2,383 research outputs found

    A survey of fuzzy control for stabilized platforms

    Full text link
    This paper focusses on the application of fuzzy control techniques (fuzzy type-1 and type-2) and their hybrid forms (Hybrid adaptive fuzzy controller and fuzzy-PID controller) in the area of stabilized platforms. It represents an attempt to cover the basic principles and concepts of fuzzy control in stabilization and position control, with an outline of a number of recent applications used in advanced control of stabilized platform. Overall, in this survey we will make some comparisons with the classical control techniques such us PID control to demonstrate the advantages and disadvantages of the application of fuzzy control techniques

    Robotic Unicycle Intelligent Robust Control Pt I: Soft Computational Intelligence Toolkit

    Get PDF
    The concept of an intelligent control system for a complex nonlinear biomechanical system of an extension cableless robotic unicycle discussed. A thermodynamic approach to study optimal control processes in complex nonlinear dynamic systems applied. The results of stochastic simulation of a fuzzy intelligent control system for various types of external / internal excitations for a dynamic, globally unstable control object - extension cableless robotic unicycle based on Soft Computing (Computational Intelligence Toolkit - SCOptKBTM) technology presented. A new approach to design an intelligent control system based on the principle of the minimum entropy production (minimum of useful resource losses) determination in the movement of the control object and the control system is developed. This determination as a fitness function in the genetic algorithm is used to achieve robust control of a robotic unicycle. An algorithm for entropy production computing and representation of their relationship with the Lyapunov function (a measure of stochastic robust stability) described

    Research on intelligent controller design for MIMO spatially -Distributed systems with applications

    Get PDF
    Spatially dynamic distributed systems have been attracting increasing attention from researchers in the field of system modelling and control since their introduction as an alternative to simple systems to meet the ever-greater requirements to make industrial systems more precise and energy-efficient and to overcome process complexities. An approach whereby complex systems with multi-dimensional parameters, inputs or outputs are simply disregarded or simplified with the help of convenient mathematical models is no longer feasible. Therefore, the purpose of the present study is to contribute to the advancement of both theoretical and empirical knowledge in this field through the means of theoretical analysis, application simulations and case studies. From a theoretical perspective, this study focuses primarily on the design methodology of control systems. To this end, the first step is identification of requirements from the applications, followed by the implementation of an original approach underpinned by data prediction for type-2 T-S fuzzy control with the purpose of making the control system design more convenient. With this aim in mind, the study creates an interface/platform to link or anticipate spatially dynamic distributed system output from lumped system data by taking advantage of the threedimensional character of type-2 fuzzy sets. Moreover, on the basis of a decoupled spatially dynamic distributed system, this study applies Mamdani-type and interval type-2 T-S type fuzzy control, and extends a discussion about the results of simulation and analysis. With regard to application examination, the study contributes to primarily with system analysis and modelling. Along with the progress of physical analysis, a MIMO model is customized for the plant by expanding from the lumped physical character to a distributed system. Furthermore, the coupling feature of the object is addressed based on the decoupling approach and the pole placement approach, while the SISO approach is expanded to a universally acknowledged MIMO approach and Matlab is used to produce the simulation results.As a conclusion, in this research, firstly a state space model was established to expand the SISO system into a MIMO system and the interacted inputs and outputs have been decoupled using decoupling method; and then a Mamdani-type fuzzy control was designed for temperature control and an Interval Type-2 fuzzy control was designed for pressure control, using a simple state-space model instead of a fuzzy model, accordance with the practical plant in use, and very satisfied, very robust control performances were obtained

    Independent modal variable structure fuzzy active vibration control of thin plates laminated with photostrictive actuators

    Get PDF
    AbstractPhotostrictive actuators can produce photodeformation strains under illumination of ultraviolet lights. They can realize non-contact micro-actuation and vibration control for elastic plate structures. Considering the switching actuation and nonlinear dynamic characteristics of photostrictive actuators, a variable structure fuzzy active control scheme is presented to control the light intensity applied to the actuators. Firstly, independent modal vibration control equations of photoelectric laminated plates are established based on modal analysis techniques. Then, the optimal light switching function is derived to increase the range of sliding modal area, and the light intensity self-adjusting fuzzy active controller is designed. Meanwhile, a continuous function is applied to replace a sign function to reduce the variable structure control (VSC) chattering. Finally, numerical simulation is carried out, and simulation results indicate that the proposed control strategy provides better performance and control effect to plate actuation and control than velocity feedback control, and suppresses vibration effectively

    A SURVEY OF FUZZY CONTROL FOR STABILIZED PLATFORMS

    Get PDF
    ABSTRAC

    Nonlinear control for Two-Link flexible manipulator

    Get PDF
    Recently the use of robot manipulators has been increasing in many applications such as medical applications, automobile, construction, manufacturing, military, space, etc. However, current rigid manipulators have high inertia and use actuators with large energy consumption. Moreover, rigid manipulators are slow and have low payload-to arm-mass ratios because link deformation is not allowed. The main advantages of flexible manipulators over rigid manipulators are light in weight, higher speed of operation, larger workspace, smaller actuator, lower energy consumption and lower cost. However, there is no adequate closed-form solutions exist for flexible manipulators. This is mainly because flexible dynamics are modeled with partial differential equations, which give rise to infinite dimensional dynamical systems that are, in general, not possible to represent exactly or efficiently on a computer which makes modeling a challenging task. In addition, if flexibility nature wasn\u27t considered, there will be calculation errors in the calculated torque requirement for the motors and in the calculated position of the end-effecter. As for the control task, it is considered as a complex task since flexible manipulators are non-minimum phase system, under-actuated system and Multi-Input/Multi-Output (MIMO) nonlinear system. This thesis focuses on the development of dynamic formulation model and three control techniques aiming to achieve accurate position control and improving dynamic stability for Two-Link Flexible Manipulators (TLFMs). LQR controller is designed based on the linearized model of the TLFM; however, it is applied on both linearized and nonlinear models. In addition to LQR, Backstepping and Sliding mode controllers are designed as nonlinear control approaches and applied on both the nonlinear model of the TLFM and the physical system. The three developed control techniques are tested through simulation based on the developed dynamic formulation model using MATLAB/SIMULINK. Stability and performance analysis were conducted and tuned to obtain the best results. Then, the performance and stability results obtained through simulation are compared. Finally, the developed control techniques were implemented and analyzed on the 2-DOF Serial Flexible Link Robot experimental system from Quanser and the results are illustrated and compared with that obtained through simulation

    Human Being Emotion in Cognitive Intelligent Robotic Control Pt I: Quantum / Soft Computing Approach

    Get PDF
    Abstract. The article consists of two parts. Part I shows the possibility of quantum / soft computing optimizers of knowledge bases (QSCOptKB™) as the toolkit of quantum deep machine learning technology implementation in the solution’s search of intelligent cognitive control tasks applied the cognitive helmet as neurointerface. In particular, case, the aim of this part is to demonstrate the possibility of classifying the mental states of a human being operator in on line with knowledge extraction from electroencephalograms based on SCOptKB™ and QCOptKB™ sophisticated toolkit. Application of soft computing technologies to identify objective indicators of the psychophysiological state of an examined person described. The role and necessity of applying intelligent information technologies development based on computational intelligence toolkits in the task of objective estimation of a general psychophysical state of a human being operator shown. Developed information technology examined with special (difficult in diagnostic practice) examples emotion state estimation of autism children (ASD) and dementia and background of the knowledge bases design for intelligent robot of service use is it. Application of cognitive intelligent control in navigation of autonomous robot for avoidance of obstacles demonstrated.

    Semantics-preserving cosynthesis of cyber-physical systems

    Get PDF
    corecore