100,360 research outputs found

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uniĀÆes the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Environmental performance of spaces enclosed or semi-enclosed by fabric membrane structures

    Get PDF
    . Since the 1960s a large evolution took place in the fabric structures industry, as they became more complex with time, and designers have been able to keep up with the structural implications of this changing situation. Sophisticated analytical models and computer software have facilitated the structural design of tensile membrane structures (TMS) and this has produced a diverse and complex range of design and form solutions. However, environmental issues continue to be dealt with in a cursory manner, which is still today unable to fully satisfy the clientā€™s requirements. With the vast interest in these structures, designers and manufacturers alike realised that if membrane enclosed spaces is to compete with other more conventional enclosures, a clear understanding of their environmental behaviour should be available to them. Moreover that if membrane enclosed spaces were to aspire to the same level of environmental performance as more conventional buildings, it would be necessary to develop tailored analytical techniques, which could be used to assess the likely performance of various design alternatives. This paper explores the thermal performance of membrane structures, and how these structures can be used as climate modifiers in spaces enclosed or semi enclosed by fabric membrane skins, providing thermal comfort for the occupiers. Analytical techniques that are used to investigate the environmental behaviour of fabric membranes and assessing their liability will be reviewed. The paper also looks at some of the work done by other researchers in the investigation of the thermal behaviour of fabric membranes by different techniques

    A solution strategy to include the opening of the opercular slits in moving-mesh CFD models of suction feeding

    Get PDF
    The gill cover of fish and pre-metamorphic salamanders has a key role in suction feeding by acting as a one-way valve. It initially closes to avoid an inflow of water through the gill slits, after which it opens to allow outflow of the water that was sucked through the mouth into the expanded buccopharyngeal cavity. However, due to the inability of analytical models (relying on the continuity principle) to calculate a fluid flow through a shape-and-size-changing cavity with two openings, stringent boundary conditions had to be used in previously developed mathematical models after the moment of valve opening. By solving additionally for momentum conservation, computational fluid dynamics (CFD) has the capacity to dynamically simulate these flows, but this technique also faces complications to model a transition from closed to open valves. Here, I present a relatively simple solution strategy to incorporate valve opening, exemplified in an axisymmetrical model of a suction-feeding sunfish in ANSYS Fluent software. By controlling viscosity of a separately defined fluid entity at the opercular cavity region, early inflow can be blocked (high viscosity assigned) and later outflow can be allowed (changing viscosity to that of water). Finally, by analysing the CFD solution obtained for the sunfish model, a few new insights in the biomechanics of suction feeding will be discussed

    Fault Slip and Exhumation History of the Willard Thrust Sheet, Sevier Foldā€Thrust Belt, Utah: Relations to Wedge Propagation, Hinterland Uplift, and Foreland Basin Sedimentation

    Get PDF
    Zircon (Uā€Th)/He (ZHe) and zircon fission track thermochronometric data for 47 samples spanning the areally extensive Willard thrust sheet within the western part of the Sevier foldā€thrust belt record enhanced cooling and exhumation during major thrust slip spanning approximately 125ā€“90 Ma. ZHe and zircon fission track ageā€paleodepth patterns along structural transects and ageā€distance relations along stratigraphicā€parallel traverses, combined with thermoā€kinematic modeling, constrain the fault slip history, with estimated slip rates of ~1 km/Myr from 125 to 105 Ma, increasing to ~3 km/Myr from 105 to 92 Ma, and then decreasing as major slip was transferred onto eastern thrusts. Exhumation was concentrated during motion up thrust ramps with estimated erosion rates of ~0.1 to 0.3 km/Myr. Local cooling ages of approximately 160ā€“150 Ma may record a period of regional erosion, or alternatively an early phase of limited... (see full abstract in article)

    Construction and Verification of Performance and Reliability Models

    Get PDF
    Over the last two decades formal methods have been extended towards performance and reliability evaluation. This paper tries to provide a rather intuitive explanation of the basic concepts and features in this area. Instead of striving for mathematical rigour, the intention is to give an illustrative introduction to the basics of stochastic models, to stochastic modelling using process algebra, and to model checking as a technique to analyse stochastic models

    Bayesian inference for pulsar timing models

    Full text link
    The extremely regular, periodic radio emission from millisecond pulsars makes them useful tools for studying neutron star astrophysics, general relativity, and low-frequency gravitational waves. These studies require that the observed pulse times of arrival be fit to complex timing models that describe numerous effects such as the astrometry of the source, the evolution of the pulsar's spin, the presence of a binary companion, and the propagation of the pulses through the interstellar medium. In this paper, we discuss the benefits of using Bayesian inference to obtain pulsar timing solutions. These benefits include the validation of linearized least-squares model fits when they are correct, and the proper characterization of parameter uncertainties when they are not; the incorporation of prior parameter information and of models of correlated noise; and the Bayesian comparison of alternative timing models. We describe our computational setup, which combines the timing models of Tempo2 with the nested-sampling integrator MultiNest. We compare the timing solutions generated using Bayesian inference and linearized least-squares for three pulsars: B1953+29, J2317+1439, and J1640+2224, which demonstrate a variety of the benefits that we posit.Comment: 13 pages, 4 figures, RevTeX 4.1. Revised in response to referee's suggestions; contains a broader discussion of model comparison, revised Monte Carlo runs, improved figure
    • ā€¦
    corecore