with a different silicon oil. 

The spring and damper are defined as dashpot elements in ABAQUS for the 

simplicity of the analysis. The spring stiffness and dashpot coefficients are 

numerically entered into the software. An initial displacement is applied to the mass 

and the results of the ABAQUS analysis are presented in Fig. 14. The displacement- 

time curve of the full-scale model and the projected-trial model do not match in this 

case. The issue was alluded in Sec.  4, where zeroth-order scaling of the spring and 

viscous dashpot requiring g =  and 
2g = , respectively. Zeroth-order scaling has 

not been achieved for the whole system and exact replication from a single 

experiment is not therefore possible. With physical modelling in mind a relatively 

straightforward modification is the use of an alternative fluid in the scaled-down 

viscous damper. Consider then the same problem but with a different silicon oil with 
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970 (kg/m3 )density and 0.5 (kg/ms) viscosity [44] in the smaller model. In this case 

damping coefficient 1tsc  is 2.5 Ns/m, which satisfies the relationship 
2

1 1ts psc c= (as 

opposed to 1 1ts psc c= ). The obtained results are presented in the Fig. 14 and as 

expected replication between full-scale and projected trial-model results are 

achieved. 

4.6. First-order systems 

As alluded to in Sec. 4, the scaling of linear systems is best served using zeroth-

order theory. The fundamental issue is the matching of first-order identities for 

ts

ps

m

tsm
a , ts

ps

c

tsc
v and ts

ps

k

tsk
u  (from force) and tsa , tsv , and tsu  (from kinematics), is 

only exact if and only if ts

ps

m

m
, ts

ps

c

c
, and ts

ps

k

k
 satisfy zeroth-order relationships (see 

Tab. 2). In essence, the simple form of the force terms involved in linear 

dynamics provides a barrier to the application of first-order relationships. 

However, other types of force are involved in dynamics and one such force 

arises from sliding friction. To illustrate that exact first-order solutions exist the 

finite-similitude theory is applied to relatively simple systems involving friction.  

4.6.1. Analysis of scaled-sliding systems 

The system in Fig. 15 is investigated analytically using the Maple software package, 

where an algorithm similar to that presented in reference [45] is employed to solve 

the differential equations 

mx kx mG= − +  where 0;x        (27a) 

mx kx mG= − −  where  0;x        (27b) 

where G is the acceleration in free-fall due to gravity and µ is the kinetic coefficient 

of friction. 

The properties for system depicted in Fig. 15 are tabulated in Tab. 9, with 

verification results for the full-scale model presented in Fig. 15. Excellent 

replication of the results of Marchewka (2003) [45] is apparent from Fig. 15 and 

note from Tab. 9 that two scales ( 1 0 5. =  and 2 0 25. = ) and two designs (Design I 

and II) are trialled. 
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It is useful at this point to repeat the analysis on the friction force that was performed 

for the other forces in Sec. 4. Consider then the friction force ts

ts

f

ts ts ts tsm G= −
v

v
F  and 

the multiplication throughout by 0

v g , which provides after some reorganization 

( )( )( )
1

1

g1 1 2

0 0 g
g g ts

ts

v f v

ts ts ts tsm g G



    

−

−

− −= −
v

v
F     (28) 

which for g = (needed for the spring) provides an immediate difficulty for zeroth-

order scaling as 
1 2

ts psg G G −  , i.e. zeroth-order scaling requires gravitational force 

to change! 

Table 4:9: Properties and conditions of scaled sliding-friction system 

Geometrical/Material 

Parameters 

Full-scale 

Model 

Scaled 

Model 

Trial 

model I 

Trail 

Model II 

Initial Exitation (m) 1 0.5 0.5 0.25 

Mass of Body (kg) 2 0.25 0.25 0.0625 

k (N/m) 50 25 25 12.5 

G (m/s2) 9.81 19.62 9.81 9.81 

  0.11 0.11 0.11 0.11 

 

Replica scaling is again trialled with Young’s modulus and density targeted, which 

results in 1 1 0 5tsg .= =  and 2 2 0 25tsg .= = .  Material properties, initial conditions 

of scaled and trial models provided   in Tab.  9.  The response of the full-scale model 

and the projected models I and II are presented in Fig.   15, where it is evident that 

full-scale model response is not captured with zeroth order, individually by the two 

scaled models. The issue is gravity and it would require mass to be added, the 

coefficient of friction to be changed or gravity to be increased for zeroth-order 

matching. Rather than changing the physical problem, first-order finite similitude is 

next considered. The first-order approach combines the two projected zeroth-order 

solutions as depicted in Fig. 17. This requires the determination of the parameters 1R

, which  is chosen to ensure gravity is correctly captured by the virtual model.  
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Figure 4.15: (colour online) Verification of the numerical results for the 

displacement-time of the mass-spring-friction system by comparison against 

numerical and analytical results presented in the literature. Here k, m and µ are 

spring stiffness, mass of the body and friction coefficient, respectively.  

 

Figure 4.16: (colour online) Response of scaled mass-spring systems subjected to 

sliding friction forces. The first-order virtual model represents the combination of 

two trial models, which are trial 1 and trial 2, while the zeroth-order projected trial 

models are the results pertaining to the projection of the individual scaled models for 

trial 1 and 2. 
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The pertinent first-order equation is (see acceleration in Tab. 1) 

( )1 2 1 2 1 2

1 1 1 1 1 1 1 2 2 2ps ts ts tsG g G R g G g G  − − −= + −     (29) 

where of substitution of 1 1 0 5tsg .= =  and 2 2 0 25tsg .= =  provides 

1
1

1 2

1 1 0 5
2

0 5 0 25

.
R

. .



 

− −
= = =

− −
      (30) 

where it is appreciated that 1 2ps ts tsG G G= = . The first-order results are presented in 

Fig. 16, which in line with expectations for the first-order theory, provides a perfect 

match for the full-scale system. 

 

Figure 4.17:Projected trial and physical spaces models for the mass-spring-friction 

system. The vertical double arrows represent the scaling map between two trials and 

physical spaces which facilitate the projection of the trial model results into the 

physical space. The top row shows the combination of trial 1( 1 1 2 = ) and trial 2 (

2 1 4 = ) projected models to form the virtual model, which can be compared with 

the real full-scale model ( 0 1 = ). 

4.6.2. Passive vibration absorber analysis 

A slightly more involved application of the slider type is a passive vibration 

absorber [46], excited by a base motion ( )Acos t , where ω is the angular frequency 
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and A is displacement amplitude. The system (along with scaled versions) is 

depicted in Fig. 18 and is assumed to be governed [46] by the differential equations 

( ) ( )( ) ( )1 1 1 2 1 1 2 1 2m x c x x k x Acos t k x x= − − − − − −    (31a) 

( ) ( ) ( )2 2 2 1 2 2 1 2 1 2 2m x c x x k x x k x x m G= − − − − − − −    (31b) 

which are to be solved analytically using the Maple software; details are tabulated in 

Tab. 10. 

Table 4:10: Properties and conditions for the passive-vibration absorber 

Geometric/Material 

Properties 

Full-scale 

Model 

Trial 

Model I 

Trial 

Model II 

Mass of Body (kg) 8.5 1.06 0.13 

1k  (N/m) 670 335 167.5 

2k (N/m) 670 335 167.5 

2c (N.s/m) 37.7 9.425 2.36 

A  (m) 0.0025 0.00125 0.000625 

  (1/s) 8.878 17.756 35.513 

G (m/s2) 9.81 9.81 9.81 

  0.003 0.003 0.003 

  0.15 0.15 0.15 
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Figure 4.18: Physical and trial spaces models for the passive vibration-absorber 

system. The geometrical scaling factors of trial 1 and trial 2 models are set to 

1 1 2 =  and 2 1 4 = , respectively. 

The zeroth-order analysis (with 1 1 0 5tsg .= =  and 2 2 0 25tsg .= = ) fails to provide 

a perfect match as illustrated in Fig. 19 for the exact same reasons described in Sec. 

6.1. Eqs. (29) and (30) apply for the first-order analysis and the results are presented 

in Fig. 20, where it is apparent that perfect replication is attained. 
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Figure 4.19: (colour online) Temporal response of mass 1m  described by zeroth-

order finite similitude for trial model 1 ( 1 1 2 = ) and trial model 2 ( 1 1 4 = ). The 

maximum absolute error between the results of the projected trial 1(orange line), 

(green line) and the full-scale model (blue line) are 16.32% and 21.35%, 

respectively. 

 

Figure 4.20: (colour online) Temporal response of mass 1m  described by first-order 

finite similitude. Comparison between results for the full-scale model (blue line) and 

the virtual model (orange diamond marker) is shown, where the latter model is a 

combination of trial model 1  ( 1 1 2 = ) and trial model 2 ( 1 1 4 = ). 
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4.7. Conclusion 

The aim of the work presented in this paper is to show how discrete mechanical 

dynamic systems can be used to initiate scaling parameters in a new scaling 

theory and to establish the appropriateness of a similitude rule called first -order 

finite similitude for situations where classical scaling theories fail. In order to 

confirm the new concepts, relatively simple case studies have been considered 

that can be readily extended to more complicated dynamical systems by 

following the procedures established in the presented work. The new scaling 

theory in combination with the first-order finite similitude rule combines 

information from two scaled experiments instead of a single scaled experiment. 

The following conclusions can be drawn from the work presented in the paper:  

• The theory of finite similitude has been further developed to capture all 

scale dependencies that arise in the fields describing the mechanics of discrete 

mechanical systems. 

• Differential forms of similitude have been integrated to capture 

information across two scaled mechanical dynamic-system experiments. 

• Proportional field differences feature in the new scaling, so scale effects as 

previously defined by dimensional analysis cease to be scale effects, under the 

new theory. 

•  The scaling theory is equally applicable to analytical, numerical and 

experimental data and reduces to zeroth-order scaling (single experiment) if this 

provides the best solution. 

More specifically, from the simulations performed on the specific mechanical 

systems considered, it has been show that: 

• Scaled dependencies for mass, springs, structural damping and viscous 

dashpots have been established and for replica scaling the following 

relationships, respectively apply: 
3

ts psm m= , ts psk k= ,  
2

ts psc c=  and 

ts psc c= . 

• Analysis and numerical simulation confirmed that zeroth-order scaling 

proved best for linear mass- spring-dashpot models if physically realisable and 

required a substitute fluid for the dashpot trials considered here.  
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• First-order theory proved to be critical in capturing the response of a 

discrete mechanical system involving friction and zeroth-order theory proved 

insufficient under replica scaling. 
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FIVE 

5.  Paper three: The Scaling of Nonlinear Structural 

Dynamic Systems 

Overview  

Following the previous publication, it was necessary to investigate more about 

nonlinear discrete systems and their behaviour under nonlinear loading conditions. 

The motivation of this study is the application of single and two-scaled 

experimentations to nonlinear structural dynamics. It is obvious that nonlinear 

behaviours are always an issue, and this is a research and application field that 

brings major difficulties to scaled experimentation. Since the behaviour of such 

systems is complex and complicated, these systems require very detailed scaled-

model designs that can practically achieve satisfactory outcomes. The article shows 

how the new exact similarity rules provided by the new theory provide necessary 

precision for the prediction of full-scale model behaviours. This study specifically 

considers the behaviour of nonlinear damper, spring, and friction all together and the 

gravitational acceleration which has a significant impact on friction was considered 

to be the same although the classical scaling theories imposed to be changed. Two 

scaled experimentation (first-order finite similitude) revealed exact similarity by 

providing exact replication of behaviours. 
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Abstract 

A new scaling theory has appeared in the recent literature that has the potential to 

transform current approaches to scaled experimentation.  The new theory introduces 

new similitude rules that hitherto did not exist and significantly extends the classical 

definition of similitude underpinned by dimensional analysis.  Each new similitude 

rule is tied to the number of scaled experiments, and in theoretical terms there is no 

limit to the number of scaled experiments involved. 

The focus of this paper is on one and two scaled experiments applied to nonlinear 

structural dynamics, which is a field of study and application that gives rise to 

significant difficulties for scaled experimentation.  The highly nonlinear behaviour 

common to these systems means that only very precise scaled-model designs can 

feasibly achieve acceptable outcomes.  It is shown in the paper how the new exact 

similitude rules provided by the new theory deliver the precision necessary for 

mathematically exact replication of behaviours.  It is demonstrated further how the 

limited scope provided by a single scaled experiment can be significantly extended 

by application of two properly designed scaled experiments.  Through the analysis 

of carefully selected structural systems of one and two degrees of freedom involving 

nonlinear springs, dashpots and friction, the benefits of two scaled experiments are 

demonstrable for a range of loading conditions.  Exact similitude for two scaled 

experiments is confirmed providing exact replication of behaviours with conformity 

recorded over long timescales. 

Keywords: scaling, finite similitude, trial experimentation, nonlinear dynamic 

systems.  
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5.1. Introduction 

Modern structural dynamics makes use of a range of analysis and investigative 

approaches which in broad terms can be classified as analytical, numerical, 

experimental, along with combinations of the three.  The interminable need to 

achieve greater accuracy and deal with increased complexity and sophistication of 

structural systems necessitates the need for new improved investigative and analysis 

approaches.  A particular convenient type of investigation, where accuracy can 

readily be assured, is those performed under laboratory conditions.  Rather 

unfortunately, however, laboratory experiments have limitations, and one concern is 

the constraint imposed by size, where for structural dynamics in particular, large 

structures are the norm.  Dealing with large experimental structures can be time 

consuming and expensive when contrasted against direct analytical and numerical 

investigations. For complex systems however an overreliance on these direct 

approaches can itself be problematic and not recommended as uncertainties can 

make model predictions questionable and invariably some form of experimental 

support is often required [36–38].  

In principle, the solution to the size constraint faced by laboratory experimentation is 

scaling, where structures are scaled to a fraction of their original size for testing 

purposes.  This is the approach investigated in this paper, but the downside of scaled 

experimentation is well understood by academic and industrial communities.  The 

issue is one of scale effects [39,40], where the behaviour of the scaled model fails to 

be representative of the full-scale system.  This is certainly the situation prior to the 

arrival of finite similitude [23,41] but has the arrival of this theory significantly 

changed the situation?  Questions about the usefulness of the new similitude 

identities remain and an objective of this work is to discover whether nonlinear 

systems can be assessed with this new approach.  It is recognised of course that it is 

only through the application of the new similitude rules to realistic systems can the 

benefits be truly quantified. 

Over the many decades, following on from the inspirational work of Buckingham 

[3] and Rayleigh [42], techniques have been developed to quantify the conditions 

needed to representatively scale down and up systems.  These techniques are termed 

similitude methods, which facilitate (where possible) the accurate representation of a 

system by preserving dynamic behaviour with the help of scaling laws [6,37,43,44].  
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Most recent approaches for the analysis of mechanically based dynamic systems 

tend to rely heavily on computer-based simulation, as computational models can 

readily be applied over a range of scales [45,46].  Modern numerical approaches are 

advancing at pace, with robust approaches for analysis, with the ability to scrutinise 

the entire behaviour of dynamic systems, in response to changes in boundary 

conditions, properties, system properties, and so forth [47–49].  Despite the 

advances being made however, simplifications are required to make practicable 

complex models, and this can be achieved with discrete-element representations that 

can be employed effectively in investigative studies.  It is recognised of course that 

simplified models require experimental validation to justify the many simplifying 

assumptions involved in practical modelling [6].  Discrete systems find 

commonplace usage in the study of structural engineering systems and take the 

appearance of a network of lumped masses, springs, and dashpots to capture 

complex dynamic and dissipative behaviours.   

Spring-mass-damper discrete systems find common usage but an area of interest, 

where large-scale systems are involved, is earthquake mechanics [50–53].  

Examining building behaviours subjected to seismic excitations is the focus here, 

where amongst the many possible options, dampers are often employed as part of a 

passive control system.  One of the most commonly used energy dissipation devices 

in building and building related structures are fluid viscous dampers (FVDs) [54].  

The reason behind their widespread adoption is due to their capacity to significantly 

dampen accelerations [55–59], and consequently increase the seismic operation of 

the many non-structural parts.  Although the operating principles of viscous dampers 

are relatively straightforward, the design and fabrication of modern FVDs is a 

multidisciplinary task, requiring considerable expertise in a variety of fields of 

science [60].  The advantage of nonlinear force-velocity relationships is the focus of 

much research for FVDs [61–64], since best designs can limit the peak damper force 

at high structural velocities, but at the same time provide adequate supplementary 

damping.  Understanding the details is very much needed in scaling to gauge the 

performance and behaviour of these in scaled experiments.  In addition to dampers, 

the other significant energy dissipation mechanisms common to structures is friction 

and wear in the area where two bodies come into contact.  The prevalence of friction 

in technology and everyday life justifies the extensive scientific research directed at 

it. A thorough understanding of friction [65] is a necessity, and the particular 
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behaviour of interest here is that arising from stick-slip systems [66].  The advantage 

of discrete systems in this regard is that dominant physics (such as friction) can be 

captured in an efficient manner but as mentioned above experimental evidence is 

needed to justify and support what might appear to be controversial simplifications 

[37,67].  With such discrete approaches, the fundamental nonlinear aspects can be 

captured, and consequently is it of interest to understand their response under 

scaling.  Understanding the scaled nonlinear behaviour of the individual elements 

(e.g., FVDs, springs, contacting surfaces) is critical, but also in their entirety in 

relation to the systems under consideration. 

The importance of the theory dimensional analysis in scaling is well recognised as it 

aids in the design of scaled experiments.  The theory is founded on a well-known 

invariance principle, which basically states that dimensionless governing equations 

remain invariant with scale [5].  This statement confers importance on dimensionless 

forms, which have distinct advantages.  In particular, they can be used to 

characterise dominant physics by means of a dominant subset of dimensionless 

parameters (i.e., the Pi groups) [3,5,68].  The biggest issue with dimensional analysis 

in scaling is connected to the underpinning invariance principle itself, as this is 

rarely applicable to all but the most basic of systems [6,69].  In the presence of scale 

effects, by definition, this invariance principle breaks down, and the importance of 

dimensional analysis and scaled experimentation is undoubtedly diminished by this 

[70].  

To overcome these shortcomings with dimensional analysis a new theory has 

recently emerged called finite similitude [21,22,25,26,41,71–73].  This approach is 

not underpinned by dimensionless forms but assumes that scaling can be viewed as 

an imagined process in which space itself is contracted or expanded.  The process is 

“metaphysical” in the sense that it cannot be achieved physically but nevertheless 

can be imagined and defined in very precise mathematical terms.  Central to the new 

approach is the projection of the governing physics, described on a scaled space, 

onto the original full-scale space.  This projection has the effect of exposing all 

possible scale dependencies (either explicitly or implicitly), transforming the scaling 

problem into one where the objective is to reveal hidden scale dependencies.  The 

revealing of hidden dependencies is efficiently achieved with the application of scale 

invariances and unlike dimensional analysis there exists more than one invariance.  

There exists in fact a countable infinite number of scale invariances but with each 
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invariance linked to the number of scaled experiments involved there exists practical 

limits on the approach. 

A novel aspect of the study presented in this paper is the examination of the 

application of the new approach to nonlinear structural systems.  The focus on 

discrete element modelling is particularly advantageous to the finite similitude 

theory as it provides a means to set free variables that exist with the theory.  It is 

very important to appreciate that similitude rules do not constrain behaviours in the 

scaled experiments but provide the means to connect experiments across the scales.  

It is necessary therefore to have a means to examine the systems involved prior to 

applying the similitude rules to the physical experiments.  Discrete representations 

are shown to provide a highly efficient approach to achieve this and allow for the 

initial exploration of the benefits of similitude in any experimental study. 

The finite similitude theory although explained elsewhere [28,41] is re-examined in 

brief in Sec. 2 for the sake of readability, but also to bring into focus the limitations 

of the theory.  It is important to appreciate that scale dependencies as previously 

defined under dimensional analysis can cease to be scale dependencies under the 

new theory.  Linear dynamic systems are briefly assessed in Sec. 3 to provide an 

illustration how the scaling theory is applied to confirm that replica scaling with a 

single scaled experiment is not representative.  Examined in Sec. 4 are aspects 

relating to the scaling of nonlinear FVDs, which are critical items in structures 

where passive control is a requirement.  Friction is the focus of Sec. 5 and on the 

stick-slip phenomenon and its analysis through scaled experimentation.  Nonlinear 

springs are introduced in Sec. 6, where it is revealed just how flexible the invariance 

founded on two scaled experiments can be.  Overall, the paper demonstrates that the 

new similitude rule can offer practical experimental solutions to problems that 

cannot be tackled by one scaled experiment.  The paper ends with a set of 

conclusions. 

5.2. Finite similitude in brief 

The finite similitude theory brings together several concepts to provide a generic 

scaling theory that in principle can be applied to all physics.  The starting point is 

space scaling and the idea that space itself can be distorted, and that through space 

distortion objects can be scaled.  Such objects might include such things as cities, 
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buildings, laboratories, machinery, experimental rigs down to individual components 

and specimens.  Once space scaling is quantified mathematically, attention turns to 

the effect such a process has on the underpinning physics of interest.  The theory is a 

little unusual in this respect in that it requires that transport equations in their 

integral form [27] are considered.  The reason for this is that this form immediately 

involves geometrical measures (e.g., volume and area), which are first and foremost 

central to any scaling effect that takes place.  Point based formulations founded on 

partial or ordinary differential equations do not provide this feature and 

consequently are not suitable.  Ultimately however the theory does provide point-

based identities although imperceptibly connecting spatial points in scaled and 

unscaled spaces.  The approach necessitates a very precise description of control 

volume movement and the formulation presented below follows the approach first 

formulated in reference [74].  With transport forms defined on a scaled space a 

critically important projection to the physical full-scale space is considered.  This 

projection is key to the whole concept as it provides the means to describe all scale 

dependencies on the physical space.  Scale invariances can then be applied and 

integrated to link scaled experiments, whose number depends on the invariance 

chosen.  The whole approach is exact involving no approximations and provides 

new similitude rules for experimental design. 

 5.2.1. A brief recap on space scaling 

As mentioned above the starting point of the finite similitude theory is the concept of 

space scaling, which happens to be a physically intuitive approach.  The structural 

system of interest is tethered to the space it resides in, in the sense that it is 

immediately affected, i.e., is contracted/expanded by the contraction/expansion of 

space.  The starting point of any analysis in structural dynamics is the stipulation of 

suitable inertial frames for both the physical and trial spaces.  The full-scale system 

of interest sits in the physical space with the scaled experiment residing in the trial 

space.  With subscripts “ts” and “ps” denoting trial and physical spaces, respectively 

the assumed orthogonal inertial coordinate systems are labelled by tsx  and psx .  

With Newtonian physics assumed, two absolute temporal measures for time are 

introduced in each space and are labelled by pst  and tst , and are related by the 

differential relationship ts psdt gdt= , where g  is a positive parameter.  Space scaling 

is easy to define mathematically and for isotropic scaling and is defined by a 
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temporally invariant affine map ps tsx x , which in differential terms takes the 

form ts psd d=x x  (i.e. 
i i

ts psdx dx= ), where   is a positive parameter.  Space 

contraction, which tends to be of principle interest is provided by 0 1  , with no 

scaling if 1 =  and expansion for 1  .  Note from references [23,24,26,75] that 

the theory of finite similitude is underpinned by physics described on synchronised 

moving controls.  Depicted in Fig. 1 is the motion of control volume 
*

ts  in the trial-

space described mathematically by a velocity field 
*

tsv .  All motion is quantified with 

reference to something else and in this case the motion is relative to a reference 

control volume 
*ref

ts  (the set of coordinate points ts ).  The synchronised motion of 

the control volumes 
*

ts  and 
*

ps  in the trial and physical spaces are depicted in Fig. 

1, where coordinate point 
*

tsx  moves with 
*

ts  with velocity 
*

tsv  and coordinate point 

*

psx  moves with 
*

ps  with velocity 
*

psv .  The control volumes (being regions of 

space) are affected by space scaling and consequently are related by the map 

* *

ts psd d=x x  and since ts psdt gdt= , the field-velocity relationship 
* 1 *

ts psg −=v v  

applies. 
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Figure 5.1: 2D schematic of synchronous control volumes 
*

ts  and 
*

ps  moving 

while containing a moving dashpot. 

Figure 1: 2D schematic of synchronous control volumes 
*

ts  and 
*

ps  moving while 

containing a moving dashpot. 

5.2.2. Projected structural dynamics in transport form 

Four transport equations are of interest in finite similitude for structural dynamics, 

which are those for conservation of volume, mass and momentum, and the non-

conserved movement equation introduced by Davey and Darvizeh [48], 

* *

*
* * *

*
0

ts ts

ts ts ts ts

ts

D
d d

D t
 

 −   =  v n       (1a) 

( )
* *

*
* * *

*
0

ts ts

ts ts ts ts ts ts ts

ts

D
d d

D t
 

 

 + −   =  v v n      (1b) 
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( )
* * * *

*
* * * * *

*
0

ts ts ts ts

ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts

ts

D
d d d d

D t
  

   

 + −   −   −  =   v v v v n n b  

          (1c) 

( )
* * *

*
* * * *

*
0

ts ts ts

ts ts ts ts ts ts ts ts ts ts ts ts

ts

D
d d d

D t
  

  

 + −   −  =  u u v v n v   (1d) 

where ts  is mass density, tsu  is material displacement, tsv  is material velocity, ts  

is the Cauchy stress tensor, tsb  is a body force (force per unit mass), and tsn  is an 

outward pointing unit normal on boundary 
*

ts  of the control volume 
*

ts . 

Note that the temporal derivative 
*

*
ts

D

D t
 in Eq. (1) signifies that the control volume 

*

ts  is moving relative to 
*ref

ts  as depicted in Fig. 1, and this explains the presence 

of the velocity field 
*

tsv  appearing in these equations.  The most significant equation 

is Eq. (1c), and for most practical problems in structural mechanics, this equation 

can be sufficient.  However, other considerations necessitate the inclusion of 

additional equations with finite similitude.  Eq. (1a) is somewhat unusual and never 

features in structural dynamics because it has no field associated with it but is 

considered here nevertheless to enforce the synchronous velocity field relationship 

* 1 *

ts psg −=v v .  Similarly, Eq. (1b), the continuity equation, has little role to play in 

most practical structural problems as density is invariably set to a constant but with 

finite similitude and physical modelling there exists the possibility that materials 

could be changed in the scaled models and some account must be made to 

accommodate this possibility.  The equation for non-conserved movement, Eq. (1d), 

was first introduced by Davey and Darvizeh in reference [27], and has the effect of 

making displacement explicit in solid-mechanics type analysis.  It is important to 

appreciate that there is no barrier to including more equations (see reference [52] for 

inclusion of a transport equation for energy) as the physics dictates in the problems 

under study. 

The most important transformation critical to the whole approach can now be 

applied with the projection of Eqs. (1) onto the physical space.  This has the effect of 

exposing all scale dependencies and involves the substitution of 
* 3 *

ts psd d =  , 

* 2 *

ts ts ps psd d = n n , ts psdt gdt=  into Eqs. (1).  Additionally each equation is 

multiplied throughout by non-zero scaling parameters 
1

0 , 0

 , 0

v  and 0

u , 
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respectively (whose role will be made clear) and time scalar g .  This procedure 

produces the following equations: 

( )
* *

*
1 1 1 3 * 1 3 * *

0 0 0 0*
0

ps ps

ps ps ps ps

ps

D
T d d

D t
     

 

=  −   =  v n     (2a) 

( ) ( )
* *

*
3 * 3 * *

0 0 0 0*
0

ps ps

ts ps ts ps ps ps ps

ps

D
T d d

D t

          
 

=  + −   =  V v n      (2b) 

( ) ( ) ( ) ( )
* *

*
1 3 * 1 3 * *

0 0 0 0*

ps ps

v v v v

ts ps ts ts ps ts ps ps ps

ps

D
T g d g d

D t
         − −

 

=  + −   V V V v n

 

* *

* * 0

ps ps

ps ps ps ts psd d
 

−   −  = n B           (2c) 

( ) ( ) ( ) ( )
* *

*
3 * 3 * *

0 0 0 0*

ps ps

u u u u

ts ps ps ts ps ps ps ps ps

ps

D
T d d

D t
         

 

=  + −   U U V v n  

( )
*

3 *

0 0

ps

u

ts ps psd   


−  = V           (2d) 

where 
1

ps tsg −=V v , 
1

ps ts −=U u , 
2

0

v

ps tsg =   and 
3

0

v

ts ts tsg  =B b . 

The significance of these equations is that they expose all possible scale 

dependencies that can feature in scaled structural dynamics.  Note the explicit 

exposure of geometrical measures with the appearance of 
3  and 

2 , but also 

exposed are other hidden dependencies with the fields ( )ps V , ( )ps U , ( )ps   

and ( )ps B  being dependent on  .  The ability to relate fields and measures to   

on the physical space means that the scaling problem has effectively been 

transformed into one where discovering the behaviour of hidden-field dependencies 

is the principal focus.  In this way the finite similitude theory embraces the presence 

of scale effects as opposed to ignoring them as in the theory of dimensional analysis 

(see refs. [23,26,41,72]).  The revealing of hidden dependencies can be readily 

achieved by the application of scale invariances, which are similitude rules that 

connect information across scaled experiments. 
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5.2.3. Scale invariances 

Eqs. (2) are of the form 0 0 0T  = , with   set to 1,  , v  and u , and where 0

  are 

scalars that are functions of  .  These scalars play a critical role and facilitate the 

unified application of invariances to all the transport equations, which would not be 

possible without their presence as is shown below.  The simplest scale invariance 

possible is to assume that all the transport equations ( )0 0 0T   =  do not in fact 

depend on  , which of course is unlikely in practice.  However, this assumption is 

readily captured by the identity, 

( )0 0 0
d

T
d

 


         (3) 

where the equality sign “ ” means identically zero and infers that the transport 

equations vanish under the derivative. 

The application details surrounding this identity termed zeroth-order finite similitude 

can be found in references [23,26,72].  The scaling parameters 0

  are being set to 

eliminate   from ( )0 0 0T   =  to satisfy Eq. (3).  In the volume transport 

equation Eq. (2a) for example this is achieved with 1 3

0  −=  and note that ( )1

0 1 1 = , 

which is a requirement imposed on all the scalars 
0

  to ensure that ( )0 0 1 psT T   = .  

The field identities arising out of this Eqs. (2) are presented in Table 1 but also 

[41,72], so are not considered further here.  

 

 

 

 

 

 

Table 5:1: Zeroth-order relationships arising out of Eq. (3). 

Quantity/ 

Equations 

Scalar 

identities 

Field 

relationships 

Transfer terms Source terms 

Volume 

Eq. (2a) 

1 3

0  −=  * 1 *

ps tsg −=v v    
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Mass  

Eq. (2b) 

 3

0ps ts

   =  

1

ps ps tsg −= =V v v

 

  

Momentu

m  

Eq. (2c) 

1

0 0

v g   −=

 

1

ps ps tsg −= =V v v

 

2

0

v

ps ps tsg = =  

 

3

0

v

ps ps ps ts tsg   = =B b b

 

Movement 

 Eq. (2d) 

1

0 0

u   −=

 

1

ps ps ts −= =U u u

 

 1

ps ps tsg −= =V v v  

The following definition provides a recursive relationship that facilitates the creation 

of higher forms of similitude rules:  

5.2.4. Definition (High-order finite similitude) 

The finite similitude rule of kth order is identified with the lowest order derivative 

that satisfies, 

( )1 0k k k

d
T T

d

  


+ =          (4) 

for all 0  , and where 
0 0T   is defined by Eqs. (2) and the scalars 

k

  are 

functions of 𝛽 with ( )1 1k

 = , and where the symbol “≡” signifies identically zero 

in Eq. (4). 

The motivation for definition 2.1 is the expectation that higher derivatives are 

involved in similitude rules involving more than one scaled experiment along with 

the requirement that lower order rules are contained in higher-order forms.  If Eq. (3) 

is not satisfied, then consideration is given to the identity, 

( )1 1 1 0 0

d
T T

d

      


=        (5) 

where ( )1 1 1 =  and similarly in accordance with Eq. (4) the similitude condition 

( ) ( )2 1 1 1 0 0 0
d d d

T T T
d d d

       
  

 
= =  

 
     (6) 

provides the identity for first-order finite similitude involving not one but two 

derivatives. 
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Since the similitude rules are nested it is possible to take forward the zeroth-order 

identities 3

0ps ts

   = , 1

0 0

v g   −=  and 1

0 0

u   −=  and substitute them in Eqs. 

(3) to obtain 

( ) ( )
* *

*
* * *

0 0 *
0

ps ps

ps ps ps ps ps ps ps

ps

D
T d d

D t

    
 

=  + −   =  V v n    (7a) 

( ) ( )
* *

*
* * *

0 0 *

ts ps

v v

ps ps ts ps ps ts ps ps ps

ps

D
T d d

D t
   

 

=  + −   V V v v n  

* *

* * 0

ps ps

ts ps ps ts psd d
 

−   −  = n B           (7b) 

( ) ( )
* *

*
* * *

0 0 *

ps ps

u u

ps ts ps ps ps ps ps ps ps

ps

D
T d d

D t
   

 

=  + −   U U v v n
*

* 0

ps

ps ps psd


−  = V

          (7c) 

where 2

0

v

ps tsg =  , 3 2 1

0

v

ts ts ts tsg g    −= =B b b  and observe that Eq. (2a) 

satisfies Eq. (4), and therefore plays no part in first-order theory.  

All the theory presented thus far is exact apart from the substitution of the zeroth-

order term ( )*

ps ps ps− v v n  in place of ( )*

ps ps ps− V v n  in equations Eq. (7b) and Eq. 

(7c).  This reflects the fact that the convective term ( )ps ps psV V n  is typically 

negligible in solid mechanics but also conveniently sidesteps the need to higher 

forms of similitude. 

5.2.5. First-order fields  

Exact integration of Eq. (6) can be readily achieved using divided differences with 

the application of a mean-value theorem, which provides: 

( ) ( )
( ) ( )0 0 1 0 0 21 1

1 1 2 1 2

1 2

   

  
   

   
 

−


−

T T
T     (8a) 

( ) ( )
( ) ( )0 0 0 0 0 10 0

1 1 1 1 1

0 1

   

  
   

   
 

−


−

T T
T     (8b) 

where 1

2 2 1     and 0

1 1 0    , and where 2  and 1  are the scales for the 

trial-space experiments with 0 1 =  signifying the physical space (i.e., full scale 

experimentation). 



165 
 

Note that the direct integration of Eq. (6) between the limits 1

2  and 0

1  provides 

the identity ( ) ( )0 1

1 1 1 1 1 2T T       , and consequently on substitution of Eqs. (8) 

gives rise to the key first-order similitude rule for scaled transport equation, which is 

( ) ( ) ( ) ( )( )0 0 0 0 0 1 1 0 0 1 0 0 2R                + −T T T T
   (9) 

where 

( )
( )

1

1 2 0 1
1 0

1 21 1

R







   

  

  −
 =  
  −  

        (10) 

which leads immediately to the field relationships listed in Table 2, but note that 
1R  

is in the form of a parameter due to indeterminacy of 
1

  and consistent velocity 

expressions necessitates that 
1 1 1 1

v uR R R R= = =  imposed by 
1 1 1

v u  = = . 

Table 5:2: Zeroth and first order field relationships. 

Quantity/ 

Equations 

Zeroth order field relationships First order field relationships 

Mass 

Eq.(7a) 

( )( )3

0 1ps ts

    =  

( )( )1

1ps ps tsg −= =V v v  

( ) ( ) ( )( )1 1 1 2ps ps ps psR  = + −v V V V  

Momentu

m Eq.(7b) 

( ) ( )( )2

1 0 1 ,v

ps ps tsg   = =  

 

( ) ( )( )1

1 1ps ps tsg  −= =V v v  

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + − =   

 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −b = B B B

 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −v = V V V  

Movement 

Eq.(7c) 

( ) ( )( )1

1 1ps ps ts  −= =U u u  

( ) ( )( )1

1 1ps ps tsg  −= =V v v  

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −u = U U U

 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −v = V V V  

A feature of the finite similitude approach is that constitutive laws do not feature in 

its formulation since all the fields required for the physical space can be obtained 

from existing fields.  Shown in Table 3 are typical fields of interest in structural 

dynamics and note how relationships for both stress and strain exist for small strain 



166 
 

theory.  Constitutive laws can play a role in the setting of free parameters 1g , 
2g  

and 1R  as required, but in order to apply the new theory to structural dynamics some 

understanding of the nonlinearities involved is required. 

Table 5:3: Zeroth and first order field relationships for practical use. 

Physical 

quantity 

Zeroth order 

field 

relationships 

First order field relationships 

Density 3

01 1 1ps ts

   =   

Velocity 1

1 1 1ps tsg  −=v v  ( )1 1 1

1 1 1 1 1 1 1 2 2 2ps ts ts tsg R g g  − − −= + −v v v v  

Displacement 1

1 1ps ts −=u u  ( )1 1 1

1 1 1 1 1 2 2ps ts ts tsR  − − −+ −u = u u u  

Acceleration 2 1

1 1 1ps tsg  −=a a  ( )2 1 2 1 2 1

1 1 1 1 1 1 1 2 2 2ps ts ts tsg R g g  − − −= + −a a a a  

Small strain 
1ps ts=   ( )1 1 1 2ps ts ts tsR= + −     

Strain rate 
1 1ps tsg=   ( )1 1 1 1 1 2 2ps ts ts tsg R g g= + −     

Stress 2

01 1 1 1

v

ps tsg = 

 
( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2

v v v

ps ts ts tsg R g g     = + −   

 

Force 
01 1 1

v

ps tsg=F F  ( )01 1 1 1 01 1 1 02 2 2

v v v

ps ts ts tsg R g g  = + −F F F F  

 

5.3. Linear dynamic systems 

Prior to the analysis of nonlinear systems, it is useful to examine in brief, a linear 

mass-spring-damper system [36].  Consider then the “forces” i

ts ts tsm=F a , 

d

ts ts tsc= −F v  and s

ts ts tsk= −F u  in a series free-vibration arrangement satisfying the 

equation i d s

ts ts ts= +F F F , where in the trial space, tsm  is mass, tsc  is a damping 

coefficient and tsk  is a spring stiffness.  To understand how this equation scales for a 

single scaled experiment it is necessary examine the zeroth-order relationship 

0

v

ps tsg=F F  in Table 3.  The inertial relationship i

ts ts tsm=F a  on application of the 
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identity 
0

v

ps tsg=F F  and substitution of 2 1

ps tsg  −=a a  (see Table 3) and 

1

0 0

v g   −=  (see Table 1) gives, 

2 1 2 1

0 0 0

i v i v

ps ps ps ps ts ts ts ts ts tsm m g g gm g m    − −= = = = =F a a F a a    (11) 

which necessitates that 
0 ts psm m = . 

Similarly, the spring force relationship s

ts ts tsk= −F u  on substitution of 1

ps ts −=u u  

(see Table 3) gives, 

1 2 1

0 0 0

s v v

ps ps ps ps ts ts ts ts ts tsk k g gk g k    − −= − = − = = − = −s
F u u F a u    

(12) 

which requires 2

0 ts psg k k =  and finally d

ts ts tsc= −F v  on substitution of 

1

ps tsg −=v v  (see Table 3) gives, 

1 2 1

0 0 0

d v d v

ps ps ps ps ts ts ts ts ts tsc c g g gc g c    − −= − = − = = − = −F v v F v v  (13) 

and the requirement 
0 ts psgc c = . 

In the situation where identical material used in the trial and physical models, then 

the zeroth-order relationship 3

0ps ts

   =  (see Table 2) with 
ps ts =  gives 

3

0

  −=  and therefore the relationships 
0 ts psm m = , 2

0 ts psg k k =  and 

0 ts psgc c =  reduce to 3

ts psm m= , 3 2

ts psk g k −=  and 3 1

ts psc g c −= , respectively.  

To proceed further and determine the relationship between the time scalar g  and   

requires information about constitutive behaviour of the spring material and the 

damping fluid used in the dashpot.  An elastic response is expected for the spring 

material satisfying a constitutive model of the form :ts ts ts= C   (Hooke’s law), 

where tsC  is the elasticity tensor.  Application of the identity 2

0

v

ps tsg =   and 

ps ts=   from Table 3 provides, 

2 2 2 2 2

0 0 0: : : : :v v

ps ps ps ps ts ts ts ts ts ts ts tsg g g g       −= = = = = =C C C C C      

               (14) 

which requires 2 2

ts psg  − =C C , and for an identical material must satisfy 
ts ps=C C , 

and therefore g =  and the stiffness relationship is 
ts psk k= . 

Substitution of g =  into the dashpot relationship 3 1

ts psc g c −=  gives 2

ts psc c= , 

but this relationship provides a conflict.  The reason for this is because the damping 
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fluid might be anticipated to behave as a Newtonian fluid and satisfy a relationship 

of the form 2ts ts ts =  , where the dash signifies a reduced tensor and with the 

assumption of incompressibility gives rise to 2ts ts ts =  , where 
ts ts tsp= − +I  , 

and where ts  is (shear) viscosity, tsp  is hydrostatic pressure, and I  is a unit 

tensor.  Application of the identity 2

0

v

ps tsg =   and 
ps tsg=   from Table 3 

provides, 

2 2 2 2 2

0 0 02 2 2 2 2v v

ps ps ps ps ts ts ts ts ts ts ts tsg g g g g          −= = = = = =      

                (15) 

which requires 2

0 ts ts psg g    −= = , and for an identical material with 
ts ps =  

suggests that 2g = , which reduces the expression 3 1

ts psc g c −=  to 
ts psc c= , 

confirming that a single experiment with identical materials will not provide 

representative behaviour for the mass-spring-damper system. 

5.4. Scale dependencies of nonlinear fluid viscous dampers 

Fluid viscous dampers are recognised as common energy dissipation devices that 

provide a level of protection to structures from damage inflicted by seismic 

excitations. The use of this form of damping system is universal and finds use in a 

multitude of constructions, which includes bridges, low rise buildings to 

skyscrapers.  A damper typically consists of a steel cylinder filled with silicon oil 

(for dissipation) and a piston.  The whole arrangement can be connected between 

floors and/or beams [77] and are designed according to need.  The basic schematic 

for a fluid viscous damper (FVD) is depicted in Fig. 2, where only the cylinder and 

piston head arrangement are shown.  The nonlinear behaviour of a FVD can be 

approximated by a simple fractional velocity power law such as, 

( )Df c sgn v v


=          (16) 

where Df  is force, v  is piston velocity relative to the cylinder, c  is an 

experimentally determined damping coefficient,  is the velocity exponent, and the 

signum function sgn  is either plus or minus unity depending on the sign of the 

relative velocity v . 
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Figure 5.2: (colour online) 3-D configurations of fluid viscous damper (a) 

Discretised model using 4-noded linear tetrahedron element type (FC3D4) (b) Fluid 

flow inside the rigid body of dashpot modelled as rigid walls. The number of 

elements for full-scale and trial models are identically 44105 and follow the rules of 

space scaling. 

The nonlinearity of the damper is dictated by the velocity exponent  , where linear 

behaviour is returned for 1 =  and Eq. (10) in this case reduces to 1Df c v= .  The 

velocity exponent   for seismic protection applications is usually in the range of 

0.35 – 1 [63,78] with typical curves relating force Df  to velocity v  depicted in Fig. 

3. 

 

Figure 5.3: (colour online) Schematic representation of constitutive behaviour of 

fluid viscous damper.  The red and grey curves represent two different nonlinear 
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behaviours of the FVD while the black curve is force-velocity curve for a linear 

FVD. 

The curves in Fig. 3 display the behaviour of the damper subjected to a sinusoidal 

excitation 
0x x sin t= , for different values of  , where   is angular frequency 

and v x= .  Note how the linear damper encounters high forces if exposed to large 

velocities, which can be an unwelcome feature.  The damping force, for damper 

designs with velocity exponent in the range of 0 1  , increases at a relatively 

lower rate than other conditions [77].  This is a desirable feature and makes 

nonlinear FVDs particularly attractive for the control and suppression of earthquake 

loads. 

To investigate the scaling of a FVD and to capture more precisely nonlinear 

behaviours it is of interest to construct a numerical model.  A previous study on 

FVDs detailed in Hou (2008) [79] is replicated here for scaling purposes and is 

performed in the commercial package ABAQUS/CFD [80].  A particular difficulty 

with this type of analysis is that it features fluid-solid interaction, which is 

recognised to be problematic for some solvers.  To avoid these problems the analysis 

performed here considers the piston head to be stationary (also excludes the piston 

rod) and allows the fluid to flow around it being sourced by the cylinder motion. The 

detailed presentation is depicted in Fig. 2, and an initial analysis is conducted to 

verify the results in comparison with those provided by Hou (2008) [79], as 

confirmed in Fig. 4.  The velocity of the flow is defined as sinusoidal with respect to 

the equation 
maxv v sin t= , where v

max
 is the maximum flow velocity, which is 

specified as maxv A= , where   and A  present the angular frequency and 

oscillation amplitude [81], respectively.  The damper is filled with incompressible 

silicon oil with oil properties selected to emphasise nonlinear behaviour. The density 

is set as 100,000 kg/m3 and the dynamic viscosity is 1 kg/ms, with the overall 

dimensions of the damper tabulated in Table 4.  The design of dashpot considered 

(as depicted in Fig. 2) permits the movement of the fluid from one side of the 

chamber to the other, and the constitutive behaviour of the fluid is assumed 

Newtonian (see Sec. 3).  An initial analysis based on Eq. (16) and the relationships 

0

v

ps tsg=F F  and 1

ps tsg −=v v  in Table 3 provides, 
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( ) ( ) ( ) ( )1 1 1sgn sgn sgn
pspsps ps

ps ps psDps ps ps ts ts ts tsf c v v c g v g v c g v v
 

    − − −= = =

 

      ( )0 0 sgn ts

ts

v v

Dts ts tsgf gc v v


 = =       (17) 

which requires that, 

1 2 1 2 4

0 0

ts ps ts ps ts psps ps ps ps ps ps

ps ts ts ts

v

ts ts tsc g c v g c v g c v
          

       
− − −− − − − −

= = =

               (18) 

on substitution of 1

0 0

v g   −=  (see Table 1) and on setting 3

0

  −=  for an 

identical fluid. 

Note additionally from Sec. 3 that a Newtonian fluid requires that 2g = , which 

provides the simplification of Eq. (18) to 
ts psps

ps ts tsc c v
 

 
−−

= .  This reduces to 

the relationship for a linear dashpot (i.e. 
ts ps

c c = ) on setting 1ts ps = = , and 

further infers [41] that for a scaled model incorporating an identical damping fluid, it 

can be anticipated that the velocity exponents are equal, i.e., 
ps ts = .  This provides 

a further simplification to the relationship 
ts psps

ps ts tsc c v
 

 
−−

= , which reduces to 

ps

ps ts
c c



 
−

=  with 
ps ts = , and is readily confirmed below with numerical 

analysis.  Note that the expectation that 
ps ts =  is a consequence of the behaviour 

of the dashpot being dominated by viscous flow being critically dependent on 

Reynolds number.  Substitution of 
0ps tsg  =  (to satisfy Eq. (15)), 

3

0ps ts

   = , 1

ps tsV g V −=  (for some velocity) and 1

ps tsD D −=  (for some 

diameter/length) into Reynolds number Re  gives not unexpectedly, 

( )( )( )3 1 1 3 1 1
0 0

0 0

Re Re
ts ts tsps ps ps ts ts ts

ps ts

ps ts ts

g V DV D g V D

g g

 

 

         

     

− − − −

= = = =

                

 (19) 

and note that kinematic viscosity, 

20

3

0

ps ts
ps ts

ps ts

g
g





  
  

   

−= = =       (20) 

which for 2g =  reduces to 
ps ts =  and for g =  gives 1

ps ts  −= . 

Therefore, scaling with an identical damping fluid with 2g =  satisfies zeroth-order 

rules, so non-linear behaviours at full and at scale are expected to correspond, i.e., 

ps ts = .  
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Table 5:4: Physical dimensions of nonlinear damper model 

Parameters Full-scale system  

Radius of piston head R  (mm) 24.45 

Width of piston head L  (mm) 15 

Width of orifice h  (mm) 0.55 

Radius of cylinder  cR  (mm) 25 

Length of cylinder cL  (mm) 110 

Applied frequency   (Hz) 10  

Amplitude 0x  (mm) 10 

 

 

Figure 5.4: (colour online) Evaluation of the numerical results for the force-velocity 

of the nonlinear FVD by comparison against FE analytical results presented in the 

literature. 
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The results of the FVD simulation presented in Fig. 4 confirm the nonlinearity in the 

force-velocity relationship and confirm likewise good agreement with the results of 

Hou (2008).  The verified finite-element model provides a convenient vehicle to 

investigate the effects of scaling on damping.  Both contraction and expansion are 

considered with scaling parameter   taking on discrete values 1 2  and 2 .  Identical 

materials are used in all scaled models and the time scalar g  is set equal to 2  in 

accordance with the analysis presented in Sec. 3.  The damping coefficients and 

velocity exponents obtained from the nonlinear curve-fitting analysis at scale are 

tabulated in Table 5.  The results confirm that the exponent components do not 

change with scale over the range of scales considered, i.e., 
ps ts = .  Also 

confirmed by this table is the relationship 
ps

ts ps
c c



 =  (with 
ps ts = ) and 

reaffirmed by the curves in Fig. 5 conforming to good accuracy to the form expected 

from Eq. (16).  

Table 5:5: Nonlinear fluid viscous damper damping coefficient and velocity 

exponent for full-scale and trial models. 

Models 

Damping 
coefficients 

(N.s/mm)  ( )c  

  

Full-scale model 0
1 =  0.0612 2.0834 

Scale-down model 1
1 2
 =  0.0144 2.0834 

Scale-up model  
1

2 =  0.259 2.0834 
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Figure 5.5: (colour online) Size dependency of the nonlinear FVD damping 

coefficient for identical material selection. The markers present the FE results while 

the continuous lines demonstrate the analytical solution. 

The analysis performed thus far is for a FVD in isolation using identical materials, 

but no account is made of other structural elements.  Considering elastic structural 

behaviour requires that the time scalar g  is set equal to   (see Sec. 3) and 

consequently the FVD does not scale according to zeroth-order requirements.  

Substitution of g =  into Eq. (18) provides 
2 ts ps

ps ts tsc c v
 

 
−−= , which reduces 

further to 
2

ps ts
c c  −=  under the assumption that 

ps ts = .  This assumption 

(because of Eqs. (19) and (20)) requires a change in the damping fluid to ensure that 

zeroth-order scaling rules apply, with kinematic viscosity satisfying the relationship 

1

ps ts  −= .  Numerical analysis supporting this assertion is shown in Fig. 6 with 

scaled FVDs conforming to the expected behaviours (i.e., 
2

ts ps
c c =  and 

ps ts =

).  This result is of practical value since, apart from giving special consideration to 

the properties of the damping fluid, it confirms that scaled FVDs can be readily 

incorporated into scaled models without major modification.  It is demonstrated in 

reference [36] that structural damping follows the relationship 2struc struc

ts psc c=  (with 
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g = ) and arranging for 
2

ts ps
c c =  for FVDs also is evidently desirable in scaled 

experimentation.  

 
(a) 

 
(b) 

Figure 5.6:  (colour online) Size dependency of the nonlinear FVD damping 

coefficient for different damper fluid selection (
ts ps = ). The FE simulation and 

analytical results based on Eq. (16) are demonstrated for distinct scale models, i.e. 

(a) scaling with 1
2
and 2 = =  and (b) large-scale up with 10 = .   
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5.4.1. Scaling a single-story building incorporating a nonlinear FVD 

To investigate further the practical value of scaling when featuring a nonlinear fluid 

viscous damper, a single-story building is considered.  The main purpose of this case 

study is to investigate what scale effects arise (if any) for the situation when the 

structure and connected dampers are scaled down.  Since the aim of using nonlinear 

dampers is to reduce structural vibration and peak loading, it is important to capture 

the nonlinear behaviour, so that adequate scaled models can be created.  The case 

study here involves a nonlinear FVD with velocity exponent 1
2

 = . The model is 

exposed to the half-cycle sine shock, which is detailed in the Fig. 7 [82]. 

 

Figure 5.7: (colour online) Schematic and idealized representation of one-story 

structure equipped by nonlinear FVD under impulse loading. The curves depict the 

applied external impulse loads on the full-scale physical model ( 0
1 = ) and the trial-

space model (
1

1 4 = ). 

The model parameters are detailed in Table 6, and the model behaviour is assumed 

to remain in the linear elastic region.  The details of the model has been taken from 

reference [82], where the lump mass is 25,000 kg, the stiffness of the columns 

calculated with respect to the time period of 0.05 s (i.e., 0 05s
n

T = . ).  The inherent 

structural damping of the system is assumed to be 2%, and critical damping value is 

determined by 2
cr n

c m=  and k
n m

 = .   The maximum acceleration is taken to be 

60g (i.e., 0
60u g= ) with the total duration of 0.01s (i.e., 0.01sdt = ). As detailed in 

reference [40], the applied sine shock is a form of impulse load, where the ratio of 

the time-period to the impulse-load duration is smaller than 1/4.  The structure 
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depicted in Fig. 7 can be represented therefore as a single degree of freedom (SDF) 

system with mass m , stiffness k , structural damping c , and nonlinear viscous-

fluid damping c , being exposed to half-cycle sine shock.  The mathematical model 

representing the SDF system is, 

( ) 0mu cu ku c sgn u u mu sin t


 + + + =      (21) 

where the nonlinear FDV is exposed to half-cycle sine shock 
0mu sin t . 

In applying the similitude rules to this model, the time scalar g  is required to be set 

equal to   (i.e., g = ) as dictated by the elastic members as discussed in Sec. 3.  

However, as also mentioned above, this setting poses some difficulty for the FVD, 

where an identical damping fluid is to be employed in both the full size and scaled 

FVDs.  The significance of this is shown in Fig. 8, where the projected-trial model 

signifies results transferred to the physical space by the zeroth-order relationships 

01 1 1

v

ps tsg=F F  and 1

1 1ps ts −=u u  (see Table 3).  It is evident that the transferred 

scaled behaviour is not representative of the full-scale behaviour.  Replacing the 

damping fluid in the scaled model and noting the properties tabulated in Table 6, 

which are in accordance with the relationships (see Table 3) 
1 1

g = , 
1 1ts ps

k k= , 

2

1 1ts ps
c c= , 

1

2

1ts ps
c c = , 3

1 1ts ps
m m= , and 2 1

1 1 1ps tsa g a −= , new predictions are 

provided in Figs. 9 and 10.  In complete accordance with theory exact replication is 

returned between full scale and projected trial-scale models.  Note from a practical 

perspective, the Taylor-devices manual [83] confirms that it is indeed possible to 

obtain or design a damper with the required zeroth-order requirements, i.e. one 

which provides 
1

2

1ts ps
c c =  and 

1ts ps = . 

Table 5:6: Physical properties of equivalent 1-DoF model for full-scale and scaled 

models. 

Parameters Full-scale 

system 

Scaled-down system 

(Trial Model) 

Dimension scaling factor (  ) 1 1/4 

Time scaling factor ( g ) 1 1/4 

Stiffness ( N / m ) 394784176 98696044 
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Damping coefficient 

( )c N.s / m  

10125663 632854 

Nonlinear Damping coefficient 

( )c N.s / m  

3760000 235000 

Mass (kg) 25000 390.6 

Peak acceleration (g) 60 240 

  

Figure 5.8: (colour online) The orange line illustrates the replication of damping 

force-displacement behaviour of the equivalent 1-DOF model of one-story structure 

equipped by nonlinear FVD based on zeroth-order finite similitude. The blue curve 

depicts the full- scale model behaviour. 
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Figure 5.9: (colour online) The orange marker presents the replication of temporal 

behaviour of displacement of the projected trial-space equivalent model based on 

zeroth-order finite similitude, while the blue curve demonstrates the full-scale 

equivalent model behaviour. 

 

Figure 5.10: (colour online) The numerical results show the exact match between the 

behaviour of the real model (blue line) and projected model (orange marker) 

replicated by first-order finite similitude. 

5.5. Scaling of friction induced stick-slip behaviour 

A complex friction case study is considered in this section to ascertain whether it is 

possible to examine nonlinear friction behaviour via scaled experiments. The model 
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under scrutiny here is the Burridge-Knopoff earthquake model, which is commonly 

applied in the study of stick-slip vibration, being recognised to be a significant 

phenomenon [84].  The model of interest is depicted Fig. 11 and consists of two 

masses connected by spring elements on a moving belt.  This model is assumed to 

represent the movement of stone blocks during seismic excitation by introducing 

friction between the components.  The system features two forms of friction, which 

are static friction and dynamic friction.  A rough surface is assumed to exist between 

the belt and masses to give rise to dry friction at the mass-belt interface.  The blocks 

stick when the maximum force applied by the springs to a block happens to be less 

than the maximum static friction force. When the spring forces exceed the static 

friction forces, slipping motion starts and it slips until the velocity of the belt and 

masses are equal.  The constant repetition of such movements creates a stick-slip 

oscillation. 

 

Figure 5.11: Schematic representation of the 2-DoF stick-slip vibrational system. 

1 2
k k,  and c

k represent spring stiffnesses, dr
v  is the belt velocity and 1 2

m m,  

represent the mass of the blocks. 

The system presented in Fig. 11 consists of two mass blocks 
1

m  and 2
m  sitting on a 

moving belt which is traversing under the blocks with constant velocity dr
v  [85].  

The two mass blocks are connected by a spring of stiffness c
k  and at the same time 

each block is connected individually to fixed constraints through springs of stiffness 

1
k  and 2

k , respectively.  The displacement of each mass block (
1

m  and 2
m ) is 

quantified by 1
x  and 2

x , respectively.  Since the blocks are in contact with the 

moving belt friction forces 1
F  and 2

F  are assumed to apply.  The material properties 

and details relating to the full trial-scale models can be found in Table 7.  The 

system with scaled models is depicted in Fig. 12 and are governed by the differential 

equations [46] 
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( )1 1 1 1 1 2 1cm x k x k x x F+ + − =       (21a) 

( )2 2 2 2 2 1 2cm x k x k x x F+ + − =       (21b) 

which can be readily solved with the assistance of the commercial Matlab software 

package, where smoothed analytical relationships for the frictional forces 
1F  and 

2F  

are given by  

( )

( )

( )

( )

1 1

1 1 1

1

1 1

1

1 1 1

1 1 1

11 1

1

1

                                              if        0

         if       0  

1

s , dr

s ,

dr

s ,

s , dr

s ,

dr

s ,

k m
F F x v

F

k m
sgn x v

F k m
F F x v

Fk m
x v

F



 − =




 
−   

  = − − 
 + −



  (22a) 

( )

( )

( )

( )

2 2

2 2 2

2

2 2

2

2 2 2

2 2 2

22 2

2

2

                                              if        0

         if       0  

1

s , dr

s ,

dr

s ,

s , dr

s ,

dr

s ,

k m
F F x v

F

k m
sgn x v

F k m
F F x v

Fk m
x v

F



 − =




 
−   

  = − − 
 + −



        (22b) 

where,   is the shape coefficient of the dynamic friction law, 
1 1 1s, sF mG=  and 

2 2 2s, sF m G= , represent static frictional forces, and where 1s  and 
2s  are 

Coulomb coefficients of friction pertaining to each block, and G  is acceleration due 

to gravity (9 81. m/s2). 

In order to solve the specified system, the initial conditions in reference [86], for the 

displacements and velocities are applied, i.e., 1

1

0 9

1
s ,. F

k
x = , 2

22
s ,F

k
x =  and 

1 2 drx x v= = .  In addition, following again the suggestions of Galvanetto et al. [86], 

the following settings are also imposed: 1 2ck . k= , 1 0 22s s . = = , 
2 1 3s s. = , 

3 = , and 
1

1 1

0 14 s ,. F

dr k m
v = .  Presented in Fig. 13 are validation results, where the 

solution to Eqs. (22) is contrasted against that provided in reference [44]; complete 

agreement is shown. 

Table 5:7: Material parameters of stick-slip system for full-scale and trial models 
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Geometric/Material Properties Full-scale 

Model 

Trial 

Model I 

Trial 

Model II 

1m  (kg) 80 10 1.25 

2m (kg) 80 10 1.25 

1k  (N/m) 1000 500 250 

2k (N/m) 1000 500 250 

G (m/s2) 9.81 9.81 9.81 

s  0.22 0.22 0.22 

 

 

Figure 5.12: Full-scale ( )0
1 =  and scaled models for the stick-slip vibrational 

system. The geometrical scaling factors of scaled models 1 and 2 are 1
1 2
 =  and 

1
2 4

 = , respectively. 

It is relatively easy to confirm for a scaled model consisting of identical materials as 

the full-scale system, that a single scaled model is insufficient to represent full-scale 

behaviour.  To show this consider the zeroth-order force relationship in Table 3, i.e., 
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0

v

ps tsg=F F  and consider further the static friction satisfying a relationship of the 

form ( ) ( ) ts

ts
s s ts tststs

m G= −
v

v
F .  Multiplying both sides of this equation by 

0

v g  

provides after some manipulation, 

( ) ( ) ( )( )
1

1

g1 1 2

0 0 g
g g ts

ts

v v

s s ts tststs
m g G




    

−

−

− −= −
v

v
F     (23) 

and recall that 1

0 0gv

ts ts psm m m  − = =  and 1

ts psg − =v v , so consequently to 

satisfy the relationship 
0

v

ps tsg=F F  with ( ) ( ) ps

ps
s s ps pspsps

m G= −
v

v
F  requires that 

( ) ( )s sps ts
 = , and somewhat problematically 1 2

ts psg G G − = . 

The last expression is problematic because elastic structural members necessitate 

that g =  (for identical spring materials), giving rise to a contradiction forcing the 

acceleration due to gravity to change! 

 

Figure 5.13: (colour online) The curves represent a comparison between two in-

phase solutions, presented in this work (current results) and literature (orange 

marker) where both masses move in the same direction. 

Because of this contradiction attention now turns to first-order finite similitude with 

selected geometric scaling factors set to 1
1 2
 =  and 1

2 4
 =  for trial-models 1 and 2, 

respectively.  Under the assumption that identical materials are involved at full size 

and at scale the time scalars are required to be set as 1
1 1 2

g = =  and 1
2 2 4

g = = .  
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Prior to examining the first-order solution it is of interest to examine what is 

achieved with zeroth order.  Presented in Fig. 14 therefore is the behaviour of the 

full-scale model and the projected trial models 1 and 2, where significant disparities 

are apparent.  The main issue is gravity, and it would require an additional mass 

approach or alteration to friction conditions or gravitational acceleration, for zeroth-

order theory to apply.  Rather than amending the physical problem, the first-order 

theory is applied, which combines of two projected zeroth-order solutions in 

accordance with first-order relationships in Table 3.  Since gravity is an issue with 

zeroth order the identity for acceleration in Table 3 is employed in the determination 

of the unknown parameter 1R , being selected to provide the correct acceleration due 

to gravity by the virtual model (i.e., the combined projected models). 

 

Figure 5.14: (colour online) The curves represent a comparison between the full-

scale (blue curve) and two distinct trial models in-phase solutions. The response of 

masses 
1

m  and 2
m  described by zeroth-order finite similitude for trial model 1 with 

1
1 2
 =  (orange curve)  and trial model 2 with 1

1 4
 =  (green curve).  

The first-order equation of interest from Table 3 is acceleration in the form 

( )1 2 1 2 1 2

1 1 1 1 1 1 1 2 2 2ps ts ts tsG g G R g G g G  − − −= + −      (24) 

which on substitution of 1
1 1 2

g = = , 1
2 2 4

g = =  and on setting 
1 2ps ts tsG G G= = , 

provides after a little algebraic manipulation, 
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1
1

1 2

1 1 0 5
2

0 5 0 25

.
R

. .



 

− −
= = =

− −
        (25) 

The expression for displacement provided in Table 3, which for this case gives, 

( )1 1 1

1 1 1 1 1 1 1 1 2 1 2ps ts ts tsx x R x x  − − −= + −       (26a) 

( )1 1 1

2 1 2 1 1 1 2 1 2 2 2ps ts ts tsx x R x x  − − −= + −      (26b) 

where 
1psx  and 

2 psx  are the required displacements of the masses for the virtual 

model, and these are plotted in Fig. 15, where a perfect match with the full-scale 

model is obtained. 

 

Figure 5.15: (colour online) The curves represent a comparison between the full-

scale (blue curve) and first order projected virtual model (red marker) in-phase 

solutions. The response of the first-order virtual model is achieved by a linear 

combination of the result of two distinct trial models. 

Further confirmation of the exactness of the predictions in provided in Fig. 16, 

where phase-space plots are provided for each of the lumped masses.  Despite the 

complicated nature of the stick-slip behaviour, perfect replication is provided by the 

first-order theory. 
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Figure 5.16: (colour online) The phase diagrams for masses 
1 2
 and m m  for full-scale 

(blue and orange curves) and first-order virtual models (red and green markers), 

respectively. 

5.6. Scaling of a nonlinear spring-damper-friction system 

In this section, another nonlinear feature is added in the form of a nonlinear spring to 

investigate whether scaled experimentation is still applicable in this case.  Moreover, 

cyclic loading is applied to the mechanical system under scrutiny to exacerbate any 

disparities that might occur over a long timescale.  The system under consideration 

is presented in Fig. 17 along with scaled versions, and features both nonlinear 

dampers and springs, and again features mass on a moving belt.  As in the system 

considered in Section 5, the friction between the mass block and the belt induces a 

stick-slip behaviour, which in combination with the other nonlinearities provides a 

highly nonlinear system for scaled experimentation.  There is little possibility that 

such a system could be represented by a single scaled experiment without 

significantly modifying the physical problem.  It is of interest therefore to examine 

whether the first-order theory has the capability to accurately describe the response 

of the system, which is governed by equation [87,88] 
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( ) ( ) ( )0 0sgn sgn sinb

d

t
mx cx c x x P L x mG x v F

t








 
+ + + − + − =  

 
 (27) 

where for the full-scale model, the parameters of this equation are tabulated 

according to Table 8, and where the nonlinear function P  is the force arising from a 

conical spring, bv  is belt velocity and 
dt  is the time period for the applied external 

force. 

 

Figure 5.17: A schematic diagram of the full-scale and small-scale models of the 1-

DoF vibrational system including nonlinear spring, nonlinear fluid viscous and 

Coulomb friction damper under cyclic loading. 

Conical springs are in common usage [72,89] and present nonlinear behaviour 

arising from their geometry, so provide a good practical example of wide interest.  

The linear response of a conical spring under scaling is presented in ref [72] but the 

nonlinear response is of principal interest here and is reasonably well described by 

the relationship [89], 

( )

3
1 2

1 23 2

1 2

2

1

1 1 2 1 1
2

K K
P L

K

         = − − − +   
         

     (28) 

where 2

31 3 3

K

K
K K= − , 6

52

K

K
K = − , and where, ( )7 0

5

2

4

K L L

K
K

− +
=  with 
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1 3
1 2

2 3

4 4 2
3

16 16 3

K K K
K

      
= + +     

       

     

 (29a) 

( )

4

1
5 4

2 1

2 aD n
K

Sd D D
= −

−
       (29b) 

( )

( )
1 3

44

6

2 1

3

8

a s

a

Sd L L
K

D D n

 −
= −  

 −
 

     (29c) 

( ) 2
7

2 1

a s

D
K L L

D D
= −

−
       (29d) 

where 
0a iL L n d= −  is the initial active length, ( ) ( ) 2 21

2 14
max 0s aL , n d D D= − −  

refers to the active coils solid length, and where the values considered are provided 

in the Table 9; it is readily confirmed that 2

ts psP P=  for an identical spring 

material. 

Table 5:8: The parameters of the vibrational system including a nonlinear damper 

and a nonlinear spring for full-scale and trial models. 

Parameters Full-scale Model Trial Model 1 Trial Model 2 

   1/2 1/4 

g   1/2 1/4 

m  (kg) 1000 125 15.625 

c (N.s/m) 189 47.25 11.8125 

c  

( )N s m


 
200 50 12.5 

  0.50 0.5 0.5 

  0.22 0.22 0.22 

bv  (m/s) 0.5 0.5 0.5 

0F  (N) 45000 11250 2812.5 

dt  (s) 0.05 0.025  0.0125  
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Table 5:9: Characteristics parameters of conical springs for full-scale and trial 

models 

 Conical Spring 

Parameters 
Full-scale 

model 0
1 =  

Scaled-down 

model 
1

1 2 =  

Scaled-up 

model 
2

8 =  

mean diameter of 

the smallest active 

coil: 
1D (mm) 

8.97 4.485 71.76 

mean diameter of 

the largest active 

coil: 2D (mm) 

13.3 6.65 106.4 

wire diameter: d
(mm) 

1.2 0.6 9.6 

free length: 0L

(mm) 

37.2 18.6 297.6 

parameter defining 

the influence of 

end coils on the 

difference between 

0
L  and s

L : i
n  

1.5 1.5 1.5 

total number of 

active coils: an  

7.13 7.13 7.13 

shear modulus: S
(MPa) 

80000 80000 80000 
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Figure 5.18: (colour online) Verification of the FE numerical results for the force-

displacement of the nonlinear conical spring by comparison against experimental 

and analytical results presented in the literature. The FE (ABAQUS) model of spring 

modelled as a 10-node quadratic tetrahedron element (C3D10) including 9641 

elements and 18601 nodes. 

In addition to the analytical expression provided by Eq. (28) an ABAQUS model for 

the conical spring under scrutiny is presented in Fig. 18 along with the mesh used for 

analysis.  Also shown in this figure is the predicted nonlinear behaviour in the force-

displacement curve and confirmed is excellent agreement between the finite element 

results and those of Rodriguez (2006) [89] and Eq. (28).  The validated finite 

element model provides a convenient vehicle to study the behaviour of the nonlinear 

conical spring with scaling.  The selected geometric scaling parameters for the 

contraction and expansion are set to 1
1 2
 =  and 

2 8 =  to provide a good range of 

scale.  Identical material is used for both the scaled-down and up models and 

consequently in accordance with the theory presented in Sec. 3, the time scaling 

factor g  is set equal to  .  Note additionally that differentiation of Eq. (27) with 

respect to displacement x−  provides the nonlinear stiffness of the conical spring, 

( ) ( )
dP dP dL dP

k
d x dL d x dL

= = =
− −

      (30) 
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but recall the scaling relationship 2

ts psP P=  and consequently 
ts ps

k k= , which as 

discussed in Sec. 3 is the expected zeroth-order relationship. 

The validity of this analysis is confirmed in Figs. 19, where the figure compares the 

curves for force against displacement obtained on the trial space but projected onto 

the physical space using the relationships for force ( 2

0

v

ps ts tsg = =F F F ) and 

displacement ( 1

ps ts −=u u ) from Table 3.  

With the spring behaviour confirmed to be well described by Eq. (28), and structural 

damping and nonlinear damper taking the form presented in Sec. 5, i.e., 

( )sgncx c x x


+ , attention now turns to the solving of Eq. (27) and the 

application of first-order finite similitude.   

 

Figure 5.19: (colour online) Response of scaled nonlinear-spring system subjected to 

compression force. The blue markers represent the full-scale model behaviour, while 

the zeroth-order projected trial models are the results of the projection of the scaled 

models for trial 1 and 2, purple and green lines, respectively. 

Note that the first-order rule for force in Table 3 with 2

0

vg  −=  provides the 

following combination of Eq. (27): 
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( )

( )

( ) ( ) ( )( )
( )

1 1 2

1 1 2

2 2 2

1 1 1 1 1 1 1 2 2 2

2 2 2

1 1 1 1 1 1 1 2 2 2

2 2 2

1 1 1 1 1 1 1 2 2 2

2 2

1 1 0 1 1 1 1
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c x x R c x x c x x
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  

  

  

  
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− − −

− − −

− − −

− −
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+ − +
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( ) ( ) ( )( )

2

1 0 1 1 2 2 0 2 2

2 2 2

1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1

2 2 21 1 2
1 0 1 1 1 0 1 2 0 2

1 1

sgn sgn sgn

sin sin sin

s ts ts ts ts ts

ts ts ts bts ts ts ts bts ts ts ts bts

ts ts ts
ts ts ts

dts dts dts

L x P L x

m G x v R m G x v m G x v

t t t
F R F F

t t t



     

  
  

−

− − −

− − −

− − − +

− + − − − +

   
= + −   

    2

  
   

  

                 (31) 

which provides a perfect match for the equation in the physical space on setting 

3

ts ps
m m= , 2

ts ps
c c= , 

2

ts ps
c c = , ( ) ( )2

0 0ts ts ts ps ps psP L x P L x− = − , 
ts ps = , 

ts ps = , 1
R  satisfying Eq. (25), 2

0 0ts psF F= , 
ts pst t=  and 

dts dpst t= . 

This is confirmed by the numerical simulation results presented in Figs. 20 and 21, 

respectively representing the displacement against time and the corresponding phase 

diagram.  The details of the conical coils used is presented in Table 10 with other 

data found in Table 8.  It is evident from the results in the figures that the first-order 

finite similitude theory can provide acceptable results in a situation where nonlinear 

behaviour is present in springs and dampers but also when friction is present. 

Table 5:10: Conical springs for full-scale and trial models used in scaled system 

Parameters Conical Spring 

 Full-

scale 

model 

( )0
1 =  

Trial 

model 1 

( )1
1 2 =  

Trial 

model 2 

( )2
1 4 =  

1D (mm) 98.67 49.335 24.6675 

2D (mm) 143 71.5 35.75 

d (mm) 13.2 6.6 3.3 

0L (mm) 409.2 204.6 102.3 

i
n  1.5 1.5 1.5 

an  7.13 7.13 7.13 

S (MPa) 80000 80000 80000 
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Figure 5.20: (colour online) The temporal behaviour of mass displacement of the 

full-scale model, projected trial model 1 and 2 designed based on the zeroth order 

theory which could not replicate the behaviour while the projected first order virtual 

model designed based on the first order finite similitude nearly captures the full-

scale model response.   

 

Figure 5.21: (colour online) The nonlinear spring phase response of the full-scale 

model, projected virtual model which is the combination of two distinct trial models 

(1 and 2) designed based on the zeroth order theory which could not replicate the 

behaviour while the first-order virtual model captures the global behaviour of the 

full-scale system response. 
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5.7. Conclusion 

The paper aims to present the application of the finite-similitude theory to show how 

complex nonlinear mechanical dynamic systems, involving nonlinear viscous 

dampers, springs, and friction, can be scaled using the recently developed first-order 

finite similitude theory, where traditional scaling theories (e.g., dimensional 

analysis) are not able to satisfy complete similarity conditions. The high capability 

of this approach was illustrated for the proposed vibrational systems in which the 

response behaviour of the prototype was predicted with high accuracy by the 

combination of the response of two distinct scaled models without the requirement 

of any additional technique to be applied to the models. The resulting conclusions 

can be extracted from the proposed case studies including numerical and analytical 

analysis: 

• The scale dependency of the nonlinear fluid viscous damper was investigated 

and a relationship 
ts ps

c c

 =  was obtained for the identical material selection. In 

addition, it is concluded that the desired damping coefficient 
2

ts ps
c c =  between the 

full-scale and scaled model is always possible by changing the viscous damping 

fluid. 

• A single-story case study confirmed that zeroth-order finite similitude is 

satisfactory in the case of realisable fluid material selection for the trial model 

damper, and complete replica scaling was shown possible. 

• Scaling of stick-slip friction system was studied in the second case study, and 

it was demonstrated that the zeroth-order finite similitude (and consequently 

dimensional analysis) failed to capture the behaviour of the prototype, in contrast, 

the first-order finite similitude, which provided complete similarity.  The study 

illustrated that the combination of two distinct scaled models can replicate the 

response behaviour of the physical model with complete agreement.  This can be 

contrasted against replica zeroth-order models (i.e., no additional mass etc.) which 

gave rise to large errors, i.e., 75% and 93.75% errors for trial model 1 and 2, 

respectively. 

• The scaling behaviour of a nonlinear spring-damper-friction system was 

examined according to the third case study. It was found that a large deviation was 

created between the response behaviour of full-scale and singly applied replica 

small-scale models.  For displacement, the full-scale model was predicted with 
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errors up to 46.9% and 70.4% with dimensional scaling factors set respectively to 

0.50 and 0.25.  Exact replication (within numerical error) was provided with the first 

order finite similitude theory on combining the results of two distinct trial models 

and on correctly setting the extra independent degree of freedom 1R . 
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Chapter  

SIX 

6.  Paper four: Application of first-order finite similitude in 

structural mechanics and earthquake engineering 

Overview  

After investigation into the simplified equivalent models (mass-spring-damper) and 

their behaviour with scaling, an optimum scaling design has been obtained and 

implemented in this paper for buildings exposed to earthquake loads. The new 

theory of scaling proposes the possibility of designing and testing buildings and 

structures in new ways, which is also the focus of this article. The selected complex 

case-studies proved that the application of the proposed scaling theory is 

straightforward, and it is possible to reconstruct full-scale model behaviour with 

higher accuracy. The capability of the finite similitude theory has been shown 

through the examination of structural elements under various loadings and high-rise 

buildings under earthquake excitation. In addition, another important feature of the 

first-order finite similitude is presented in the case of breaking geometric similarity 

for a thin-walled beam, where the first-order theory captured the global behaviour of 

the full-scale model with an exact match. 
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Abstract 

An important experimental approach for the testing of earthquake-resistant 

structures is scaled experimentation with experimental designs impacted upon by 

the similitude theory of dimensional analysis.  Unfortunately, the type of 

similitude provided by dimensional analysis seldom applies to complex 

structures, which is particularly problematic when scaling ratios are large.  The 

issue is one of scale effects where the behaviour of the scaled version of any full-

size structure can be markedly different.   

Recently however a new theory of scaling called finite similitude has emerged in 

the open literature that confirms that the similitude offered by dimensional 

analysis is just one of a countable infinite number of alternative possibilities.  The 

new theory of scaling raises the possibility that buildings and structures can be 

designed and tested in new ways and this aspect is the focus of this paper. 

Similitude rules for single and two scaled experiments are examined to illustrate 

the benefits provided by alternative forms of similitude.  The two types of 

similitude examined are termed zeroth order and first order finite similitude, 

which are shown to be two forms in an infinite number of alternative possibilities 

efficiently defined using a recursive relationship.  The theory of scaling is 

founded on the metaphysical concept of space scaling yet provides the means to 

establish all scale dependencies for structural components and high-rise steel 

buildings along with buildings equipped with non-linear-fluid viscous dampers 

for resisting earthquake loading conditions.  It is shown through case-studies of 

increasing complexity how the new theory can be applied to reconstruct full-scale 

behaviours but also revealed are some of the limitations of the new approach. 

Keywords: finite similitude, scaled structures, dimensional analysis, time history 

analysis, scaled experimentation. 
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6.1. Introduction 

Earthquake testing methods such as laboratory tests for massive structures such as 

tall bridges and skyscrapers commonly built today have become more challenging 

and less applicable.  More feasible is the testing of scaled models to study the 

behaviour of such structures, as undoubtedly these forms of test are easier to 

perform and invariably are more cost effective to implement.  Sized tests are 

especially recommended as one of the few experimental solutions for situations 

where it is impossible to test a real prototype. Although scaled experimentation 

has some significant limitations it still plays a critical role in process, product 

design and testing for systems.  The obstacles to scaling are mainly related to the 

nonlinear relationships that exist between physical and scaled processes, which 

manifest as changes in physical behaviour with scale.  Geometric scale 

dependencies are readily visible with geometric measures of length, area, and 

volume scaling linearly, quadratically and cubically, respectively.  Important 

changes affected by changes in geometric measures in the structural analysis are 

surface forces and body forces with the latter decreasing at a faster rate than the 

former with scale.  The presence of scale effects, which can be marked, has 

undoubtedly diminished the importance of scaled experimentation in recent times 

coupled with the ever-increasing sophistication of computational modelling, 

which has invariably accelerated this decline.  

The issues surrounding scaling are generally well appreciated by the academic 

and industrial communities and it is appreciated that dimensional analysis 

provides the bedrock on which scaled experimentation is built, being fundamental 

to the concept of similarity.  The prevailing view is that similar structures behave 

in the same way, and similarity can be investigated by applying dimensional 

analysis [2].  Similarity is rarely achievable for all but the simplest of structures 

and dimensional analysis provides no solution to dissimilar structures.  In many 

respects, the concept of similarity, which is defined by dimensional analysis has 

not changed significantly for over a century and remains the dominant approach 

for academic and industrial scaled research.  Linked to dimensional analysis is the 

Buckingham Pi theorem which reveals an inner dependence between dimensional 

variables [3] and more importantly brings into existence the dimensionless Pi 

groups.  If it transpires that the Pi groups in the dimensionless equations 
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governing the behaviour of the scaled and full-scale structures match, then the 

two structures are defined to be similar. However, as mentioned above, this 

situation is rarely met in reality [4] and the approach has shown little success in 

complex structures.  Structural engineering has a long history of investigations 

with scaled experimentation, but it is apparent on inspection of early historical 

references that most early forms of analysis were somewhat rudimentary in 

nature.  The early work of Buckingham [3] provided the basis for more realistic 

scale models and the first significant application can be attributed to him [5], 

although the study was purely theoretical in scope. The ground-breaking work of 

Buckingham [3] was followed by an almost exponential rise in the numbers of 

publications investigating the application of scaled methods. 

In a general sense, scaled experimentation is principally about the establishment 

of scaling rules, which provides a means to transfer obtained pieces of 

information from the scaled experiment to the full scale.  The focus here is on 

earthquake seismic tests but it is recognized that there exist limitations with 

scaling.  Practical limitations might be the unavailability of materials with the 

required material properties but also the availability of suitable experimental 

equipment can place constraints on what is possible.  In the case of seismic 

testing a critically important and often utilized piece of apparatus is a shake table.  

Well-researched scaling rules are often imposed in the application of shake-table 

studies, as achieving complete similarity is unlikely.  Many scaled experiments 

have been performed and publications produced addressing this issue to better 

understand the behaviour of structures under earthquake excitations.  Sharma et 

al. [14], Nayak et al. [1], Guerrero et al. [16], and Garevski et al. [90], studied the 

behaviour of scaled-down structures in order to predict the behaviour of physical 

models by applying several similarity laws. The benefits and limitations of using 

different materials in small-scaled models were investigated in reference [10].  

Other studies include investigations into aspects of inelastic behaviour of 

structures [18] and unreinforced structures such as masonry at half scale [19].  

Research using relatively high scaling factors included the application of two-

dimensional base ground motion, which induces complex behaviour for a high-

rise tall building [20] at a 1/50 scale. Another example at 1/40 scale is the scaling 

of high-rise buildings studied to investigate the behaviour of huge structures [91] 

[92].  
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The difficulty with all the scaled experimental studies mentioned above is that 

they are all constrained by the limited capability of dimensional analysis with the 

prevalence of scale effects as presently defined.  A particular example is related 

to weight and body forces and the associated requirement in scaling for mass to 

be added to the scaled model [93].  Typically, masses are added in the form of 

blocks attached to slabs but fixing one problem invariably produces another as it 

can be anticipated that the behaviour of the supporting frame will not be correct 

during collapse.  The blocks of mass can move and even collide under 

deformation conditions and the result can be unrepresentative behaviour.  

Additional mass is often essential when scaling down dimensions whilst 

maintaining the material properties of the prototype. The added mass however 

comes with drawbacks as it makes movement and control invariably more 

complex [94][95].  Simulator control becomes more difficult since additional 

mass has the potential to produce overturning moments. This often means that 

specimens have to be designed using bigger scaling factors and involve control 

measures so that the above drawbacks can to a certain degree be accommodated 

depending on the payload capacities of the shake table utilized [94].  Investigated 

in reference [96] is a rotational system involving restraining cables to limit the 

extent of translation of rotational mass.  The device was designed to allow mass 

movement up to a maximum displacement limit at which point the restraining 

cables stopped further movement; the cessation of mass movement was termed 

specimen failure.  Unfortunately however, the scaled system cannot be said to be 

truly representative and in particular the loading and overall stiffness of the scaled 

model was influenced [96].  Another study [97] concerned with the seismic 

performance of a tall bridge using a shake table test also required additional mass.  

The precise distribution of the mass could be through the pier height determined 

by means of repeated numerical trials to finalize the location of the masses.  It is 

evident that additional mass comes with problems and an alternative option is to 

increase the acceleration according to similarity laws. Unfortunately, this solution 

comes with its own shortcoming since for representative behaviours of high-rise 

buildings it is needed to apply large accelerations.  This is practically difficult to 

arrange due to the limits of laboratory shake table capacities.   

It is clear from the evidence of past experimental studies that the limitations 

imposed by the current definition of similarity has led to all manner of 
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contortions to address the unrepresentative behaviour of scaled models.  The 

present situation is not satisfactory, and the solutions investigated involving 

additional mass, makeshift scaling rules, artificially high accelerations are not fit 

for purpose.  To address this problem this paper examines two alternative forms 

of similitude that form part of a new scaling theory termed finite similitude [21–

26].  The work here is designed to provide additional evidence on the merit of the 

newer forms of similarity and add to earlier works done in the fields of: metal 

forming [23], impact mechanics [25], powder compaction [21], and biomechanics 

[24].  These studies were limited to one scaled experiment under the similitude 

rule named zeroth-order finite similitude. Both zeroth-order finite similitude and 

dimensional analysis are underpinned by proportional field relationships, 

assumed a priori for dimensional analysis, and returned a posteriori from the 

invariance principle applied to define zeroth-order finite similitude. 

Consequently, it is possible for each of the approaches to replicate each of the 

others similitude conditions.  Despite this association however, zeroth-order finite 

similitude has the advantage of being part of a holistic scaling theory with scaling 

identities and the number of freedoms identified, which provides a route for direct 

optimization (see references [21,23] for greater details).  Dimensional analysis on 

the other hand is well known, links fully to approximate physics with the 

retention of dominant dimensionless terms, and benefits from its association with 

the Buckingham Pi theorem for reducing the number of arguments in a 

dimensioned expression. The work presented here is concerned with both zeroth-

order and first-order similitude, so involves both one and two-scaled experiments 

although focusing on seismic studies. The proposed two-experiment approach to 

scaled experimentation first appeared in references [28,98] for the study of impact 

mechanics and discrete dynamic systems.  The work here extends the application 

of the method to seismic systems involving steel buildings and non-linear 

damping, and for the first time the breaking of geometric similarity in structural 

members. 

The starting point for the finite similitude theory is rather unusual in that it begins 

with a concept that cannot be physically enacted, which is space scaling.  The 

concept is introduced in Sec. 2, where it is shown how metaphysical-space 

scaling provides the correct founding theory for the theory of scaling providing an 

intuitive vision for scaling.  The mathematics of space scaling is relatively 



210 
 

straightforward and ultimately provides the means to examine scaled structural 

mechanics.  This achieved in a roundabout way however, which first requires 

describing the impact of space scaling on control volumes as these underpin 

mechanics in its transport form.  The key step in the finite similitude theory 

presented in Sec. 2 is the projection of transport equations defined on the trial 

space (where the scaled experiment resides) onto the physical space (where the 

full-scale structure resides). This projection reveals in one form or another all the 

scale dependencies possible in structural mechanics.  The approach effectively 

transforms the problem of scaling into one whose objective is the revealing of 

those fields that are only defined implicitly by the projection between trial and 

physical space.  This can be achieved with the application of similitude rules and 

unlike dimensional analysis the finite similitude approach is not limited to a 

single similitude condition. Alternative rules of similitude are presented in Sec. 3, 

where a countable infinite number of similitude identities are defined under what 

is termed high-order finite similitude.  The rules provide a calculus for scaling in 

that they describe how scaled systems change with scale.  Integration of the 

differential equations defined by high-order finite similitude links experiments at 

distinct scales.  The two integrated forms of interest in this paper presented in 

Sec. 3 are termed zeroth order and first order finite similitude and involve one 

and two scaled experiments, respectively.  To demonstrate the practical advantage 

of the new scaling theory in structural mechanics the behaviour of important 

structural elements is examined under the new rules of scaling.  Considered in 

Sec. 4 are a beam-strut model exposed to a point load, a column buckling analysis 

and a thin-section problem, which breaks the rule of geometric similarity by 

allowing thickness to be constrained.  A more complicated structure is considered 

in Sec. 5, where the first-order finite similitude rule is applied to a high-rise steel 

building exposed to a real earthquake load.  Further complication is added in Sec. 

6, where an eight-story steel construction equipped with nonlinear fluid viscous 

dampers is examined under scaling and subject to earthquake excitation.  Through 

standard structural elements to building designs with and without nonlinear 

dampers the paper aims to demonstrate the benefits and validity of the new 

scaling theory.  The paper ends with a brief set of conclusions confirming that the 

downside of additional scaled experiments is counterbalanced by the benefits of 

increased flexibility and accuracy. 
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6.2. The theory of scaling: a review of finite similitude 

The difficulty with all past studies into scaled experimentation is the absence of a 

scaling theory that can account for all scale dependencies that arise.  The finite-

similitude theory accounts for scaled dependencies by means of a metaphysical 

concept of space scaling.  Although it is evidently impossible to scale space the 

concept can nevertheless be defined mathematically by introducing a map 

between the space which houses the full-scale experiment (the physical space) 

and the space where the scaled experiment resides (the trial space).  In 

mathematical terms the temporally invariant map between coordinate functions in 

the physical and trial space take the form ps tsx x , where the subscripts “ps” and 

“ts” signify physical and trial space, respectively.  In differential terms and 

limiting the space scaling to isotropic scaling the map takes the form ts psd d=x x , 

which in coefficient terms gives i i

ts psdx dx= .  It is assumed here that coordinate 

system in each space is orthonormal and under this restriction positive scalar   

indicates the extent of linear isotropic scaling with 0 1   for contraction, 1 =  

for no scaling and 1   for expansion.  Although space contraction is of 

particular interest with scaled-down experiments the theory does allow scaling up 

also. As Newtonian physics is the focus of the study absolute times pst  and tst  are 

assumed to exist with each space possessing a single measure of time.  It is also 

necessary to establish a relationship between pst  and tst , which in differential 

terms takes the form ts psdt gdt=  for positive scalar g [28].  

6.2.1. Control Volume Motion 

To relate the effect space scaling has on the governing physics it is necessary to 

have the physics described by an appropriate formulation.  The correct approach 

is one based on a control-volume formulation as control volumes are basically 

regions of space and hence are immediately impacted upon by space scaling.  

Although in some respects this approach might appear remote from structural 

engineering it is nevertheless necessary and is simply the path followed by the 

theory from space to control volumes (regions of space) to transport equations 

(laws of nature) and finally to structural field relationships.   
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The mathematics of control volume motion which can be found in reference 

[76,99,100] and involves transport of a control volume 
*

ts  (in the trial space) by 

means of a velocity field 
*

tsv .  To define the motion of anything it is generally with 

respect to something else, and by comparing 
*

ts  with a reference control volume 

*ref

ts  it is possible to define the following partial derivative, 

ts

* * *

* ts ts

ts *

tsts

D

tD t


= =



x x
v



        (1) 

where coordinate points 
*ref

ts ts  and 
*

ts tsx , and *

*
ts

D

D t
 represents a partial 

temporal derivative where the reference point ts  is held constant.  

The exact same apparatus can be utilized in the physical space but motion of the 

two control volumes must be related in some manner. Note that as shown in 

reference [28] there exists a map between two control volumes in physical and 

trial spaces such that * *

ts psd d=x x , i.e., essentially that provided by the space 

scaling map. The maps * *

ts psd d=x x  and ts psdt gdt=  immediately provide a 

similitude velocity relationship 1* *

ts psg −=v v  which is a relatively simple 

expression relating the velocities of the moving control volumes in the two 

spaces. With the synchronization of the moving control volumes established it is 

now possible to examine the governing equations for structural mechanics in 

transport form. 

 

6.2.2. Transport form of projected structural mechanics 

The key step in the finite-similitude theory is the projection of the governing 

transport equations for the trial space onto the physical space because it is 

through this operation that scale dependencies are exposed.  For structural 

analysis, the four transport equations (essentially eight as two are vector 

equations) of interest are those for volume, continuity, momentum and 

movement. The related transport equations can be written in the form:  

0
* *
ts ts

*
* * *

ts ts ts ts*

ts

D
dV d

D t
 

−   =  v n         (2a) 

( ) 0
* *
ts ts

*
* * *

ts ts ts ts ts ts ts*

ts

D
dV d

D t
 

 

+ −   =  v v n       (2b) 
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( ) 0
* * * *
ts ts ts ts

*
* * * * *

ts ts ts ts ts ts ts ts ts ts ts ts ts ts ts*

ts

D
dV d d dV

D t
  

   

+ −   −   − =   v v v v n n b   (2c) 

( ) 0
* * *
ts ts ts

*
* * * *

ts ts ts ts ts ts ts ts ts ts ts ts*

ts

D
dV d dV

D t
  

  

+ −   − =  u u v v n v    (2d) 

where ts  is mass density, tsv  is material velocity, tsu  is material displacement, ts  

is Cauchy stress and tsb  is specific-body force (i.e. force per unit mass) for the 

trial space. 

These equations are sufficient for physical modelling in structural engineering, 

with Eq. (2a) enforcing control volume synchronization, Eq. (2b) allowing for 

density to change, Eq. (2c) being the all-important momentum equation, and Eq. 

(2d) first introduced in reference [27] providing a description for displacement tsu

.  With the governing constraining equations defined the next step in the finite 

similitude theory is the most critical as it quantifies either explicitly or implicitly 

all scale dependencies.  This quantification is achieved by projecting the transport 

equations in the trial space (i.e., Eqs. (2)) onto the physical space.  The projection 

is made possible by the existence of the map between the control volumes in the 

physical and trial space, Thus the relationship * *

ts psd d=x x  provides the 

expressions 3* *

ts psdV dV=  and 2* *

ts ts ps psd d = n n , and recalling the time 

relationship ts psdt gdt= , it is possible to substitute these into Eqs. (3).  In addition 

to multiplication of Eqs. (2) by g  each equation is individually multiplied by the 

scaling parameters 
1

0 , 0

 , 0

v  and 0

u  (the role of these is explained below) to 

provide 

( )1 1 1 3 1 3

0 0 0 0 0
* *
ps ps

*
* * *

ps ps ps ps*

ps

D
T dV d

D t
     

 

= −   =  v n     (3a) 

( ) ( )3 3

0 0 0 0 0
* *
ps ps

*
* * *

ts ps ts ps ps ps ps*

ps

D
T dV d

D t

          
 

= + −   =  V v n    (3b) 

( ) ( ) ( ) ( )1 3 1 3

0 0 0 0
* *
ps ps

*
v v v * v * *

ts ps ts ts ps ts ps ps ps*

ps

D
T g dV g d

D t
         − −

 

= + −   V V V v n  

0
* *
ps ps

* *

ps ps ps ps psd dV

 

−   − = n B       

 (3c) 
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( ) ( ) ( ) ( )3 3

0 0 0 0
* *
ps ts

*
u u u * u * *

ts ts ps ts ps ps ps ps ps*

ps

D
T dV d

D t
         

 

= + −   U U V v n  

( ) 3

0 0
*
ps

u *

ts ps psdV   


− = V       (3d) 

where 1

ps tsg −=V v , 1

ps ts −=U u , 2

0

v

ps tsg =   and 3

0

v

ps ts tsg  =B b  

Although somewhat complicated looking, Eqs. (3) are no more than Eqs. (2) but 

played out on the physical space; no approximation is involved in this projection.  

The importance of Eqs. (3) is that they reveal all scale dependencies in one form 

or another.  Some of the scale dependencies are explicit and recognizable, such as 

3  and 
2  which arise from changes in the geometric measures of volume and 

area, yet others are implicit, i.e. tensor field ( )ps  , vector fields ( )ps V , ( )ps U , 

and ( )ps B , and scalar field ( )ts  .  The dependence of these fields on   is a 

consequence of the fact that the trial space is at a particular   and changing this 

influences the fields in that space and likewise those projected onto the physical 

space.  The problem of scaling has been transformed into a problem where the 

objective is to make explicit those fields that are an implicit function of  .  Once 

this is achieved then scaling is solved since it is then possible to know what 

happens at full scale from a scaled experiment.  To reveal the field dependencies 

there are two main approaches, with the first approach requiring more 

information (e.g., size and surface effects) about the specific problem under 

consideration.  A more generic approach is to assume that the physical behaviours 

follow a particular similitude rule.  Similitude rules provide the means to design 

experiments and a particular advantage offered by Eqs. (3) is that unlike 

dimensional analysis, alternative similitude rules can be explored.  The downside 

is that similitude rules are invariably restrictive and consequently there is no 

guaranteed that an experimental arrangement will fall within the solution space 

provided by a particular rule.  However, with physical modelling and the use of 

alternative materials the solution space offered by a similitude rule can be 

enlarged but this invariably requires the existence of substitute materials with the 

necessary peculiar properties. 
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6.3. Similitude rules 

The focus of this section is on the definition of similitude with the objective to 

reveal the behaviours of the hidden fields in Eqs. (3).  The main transport 

equations can be succinctly represented in the form 0 0 0T  = , where   can be set 

to 1 ,  , v  and u .  The first and possibly an obvious similitude assumption is that 

( )0 0T    does not change with  , which in mathematically terms is the identity, 

( )0 0 0
d

T
d

 


         (4) 

where the symbol “  ” signifies identically zero, which means the left-hand side 

of this equation vanishes completely under the derivative. 

The identity is equivalent to what is provided by dimensional analysis since 

integration between the limits   and 1 =  provides ( ) ( )0 0 0 0 01 psT T T       = , with 

the necessity that ( )0 1 1 = , required so that projected transport equations at 1 =  

match 0 0psT = .  The identity ( )0 0 0 psT T      provides an invariance between the 

projected trial-space equations (and by implication the original trial-space 

equations), with the physical space transport equations.  Note the role played by 

( )0

   in facilitating the application of a single identity (i.e., Eq. (4)) to all the 

transport equations, which can be likened to the role played by making equations 

dimensionless in dimensional analysis.  Detailed studies on the application of Eq. 

(4) (termed zeroth order finite similitude) can be found in references [21–

23,25,26], where specific zeroth-order relationships relating to density, velocity, 

displacement etc. can be found.  The advantage offered by Eqs. (3) is that unlike 

dimensional analysis the approach is not limited to a single similitude identity and 

a countable infinite number of identities can be readily defined as follows: 

6.3.1. Definition (High-order finite similitude) 

The similitude rule for kth-order finite similitude is identified by the lowest 

derivative that satisfies: 

( )1 0k k k

d
T T

d

  


+ =          (5) 

for all 0   with 0 0T   defined by Eqs. (3) and the scalars k

  being a function 

of   with ( )1 1k

 = . 
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Note the contention here that similarity is no more than imposed rules that 

provide a convenient means to reveal hidden field relationships and that for the 

past century only one rule has been assumed to exist.  However, despite Eq. (5) 

being a mere definition, it possesses certain attributes that make it highly suited to 

similarity.  Firstly, lower-order forms of similitude are contained in higher-order 

forms; for example, zeroth order ( 1 0T  ) automatically satisfies first order (

( )2 1 1 0d

d
T T  


=  ), and any higher order (easily shown by induction), which is a 

desirable if not necessary feature.  All the scaling functions k

  play identical 

roles, i.e., the annihilation of   in the equations 0k kT  =  to satisfy the similitude 

rule Eq. (6).  The equations 0k kT  =  are in the form of transport equations whose 

fields are derivatives (with respect to  ) of those fields that appear in Eqs. (3) 

(i.e., in 0 0 0T  = ); this aspect is not explored further here.  Shown below is how 

Eq. (5) can be integrated on forming a divided-difference table, which enables 

discrete identities to be formed with relative ease for application to scaled 

experimentation.  It transpires that Eq. (5) leads to physically intuitive 

proportionality relationships for certain fields, field differences, field differences 

of differences and so on.  Each increment in order requires an additional scaled 

experiment with zeroth order requiring only one scaled experiment, first order 

requiring two and so on.  The reason for this is related to the order of the highest 

derivative in the similitude rule and for example substitution for ( )1 0 0
d

d
T T  


=  

into the identity ( )2 1 1 0d

d
T T  


=   provides, 

( ) ( )2 1 1 1 0 0 0
d d d

T T T
d d d

       
  

 
= =  

 
     (6a) 

which is the similitude rule for first-order finite similitude and was first 

introduced in reference [28]. 

The two derivatives present in Eq. (6a) indicate that on integration, two scaled 

experiments are involved with a similitude rule that connects these to the full-

scale system.  The next level up is second order, which takes the form, 

( ) ( ) ( )3 2 2 2 1 1 2 1 0 0 0
d d d d d d

T T T T
d d d d d d

              
     

    
= = =     

    
 (6b) 
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and the presence of three nested derivatives indicates the need for three scaled 

experiments. 

6.3.2. First-order Solutions 

The prime interest in this paper is on the application of first-order finite similitude 

to non-trivial practical structural-engineering problems.  Prior to examining the 

first order rules it is necessary to substitute into Eqs. (3) pertinent zeroth-order 

conditions obtained from identity Eq. (4), which are 3

0ps ts

   = , 
1 3

0  −= , 

1

0 0

v g   −=  and 
1

0 0

u   −=  to provide 

( ) ( )0 0 0
* *
ps ps

*
* * *

ps ps ps ps ps ps ps*

ps

D
T dV d

D t

    
 

= + −   =  V v n            (7a) 

( ) ( )0 0
* *
ps ps

*
v v * * *

ps ps ts ps ps ts ps ps ps*

ps

D
T dV d

D t
   

 

= + −   V V v v n  

0
* *
ps ps

* *

ts ps ps ts psd dV

 

−   − = n B                    (7b) 

( ) ( )0 0
* *
ps ps

*
u u * * *

ps ts ps ps ps ps ps ps ps*

ps

D
T dV d

D t
   

 

= + −   U U v v n 0
*
ps

*

ps ps psdV


− = V         (7c) 

where 2

0

v

ps tsg =  , 
3 2 1

0

v

ts ts ts tsg g    −= =B b b , and where it is recognized that the 

condition 
1 3

0  −=  ensures that Eq. (3a) satisfies Eq. (4) (and consequently Eq. 

(6a)), so is of no further concern.  

To avoid the necessity for second-order finite similitude the term *

ts ps−V v  is 

replaced by the zeroth-order approximation *

ts ps−v v  in the movement and 

momentum equations to reflect the fact that convective-type terms are of little 

concern in structural engineering.  The transformation of Eqs. (6) into the 

required discrete integrated form can be readily achieved by means of a divided-

difference table (see Table 1) and observe that the focus on behaviour at 0 1 =  

and down scaling means backward differences are required.  In addition, unlike a 

traditional divided-difference table a mean-value theorem is applied to ensure 

exact differences are returned.  In particular, the first divided differences in 

column three in Table 1 are obtained from the identities, 

Table 6:1: Divided difference table for first-order theory 

i  ( )0 0 i

  T  First Divided Second Divided  
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Difference Difference 

2  ( )0 0 2

  T    

  ( )1

1 1 2

  T   

1  ( )0 0 1

  T   ( ) ( )0 1

1 1 1 1 1 2

0 1

1 2

0

      

 

−


−

T T
 

  ( )0

1 1 1

  T   

0  ( )0 0 0

  T    

( ) ( )
( ) ( )0 0 1 0 0 21 1

1 1 2 1 2

1 2

   

  
   

   
 

−


−

T T
T      (8a) 

( ) ( )
( ) ( )0 0 0 0 0 10 0

1 1 1 1 1

0 1

   

  
   

   
 

−


−

T T
T      (8b) 

where 
1

2 2 1     and 
0

1 1 0     on application of a mean-value theorem, and 

where 2  and 1  are distinct scales such that 2 1 0 1    = . 

The second divided difference in column four in Table 1 is identically zero as is 

evident on integration of Eq. (6a) between the limits 
1

2  and 
0

1 .  It follows then 

on substitution of Eqs. (8) into the identity ( ) ( )0 1

1 1 1 1 1 2T T       , and following 

some reorganization, that the required discrete sought identity  

( ) ( ) ( ) ( )( )0 0 0 0 0 1 1 0 0 1 0 0 2R                + −T T T T     (9) 

is obtained where, 

( )
( )

1

1 2 0 1

1 0
1 21 1

R







   

  

  −
 =  
  −  

       (10) 

and where 1R
 takes the form of a parameter arising for the indeterminacy of the 

function ( )1

  . 

Note that Eq. (9) provides transport equations for the physical space formed from 

information at the two scales 2  and 1 .  It is by this means that equations 

constraining the behaviour at the two scales 2  and 1  also constrain the 

behaviour at the full scale 0 .  Application of Eq. (9) to the governing transport 

equations (i.e., Eqs. (7)), return the all-important first-order field identities  

( ) ( ) ( )( )1 1 1 2ps ps ps psR  + −v = V V V       (11a) 
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( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −v = V V V       (11b) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + − =          (11c) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −b = B B B       (11d) 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −u = U U U       (11e) 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −v = V V V       (11f) 

where (as mentioned above) scaling is solved once the relationships for the fields 

are obtained. 

Three velocity fields are provided in Eqs (11) but there can be only one and 

therefore for a consistent velocity expression it is necessary that 1 1 1 1

v uR R R R= = = ; 

achieved by setting identical the functions 1 1

v,   and 1

u . Any additional fields of 

interest can be easily derived from Eqs. (11) and for convenience the fields of 

interest in this paper are presented in Table 2. 

 

Table 6:2: General zeroth-order and first-order finite similitude relationships 

Properties 
Zeroth-order 

identities 
First-order identities 

Density 
3

01 1 1ps ts

   =  ( )3 3 3

01 1 1 1 01 1 1 02 2 2ps ts ts tsR           = + −  

Displacem

ent 

1

1 1ps ts −=u u  ( )1 1 1

1 1 1 1 1 2 2ps ts ts tsR  − − −= + −u u u u  

Velocity 
1

1 1 1ps tsg  −=v v  1 1 1

1 1 1 1 1 1 1 2 2 2ps ts ts tsg R ( g g )  − − −= + −v v v v  

Accelerati

on 

2 1

1 1 1ps tsg  −=a a  2 1 2 1 2 1

1 1 1 1 1 1 1 2 2 2ps ts ts tsg R ( g g )  − − −= + −a a a a  

Stress 
2

01 1 1 1ps tsg = 

 
( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsg R g g       = + −     

Strain 1ps ts=   ( )1 1 1 2ps ts ts tsR= + −     

Force 
2 1

01 1 1 1ps tsg  −=F F

 

2 1 2 1 2 1

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsg R ( g g )       − − −= + −F F F F

 

Moment 2 2

01 1 1 1ps tsg  −=M M
2 2 2 2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsg R ( g g )       − − −= + −M M M M
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The field relationships in Table 2 are exact, but it is recognized that errors are very 

much a feature of experimental studies.  Although this is the topic of future work, 

the similitude identities however do provide some insight into the effect of error and 

to illustrate this consider for example the displacement identity 

( )1 1 1

1 1 1 1 1 2 2ps ts ts tsR  − − −= + −u u u u .  The reality of scaled experimentation is errors 

1

u

tsδ  and 2

u

tsδ  in the trial-space field displacements 
1tsu  and 

2tsu , respectively, which 

on substitution returns the identity ( )1 1 1

1 1 1 1 1 2 2

u u u u

ps ts ts tsR  − − −= + −δ δ δ δ , where 
u

psδ  is 

the error in 
psu .  Although the actual error in the physical space depends very much 

on the problem and how close the virtual model replicates the physical behaviour, 

this error equation nevertheless provides insight into the required accuracy needed in 

the trial spaces to achieve acceptable outcomes in the physical space. 

6.4. Scaling of structural elements 

This focus in this section is on the scaled behaviour of basic structural elements 

such as columns, beams, and struts under static loads.  The purpose here is 

twofold, firstly to provide a gentle introduction into the application of the 

similitude theory and, secondly, to understand better the response of more 

complex structures through insights gleaned from an appreciation about the 

behaviour of basic structural elements under scaling.  The relatively simple case 

studies examined in this section are analysed both analytically and numerically 

with the aid of the finite element package ABAQUS [32]. 

6.4.1. Scaling of Beam-Strut Model 

Beams are important structural components that can withstand loads primarily by 

resisting bending and serve to transfer loads to walls, girders, and adjacent 

compression members. An appreciation of how beams scale is important for 

scaled experiments and to that end consider a simple setup of an I-section steel 

beam connected to a circular hollow steel strut.  The arrangement examined is 

depicted in Fig. 1, where shown are both the full and scaled models, which have 

been recreated in the Abaqus finite element software and each are subjected to a 
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concentrated force at the free end.  The models in Abaqus are meshed with 

identical numbers of elements of type B31, which is a 2-noded linear beam 

element and identical materials are used for both the trial-space and full-scale 

models.  To verify the types of analysis, an initial comparison was performed 

between analytical and numerical models.  This provided end deflections of 

22.425mm and 22.419mm for the respective analytical and numerical models, so 

providing high confidence in the modelling approach. 

 

 

Figure 6.1: Full-scale and trial model of the beam-strut model 

Shear force and bending moment are described by the respective expressions, 

20

2 4

ps ps

ps

ps ps

ps

F x
V ( x )

F x

 


=



−



       (12a) 

0 2

2 4

ps ps ps

ps

ps ps ps

ps

F x x
M ( x )

F x x 

− 


=





       (12b) 

and examination of Table 2 provides the zeroth-order scaling identities 

2 1

0ps ts
V g V


 

−
=  and 2 2

0ps ts
M g M


 

−
= . 

In a similar fashion the standard expression for normal stress, scales according to 

the zeroth-order relationship 2

01 1 1 1ps tsg   =  in Table 2 since  

2 2 1

2 20

0 04

ps ps ts ts ts ts

ps ts

ps ts ts

M y g M y M y
g g

I I I



   
    



− −

−
= = = =     (13) 

where psI  and tsI  are second moments of area, psy  and tsy  the distances measured 

from the neutral axes of the beams in their respective spaces. 

Note that the similitude relationships provide the means to communicate the 

behaviour of the trial model to the physical space.  They in effect provide the 
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projected-trial model identified in Table 3, where maximum bending moments, 

reaction forces at the supports, and end displacements both analytically and 

numerically obtained, are tabulated.  Note that the projected-trial models provide 

an almost perfect match for both analytical and numerical models when compared 

with the full-space results.  A slightly greater mismatch is observed on a direct 

comparison of analytically and numerically obtained results.  Even at this early 

stage, the benefit offered by scaling is being revealed with high levels of 

conformity. 

Table 6:3: Detailed comparison of full-scale and projected trial model for beam-strut 

model 

 

Analytical Numerical (FEM) 

Trial 

Model 

Projected 

Trial 

Model 

Full-

scale 

Model 

Trial 

Model 

Projected 

Trial 

Model 

Full-

scale 

Model 

End 

Displacement 

(mm) 

5.6065 22.4260 22.425 5.6047 22.4191 22.4190 

Reacti

on 

force 

(kN) 

Rx 

@1 

Ry 

@1 

1.25 

1.25 

20 

20 

20 

20 

1.25 

1.202 

20 

19.232 

19.999 

19.250 

Rx 

@2 

Ry 

@2 

1.25 

0.625 

20 

20 

20 

10 

1.25 

0.576 

20 

9.226 

19.999 

9.228 

Maximum 

Moment 

(MNmm) 

0.3125 20 20 0.313 20.320 20.271 

Maximum 

Stress 

(N/mm2) 

169.56

82 
169.5682 169.5682 

171.86

5 
171.865 171.865 

 

6.4.2. Scaling of a Steel Column Exposed to Buckling 

Examined in this section are the phenomena of linear buckling and post-buckling 

of an important structural element, i.e., the I-section column.  The buckling 

phenomenon might be anticipated to provide a challenge for scaled 

experimentation since initial imperfections can influence the outcome.  

Understanding the scaled behaviour of buckling for columns and beams under 

axial compression load is of interest as flexural and torsional stability problems 

can result.  A detailed analytical and numerical examination into the buckling of 
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an I-section aluminium-alloy column is provided in reference [101].  Flexural 

buckling is reasonably well captured by the simple relationship, 

2

2cr

eff

EI
P

L


=          (14) 

where crP  is the critical buckling load, E  is Young’s modulus of the material, I is 

the cross-sectional second moment of area, and effL  is the effective length, which 

is dictated by column boundary conditions. 

Prior to the investigation of the scaled effects on scaled columns, the proposed I-

section column model is verified analytically and numerically in accordance with 

the study presented in reference [101].  The details of the full and scaled models 

are provided in Fig. 2.  Initial verification results for critical-buckling loads are 

tabulated in Table 4 for both analytical and numerical predictions and contrasted 

with those of reference [30].  The closeness of the predictions provides good 

confidence in the proposed models.  The simply supported column (6m in length) 

is made of aluminium alloy 5083 with material properties: Youngs modulus 

67600E = MPa, Poisson ratio 0 33. = , and yield stress 159 1y . = MPa.  The stress-

strain behaviour of the aluminium alloy is described by the Ramberg-Osgood 

relationship [102], 

1n

y

K
E

 




−

 
= +  

 
 

        (15) 

where the material constants 0 002K .=  and 8 8202n .=  [103].  

The analytical solution is verified with the Abaqus finite element software 

package and to obtain the critical buckling load, a linear buckling analysis is 

performed initially. The model makes use of shell elements of type S4R with 

reduced integration, which are a 4-noded doubly curved, thin element and the 

mesh consists of a total of 46800 nodes.  After linear-buckling analysis, post-

buckling analysis is performed to observe the behaviour of the column on 

applying nonlinear material properties (i.e., Eq. (15)). The Ramberg-Osgood law 

is applied in Abaqus with deformational plasticity by the specification of two 

parameters, which are yield offset yK E =  and the hardening exponent 1n−  

[80]. 
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Figure 6.2: Finite element model with applied load and boundary conditions and 

cross-section of the full-scale and trial model 

Table 6:4: Critical buckling load of a simply supported I-section column. 

 
Current Analysis Szymczak and Kujawa [30] 

Analytical Numerical Analytical Numerical 

Linear-buckling load 

(kN) 
494.496 491.901 494.5 491.2 

 

The main instability analysis is performed in Abaqus using the Static-RIKS 

command, which is a variation on the classical arc-length method for defining an 

initial geometric imperfection. The global imperfection amplitude is set to 

1500L  ( L is column length), which generally provides promising results when 

compared to experimental tests [104][105].  With this setup, the model is now 

primed for investigation of the load-deflection under scaling. 

6.4.2.1. Scaling of flexural column buckling 

The finite similitude theory is applied to the models depicted in Fig. 2 with a 

length scaling factor of 1

4
 =  and by means of the zeroth-order theory (i.e., 

identity Eq. (5)) the structure under scaling is investigated.  The material of the 

column is the same for both scaled and full-scale models with scaling parameters 

obtained via the scaling rules (see Table 2). An initial comparison is made for 

linear buckling analysis for the full-scale and trial model as shown in Fig. 3.   
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Figure 6.3: Comparison between linear buckling eigenmodes and eigenvalues 

(critical buckling load) of full-scale and trial model. 

The critical load obtained from linear buckling analysis is in exact agreement for 

both the full-scale and trial-scale models, where the full-scale critical load equates 

to 
2 −
 times that of trial-space model.  This is anticipated from Eq. (14), since 

Table 2 provides the stress and strain relationships 2

01ps tsg =   and 1ps ts=  , and 

consequently 2

0ps tsg  = , which on substitution into Eq. (15) gives, 

 

( )
( )

( )( )

( )
( )

( )
( )

2 2 42 2
0 2 2 2 1

0 02 2 2
2

ts tsps ps ts ts

cr crps ts

eff eff effps ts ts

g E IE I E I
P g g P

L L L



 
    

    


−

− −

−
= = = =        (16) 

 

which is in accordance with force relationship 2 1

0ps tsg  −=F F  (see Table 2) but 

since ps ts =  it follows that 
2

0 1g  =  and consequently ( ) ( )2

cr crps ts
P P −= . 

The outcome of the post-buckling, nonlinear-stability analysis is provided in Fig. 

4, where the projected trial-space results are contrasted against the full-scale 

predictions.  Perfect agreement is achieved for the load-deflection response of the 

column, providing further evidence of the efficacy of the zeroth-order theory in 

this case. 

 

Mode 1: Eigenvalue=30.744 

 

Mode 3: Eigenvalue=120.563 

 

Mode 2: Eigenvalue=86.267 

 

Mode 1: Eigenvalue=491.901 

 

Mode 2: Eigenvalue=1380.270 

 

Mode 3: Eigenvalue=1929.000 

 

Full-scale Model 

Trial Model 
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Figure 6.4: Load–lateral displacement curves for comparison. 

6.4.3. The Thin-section Problem 

The relatively simple examples considered thus far satisfy Eq. (4) and the rules of 

zeroth-order finite similitude.  It is of interest at this stage to maintain the relative 

simplicity but introduce a problem that fails to satisfy Eq. (4) yet conforms to 

identity Eq. (6a), i.e., first-order finite similitude.  An important area of active 

research for scaled experimentation is around the concept of geometric similarity 

as defined by dimensional analysis.  It can be desirable on practical grounds to 

break the rules of geometric similarity especially if thin structural elements are 

involved, where one or more of the structural dimensions are significantly smaller 

than the others.  For pronounced scaling ratios that are often needed when scaling 

large structures (e.g., bridges, skyscrapers) the limitation imposed by thinner 

sections can be particularly constraining.  Unrepresentative behaviour such as 

localized buckling and tearing can be the product of very thin sections along with 

standard of-the-shelf items being unavailable.  The open literature in this area is 

underpinned by dimensional analysis and is case dependent involving ad-hoc 

practical fixes and consequently does not provide a systematic unified solution 

[43,75,106–108].  It is of interest therefore to assess whether first-order finite 

similitude can provide any insight into this problem for structural elements.  The 

scaling of a cantilever beam under a concentrated load is again examined but, in 

this case, geometric similarity is broken in some manner.  Detailed in Fig. 5 is a 
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rectangular hollow box section cantilever beam possessing the critical feature of 

interest, i.e., a thin wall. 

 

Figure 6.5: Rectangular hollow cross-section cantilever beam and cross-section 

The detailed geometries are presented in Table 5 for full-scale, trial-1, and trial-2 

models.  The scaling factors for two trial-space models are set to 
1

1

5
 =  and 

2

1

10
 =  but imposed on the experimental designs is the constraint that the wall 

thickness th is greater or equal to 1mm (i.e., 1mmth  ).  Note from Table 5 that 

the geometric dimensions h (height), b (width) and L (length) are all scaled 

according to the geometric scaling rule, i.e., they scale with  .  The thickness 

however is constrained and therefore does not obey this rule and, in both trial-

space models it is set to the minimum required thickness of 1 mm. 
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Table 6:5: Material properties and geometric dimensions of box-section beams 

 Variables Full-scale Trial-1 model Trial-2 model 

b (mm) 50 10 5 

h (mm) 50 10 5 

th (mm) 4 1 1 

L (mm) 1000 200 100 

Density 

(ton/mm3 

x10-9) 

7.85 7.85 7.85 

Young's 

modulus 

(GPa) 

210 210 210 

Yield stress 

(MPa) 
355 355 355 

Poisson ratio 0.3 0.3 0.3 

Case Study 1 

Applied 

Force (N) 
2000 80 20 

Measured tip 

displacement 

(mm) 

12.14 2.065 0.7 

Case Study 2 
Applied 

Force (N) 
4500 215 82.5 

 

 

Figure 6.6: Physical space and Projected trial models for the cantilever beam 

Shown in Fig. 6 is a schematic of the first order approach applied to the box-

section beam involving two scaled experiments that are projected onto the 

physical space and combined to provide a virtual model that attempts to capture 

the behaviour of the full-scale system.  The use identical of materials throughout 
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reduces the relationships 2

01 1 1 1ts psg E E  =  and 2

02 2 2 1ts psg E E  =  to 
2 1

01 1 1g  −=  and 

2 1

02 2 2g  −=  respectively, which simplifies the force and stress relationships in Table 

2 to  

 

2 2 2

1 1 1 1 1 2 2ps ts ts tsF F R ( F F )  − − −= + −            (17a) 

1 1 1 2ps ts ts tsR ( )   = + −             (17b) 

 

where 
1R  is the parameter defined by Eq. (10) that is required to be set, where the 

lateral beam deflection is, 

 

( )1 1 1

1 1 1 1 1 2 2ps ts ts tsU U R U U  − − −= + −      (17c) 

 

Two case studies are considered with case study 1 limited to linear behaviour 

described by analytical relationships and case study 2 examining the nonlinear 

response but analysed numerically.  The steel material used in the study is defined 

to behave as an elastic, perfectly plastic material. The loading conditions for both 

case studies are detailed in Tab. 5.  Consider then the linear response of the 

cantilever, and since 1 , 2  and psF  are known, a convenient approach for the 

determination of 1R  is to firstly assume zeroth-order relationships for force and 

set 2

1 1ts psF F=  and 2

2 2ts psF F= , which ensures Eq. (17a) is satisfied.  Secondly, the 

free-end tip displacements for each beam provided by the analytical relationships 

where 
3

1 1

1

1 13

max ts ts

ts

ts ts

F L
U

E I
= and 

3

2 2

2

2 23

max ts ts

ts

ts ts

F L
U

E I
=  can be substituted into Eq. (17c) to give 

the value of 1R  to be, 

 

1

1 1

1 1 1

1 1 2 2

max max

ps ts

max max

ts ts

U U
R

U U



 

−

− −

−
=

−
       (18) 

 

which provides a simple procedure for the determination of 1R  in this case, which 

in this case provides 1 0 5465R .= . 

The tip displacement for the full-scale and virtual model is calculated (with 

1 0 5465R .= ) and not too unexpectedly an exact match in this case, since 1R  is set 
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to ensure this outcome.  With 1R  determined, Eq. (17c) can now be employed to 

provide a prediction for the beam displacement shown in Fig. 7(a), which 

perfectly replicates the behaviour of the full-scale beam.  Similarly, Eq. (17b) 

provides the means to examine normal stress, the results of which are presented in 

Fig. 7.  Note that normal stress at the outer fibres of the beam is in perfect 

agreement between the virtual and full-scale models as indicated in Fig. 7(b).  

However, this is not the full story since there is a deviation in the vicinity of the 

upper and lower walls of the virtual and full-scale beams.  The normal stress is 

plotted along the mid-span of the two beams in Fig. 7(c).  The reason for the 

difference is connected to the breakage of geometric similarity, which resulted in 

the two projected models in Fig. 6 having different outer-wall thicknesses and 

satisfying the inequalities 
1 1

1 1 2 2ts tsth th th − −  .  This means that stress values exist 

in the virtual model that is not present in the full-scale model as illustrated in Fig. 

7(c).  The issue is of little real concern, however since the important field 

information recovered from the virtual is that which overlaps with the full-scale 

model and for this example at least full replication is achieved. 

 

To examine the nonlinear response of the beam (case study 2) the commercial 

software package Abaqus is applied, with the beam represented with 2-noded 

linear beam elements (B31). The first order scaling parameter 1R  is obtained 

using Eq. (17a) using the forces detailed in Tab. 5, which returns a value 1 0.304R =

.  Eq. (17c) is then applied to calculate the beam displacement of the first order 

virtual model, which is contrasted against the full-scale model as presented in Fig. 

8(a), where an exact match is revealed.  The reason for the exact prediction is 

shown in Fig. 8(b), where Eq. (7b) provides for perfect replication of the 

nonlinear stress-strain behaviour.   

 

The study in this section demonstrates that first-order finite similitude can return 

an exact representation for a situation where the traditional definition of similarity 

does not hold.  Although a relatively simple example and the focus of future work 

(with and without buckling), it nevertheless demonstrates two important features, 

i.e., an exact new form of similitude exists and breaking geometric similarity to a 

certain degree is possible and potentially very useful. 
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(a) 

 

                                                                                 (b) 

 

(c) 

Figure 6.7: Global and local behaviour of the stress field (a) Beam deflection for the 

proposed design (b) Longitudinal distribution of the maximum normal stress 

(@z=h/2 ), (c) Lateral distribution of the normal stress at mid-span. 
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(a) 

 

(b) 

Figure 6.8: Nonlinear response of a cantilever beam subjected to an end load (a) 

Beam deflection along the length of the beam (b) Stress-strain curve at the clamped 

end. 

6.5. Scaling of an eight-story long-span steel building 

This section focuses on the application of zeroth and first-order finite similitude 

to the earthquake loading of a high-rise, long-span building structure. This type of 

building is selected as the case study to focus the analysis on how the finite-

similitude theory can be applied in seismic scenarios.  It is recognized as 

mentioned above that pronounced scaling factors can give rise to significant scale 

effects arising from mass and gravity.  The traditional “solution” to this problem 
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is additional mass [93] or incrementation of the base acceleration.  The case study 

here is designed to examine this problem to ascertain whether the new theory can 

provide a possible solution.  Added-mass approaches are invariably breaking 

geometric similarity and increases in acceleration limit the materials that can be 

employed and can rule out the use of identical materials.  Acceleration can be 

shown to be inversely proportional to the dimension scaling factor  , so it can 

take on impractically high values for buildings such as high rises.   

In order to provide realism in the study, the Chi-Chi Earthquake, which yields 

very high dynamic earth pressures, is applied as the time-acceleration ground 

motion (depicted in Fig. 9 [109]).  All beams and columns in all eight stories are 

identical (with the same cross-sectional area, length) and slabs in all eight stories. 

The building has a span of 7.2 m on each side with a floor height of 3.2 m and the 

slab thickness is assumed to be of 100 mm and the beams and columns are 

modelled with I sections (IPE450) and box profiles (Box 500×500×30), 

respectively [110]. 

 

Figure 6.9: Acceleration – Time graph for Chi-Chi earthquake 

The whole structure and all components are modelled in the Abaqus finite 

element software as depicted in Fig. 10, where the B31 linear beam element (i.e., 

a first-order, three-dimensional beam element) is utilized to simulate the columns 

and beams. The use of this element significantly reduces the number of degrees of 

freedom involved providing a convenient platform for repeat calculations.  The 

slab is meshed with S4R elements (i.e., four-node shell elements) with each node 

having six degrees of freedom. 
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Figure 6.10: The eight-story building (a) CAD model  (b) Finite element meshed 

parts 

Another important consideration when modelling steel or reinforced concrete 

structures is critical damping.  Abaqus has several methods for the dissipation of 

energy in dynamic systems with the specification of damping sources.  Four 

different damping sources exist in Abaqus; these are: material and damping 

system; damping with time integration; modal damping; and global damping. In 

the case of earthquake phenomena best practice for implicit and explicit methods 

is Rayleigh damping [111,112] with the critical viscous damping factor for this 

analysis is set to 5% [113–116].   

The scaled models are designed according to the similarity laws with identical 

materials used for both full-scale and trial models to test out their ability to 

capture the effects of earthquake loading on a full-scale building structure.  The 

dimension scales selected for the study are 
1

1
10

 =  and 
2

1
20

 = , and both zeroth 

and first-order theories are applied with details presented in Table 6.   

Table 6:6: Material properties for physical, trial 1 and trial 2 models 

Properties Physical Model Trial 1 Model Trial 2 Model 

Material (Steel) S355 S355 S355 

Density (kg/m3) 7850 7850 7850 

Young’s modulus 

(GN/m2) 

210 210 210 

Yield stress 

(MN/m2) 

3.55 3.55 3.55 

Damping ratio ( ) 5% 5% 5% 

Gravity (m/s2) 9.807 9.807 9.807 

Acceleration (m/s2) 1 1 1 
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Scaling factors 
0 1 =  1 1 10 =  2 1 20 =  

Time (s) 
0

1g =  1
1 10g =  2

1 20g =  

Additional mass (kg)  No add. mass No add. mass 

 

The aim here is to adopt identical materials for both full-scale and trial models 

and consequently the zeroth order relationships for density ( 3

01 1 1ps ts

   = ) and 

Young’s modulus ( 2

01 1 1 1ps tsE g E = ) reduce to 1ps ts =  and 1ps tsE E=  with 
3

01 1

  −=  

and 
1 1g = .  This latter condition provides the zeroth-order acceleration 

relationship 1

1 1ts ps −=a a  (see Table 2), which confirms that as 
1 0 →  the 

acceleration applied to the scaled model increases as 
1

1
− → .  It is appreciated 

that increasing the acceleration can return promising results but there is patently a 

limit to what is practicable.  Staying within a reasonable range for acceleration for 

pronounced scaling factors excludes both dimensional analysis and zeroth-order 

finite similitude.  

 

Figure 6.11: Numerical deformed shapes of the physical and scaled models 

It is of interest to examine the scope of first-order finite similitude, which 

combines the information from two scaled experiments, to deal with this issue.  

The first-order acceleration relationship 2 1 2 1 2 1

1 1 1 1 1 1 1 2 2 2ps ts ts tsg R ( g g )  − − −= + −a a a a  (see 

Table 2) is the focus here in view of the limitations mentioned above.  Recall that 

each trial model is restricted to designs utilising the same material and zeroth-

order considerations provide the relationships 
3

01 1

  −=  & 
3

02 2

  −=  and 1 1g =  & 

2 2g = .  Observe that these latter two conditions mean that the first-order 
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relationship for acceleration reduces to 1 1 1 1 1 2 2ps ts ts tsR ( )  = + −a a a a .  The ground 

acceleration (as shown in Fig. 9) is assumed to act in one direction with identical 

accelerations applied in all models, i.e., 1 2ps ts tsa a a= = , and additionally it is an 

evident requirement is that gravitational accelerations are equal, i.e., 1 2ps ts tsG G G= = . 

These constraints imposed on the equation 1 1 1 1 1 2 2ps ts ts tsR ( )  = + −a a a a  provide 

1

1 2

1

1 18R


 

−

−
= = . 

The full-scale and both trial models are simulated by the Abaqus finite element 

software (details above) and the results obtained are presented in Figs. 11, 12 and 

13. The roof displacement and the story drift of the physical model and the first-

order virtual model are presented using the first-order displacement relationship 

in Tab. 2. 

The results obtained illustrate the vast promise and the benefits of two scaled 

experiments over a single experiment.  This example demonstrates the ability of 

the finite similitude theory to evaluate the behaviour of structures with 

information gleaned from two experiments.  The result in Fig. 12 shows that the 

extracted results are orders of magnitude more accurate than those obtainable 

from a single experiment.  It also worth emphasising that no recourse to 

additional mass or other acceleration increments is needed and the way this is 

achieved is not by changing the problem but by changing the similitude 

condition. 

 

Figure 6.12: Comparison of the top displacement of the full-scale model, first-order 

and zeroth-order virtual models 
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Figure 6.13: Story drift analysis of the full-scale and virtual models  

Additionally, to examine the nonlinear dynamic response of the eight story long-

span building depicted in Fig. 10, it is subjected a gradually increasing cyclic 

dynamic loading as detailed in Fig. 14(a).  Nonlinear analysis is performed on each 

of the trial models, and the results of these are combined in accordance with the 

first-order theory and presented in Fig. 14(b).  Examination of this figure reveals a 

high level of agreement with the full-scale model confirming once again the efficacy 

of the first order similitude condition.  All the models in this study are made of 

identical material with properties tabulated in Table 7 and 
1 18R =  as in the 

earthquake loading case. 

 

 

(a) 
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(b) 

Figure 6.14: (a) Applied cyclic loading scheme (b) moment-rotation response of the 

full-scale and virtual models    

6.6. Seismic performance of a steel building equipped with nonlinear 

fluid viscous dampers 

Additional sophistication is incorporated into the building design investigated in 

this section with the inclusion of dampers in the structure.  The steel construction 

frame examined involves eight stories and six bays in each direction, where the 

area plan is 36m x 36m, and the elevation view of the structure is detailed in Fig. 

15 with column and beam sections [117] identified.  The detailed section 

properties of the beams and columns are listed in Table 7.  The steel used for all 

structural elements in full-scale and scaled-down models is ST37 steel grade.  In 

addition, to perform a nonlinear time history analysis, the commercial finite 

element Sap2000 software package [118] is used and the Northridge (1994) 

acceleration-time (see Fig. 16) data is applied in the x-direction of the building as 

a ground motion. The structural damping is estimated to be at 5% and the 

placement of the fluid viscous dampers (FVDs) and the building details are in 

accordance with reference [117].  
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Table 6:7: Cross-sections of the beams and columns [117]. 

Structure Story C1 C2 B1 B2 

8-story steel 

frame 

1 RHS 360 × 20 RHS 550 × 30 W 18 × 46 W 21 × 111 

2 RHS 240 × 20 RHS 500 × 30 W 18 × 46 W 21 × 111 

3 RHS 200 × 20 RHS 450 × 25 W 18 × 46 W 21 × 111 

4 RHS 180 × 18 RHS 450 × 25 W 18 × 46 W 21 × 111 

5 RHS 180 × 18 RHS 400 × 20 W 18 × 46 W 21 × 93 

6 RHS 180 × 18 RHS 400 × 20 W 18 × 46 W 21 × 73 

7 RHS 180 × 18 RHS 360 × 20 W 18 × 46 W 21 × 50 

8 RHS 180 × 18 RHS 300 × 20 W 18 × 40 W 21 × 44 

Slab (Shell) All 100 mm thickness 

 

It is widely recognised that one of the most effective devices to dissipate energy 

during the action of an earthquake is a fluid viscous damper [119]. The details of 

the fluid viscous damper used in this study are provided by Mehdi et al. [117].  

The main parameters of the viscous dampers are the damping coefficient, velocity 

exponent   and the lateral stiffness provided by the supporting bar, which in that 

case are 2942.5 kNs/m, 0.5 and 39004 kN/m respectively.  
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Figure 6.15: Elevation view and the plan grid layout of the model 
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Figure 6.16: Applied Northridge earthquake record 

The fluid viscous damper is defined as a link property in Sap2000 and the fluid 

damper is constrained to act only along the axial direction of the damper and thus 

constrained in directions that are perpendicular to its axis. Fig. 17 shows the 2D 

elevation view of the structure along with the placements of the FVDs. 

 

Figure 6.17: Sap2000 elevation view of the model with FVDs  

 Based on a mesh-sensitivity study (see Tab. 8), the minimum numbers of 

elements for the beams and columns to guarantee convergence of the numerical 

solution, capturing the behaviour of the structure are 320 and 200, respectively; 

this mesh is applied in the presented case study.  
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Table 6:8: Mesh sensitivity analysis results 

Column 

elements 

Beam 

elements 

Total number of 

elements 

Max. top 

displacement (m) 

200 320 520 0.3705 

1000 1600 2600 0.3706 

4000 6400 10400 0.3706 

8000 12800 20800 0.3699 

 

With the full-scale model now defined, the geometric scaling parameters are set 

for trial models 1 and 2, which are 1

1
6

 =  and 2

1
10

 = , respectively.  These 

scaling factors should be selected carefully according to laboratory capacities and 

equipment limitations.  As a preliminary investigation a controlled displacement 

pushover analysis is performed prior to full dynamic analysis of the proposed 

building.  Such an analysis provides an opportunity to observe nonlinear 

behaviour under quasistatic loading.  This is facilitated by the application of 

hinge properties applied automatically to the ends of the beams to observe how 

localised plastic behaviour translates to an overall nonlinear response.  The 

nonlinear static pushover analysis is conducted on both trial models and a 

moment-rotation graphs are produced and presented in Fig. 19 (b), where perfect 

agreement, between full scale and individual scaled models is revealed.   
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Figure 6.18: Full-scale and scaled models of the 8-story steel building 

For dynamic analysis, it is not possible to capture the buildings behaviour using a 

single scaled model due to the added complexity involved, necessitating the need 

for additional scaling degrees of freedom. In this case, the scaled models are 

analysed using the same software (i.e., Sap2000) to observe their behaviour to 

predict the full-scale model behaviour under earthquake loading. The 

configuration of the three models is presented in Fig. 18 along with 

corresponding projected models.  Given that identical materials are used 

throughout the scaling parameters related to density and time are set to 3

01 1

  −=  

 

  

 

 

 

 

  

2

1

10
 =

1

1

6
 =



0 1 =

Real 

Real 

Real 

Projected Real 

Projected Real  

Virtual model 
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& 3

02 2

  −=  and 1 1g =  & 2 2g = .  The boundary and loading conditions are 

defined as in the previous case study, where gravitational acceleration and applied 

acceleration is equal for the three models, which as above, returns 1 12 5R .=  from 

the relationship 1

1 2

1

1R


 

−

−
=    

The damping coefficients for structural damping and the FVDs follow different 

scaling rules as described in reference [72].  The Rayleigh damping coefficients 

for structural damping obeys the relationship 
2

ps tsc c −= , which can be contrasted 

with the damping coefficients for the FVDs, which satisfy the relationship 

ps tsc c −= , where this latter condition assumes no change in the damping fluid 

used.  Note, however, it is possible to achieve the identity 
2

ps tsc c −=  for the FVDs 

with a change in damping fluid. This is a practical change but it does require that 

the damping fluid has an appropriate viscosity [120,121].  Both these options are 

explored here. 

Fig. 19 (a) and 20 present the behaviour of the full-scale model and the virtual 

model with the damping coefficients for the FVDs behaving as ps tsc c −=  and 

2

ps tsc c −= , respectively.  It is clear on examination of Fig. 19 (a) that there is a 

significant difference between the virtual and full-scale results with a mismatch in 

oscillation frequency.  In comparison to the prediction in Fig. 19 (a), Fig. 20 

highlights the benefits of changing the silicone oil in the scaled FDVs.  In this 

case the behaviour of the FVDs follows the same scaling behaviour as structural 

damping and the outcome is a small overall error.  The results demonstrate 

promising agreement with the full-scale model outputs and indicate the benefit of 

careful material selection.  Further evidence of the high level of agreement 

between the models is found in Figs. 21 and 22 with results for story 

displacement & inter-story drift ratios, and the base shear force, respectively.  

Overall, the results obtained from the first-order finite similitude theory provide 

confidence in the efficacy of the approach for predicting the behaviour of tall 

buildings.   
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(a) 

 

                                        (b) 

Figure 6.19: (a) Roof displacement comparison between full-scale and virtual 

models with the same silicone oil in the trial nonlinear FVDs, (b) Moment-rotation 

comparison of full-scale and zeroth-order projected trial models. 
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Figure 6.20: Roof displacement comparison of the full-scale and virtual model with 

alternative silicone oil in the trial nonlinear FVDs 

 

(a)                                                               (b) 

Figure 6.21: (a) Story displacement and (b) inter-story drift ratio comparison for 

full-scale and virtual models 
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Figure 6.22: Base shear force comparison of the full-scale and virtual models 

6.7. Conclusion 

The paper focused on the application of the finite-similitude theory by means of 

an initial examination of structural elements through to the analysis of whole-

building structures under earthquake excitation.  Two trial models at distinct 

scales were combined to predict full-scale behaviour in situations where classical 

dimensional analysis failed.  The efficacy of this approach was demonstrated with 

a high level of accuracy returned in the results and no requirement for additional 

mass or base accelerations to be artificially raised.  The following conclusions 

can be drawn from the specific trials involving both analytical and numerical 

analysis: 

1. The robustness and efficacy of a new form of similitude involving two 

scaled experiments have been reaffirmed through analytical and numerical 

studies applied to basic and practical structural engineering case studies. 

2. It has been demonstrated how the first-order finite similitude rule provides 

an approach that enables identical ground accelerations (and gravitational) 

to be applied to full and scaled models.  This was achieved without recourse 

to material substitutions and extraordinary experimental setups (e.g., use of 

centrifuge systems or additional mass techniques).  This was demonstrated 

for an eight-story steel building case study where the two-experiment 

approach returned predictions of full-scale behaviour with no error (i.e., 0% 
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error) contrasted against a like-for-like single-experimental result (i.e., no 

additional mass, same material) of 90% error.  

3. The first-order finite similitude rule has been confirmed to provide accurate 

predictions for a high-rise building containing non-linear viscous dampers, 

although a degree of physical modelling was required, i.e., the substitution 

of damping oil in the scaled dampers.  The case study demonstrated that the 

combination of two trial models could replicate the physical behaviour of 

the full-scale model with accuracy for roof displacement and maximum 

story displacement.  

4. The first-order finite similitude rule has been shown to be able to break the 

rule of geometric similarity as traditionally defined.  This was demonstrated 

for a thin-walled beam, where the theory successfully captured the exact 

global behaviour of the full-scale model for displacement and stress, despite 

the wall thickness not following geometric scaling.  

5. Nonlinear material responses were captured exactly in the thin-sectioned 

cantilever beam and in the pushover analysis for an 8-story steel building.  

No consideration was given to ductile responses arising from concrete 

cracking at this stage but there exists no barrier to their inclusion given the 

generic nature of the proposed scaling approach. 
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Chapter  

SEVEN 

7.  Conclusions and Future works 

7.1 Conclusions 

The primary goal of this thesis was to validate and evaluate a novel scaling theory 

and to demonstrate the applicability of a similitude rule called finite similitude in 

situations where classical scaling theories fail. The new concept of scaling opens up 

new possibilities for designing, testing, and evaluating structures, which is the focus 

of this thesis. Similitude rules are investigated for both single (zeroth-order) and two 

scaled (first-order) experiments in order to demonstrate the benefits of alternative 

similitude forms. The finite similitude theory combines several concepts to create a 

universal scaling theory applicable to all branches of physics. One of the primary 

distinctions between the concept of finite similitude is space scaling and space 

distortion via which objects can be scaled up or down. The thesis examines the new 

scaling theory for investigating the aseismic behaviour of structures, how discrete 

mechanical dynamic systems can be used to initiate scaling parameters, how 

complex nonlinear mechanical dynamic systems involving nonlinear viscous 

dampers, springs, and friction can be scaled, and the examination of structural 

elements through the analysis of the whole-building subjected to earthquake loads. 

This novel concept introduces new scaling factors and also introduces an entirely 

new framework for scaling using transport equations. This research examines the 

analytical and numerical evaluation of various approaches, as well as the design 

issues and limitations of experiments involving scaled-down models that preciously 

represent full-scale processes. The following major conclusions can be drawn from 

the tasks examined: 

Introducing First-order similitude theory based on two scaled experiments: 

• In the field of structural mechanics, a new form of finite similitude has been 

established that detects all scale dependencies either explicitly or implicitly. 

This novel similitude theory has been developed in differential form (possibly 
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integrated using finite differences), which enables the reconstruction of full-

scale model behaviour by combining the results from two distinct scaled 

models. As a result, it is possible to target additional material properties for 

matching between the virtual and physical full-scale models (for example, 

yield stress, Young's modulus, and density in earthquake-resistant structures).  

• Scaling theory is straightforward and applicable to analytical, numerical, and 

experimental data. Additionally, the theory guides the researcher in 

determining whether the single experiment is sufficient to provide the best 

solutions, as zeroth-order finite similitude is nested within first-order finite 

similitude.  

Evaluation of the first-order theory through practical structural and earthquake 

engineering applications: 

• As previously stated, one of the primary challenges is the inability to scale 

gravitational acceleration, particularly when considering high-rise buildings 

and gravity dams. With regard to the new theory, it is possible to disregard the 

rules required in traditional scaling theories; to employ additional techniques 

such as additional mass or the use of different materials. It has been 

demonstrated that the first-order finite similitude rule provides a technique for 

applying similar ground accelerations (and gravity) to physical and scaled 

models. This was accomplished without the use of unusual experimental 

settings or material substitutions (e.g., use of centrifuge systems or additional 

mass techniques). This was demonstrated in a case study of an eight-story steel 

structure, where the two-experiment technique predicted full-scale behaviour 

more accurately than zeroth-order theory (i.e., no additional mass, same 

material).  

• Dimensional analysis and other conventional scaling theories have difficulty 

accounting for scale effects such as strain, which is dimensionless. The 

solution to the scale effects is provided by the first-order finite similitude with 

the property of proportional field differences. With regard to the new theory, it 

is reasonable to assume that one of the primary problems has been resolved. 

Additionally, the newly established proportional theory enables the avoidance 

of computational iterative processes while providing an easy and efficient 

method for obtaining scaling parameters.  
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• It has been demonstrated that the first-order finite similitude rule is capable of 

violating the standard definition of geometric similarity. This was 

demonstrated for a thin-walled beam, where the theory effectively reproduced 

the precise global behaviour of the full-scale model for displacement and stress 

despite the wall thickness not following geometric scaling.  

• While some physical modelling was required, such as substituting damping oil 

for the scaled dampers, the first-order finite similitude rule was verified to 

produce accurate predictions for a high-rise structure with non-linear viscous 

dampers. In the case study, the combination of two trial models successfully 

reproduced the full-scale model's physical behaviour in terms of roof 

displacement and maximum storey displacement. 

Application of the zeroth and first-order similitude in discrete dynamic systems: 

• The scaling behaviour of a nonlinear spring-damper-friction system was 

investigated. It was discovered that there is a significant difference in reaction 

behaviour between full-scale and single applied replica small-scale models. 

When the results of two distinct trial models were combined and the additional 

independent degree of freedom was configured appropriately, the first order 

finite similitude theory produced exact replication (within numerical error).   

• The concept of finite similitude has been extended to encompass all scale 

dependencies that occur in the domain of discrete mechanical system 

mechanics. Scaled dependences on mass, springs, structural damping, and 

viscous dashpots have been defined. The scale dependency of a nonlinear fluid 

viscous damper was investigated, and a relationship for equivalent material 

selection was discovered. Additionally, it is determined that by varying the 

viscous damping fluid, the appropriate damping coefficient can always be 

obtained between the full-scale and scaled models. In the case of selecting an 

achievable fluid material for the trial model damper, zeroth-order finite 

similitude has been demonstrated to be adequate, as has complete replica 

scaling (i.e., A single-story case study).   

• It was demonstrated that first-order theory is required for accurately describing 

the reaction of a discrete mechanical system to friction, whereas zeroth-order 

theory is insufficient for replica scaling. The scaling of a stick-slip friction 

system was investigated, and it was discovered that the zeroth-order finite 
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similitude (and thus dimensional analysis) failed to accurately represent the 

prototype's behaviour, whereas the first-order finite similitude did. The study 

demonstrated that by combining two different scaled models, the response 

behaviour of the actual model can be accurately reproduced.  

• Analyses and numerical simulations indicated that if physically feasible, 

zeroth-order scaling was optimal for linear mass-spring-dashpot models, and 

that the dashpot trials considered here required a substitute fluid.  

Application of the zeroth and first-order similitude in Continuous structural 

elements: 

• Analytical and numerical models have been used to investigate first-order 

theory, which proves to be significantly better than zeroth-order (single-scale) 

theory. As compared to a single scaled experiment, a two scaled experiments 

yields higher accuracy for aseismic structures. The proposed method reduced 

the inaccuracy associated with a single scaled experiment to a near-perfect 

match when two scaled experiments were combined for the cyclically loaded 

three-story building.  

• The advantage of matching yield stress and Young's modulus was significant 

for cyclic loading of a two bay, three storey frames, confirming the gains 

possible with the novel technique.  

• It has been demonstrated that for identical material scaled experiments in cases 

where gravity has a negligible effect, such as the beam-strut model exposed to 

a quasi-static point load and elasto-plastic buckling of I-section columns, a 

single scaled experiment is sufficient to accurately replicate the behaviour of 

the full-scale model.  

7.2 Recommendations for future research 

Due to the constraints imposed by the dimension analysis, the present scaling 

approach was validated and demonstrated to be an effective methodology capable of 

overcoming some of the issues identified in the literatures. Due to the fact that this 

work is a compilation of preliminary analytical and numerical studies utilising the 

theory of finite similitude in structural dynamics and earthquake systems, not all 

facets of the subjects can be covered. The following recommendations are made for 

future efforts: 
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• Ductile material size dependency: In the presented research, the material 

properties (specifically yield stress) of metallic materials were assumed to be 

identical, which is inaccurate for high-rise or large structures, or for large 

geometric scaling factors. This can be accomplished experimentally [57-61] 

through the use of standard material characterization tests at various scales. As 

is well known, material properties play a significant role in structural design 

and are critical input parameters for numerical modelling and simulation 

results [71]. The accuracy of the mechanical material properties has a 

significant effect on the obtained results. Thus, future research can begin by 

experimentally determining the material properties of the scaled-model, and 

then scaling parameters and optimal design can be determined accordingly.  

• Size dependence of brittle materials: Based on research on brittle concrete 

materials and the strong size dependence of their behaviour outside of the 

elastic limit, it is critical to conduct standard material tests for each scaled 

experiment at distinct sizes. References [62-67] discuss the limitations of 

concrete when it is scaled down. Similar work described in this report can be 

repeated for structures made entirely of concrete, such as gravity dams. 

However, because the behaviour of concrete materials in compression and 

tension is distinct, and the inclusion of damage parameters, a higher order 

finite similitude is required to provide sufficient degree of freedom for scaled 

experimentation design. 

• Scaling composite structures (Reinforced concrete): The majority of real-

world structural applications involve at least two distinct materials, most 

notably concrete and steel. The classical dimensional analysis-based 

approaches may address this type of problem through the use of averaging 

techniques on the material properties of composite structures, which are 

limited to the structures' elastic behaviour. However, in real-world applications 

such as structures subjected to seismic excitations, the structure exhibits 

nonlinear behaviour and damage, the design of scaled experiments clearly 

requires a higher degree of freedom, which necessitates the use of multiple 

scaled experiments, which can be provided by first-order finite similitude and 

an optimization algorithm. In this case, it is worthwhile to investigate whether 

the first-order approach works only if the violation of the zeroth-order 

similitude does not introduce new physics that is captured by the scaled 
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experiments (i.e. the material state does not change with the violation of the 

zeroth-order similitude).  

• Structures subjected to impulsive loading exhibit finite similitude: While 

earthquakes and cyclic loads were primarily used as sources of excitation in 

this study, there are some other real-world situations such as structures 

subjected to extreme conditions (explosion, blast) [68-70]. There are many 

physical parameters in that affects the design of scale experiments, including 

the mass of explosive material, its distance from the object, the properties of 

the medium between the explosive material and the building (e.g. air), and the 

reinforced structure's physical properties. Thus, it is clear that classical 

dimension analysis cannot provide sufficient degrees of freedom to scale both 

structure and source of excitation, necessitating the use of first-order finite 

similitude. 
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