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Abstract 

Spatially dynamic distributed systems have been attracting increasing attention from 

researchers in the field of system modelling and control since their introduction as an 

alternative to simple systems to meet the ever-greater requirements to make 

industrial systems more precise and energy-efficient and to overcome process 

complexities. An approach whereby complex systems with multi-dimensional 

parameters, inputs or outputs are simply disregarded or simplified with the help of 

convenient mathematical models is no longer feasible. Therefore, the purpose of the 

present study is to contribute to the advancement of both theoretical and empirical 

knowledge in this field through the means of theoretical analysis, application 

simulations and case studies. 

From a theoretical perspective, this study focuses primarily on the design 

methodology of control systems. To this end, the first step is identification of 

requirements from the applications, followed by the implementation of an original 

approach underpinned by data prediction for type-2 T-S fuzzy control with the 

purpose of making the control system design more convenient. With this aim in 

mind, the study creates an interface/platform to link or anticipate spatially dynamic 

distributed system output from lumped system data by taking advantage of the three-

dimensional character of type-2 fuzzy sets. Moreover, on the basis of a decoupled 

spatially dynamic distributed system, this study applies Mamdani-type and interval 

type-2 T-S type fuzzy control, and extends a discussion about the results of 

simulation and analysis. 

With regard to application examination, the study contributes to primarily with 

system analysis and modelling. Along with the progress of physical analysis, a 

MIMO model is customized for the plant by expanding from the lumped physical 

character to a distributed system. Furthermore, the coupling feature of the object is 

addressed based on the decoupling approach and the pole placement approach, while 

the SISO approach is expanded to a universally acknowledged MIMO approach and 

Matlab is used to produce the simulation results. 
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As a conclusion, in this research, firstly a state space model was established to 

expand the SISO system into a MIMO system and the interacted inputs and outputs 

have been decoupled using decoupling method; and then a Mamdani-type fuzzy 

control was designed for temperature control and an Interval Type-2 fuzzy control 

was designed for pressure control, using a simple state-space model instead of a 

fuzzy model, accordance with the practical plant in use, and very satisfied, very 

robust control performances were obtained. 

Key words: Spatially dynamic distributed systems; State-space approach; 

Decoupling; Fuzzy Logic Systems; Interval Type-2 T-S Fuzzy Control, Biochemical 

Process. 
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Nomenclature 

Variables: 

c  Specific Heat Capacity / ( * )J Kg Co  

Q  Quantity of heat J  

M  Mass of object Kg  

T  Temperature Co  

t  Time  s  

S  Area 2m  

d  Diameter m  

  Density 3/Kg m  

h  Height m  

q 

  

 

Subscript:  

Volume rate 

Constant 

m3 

J/m3 

o  Object (here refers to vials)  

a  

p 

Air  

Pump 
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1 Introduction 

This chapter introduces the motivation of the present research based on a general 

review. For clarity purposes, this chapter also provides the layout of the thesis and 

highlights its contributions. The chapter concludes with the research outcomes.  

  



Introduction                                                                                            CHAPTER 1 

2 

1.1 Overview 

Advances and developments in medicine and medical treatment have led to a longer 

human lifespan and a lower death rate. For instance, drugs of higher purity have a 

better healing effect, such as more accurate efficacy, or relieve symptoms more 

effectively, or even contain fewer side-effects. However, the effectiveness of each 

section of manufacture can influence the desired results either positively or 

negatively, and sometimes such an influence is linked to multiple disciplines rather 

than a single cause and effect. Partially, such increasing multi-disciplinary 

requirements have directly promoted the development of pharmaceutical 

engineering, as one of the important factors. In addition, different from the chemical 

pharmaceutical process, the biochemical pharmaceutical process presents a more 

complicated nature, due to its complex biochemical reactions, such as more than one 

reactor involved in a single reaction, as well as the time-delay, unobservable and 

hardly controllable process during manufacture. Along with such nature, the 

biochemical pharmaceutical industry has transformed itself throughout the years, 

with its technologies and processes expanding and changing constantly to suit 

today’s needs. The development process for high performance equipment for use in 

the industry has now become subject to tighter and stricter regulations, especially for 

safety concerns, and this in turn has made the control process of such equipment 

more demanding, complex and challenging. The control process must ensure the 

highest form of purity of the products going through the machine, all while reducing 

the overall consumption of energy and raw materials (Koveos et al., 2013).  

In the biochemical pharmaceutical industry, sterilization is among the most critical 

processes not only for drug products, but also for the containers. Drugs administered 

orally or through injection, which are known as pharmaceutical preparations, are 

made from Active Pharmaceutical Ingredients (APIs), and the containers, including 

vials, syringes, capsules, and other packaging materials, are the last protection from 

contamination before the drugs enter the human body. Therefore, sterilization must 

ensure the elimination of any bio-contamination from the containers.  A device 
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widely accepted in the biochemical pharmaceutical industry and exclusively intended 

for sterilisation and drying of vials and syringes conveyed through it is the 

depyrogenation tunnel.  This device can consume a large amount of power resources 

when in operation, and thus, energy consumption has become an important factor 

when designing a depyrogenation tunnel along with its control system design. To 

minimize power consumption and to maintain its reliability of the sterilisation 

process, modelling and control strategies are required. The unstable pressure field 

within the depyrogenation tunnel is an additional key issue, alongside the 

temperature issue. As the vials are conveyed through, the open zone within is 

connected with the room, which will be affected significantly by the combination of 

room pressure and wind pressure. In other words, if the pressure fluctuates beyond a 

certain value, the small vials made of glass are likely to fall off, causing the device to 

stop and resulting in significant loss. In addition, more critical than the issue of 

energy consumption is the issue of physical structure deficiency caused by the 

complex nature of the device and known as a spatially dynamic distributed system.  

The spatially dynamic distributed system has attracted considerable research 

attention in recent years. Using the depyrogenation tunnel as an instance, for safety 

concerns, the equipment shall be validated to ensure that every item conveyed 

through it will satisfy the requirements of temperature and time. However, in order to 

reduce costs, the structure of this equipment is designed as a lumped parameter 

system. Meanwhile, the design is also deficient in the validation method. So far, 

there is no such efficient and theoretically feasible test method to validate the results. 

Instead, operators are using a practical method (e.g. periodically conducting 

comparison test). Thus, in order to pass the comparison test (and also meet the 

manufacture requirements), operators have to practically degrade the priority of 

energy consumption. For instance, they have to use a much higher temperature at the 

check point to ensure the test results.  

Since control system identification and design were introduced in the last century, 



Introduction                                                                                            CHAPTER 1 

4 

many scientists successfully established a variety of methods for constructing 

efficient, robust, flexible and general purpose control system approaches, such as 

PID control, optimal control, robust control, self-adapted control, fuzzy control, 

neural network-based control, expert control, and various combinations of them. In 

recent years, among these methods, the application of fuzzy system has become one 

of the most popular research interests in this area. Fuzzy control theory is a 

derivative from Professor Zadeh’s important research result in 1965, where he 

proposed the concept of fuzzy set known from traditional sets. More specifically, 

Zadeh (1965) assigned a degree to the traditional set that could decide the degree of 

the element belonging to the conventional set. This made it possible for computers to 

deal with human uncertainty and ambiguity. In this case, one of the significant 

applications evolved into fuzzy control theory. After years of development, the fuzzy 

control approach has been made suitable for the complex plants for non-model-based 

control system design method and many researchers have pushed this domain 

forward to many successes in both theory and practice. Henceforth, following the 

introduction of type-2 fuzzy sets by Zadeh in 1975, related applications and 

advancements were prompted to address a range of issues of high complexity, such 

as a spatially dynamic distributed system that cannot be simplified as a lumped 

parameter system.  

1.2 Motivation 

Based on the problems and issues identified above, the research question is how to 

minimize the consumption of energy (not only power) without affecting the system 

performance and to resolve the issues using some kind of framework that can be 

applied to many practices rather than a “customized” method suitable only for a 

single case. Therefore, this research is derived from the practical industrial 

application identified or required as spatially dynamic distributed system, while was 

initially constructed based on a SISO structure. This is partly due to the complicated 

and uncertain nature of the objects, which are usually concerned with data 

distribution and time variation within a certain area. As usual, there are several ways 
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to deal with such issues: some complicated objects are easy to model in software and 

in laboratory application where researchers can assume infinite number of sensors to 

obtain many data. Some employ mathematical methods for simplification, whilst 

others sacrifice energy consumption in order to achieve the desired results. However, 

as mentioned above, along with the gradually complex requirements of the 

manufacture processes, it is not so feasible to install many sensors in such an object 

for the reason of manufacture cost; or so accurate after simplification when the object 

contains significant variables that cannot be idealized as known formulas; or so 

earthy to sacrifice energy consumption especially when it becomes the main kernel in 

view of the plant running cost. In conclusion, sometimes it is not feasible to obtain 

the effect from the cause via the cause-and-effect relationship. However, a different 

way of dealing with the effect can be conjured up. On some occasions, difficulties in 

obtaining precise models drive the other ways to meet the system design 

requirements. Under such prerequisites, it is significant to open up a snap course for 

such purposes. For the above-mentioned systems, and especially when it is not 

possible to accurately model them mathematically, control system design can focus 

on the results using servo method, such as fuzzy control. 

Apart from the physical analysis and application design to deal with the identified 

issue, the theoretical challenges as associated with the spatial distributed system with 

MIMO nature and its control approaches are also identified. One of the challenges of 

this thesis is to make sure that there is a balance of accuracy and response within the 

system, so the total number of sensors used in the system needs to be limited to 

reduce the cost, but must still be high enough to retrieve the amount of data with 

acceptable levels of accuracy. In accordance with the complicated and even coupling 

nature of the variables associated with spatially dynamic distributed systems, the 

control system is designed to deal with the issues instead of considering the objects 

directly.  

At the practical level, another important motivation driving that justifies the present 
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research is that there is a need to address the current concerns about designing 

principles and limitations. This project also aims to create a good balance between 

accuracy and the response the machine produces and to reduce the amount of energy 

the machine consumes to operate, which will ultimately reduce the total cost of 

machine operation. Having more sensors will allow more data with higher rate of 

accuracy. However, the downside of this is the lack of quick response from the 

machine. On the other hand, reducing the number of sensors used in a system will 

result in excellent system response, but it can adversely affect accuracy. This is 

usually known as a lumped parameter system. 

1.3 Research Questions 

The logical framework of the research, throughout the modelling and assumption and 

to the facilitation of control systems, is outlined in the following research questions. 

1.3.1 Modelling: how can a SISO system be expanded into a MIMO system? 

For purposes of analysis, only one input and output (temperature) is considered and 

established for the original physical plant. However, as recommended by technicians 

and engineers, it is worth considering an additional input and output to prevent 

accidents that could disrupt the entire production line. Furthermore, it is well-known 

that the best way to enhance precision is to optimize the physical structure design of 

the plant, such as adding more sensors, when the issue of cost is of no concern. 

Therefore, the issue this research is faced with is how to expand the mathematical 

design of a SISO system into a MIMO system without changing the original physical 

structure of the plant. Additionally, in case the introduced parameter, input or output, 

is somehow coupled in nature with the existing parameter, input or output, the 

research must also figure out how to deal with such a situation. 
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1.3.2 How can the coupled nature be solved? 

After the expansion work is done, two inputs, two outputs and the two states, which 

is not a commonly seen, and standard mathematical state space model, are coupled 

together. That is to say, how can the coupled nature of this plant can be solved in case 

to facilitate the design of control systems? 

1.3.3 How can the energy consumption be reduced? 

As for the practical-in-use plant, it is mounted with only two sensors, one for 

temperature control and one for pressure monitor. In other word, this plant is 

designed as a lumped parameter system, for cost-down purpose, as the more sensors, 

the more cost. in order to meet FDA’s requirements (to heat the vials to 300ºC and 

keep them for 5 minutes under this temperature), the most secure way is to set the 

desired temperature to 340ºC. And it is well known that to generate the high 

temperature environment even in a small space will consume large amount of energy, 

and even reference temperature is lower down by 1ºC, energy consumption will be 

accumulatively reduced. Therefore, the research question that how can the energy 

consumption be reduced is also a very practical issue to settle down. 

1.3.4 How can type-2 fuzzy control be implemented? 

Although the three-dimensional nature of type-2 fuzzy sets is well-known, the 

research question for each design here is how to determine the primary and 

secondary fuzzy sets and membership functions. This is greatly important because it 

is common knowledge that one of the drawbacks of fuzzy control is one-on-one 

design, with no two plants having the same fuzzy control. Therefore, the research 

must determine how to choose the appropriate fuzzy sets (parameters) and how to 

fuzzify the parameter in order to facilitate the design and make it popular. On the 

other hand, in view of process requirements, the research questions are not only 

considering popularising the design, but also how to reduce the calculation time and 
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how to simplify the type-2 fuzzy control design process, such as the type-reduction 

process. 

1.4 Contributions 

The main contributions of this thesis are summarised as follows: 

 Based on a comprehensive literature review of both theory and practice, the 

concepts and the definitions of the related subjects are revisited and clarified 

with reasonable justifications/revisions and improvements demonstrated through 

descriptions and examples.  

 Expansion of the SISO spatially dynamic distributed system to MIMO spatially 

dynamic distributed system, to introduce another variable based on the existing 

physical structure of the machine. 

 The creation of a platform for a MIMO spatially dynamic distributed system 

control scheme.  

 Development of a solution to the system’s coupling nature 

 Application of matrix transformation to expand the SISO pole placement method 

to MIMO pole placement 

 Controlling the decoupling system based on the design of a Mamdani-type fuzzy 

control scheme 

 Application of data-based design to create interval type-2 T-S fuzzy control for 

the system and development of an interface for 2D control conversion to 3D 

control 
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1.5 Structure of Thesis 

This thesis is divided into seven chapters. Apart from Chapter 1, which is the 

overview and introduction to this research, and Chapter 7, which provides the 

conclusions drawn from the research and recommendations for further study, the rest 

of the chapters are separated into two parts, namely, theoretical study and application 

area design and development. Chapters 2 and 3 provide the background and 

methodology for the research thesis, respectively; Chapter 4 is concerned with the 

application area design and development, including model expansion design, pole 

placement control and decoupling control design; Chapter 5 addresses the theory-

based study of fuzzy control and type-2 fuzzy control system design, which will be 

facilitated for MIMO spatially dynamic distributed system, and the designed fuzzy 

control system will be validated with the model established in Chapter 4; Chapter 6 

presents the simulation results and analysis, finalising the research content. The 

outline of the thesis is as follows: 

Chapter 1 Introduction and outline of the thesis. 

Chapter 2 The literature review covers the practical and theoretical background, 

including research related to the modelling and simulation of MIMO 

spatially dynamic distributed systems based on the conventional control 

theory, as well as conventional and type-2 fuzzy control to tackle the 

problems of control of spatially dynamic distributed systems.  

Chapter 3 The fundamental knowledge and preliminary methodologies related to the 

research work in this thesis are set out, and some concepts and definitions 

are clarified. 

Chapter 4 MIMO spatially dynamic distributed system analysis and modelling are 

generated using the state space approach, and relevant pole placement 

and decoupling control method based on state feedback analysis are 

developed for this application. 
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Chapter 5 The mathematical analysis and control system design for MIMO spatially 

dynamic distributed systems is achieved using the data-based predictive 

control approach. Furthermore, this chapter is also concerned with the 

development of an interval type-2 fuzzy control framework without 

reliance on objects. 

Chapter 6 Comparison and analysis of the simulation results. 

Chapter 7 Conclusions and recommendations for further research. 

1.6 Published Papers 

1) Y. Z. Wang, Q. M. Zhu and M. Nibouche, “State-Space Modelling and Control     

of a MIMO Depyrogenation Tunnel”, accepted by 34th Chinese Control 

Conference and SICE Annual Conference 2015 (CCC&SICE2015),27-31, July, 

Hangzhou. 

2) Y. Z. Wang, Q. M. Zhu and M. Nibouche, “Mamdani Type Controller Design for 

MIMO Systems with Case Study”, accepted by 7th International Conference of 

Modelling, Identification and Control 2015 (ICMIC 2015), 18-20, December, 

Tunisia. 

3) Y. Z. Wang, Q. M. Zhu and M. Nibouche, Intelligent Control of MIMO 

Spatially-Distributed Systems with Applications, Book, (under preparation) 
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2 Background and Literature Review 

This chapter introduces the general background to the practice and applications of 

the research. It also briefly reviews the most commonly used control algorithms 

provided by conventional theory, fuzzy control theory, and spatially dynamic 

distributed systems and control. Further, the research aims, objectives, contributions 

and motivation of this research are presented. The chapter concludes with an outline 

of the thesis. 

 

 

 

 

 

  



Background and Literature Review                                                     CHAPTER 2 

12 

2.1 Spatially Dynamic Distributed Systems 

2.1.1 Introduction  

The system identification is an art and the science for constructing a mathematical 

model of a system (Ljung, 2010). From one perspective, a suitable mathematical 

model will afford comprehensive insight into system structure and core elements, 

thus ensuring ample data on consequential sections, signal transmission, controller 

design and other aspects. The system identification and modelling should be the 

foundation of all work, because a well-designed system model will deliver the most 

elaborate precision in validation output for a proposed controller. 

As the software industry is becoming increasingly more developed, various reputable 

applications have begun to be exploited for the purposes of system modelling. 

Generally, AutoCAD is proper to graphic design and ANSYS is tailored for finite 

element design, which is extensively used in industrial design. Matlab, as one of the 

powerful simulation tools in system design, provides capacious space and freedom 

for engineers to construct their own options. In conclusion, the problem is how to 

identify the system and what software to use to model it. 

The control theory of spatially dynamic distributed systems was first introduced in 

the mid-twentieth century. Initially, the research in this field focused on linear and 

half-linear systems, without considering the state boundary of control, due to the 

complexity of spatial distributed systems. Wang (1964) discussed the properties of 

spatially dynamic distributed systems, including stability, controllability, 

observability and the issue of optimal control. Consequently, Butkovsky (1969) 

generalized the extremum principle to specific spatially dynamic distributed systems, 

which had originally been used in the theory of lumped parameter system control 

theory. Meanwhile, he utilized the moment method to achieve optimal control over 

spatially dynamic distributed systems. Subsequently, Lions (1971) developed the 

optimal control and identification theory of spatially dynamic distributed systems 
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and he conducted further study on the definite theory of the partial differential 

equations, which was used to describe the distributed parameter systems, including 

elliptic type, parabola type and hyperbolic type of partial differential equations.  

As the control of spatially dynamic distributed systems is becoming an increasingly 

prominent research field, an abundance of research results is being produced. The 

relevant analysis of optimal control, tuning, random control, self-adaptive control, 

robust control is gradually supplemented in the control of linear spatially dynamic 

distributed systems and the important theories of stability, controllability and 

observability have been perfected in this field as well (Curtain, 1978). The main 

research methods of linear spatially dynamic distributed systems consist of abstract 

space theory, functional analysis, spectral method, frequency domain analysis 

methods, finite difference method and finite element method, among others.  

Consequently, in keeping with the developmental trajectory of contemporary science 

and technology as well as practical engineering control systems, the control of non-

linear spatially dynamic distributed systems has been the focus of ample research and 

analyses, fostering the development and implementation of effective control 

methods. These methods include the stability control based on Lyapunov 

(Christofides, 2001), PID control (Alvarez, 2001), model control (Chen and Chang, 

1992), geometric control (Kravaris, 1991), control based on finite dimension system 

theory (Hoo, 2001), model predictive control (Zheng, 2004), self-adaptive control 

(King, 2003), sliding model control (Sira, 1989) and optimal control (Park, 1995). 

Meanwhile, some methods that were originally intended for linear spatially dynamic 

distributed systems are now used in the controller design of non-linear spatially 

dynamic distributed systems.  

Spatially dynamic distributed system is a term that may not be familiar to the general 

public, but it permeates every aspect of daily life. One example is a room which is 

heated with a central heater or is cooled with an air conditioner, and another example 

is a reactor which is pressured with compressed air. The temperature field and 
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pressure field identified from these two examples are two typical cases of spatially 

dynamic distributed systems. In general, spatially dynamic distributed system is 

considered as a system with parameters that span over space and time, which means 

that, within a certain space and within a certain period of time, the parameters vary 

with time, or space, or both. As a result, spatially dynamic distributed system is also 

known as parameter distributed system. Hence, when considering the Energy 

Conservation Law, most of the spatially dynamic distributed systems can be 

represented as follows: 

2 2

2 2
(z, t, x, , , , ,..., , ) 0

n n

n n

x x x x x x
F

z t z t z t

     


                                                              (2.1.1) 

Where z and t are independent variables, z [ , ]a bl l  denotes the variable of space, and 

,a bl l are constants, 0t   denotes the time constant, x is the dependent variable, 

therefore ( )F   is a nonlinear function with regard to the independent variables z and 

t, dependant variable x, and partial derivative formula of x with regard to 

independent variables from the first order to n-order. 

2.1.2 Development 

The control theory of spatial distributed systems was first introduced during the mid-

twentieth century. Initially, the research in this field focused on linear and half-linear 

systems, without considering the state boundary of control, due to the complexity of 

spatial distributed systems. In 1954, Xuesen Qian launched the discussion about heat 

conduction process in distributed parameter systems, finally leading to the 

application of the concept of infinite transfer function. Wang (1964) discussed the 

properties of spatially dynamic distributed systems, including stability, 

controllability, observability and the issue of optimal control. Consequently, 

Butkovsky (1969) generalized the extremum principle to specific spatially dynamic 

distributed systems, which had been initially used in the control theory associated 
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with lumped parameter systems. Meanwhile, he utilized the moment method to 

optimally control spatially dynamic distributed systems. Subsequently, Lions (1971) 

developed the optimal control and identification theory of spatially dynamic 

distributed systems, and he conducted further study on the definite theory of the 

partial differential equations, which was used to describe the distributed parameter 

systems, including elliptic type, parabola type and hyperbolic type of partial 

differential equations.  

As the control of spatially dynamic distributed systems is becoming an increasingly 

prominent research field, an abundance of research results is being produced. The 

relevant analysis of optimal control, tuning, random control, self-adaptive control, 

robust control was gradually supplemented in the control of linear spatially dynamic 

distributed systems and the important theories of stability, controllability and 

observability have been perfected in this field as well (Curtain, 1978). The main 

research methods of linear spatially dynamic distributed systems consist of abstract 

space theory, functional analysis, spectral method, frequency domain analysis 

methods, finite difference method and finite element method. Glowinski et al. (2008) 

provided an overview of quantitative research conducted on the controllability of 

distributed parameter systems as well as applications.  

The research and development on partial differential equations and functional 

analysis support the theoretical research of distributed parameter systems as well as 

providing the research with powerful analysis tools. Until now, research on the 

tuning, optimal control, controllability, observability, identity of distributed 

parameters and filtering of partial distributed systems has achieved similar results to 

lumped parameter systems, which can be considered as an expansion of relevant 

research results.  

Consequently, in keeping with the developmental trajectory of contemporary science 

and technology as well as practical engineering control systems, the control of non-

linear spatially dynamic distributed systems has been the focus of ample research and 
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analyses, fostering the development and implementation of effective control 

methods. These methods include the stability control based on Lyapunov 

(Christofides, 2001), PID control (Alvarez, 2001), model control (Chen and Chang, 

1992), geometric control (Kravaris, 1991), control based on finite dimension system 

theory (Hoo, 2001), model predictive control (Zheng, 2004), self-adaptive control 

(King, 2003), sliding model control (Sira, 1989) and optimal control (Park, 1995). 

Meanwhile, some methods initially intended for linear spatially dynamic distributed 

systems are now used in the controller design of nonlinear spatially dynamic 

distributed systems. 

2.1.3 Applications and Problems 

In engineering, it occasionally happens that control objects may need to be altered as 

distributed parameter systems due to the control system structure or actuators. For 

instance, if a hydraulic pressure actuator or pneumatic actuator is designed with 

complex structure or requires over distance, when performing modelling according to 

the actuator movement principle, the state transition of fluid or other media must be 

considered as well. Furthermore, such state transition is also described by a 

distributed parameter, which is not expected. In practice, the parameter-distributed 

controller is seldom adopted due to the difficulty involved in implementing it. In 

most cases, the control objects are parameter-distributed systems when a lumped 

parameter system serves as controller. There are generally three types of control 

approaches for distributed parameter systems: 

1) Point control approach: put the control effort on several independent points of 

control objects, such as light control panel in a room; 

2) Distributed control approach: put the control effort on several sections or sub-

area of control objects, such as the central heating system of a building, using 

distributed panels of heater to increase the building’s temperature; 
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3) Boundary control approach: put the control effort on the boundary of the control 

objects, such as flooring heating system. 

However, existing studies present obvious shortcomings. On the one hand, in the 

area of distributed parameter systems, research results are still far away from 

application in practice. On the other hand, a large gap in the research on spatially 

dynamic distributed systems remains to be filled, namely, systems with spatially 

dynamic distributed inputs and outputs. 

2.2  State-space Approach 

The state-space modelling approach is probably one of the most powerful modelling 

methods associated with the modelling and control of MIMO systems. This approach 

has undergone numerous developments over the years and has been successfully 

applied to many MIMO systems (Gueguen et al., 1985; Cassell and Choi, 2012). Due 

to its convenient transformation and simplification, the state-space approach is the 

preferred approach for characterising systems with dynamic parameters. 

2.2.1 Definition 

Once the matrices are defined, the next step is determining their controllability. 

Wonham (1967) proved that if a linear time-invariant multivariable dynamical 

equation is controllable, new eigenvalues of a new matrix can be chosen arbitrarily 

by introducing the state variable feedback. This has been further proven by Chen et 

al. (1968), who mentioned that the concepts of cyclic and model were deemed 

unnecessary. The main idea that emerged from their research results was that new 

and sufficient conditions could be derived from the non-singular transformation of 

the input vector. The current implementation will draw largely from methods 

described by Wonham and Chen. According to MathWorks (2015), a state-space 

model can be defined as a way of describing a system using state variables by a set of 

first-order differential equations or difference equations, as opposed to having one or 
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more nth-order differential or difference equations. Systems theory is the main 

foundation of the state-space model. Its early applications include famous programs 

like the Apollo and Polaris aeronautics and aerospace programs (Hutchinson, 1984). 

For example, it has seen application in the Kalman filter, which is an algorithm 

developed based on the work conducted by Kalman (1960, 1963). One version of the 

Kalman filter, known as the Kalman-Bucy filter (named after Richard Snowden 

Bucy), which is a continuous time version of the Kalman filter, has its algorithm 

based on the state-space model. It uses the measured data to decrease or even 

eliminate stochastic disturbance, and rebuilt the dynamic matrix (Gu and Yung, 

2013). The state-space model used in Kalman filter takes measured data as recursive 

state variables. The state-space model has also been used in fuzzy logic control, 

especially in the Takagi-Sugeno (TS) inference type (Wang et al., 2015). Apart from 

the previously-mentioned scientific and engineering applications, the state-space 

model has also been used in other industries, such as finance (Mergner, 2009).  

For the most part, the state-space model is particularly used in systems where there 

are multiple states to be dealt with. Within a state-space system, the state equation 

must be defined explicitly as the internal state of the system. Then, an output 

equation needs to be defined by combining the current state of the system and the 

current input of the system. The two equations will form a series of equations known 

collectively as the state-space equations (wikibook, 2015). A vector that consists of 

all the internal states of a system is known as the state space. In order to model a 

system using the state-space method, the system must be lumped. A lumped system is 

a system where a finite-dimensional state-space vector that characterizes all internal 

states of the system in entirety. In linear state-space systems, the state and output 

equations obey the superposition principle and the state space is linear. However, the 

state-space method is also suitable to be implemented in non-linear systems, but 

requires a somewhat different approach to tackling them. 

A general state-space model is shown in Figure 2-1: 



Background and Literature Review                                                     CHAPTER 2 

19 

 

Figure 2-1 General Diagram for State Space Model 

In a state-space model, the state of a system represents the very core of the model. A 

state of a system can be described as the current value of an internal element of a 

system, which changes its values independently from the system output. When using 

the state-space equations to model a system, three vectors need to be defined 

beforehand: 

Input Variables: These represent the inputs of the system. The type of system that is 

being modelled will determine the number of inputs that need to be defined. In 

general, there are two possible systems: SISO (single input single output) and MIMO 

(multiple input multiple output). In SISO systems, only one input variable needs to 

be defined, while in a MIMO system, more than one of inputs can to be defined. 

Once all the inputs have been defined, they need to be arranged in a vector form.   

Output Variables: These represent the outputs that the system produces. In a SISO 

system, only one output is produced, whereas in a MIMO system, more than one 

output is produced. The output variables are dependent on a combination of the input 

vector and the state vector. The outputs should be ideally independent of any of the 

others. That is, one input variable should only affect one output variable. 

State Variables: State variables represent the parameters within the system that 

change over time. State variables can be either linear or non-linear, depending on the 

results of system analysis. 
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The state-space model has been developed over a long period of time and it is one of 

the most powerful modelling methods in dealing with complex MIMO systems 

(Wang et al., 2015). MIMO systems that are linear and lumped can be easily 

represented using the state-space approach. 

Let S be the state-space model, then the general representation of S is as follows: 

( , , , ) : ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

S A B C D x t Ax t Bu t State Equation

y t Cx t Du t Output Equation



 
                                (2.2.1) 

The inputs, outputs, and state variables are defined respectively as follows: 

1

1

1

( ) [ ( ) ... ( )]

( ) [ ( ) ... ( )]

( ) [ ( ) ... ( )]

T
m

T
l

T
n

u t u t u t

y t y t y t

x t x t x t






                                                                                            (2.2.2) 

The matrices A, B, C and D are defined as follows: 

Dynamic Matrix  *n nA  : Also known as the state matrix, it is generally used to 

describe the dynamics of the system as well as to control the trajectory of the state 

vector  ( )x t  . 

Input Matrix  *n mB  : denotes how each control input affects the state variables of the 

systems. 

Output Matrix  *l nC  : it represents output vector ( )y t  with state vector  ( )x t  . 

Transmission Matrix *l mD : It indicates the feedforward effect of control inputs to 

output vector  ( )y t .  



Background and Literature Review                                                     CHAPTER 2 

21 

State Feedback Approach 

Based on the open loop diagram, the closed loop with state feedback approach, 

which is different from the output feedback, is also generated, as shown in Figure 2-2 

General diagram of State Feedback Approach 

 

Figure 2-2 General diagram of State Feedback Approach 

 1( ) ( ) ... ( )
T

mv t v t v t                                                                                      (2.2.3) 

Which is called reference vector and it should be noticed that there are two gain 

matrices are introduced, 

Fs   is the m*n state feedback gain matrix to specify the poles of the closed loop 

system. 

H : is the m*m  input feedforward gain matrix to specify the zeros of  the closed 

loop system. 

2.2.2 Applications 

Start from kalman filter (1964), state space approach is firstly introduced to research 

area. Any change in any input within a multivariable system will result in changes in 

all outputs most of the time and this means that the system is known as a “coupled 
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system”. According to Zheng et. al (2009), there are times where such interaction is 

not desired in an organization and this has led to decoupled systems, where 

multivariable systems being in the limelight in the last decade or so. To design a 

decoupled system, one has to ensure that each input maps to one output, effectively 

creating single input/output (IO) channel.  

In state observation, a system’s state space model is not a true feedback system and 

this means that a feedback mechanism that x’ relates to x represents a single internal 

mechanism to the plant. To put it simply, the matrices A, B, C and D are part of a 

single device and not separate “components” per se. These matrices are immutable, 

meaning that they cannot be altered during the operation of the machine since they 

are intrinsic parts of the plant (Siekmann et. al, 2015). However, if the entire plant 

has been modified, the matrices will change. Since the matrices are immutable, a 

method that modifies the system externally is needed, and that is the feedback loop. 

In a state feedback, the state vector’s value is returned back to the input channel of 

the system. If an external feedback element exists in the system, the system is a 

closed-loop system. If otherwise, the system is known as an open-loop system. 

(WikiBooks, 2015). 

2.2.3 Recent Research Outcomes 

According to Marconato et al. (2014), precise models that are capable of capturing 

details of most systems is needed in the field of measurement, since there is a 

demand for them. Development of good models allows for better understanding and 

further analysis of the plant equations. By nature, depyrogenation tunnels have a 

non-linear behaviour, which is the source of their dynamic properties. This 

dynamism is due to the increase in the total number of physical properties of the 

machine, resulting in greater difficulty to model mathematical equations that can 

accurately capture system details. Depyrogenation tunnels used to be modelled in a 

SISO fashion and though the SISO method is easy to model, their limitation arises 

from the fact that the number of parameters enhances their complexity. 
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Consequently, MIMO-based models need to be developed to complement the 

machine’s complex non-linear nature. 

In this regard, one of the best models is the one proposed by Jiang (2008), which is a 

new multi-rate fuzzy control technique for a continuous-time non-linear system. 

Jiang (2008) used the lifted Takagi-Sugeno (T-S) fuzzy logic model for the plant’s 

construction, which involved linear matrix inequalities (LMIs) and a multi-rate input 

controller for the multiple T-S linear model. It was based on the design of local 

feedback controllers using optimal disk-pole (D-Pole) placement and showed 

promising results in the closed-loop control system. Another powerful model for 

modelling a MIMO system is the state-space model. Over the years, the state-space 

model approach has been successfully applied in many different MIMO systems 

(Gueguen et al., 1980; Cassell et al., 2012). In this case, it becomes a very sound 

solution when trying to implement that state-space model in the control system 

design of a depyrogenation tunnel. 

2.2.4 Discretization  

As mentioned before, the discrete value plays a significant role in the system 

modelling. The discretization of a continuous system not only reduces the amount of 

data that need to be sampled and sent to the computer, but also enhances the 

modelling flexibility of the computer. There are several methods used Among the 

several methods that are used, the most popular to discrete a continuous model of a 

temperature field is the finite volume method, which represents and evaluates partial 

differential equations in the form of algebraic equations (LeVeque, 2002; Toro, 

1999). The effective methods for discretization are Taylor series expansion method 

and thermal balance method, which are suitable for application in stable heat transfer 

process. For the transient conduction process, the effective methods are the explicit 

difference scheme and implicit difference scheme. Under this situation, as the 

element temperature varies with both space and time, the discretization must be done 

from both space and time. Space discretization is similar to steady-state conduction, 



Background and Literature Review                                                     CHAPTER 2 

24 

while time discretization involves dividing the time by ∆τ. 

2.3 Fuzzy Logic and Fuzzy Control 

2.3.1 Introduction 

The accuracy of the acquired knowledge and the possibility to employ traditional 

control approaches of confirmed precision are both minimised as control objects are 

becoming increasingly more complex, non-linear, and presenting a hysteretic quality 

and coupling nature. As stated in the Exclusive Principle, the more complex a system 

is, the more difficult it is to obtain crispy results. In other words, complexity and 

clarity are mutually exclusive. However, the human brain has managed to overcome 

these problems successfully.  

Considering the mechanism underpinning the human brain’s decision-making ability, 

it differs from the computer’s mechanism because it does not rely on numbers 

mainly, but on concepts, patterns, images and thoughts. Furthermore, human 

language is replete with ambiguities, which the computer cannot understand. The 

introduction of fuzzy logic made it possible to translate the knowledge and 

experience presented in natural language into computer language, namely 

mathematical functions and expressions, so that the computer can now understand 

and process this information. Fuzzy logic theory is designed to perform inference 

based on certain rules, while the logic value can be any real number between 0 and 1, 

which can be easily identified and processed via numerical computational approach. 

In this case, it facilitates the combination of physical systems represented by 

mathematics and human intelligence represented by fuzzy theory, embedding the 

human ideas into control system design. 

The theory of fuzzy control considers the control objects as a “black box”. After 

translating the manipulating experience of the “black box” into “fuzzy rules”, and 

following the specific scheme, computers can imitate the actions of experts for the 
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purpose of automatic control. Therefore, it introduces the theory of fuzzy control, 

which is a computer system control technology based on natural language control 

rules and fuzzy logic inference. Fuzzy control is theoretically independent from 

mathematical models of traditional control systems but relies greatly on experience 

manipulation and knowledge base. It is worth mentioning that, although fuzzy 

control and expert system are both based on knowledge from experts, the expert 

system transfers the human language symbols directly to computer language, while 

fuzzy control rules transfer the language into numbers or mathematical expressions 

in advance of utilization. 

Due to its convenient application, fuzzy control theory has been widely accepted 

since the 1980s and 1990s. As mentioned before, the development of fuzzy control 

system minimizes the precise mathematical requirements.  

2.3.2 Fuzzy Logic 

1. Definition of fuzzy sets 

The traditional theory of sets describes the clear, determined objects distinct to each 

other. However, clarity, determination and distinction are often the exception rather 

than the rule, as there is not always a clear boundary between objects. Ambiguity is 

especially pronounced when it comes to those matters that are on a transitory stage to 

each other. Unfortunately, studies are always performed on the basis of quantity, 

indicating the impossibility of quality research. Therefore, the theory of fuzzy sets is 

the mathematical theory for description and investigation of ambiguous matters with 

clear mathematical methods. This definition was provided by Zadeh (1965), who 

expanded the traditional sets containing two values {0,1} into fuzzy ones with the 

value discourse of [0,1], whilst also giving the following mathematical definition: in 

a given domain of discourse U , there exists a mapping:   
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 : 0,1 , ( )
A

A U x x a
                                                                                    (2.3.1) 

Where A  denotes a fuzzy set or a sub-fuzzy set in the domainU ; ( )
A

x  denotes the 

degree of each element of x  belonging to the fuzzy set A  and is  known as the 

membership function of element x  in fuzzy set A . When x  is a determined element 

0x  , 0( )
A

x  is denoted as the degree of membership against fuzzy set A . Such 

definition has given the degree to fuzzy set A , whose boundary is not clear from any 

determined element 0x and made the degree mathematized. If memberships of any 

fuzzy set only have two values, 0 and 1, the fuzzy set A  is sharpened as a traditional 

set. Obviously, a traditional set is a typical case for fuzzy sets. 

2. Membership Functions 

Before a fuzzy set can be defined, the membership needs to be defined first. 

However, there is no single definition of membership, but multiple ones, due to 

differences in perception and language.  

After years of development and trial-and-test efforts, the most widely used 

membership functions are listed as follows: 

1) Triangle 

0

( , , , )

0

x a

x a
a x b

b af x a b c
c x

b x c
c b

x c


   
     
 
                                                                          (2.3.2) 

where requires a b c  . 
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2) Bell 

2

1
( , , , )

1
bf x a b c

x c
a





                                                                                     (2.3.3) 

Where c determines the central position of the function, and a, b determines the 

shape of function. 

3) Gaussian 

   

2

2

( )

2( , , )
x c

f x c e 


                                                                                              (2.3.4) 

Where c determines the central position of the function and  determines the width 

of the curve. 

4) Ladder 
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  
   


                                                               (2.3.5) 

Where requires a b  and c d . 

5) Sigmoid 
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( )

1
( , , )

1 a x c
f x a c

e 
                                                                                          (2.3.6) 

Where a and c determines the shape of function, and the function is central symmetry 

with respect to the point ( ,0.5)a  . 

3. Fuzzy Relationship 

1) Definition 

Within the traditional set theory, if some relationship exists between the elements 

with regard to the two sets, then it is not difficult to describe that relationship with 

some functions. However, as stated by the definition of traditional sets, the 

relationship between two sets either exists or not. However, after expansion to fuzzy 

set theory, the relationship between elements in two fuzzy sets came to denote the 

degree to which the elements were correlated to each other, namely, the fuzzy 

relationship. The fuzzy relationship is defined as follows: 

( , ) : [0,1]R x y A B                                                                                            (2.3.

7) 

Where R is a fuzzy subset in A B , and the relationship determines the degree of 

correlation between elements x  in fuzzy set A and elements y  in fuzzy set B. 

Therefore, ( , )R x y  denotes the binary fuzzy relationship, and abbreviated as Fuzzy 

Relationship. 

2) Fuzzy Relationship Composition 

Suppose relationship P and Q are respectively two fuzzy relationships, where 

( )P X Y   and ( )Q Y Z   ; hence, the composition of the fuzzy relationship P 
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to Q denotes the fuzzy relationship from fuzzy set X to Z, which can be represented 

as P Qo  . 

4. Defuzzification 

Defuzzification is a process whereby a single number is used to represent a fuzzy set. 

The single number shall be an element in the fuzzy set, and can, in a manner, 

represent the fuzzy set. The most commonly employed methods of defuzzification 

are outlined below: 

1) Method of Area Centre (Centroid) 

This method is designed to determine the centroid of the area encircled by the 

membership function curve and the horizontal coordinate, using the abscissa value of 

this point as the representation of the fuzzy set. 

Suppose the membership function of fuzzy set A in domain U is ( ),A u u U  . If 

the abscissa value of the centroid is cenu , then the value is calculated as follows: 

( )

( )
U

cen

U

A u udu
u

A u du
 
                                                                                                 (2.3.8) 

If domain U  is discrete as  1 2, , , nU u u u L
  and the membership of ju

 is 
( )jA u

 , 

so that cenu  can obtain as follows: 

1

1

( )

( )

n

j j
j

cen n

j
j

u A u

u
A u









                                                                                                 (2.3.9) 
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Despite being considerably accurate and reasonable, the centroid method is time-

consuming in terms of calculation. 

2) Bisector Method 

This method first determines the area encircled by the membership function curve 

and the horizontal coordinate and then determines the abscissa value of bisector that 

can divide the area into equal parts. The abscissa value is used to represent the fuzzy 

set.  

Suppose the membership function of fuzzy set A in domain U is ( ),A u u U  . If 

the abscissa value of the bisector line is bisu   and  [ , ]u a b   then the value is 

calculated as follows: 

1
( ) ( ) ( )

2

bis

bis

u b b

a u a
A u du A u du A u du   

                                                             (2.3.10) 

If domain U  is discrete as  1 2, , , nU u u u L , the area under the membership 

function is triangles, ladders or squares; therefore, the matter is reduced to 

determining the position in relation to half of the area of elements. This method is 

widely used in fuzzy control design. 

3) Method of Maximum 

In some cases, the fuzzy sets may not be regular or convex, while their membership 

function may not be a continuous curve either. In such cases, the most reasonable 

approach is to use a point with the largest degree of membership to represent the 

fuzzy sets. There are three commonly used sub-methods based on the Maximum 

Method. 

a. Mean Value of Maximum (MOM) 
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If there are more than one point with the maximum value of membership, the 

abscissa value of the average value momu  should be taken as the representation. 

Suppose ( ) max( ( ))jA u A u  , where 1, 2, ,j n L  , and there are n points in the 

largest membership degree, therefore: 

1
max

n

j
j

u

u
n




                                                                                                     (2.3.11) 

b. Largest Value of Maximum (LOM) 

If there are more than one point with the maximum value of membership in the 

domain, the point with the largest absolute value among those points should be 

selected and its abscissa value ulom should be used for the representation. 

Suppose ( ) max( ( ))jA u A u  , where 1, 2, ,j n L  , and there are n points in the 

largest membership degree; the point with the largest absolute value max( )j ku u   

should be chosen, namely: 

       lom ku u
                                                                                                    (2.3.12) 

c. Smallest Value of Maximum (SOM) 

Similar to LOM, if there are more than one point with the maximum value of 

membership in the domain, the point with the smallest absolute value among those 

points should be selected, and its abscissa value of usom should be used for the 

representation.  

Suppose ( ) max( ( ))jA u A u  , where 1, 2, ,j n L  , and there are n points in the 
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largest membership degree; therefore, the point with the largest absolute value 

min( )j ku u   should be selected, namely: som ku u . 

5. Fuzzy Inference and Implication Relationship 

A fuzzy proposition is classified as a simple proposition if it cannot be divided into 

simpler propositions. Therefore, suppose ( )A a  and ( )B b  are two simple 

propositions; if there is a fuzzy dependant relationship between the two propositions, 

such as “if ( )A a  , then ( )B b  ”, the compound proposition is called fuzzy condition 

statement, also known as fuzzy condition proposition. Suppose ( )A a , ( )B b  and 

( )U u  are fuzzy propositions, therefore there are two types of widely used statements, 

namely: 

1)  If A, then U. 

It indicates the proposition: if a is A, then u is U, or if A(a) then U(u), can be 

represented as A U  .  

In order to obtain the fuzzy implication relationship of A U , there are several 

widely used algorithms summarised as follows: 

Zadeh algorithm:  

( , ) ( )( , )

max((1 ( )),min( ( ), ( )))

(1 ( )) ( ( ) ( ))

R a u A U a u

A a A a U u

A a A a U u

 
 
                                                            (2.3.13) 

Mamdani algorithm: 
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( , ) ( )( , )

min( ( ), ( )) ( ) ( )

R a u A U a u

A a U u A a U u

 
                                                            (2.3.14) 

Larsen Algorithm: 

( , ) ( )( , ) ( )* ( )R a u A U a u A a U u                                                   (2.3.15) 

Bounded Sum Algorithm: 

( , ) ( )( , )

1 ( ( ) ( )) min(1, ( ( ) ( )))

R a u A U a u

A a U u A a U u

 
                                              (2.3.16)  

Mizumoto-s Algorithm: 

( , ) ( )( , )

1 ( ) ( )

0 ( ) ( )

R a u A U a u

A a U u

A a U u

 


                                                                              (2.3.17) 

Mizumoto-g Algorithm: 

( , ) ( )( , )

1 ( ) ( )

( ) ( ) ( )

R a u A U a u

A a U u

U u A a U u

 


                                                                         (2.3.18) 

Among the six algorithms, the Mamdani algorithm is the most successful and thus 

the most acceptable algorithm in industrial practices. However, the specific 

implication algorithm depends on the continuity of the fuzzy sets ( )A a  and ( )U u . 

This gives rise to three specific situations:  both ( )A a  and ( )U u  are discrete; ( )A a is 

discrete while ( )U u is continuous, and both ( )A a  and ( )U u are continuous. The first 

one is the most popular in practice and the calculation associated with it is performed 
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as follows: 

According to the Mamdani algorithm, the result of the fuzzy implication relationship

( , ) ( ) ( )R a u A a U u   , when ( )A a  and ( )U u  are discrete, will be a fuzzy subset of 

direct product A U  , namely ( , ) ( )R a u A U   . In this case, the fuzzy relationship 

( , )R a u  can be represented by a *m n  fuzzy relationship matrix. Therefore, the 

process consists of two steps: 

The first step involves performance of transposition of ( )A a to obtain ( )A a
r

, which is 

a column vector. This is to ensure that every element ia  in A matches with every iu  

in U . 

The second step involves performance of calculation ( ) ( )A a U u
r

o  (choose the smaller 

one) as follows: 

 
1

2
1 2

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T

n

m

n

n

m m m n

R a u A a U u A a U u A a U u

A a

A a
U u U u U u

A a

A a U u A a U u A a U u

A a U u A a U u A a U u

A a U u A a U u A a U u

   

 
 
 
 
 
 

   
   

    

r
o o

o L
M

L

L

M M M M

L





                     (2.3.19) 

Therefore, determine
( , ) ( ) ( )i j i jR a u A a U u 

, where 1, 2, , , 1, 2, ,i m j n L L , 

then: 
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1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( ) ( ) ( ) ( )

( , ) ( , ) ( , )

( , ) ( , ) ( , )
=

( , ) ( , ) ( , )

n

n

m m m n

R a u A a U u A a U u

R a u R a u R a u

R a u R a u R a u

R a u R a u R a u

  

 
 
 
 
 
 

r
o

L

L

M M M M

L
                                              (2.3.20) 

2)  If A and B, then U. 

It indicates the proposition if a is A and b is B, then u is U, or if A(a) and B(b) 

then U(u), which can be represented as A B U  . The calculation is similar to 

the first type of proposition. 

It is worth mentioning that either of the inference results U  is a fuzzy set, which 

cannot be used directly until defuzzification. 

The concept of fuzzy logic control (FLC) involves basing the design of a practical 

controller on qualitative system knowledge. FLC is generally applicable to plants 

whose mathematical model cannot be found, but the qualitative knowledge of 

experienced operators provides enough information for control system design. It is 

particularly suitable for those systems with uncertain and/or complex dynamics. 

2.3.3 Mamdani Fuzzy Control 

Mamdani (1974) was the first to introduce fuzzy control based on fuzzy condition 

statement to successfully manage to control a boiler-steam engine. This was the 

milestone that marked the birth of fuzzy control theory. In fact, fuzzy control inherits 

the basic structure of the traditional control systems, performing as the extension and 

supplement to the tradition. Similar to the traditional control systems, the general 

block diagram of a fuzzy control system is as shown below:  
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Figure 2-3 Block Diagram of General Fuzzy Control System 

As shown in the figure, the fuzzy controller constitutes the core element of the 

control system. Furthermore, the input 1x r v   and output u  of the fuzzy controller 

are crisp numbers.  

With the development of fuzzy logic, fuzzy control theory has become a key branch 

of modern control theory, and the two most widely accepted methods are the 

Mamdani method (Mamdani and Assilian, 1974) and the T-S method (Takagi-

Sugeno, 1985). Mamdani fuzzy control architecture performs control of a physical 

system based on fuzzy rules, and the rules are provided either by the expert or by the 

database of the physical system.  The T-S method requires a large amount of data to 

obtain the control discipline and it is better used for system identification and 

modelling. On the other hand, despite being flexible and imposing fewer 

requirements on the system nature, the Mamdani method presents greater complexity 

than the T-S method. Ideally, complex systems should be addressed. The structure of 

a typical Mamdani-based fuzzy controller is shown below. 
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Figure 2-4 General Diagram of Fuzzy Control System 

It is assumed that the fuzzy system has inputs x Xi i  (where 1, 2, ,i n L ) and 

outputs y Yj j  (where 1,2, ,j m L ). The inputs ix  and the outputs jy  are real 

numbers; they are also called “crisp”. 

3)  Mamdani Type Control 

A typical Mamdani Type control system always contains the modules as shown in the 

following figure: 

 

Figure 2-5 2-D Mamdani type Control Block Diagram 
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A standard Mamdani-type controller includes a fuzzification module (D/F), an 

inference module ( Ro ), and a defuzzification module (F/D); two additional modules, 

namely, the scale factor module and the proportion factor module, are required to 

convert the data from measurement into data that can be identified by the controller. 

The Fuzzifier converts the crisp inputs into its membership values for fuzzy sets, the 

Inference Engine uses the fuzzy rules in the Rule Base to produce fuzzy conclusions, 

and the Defuzzifier converts these conclusions into crisp outputs. According to Chen 

(2001), Tshe fuzzification is defining a map from the natural domain of discourse of 

the inputs and outputs to the fuzzy domain of discourse by giving the scale factors 

accordingly to represent the experience from experts for the inputs and outputs to 

‘translate’ (fuzzify) the natural domain to fuzzy domain, which is easy to ‘re-

translate’ (defuzzify) reversely. 

Fuzzification Module 

The fuzzifier maps the crisp input into a fuzzy set (Karnik, 1999). For fuzzy logic 

systems, it is important to choose the appropriate method to crisp the human 

expertise and knowledge and construct the fuzzy sets, and the output is not unique. 

With the development of science and technology, various mathematical methods 

have been developed and applied to the fuzzification procedure. In this context, the 

main issue is choosing a method that is appropriate for obtaining the optimal control 

output. Additionally, the fuzzy inference engine determines the judgment and output 

of the fuzzy controller directly. For the purposes of this research, the fuzzy inference 

plays a very important role in controller design. The controller would be much less 

popular without a well-designed rule base and fuzzy inference. 

Scale Factor Module: 

Suppose the real input is *
0x  and the real input range is * *

max min[ , ]x x  , while the desire 

fuzzy input range is max min[ , ]x x , therefore: 
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* *
*min max min max

0 0( )
2 2

x x x x
x k x

 
  

                                                                  (2.3.21) 

where k is the scale factor and is obtained from: 

max min

minmax
* *

x x
k

x x





                                                                                                  (2.3.22) 

Suppose the inputs are x X , y Y  and the output is z Z , where , ,X Y Z  are 

respectively the fuzzy domain of discourse representing x, y and z. The rules in the 

rule base have the general expression: 

where [1, ]i m ; [1, ]j n ; [1, ]k o and [1, ]p q ; iX , jY  and kZ  are the defined 

membership functions for x, y and z, respectively, and p denotes the number of rules. 

Here, iX  and jY  are defined as antecedent membership functions while kZ  is 

defined as the consequent membership function, so that the results of rule inferences 

will be fuzzy. 

Rules Inference Module 

The fuzzy control rule base is generated from language, either in a series of 

propositions “if… then …”, or in a control rule table. For a 2-D Mamdani-type 

controller, the if-then rule always takes the following form: 

Rule p: if x is iX and y is jY
, then z is kZ                         

After the construction of the rules, the rules composition principles are triggered 

accordingly. 

Proportion Factor Module 
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The coefficient used to transfer the fuzzy domain of discourse to physical domain of 

discourse is called proportion factor, denoted as uk . 

Defuzzification Module 

The fuzzy results must be subjected to defuzzification as they cannot be used directly 

as system inputs. As previously mentioned, defuzzification can be achieved through 

several methods: the centroid method, maximum of membership method, bisector 

method, etc. 

Therefore, the design procedure of the Mamdani fuzzy control system consists of the 

following steps: 

 Determine the natural domain of discourse for inputs and outputs 

 Determine scale factors and obtain the fuzzy domain 

 Determine inference engine (language base and fuzzy rules base). 

 Determine defuzzification method and obtain the distinct data. 

 Connect the controller output to the system. 

2.3.4 T-S Type Fuzzy Control 

The fuzzy values that are the inference results of the Mamdani-type controller cannot 

be used directly to drive control objects without defuzzification. Furthermore, it is 

not convenient to perform mathematical analysis for the system containing fuzzy 

values. To overcome these limitations, Takagi and Sugeno (1985) introduced a new 

type of fuzzy control inference, namely, the T-S-type fuzzy inference. This model is 

especially feasible for control of sectional-type systems, as well as for fuzzy 

modelling. 
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Consider a fuzzy proposition as: If 1x  is 1A  and 2x  is 2A  , then u  is U  . For this 

proposition, if we further know that 1x  is *
1A  and 2x  is *

2A  , then we can infer the 

new proposition that u  is *U  . 

Again, considering a linear system that can be controlled piecewise, the stated 

inference can be modified as: “If 1x  is 1A  and 2x  is 2A , then 1 2( , )u f x x  ”, where 

output u  is a numerical function related to the actuation of the inputs 1x  and 2x  

(without defuzzification), while 1A  and 2A  are fuzzy sets. 

1) Commonly used T-S type fuzzy control: 

There are two applications of T-S fuzzy control: 

0-order T-S type fuzzy controls: If 1x  is 1A  and 2x  is 2A , then u k  

1-order T-S type fuzzy control: If 1x  is 1A  and 2x  is 2A , then 1 2u px qx r    

Where k, p, q and r are constants. 

When using n T-S fuzzy rules to describe a system, suppose the input is ix  , it is 

impossible to correlate with only one rule but several rules. Therefore, suppose the 

thi  rule is denoted as 
iR  , then: 

iR : If 1x  is 1
iA  and 2x  is 2

iA , then i iu k  ( 1 2i n K, , ,  ) (for 0-order) 

Or: 
iR : If 1x  is 1

iA  and 2x  is 2
iA , then 1 2i i i iu p x q x r    ( 1 2i n K, , , ) (for 1-

order) 
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2) Algorithms to obtain output u 

Weighted Summation (wtsum):  

1 1 2 2
1

m

i i n m
i

U w u w u w u w u


     L
                                                                (2.3.23) 

where w  denotes the weight of the rule in the total output. 

Weighted Average (wtaver):  

1 1 1 2 2

1 2

1

m

i i
i n m

m
n

i
i

w u
w u w u w u

U
w w ww





  
 

  




L

L

                                                               (2.3.24) 

The typical T-S fuzzy control diagram is shown as follows: 

 

Figure 2-6 T-S Type Control Block Diagram 

2.3.5 Type-2 Fuzzy Control 

The introduction of the type-2 fuzzy set fostered the development of the algorithm of 

type-2 fuzzy logic system in recent years. The defining characteristic of a type-2 
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fuzzy set is that its membership is not clear number or boundaries, but it is derived 

from another series of membership functions. First introduced by Zadeh in 1975, the 

type-2 fuzzy set has enabled computers to effectively deal with both linguistic and 

numerical uncertainty. Since then, there has been a proliferation of studies on type-2 

fuzzy sets. Liang and Mendel (1999) were the first to introduce type-2 TSK fuzzy 

models, outlining the difference between those models and the Mamdani fuzzy 

model. Consequently, Karnil and Mendel (2001) introduced the operations on type-2 

fuzzy sets and Mendel (2002) provided an overview of type-2 fuzzy control. Since 

the emergence of fuzzy control, it has been used in many applications, such as robots 

(Lu and Liu, 2016), water tank level control (Galluzzo and Cosenza, 2011), decision-

making (Naim and Hagras, 2012) and database design (Niewiadomski, 2010). 

According to Li et al (2008, 2009), there are also several methods to realize the 3-D 

type of control. They use three levels of fuzzy sets, which is also called type-3 fuzzy 

control. However, most of them are firstly using the first (primary) level of set to 

create the model of the plant. It is very efficiency indeed, to facilitate the consequent 

fuzzy control systems design process. As it is well known that fuzzy control is very 

customized type rather than a universal type for design, such fuzzy control system 

design can be only applied to that plant and cannot be generalized from the very 

beginning. Secondly, the establishment the three levels of fuzzy sets is usually 

adopted three different dimensions independently, which cannot efficiently exhibit 

the link between different levels of dimensions (or, variables).  Type-2 fuzzy sets 

shows clearly the relationship and the influence that the secondary fuzzy sets to the 

primary fuzzy sets.  

Figure 2-6 shows the basic structure of the type-2 fuzzy control. By contrast to type-

1 fuzzy control, the fuzzy output sets must undergo the step of type reduction to 

obtain the explicit output. The type-2 fuzzy control has been the focus of numerous 

theoretical and experimental studies and it has been employed in various areas. 

Hargas (2004) put forward a hierarchical type-2 fuzzy logic control architecture and 

applied it to the control of autonomous mobile robots. Li et al. (2007) proposed a 
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decoupled interval type-2 fuzzy sliding-mode controller for controlling the chaos in 

systems and obtaining a better control performance. Wang and Li (2008) presented 

fuzzy modelling of dynamic systems with measurement noise. Abbadi et al. (2013) 

developed an interval type-2 T-S fuzzy controller for non-linear voltage. The 

proposed controller has been applied to two-generator infinite bus power system. 

Apart from engineering applications, the type-2 fuzzy control is also used in other 

areas, such as in exchange rate modelling and prediction (Medina, 2006), and in 

ATM networks via type-2 fuzzy logic systems (Liang, 2000). 

 

Figure 2-7 The Structure of Type-2 fuzzy control 

Footprint of Uncertainty 

Figure 2-8(a) shows a curve for type-1 triangle membership function, while Figure 2-

8(b) shows a projection for type-2 triangle membership function. In (a), ( )A x  is the 

membership function of the degree that a certain value 'x   belongs to fuzzy set A, 

from which it is very clear that the degree of membership can be immediately 

determined by determining the value of 'x  and the membership function. However, 

in (b), ( )A x  is the so-called blurred membership function, which means that it is not 
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a certain curve but covers a range of space. The space is determined by secondary 

membership function while correspondingly ( )A x  is called main membership 

function. Consequently, the shadow shown in (b) can also be considered as the 

possible position or footprint of the membership. Therefore, a type-2 fuzzy set is 

defined mathematically as follows: 

 

Figure 2-8 Comparison of Type-1 and Type-2 Membership Functions (© 2006 IEEE reprinted from Mendel et. al, 
2006, Fig. 1. (a) Type-1 MF. (b) Blurred type-1 MF.) 

Therefore, a type-2 fuzzy set is defined mathematically as follows: 

 (( , ), ( , )) , [0,1]xA
A x u x u x X u J     %
%                                                 (2.3.25) 

Where A% denotes a type-2 fuzzy set, the main membership is 0 ( ) 1
A

x % , and the 

secondary membership is 0 ( , ) 1
A

x u % . If the value of every secondary 

membership is equal to 1 (namely 1iu  ), A%is called Interval Type-2 fuzzy set (IT2-

FS). 
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Apart from the fact that they rely on type-2 fuzzy sets, type-2 fuzzy rules are similar 

to type-1 fuzzy rules in terms of the “if-then” structure. 

Interval Type-2 Fuzzy Relationship  

Define ,U V  as two domain of discourses, and °( )F U V  denotes the sum of all 

interval type-2 fuzzy sets in domain of discourse U V  (Robert, et al, 2006). 

Therefore, use °R to denote interval type-2 fuzzy relationship from domain U to V, and 

the relationship is denoted as: 

 ° °( )R F U V                                                                                                       (2.3.26) 

Therefore, if ( , )u v U V   , then use °( , )u v  to denote the degree of u and v with 

relationship °R  as follows: 

°( , ) [ ( , ), ( , )] [0,1]u v u v u v                                                                          (2.3.27) 

Where ( , )u v  denotes the lower boundary and ( , )u v  denotes the upper boundary 

of membership, and shall meet the following relationship: 

0 ( , ) ( , ) 1u v u v                                                                                         (2.3.28) 

Consider most of the situations in practice, number of membership function is finite, 

and use discrete domain of discourse as follows: 

 
 

1 2

1 2

, ,...,

, ,...,

m

n

U u u u

V v v v




                                                                                             (2.3.29) 

Therefore, substitute (2.3.29) into (2.3.26), interval type-2 fuzzy relationship can be 
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represented as a matrix as: 

°

° °

° °

1 1 1

1

1 1 1 1 1 1

1 1

( , ) ... ( , )

( , ) ... ( , )

[ ( , ), ( , )] [ ( , ), ( , )]

[ ( , ), ( , )] [ ( , ), ( , )]

n

m m n

n n

m m m n m n

u v u v

R

u v u v

u v u v u v u v

u v u v u v u v

 

 

   

   

 
 

  
 
 

 
 

  
  
 

M O M

L

M O M

L

                                         (2.3.30) 

Where °( , ) [ ( , ), ( , )] [0,1]i j i j i ju v u v u v     and 1,2, , ; 1,2, ,i m j n L L . 

Type-2 Fuzzy System Inference 

Consider a type-2 fuzzy system with M rules, and for each rule there are p inputs and 

1 output. Use lR  to indicate the thl  rule as follows: 

lR  : If x1 is °1
l

F , x2 is °2
l

F , … and xp is °
l
pF , Then yl is °

l
G  (Mamdani Type) 

lR : If x1 is °1
l

F , x2 is °2
l

F , … and xp is °
l
pF , Then 1 2( , , , )l

ny f x x x L  (T-S Type) 

If lR  is activated, membership function, ± ( )
lB

y , of type-2 fuzzy set is: 

± ± ° °
( )=Ц ( ) ( , y)l ll

x
x X AB A B

y x x   
                                                                    (2.3.31) 

Where X is a Cartesian Product Space with p dimensions for 1 pX X X  L , and

kX  is the domain of discourse of input xk (k=1,…,p).  

Type Reduction 
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For type-1 fuzzy control, the deffuzifier provides the crisp output and enables a type-

0 set (traditional set) to be obtained from the type-1 fuzzy set to determine the 

movements of actuators. On the other hand, for type-2 fuzzy control, the direct 

output of the deffuzifier produces a type-1 fuzzy set, which cannot be applied to 

actuators directly. Hence, Zadeh proposed an extension principle (Dubois and Prade, 

1980) to provide type-1 fuzzy sets. This subsequently fostered research on type 

reduction of type-2 fuzzy sets, considered to be an important method. Liu (2008) 

proposed an efficient centroid type-reduction strategy and generalized the strategy to 

generic type-2 fuzzy logic systems. Sepulveda et al. (2007) obtained an interval set 

of type reducer and placed the experimental study of type-1 and type-2 fuzzy 

controllers. The authors concluded that type-2 fuzzy sets were powerfully robust, 

owing to their flexibility to achieve modelling even when data were ambiguous 

(Sepulveda et al., 2007).  

Although type-2 fuzzy sets have been developed for several decades, they are yet to 

achieve the level of development of type-1 fuzzy sets. Referring to the reasons 

behind the phenomenon, the biggest obstacle is the excessive calculation and 

possible time delay during simulation. This is because of the three-dimensional 

nature of a type-2 fuzzy set which is difficult to display via image, and also 

introduces difficulty into rule inference. However, type-2 fuzzy logic system is 

definitely advantageous in describing systems beyond mathematical language. 

2.4 Deprygenation Tunnel 

In this section, the depyrogenation tunnel will be introduced in brief detail, in order 

to understand how the machine operates in general. The machine’s specifications will 

also be introduced and will serve as a reference or measuring point for the 

calculations that will be used throughout the course of this project. The methods for 

modelling the plant and the design of the control system will also be touched on 

alongside with some of the general ideas and formulas. 
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2.4.1 Application 

Over the years, the biochemical pharmaceutical industries have experienced a variety 

of changes, ranging from new development processes and high performance 

equipment to stricter and tight regulations. As a consequence, the control processes 

are becoming more various, more demanding, as well as more challenging. The aims 

of such control processes are to ensure a higher purity of finished products while 

minimising the consumption of raw materials and consequently the consumption of 

energy. For example, in the case of a depyrogenation tunnel, which is widely used in 

pharmaceutical filling lines for sterilization and drying purposes, the energy 

consumption is one of the most important factors behind choosing a model or 

another. One way of dealing with such a problem is to develop modelling and control 

strategies that will help in minimising the energy consumption burden. 

In the field of measurement and instrumentation, there is always a need for precise 

models capable of capturing most details of a system - if not all of them. In fact, as 

observed by Marconato et al. (2014), “there is an ever-increasing demand for good 

models”. The development of good models is driven by either the need to increase 

understanding of the plant or the need to support further analysis and design 

objectives.  

High-performance depyrogenation tunnels are non-linear by nature. Closely related 

to the machines’ dynamic properties, this non-linear behaviour is engendered by an 

increase in the number of the machines’ physical properties. As a result of such 

changes, basic mathematical models have grown in complexity, making it 

increasingly more difficult to capture the exact details of these systems using existing 

physical structures (Zhu et al., 2015). Traditionally, depyrogenation tunnels have 

been modelled as single input single output systems (SISO), making them relatively 

very easy to model and control. Unfortunately, with the increase in the number of 

parameters and thus in complexity, MIMO-based models are now required. This will 

require the development a different strategy for modelling and controlling them, 
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which will be significantly challenging because of their non-linear nature. 

2.4.2 Description 

A depyrogenation tunnel is a universally accepted and widely used device for 

sterilisation purposes. More specifically, it is used to remove the pyrogen, also 

known as bacterial endotoxin, from the physical components, such as stoppers, 

tubing or vials, which then come directly into contact with the injection drug 

products (FDA, 2015). Although all the physical components are pre-washed and 

washed with water for injection, the pyrogen adhering to the inner surface of these 

physical components is rather difficult to eliminate completely by dilution. 

Therefore, according to some regulations, such as Chinese Pharmacopoeia (2010 

Ed.), a FH value is specified to represent the relationship between temperature and 

duration of depyrogenation rate: destruction of the pyrogen can be achieved by 

exposing the components to a temperature of 320ºC for at least five minutes. 

The general structure and functions of a depyrogenation tunnel are divided into three 

sections, pre-heating, heating and cooling. The schematic diagram of the tunnel 

operation is shown below. 
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Figure 2-9 Systematic Diagram of Depyrogenation Tunnel 

Requirements and problems specification 

The components to be sterilised are transferred by conveyor belt through the whole 

equipment, beginning with the preheating section, then the heating section and 

finally the cooling section. The components are required to be kept in the heating 

section for at least five minutes at a temperature of 320ºC. In view of the accepted 

industrial process, the depyrogenation tunnel is designed with one hot air inlet for 

each section, with two sensors located at the pipe exit, one for temperature control 

and the other one for air pressure observation, which is obviously a typical lumped 

parameter system structure. However, it has been observed that the components of 

stoppers, vials and tubing of minimal weight are very sensitive to air pressure 

variation. Therefore, the pressure should be considered as a critical parameter instead 

of just a parameter for observation. 
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2.5 Conclusions 

This chapter mainly consists of background description and literature review of this 

research, and the content is discussed from four dimensions:  

 Spatially dynamic distributed systems, which is also the object of this research. 

 State-space approach, which is used for system analysis and modelling. 

 Fuzzy logic and fuzzy control, which is adopted for control system design. 

 The Dyprygenation tunnel, which is the application case study. 

In the part of spatially dynamic distributed systems, a general definition or 

description is given: a system with parameters, or outputs, or inputs spatially 

distributing, is categorised as a spatially dynamic distributed system. According to 

this description, in fact most of our systems, especially those commonly used in 

industry, are spatially dynamic distributed systems. However, for many reasons, in 

practical almost all the systems treated as lumped parameter ones, which will 

undoubtedly lose some precision. Sometimes such simplification is a feasible 

shortcut to deal with specific issues, but in some other situations it will expose the 

whole system to unknown risks, as the change of conditions. This section answers 

the question that why there’s a need to study spatially dynamic distributed systems 

when there are already mature simplification approaches. 

The consequent section is state space approach. In this chapter, state space approach 

is given for modelling, not only for its feasibility but also for its feasible 

superposition and the nature of involving many parameters / states. This is because 

the state space approach treat the parameters as state, thus the state is easily overlaid 

onto the state equations. As to this research, State-space approach suits the purpose 

of expanding SISO to MIMO, and taking another parameter into account. Therefore 
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in this chapter the brief introduction is firstly made to reveal its characteristics and 

then the recent outcomes and development are reviewed; the results revealed that the 

work for 2 by 2 non-standard form of pole placement approach has not been studied 

very much. In this case, in this research the relevant work has been developed as 

well. 

The third part is fuzzy logic and fuzzy control. It is employed for the design of the 

control systems for the sake that: on one hand, it can be established without a 

mathematical model, which would possibly introduce other facets affecting the 

precision of control system performance. In this chapter, two approaches are referred, 

Mamdani type and interval T-S type-2 fuzzy control, and also in this part the 

difference between a type-2 fuzzy control and a 3-D fuzzy design (though both of 

them are of three-dimensional nature) is also addressed. 

 The last section is the introduction and application of a Deprygenation Tunnel. As 

this term rare shows up in common use, it is well explained in this research including 

its description and application. It is a specific plant used mainly in biochemical 

pharmaceutical industry, and is a live, typical sample of a spatially dynamic 

distributed system. The consecutive conveying of vials (glass bottles) represents 

spatial distribution, while the physical structure of this plant is a design of a lumped 

parameter system.  
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3 Methodology 

In the following part, the methodology adopted to address the issue is introduced, 

and the general procedure is outlined in Figure 3.1. 

 

Figure 3-1 Design Methodology 
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3.1 State Space Modelling Approach 

3.1.1 Model assumption 

According to Wang et al. (2014), when modelling plant equations for a system, there 

are several critical requirements that need to be taken into consideration beforehand. 

Assuming that the vials are to be fed into the machine, the follow requirements and 

simplifications must be complied with:  

1. All batches of vials must be heated to the required temperature for a specified 

duration of time, as per the specification mentioned by the regulation.  

2. All the vials must meet the requirements where the temperature is kept higher than 

the one specified by the regulation for a set period of time.  

3. Vials are extremely sensitive to pressure and therefore careful attention must be 

paid when they are subjected to sterilisation. If the pressure is increased abruptly or 

the pressure difference in the plant exceeds the safety limit, the vials may be 

damaged, resulting in system error. This must be avoided since production may need 

to be halted.  

4. There should only be one inlet for hot and dry air.  

5. A pair of sensors to check for temperature and pressure is needed to use as 

reference for the controller design.  

6. The system assumes that it is possible to control the process based on the lumped 

parameter formulations. 
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3.1.2 System Identification 

In addition to the specifications mentioned above, it is necessary to simplify the plant 

to ensure that the modelling and design process are facilitated. To this end, several 

assumptions have to be applied. Although the three segments of the plant are similar 

in terms of operability, the heating segment is considered to be the most important of 

the three. Therefore, this segment will be utilized for modelling and simulation 

during the course of this project.  

The target object entering the machine does not have its own internal heat source.  

The initial temperature of the object is maintained after passing through the pre-

heating segment of the machine.  

The plant is assumed to be operating in a stable manner with a fixed supply of air.  

Heat convection and heat radiation are ignored and only heat conduction between the 

hot air and vials is considered. 

3.2 Pole Placement Control 

Research and development on transfer functions revealed that the stability of the 

designed system depended on the poles of the denominators as well as that 

alterations in system performance could be achieved by allocating the pole positions 

correctly. 

By contrast to SISO, linear and time-invariable systems, which have been the focus 

of the majority of studies on pole placement, dynamic systems have not been studied 

yet. 
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3.2.1  Assign closed loop poles 

The following expression gives the transfer function matrix between output Y(s) and 

reference V(s): 

   

 

 

1

1

( )
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( )
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_

_
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s s

s s
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s

s

Y s
G s C DF sI A BF B D H

V s
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sI F





     

        
   

  
       

      

                                            (3.2.1) 

With 

s sF A BF                                                                                                          (3.2.2) 

Thus, based on certain specifications, it is possible to separate the controller design 

into allocation of poles and zeroes, which is referred to as the pole and zero 

allocation approach. 

The state feedback control law underpins the derivation of (3.2.1). 

( ) ( ) ( )su t F x t Hv t                                                                                              (3.2.3) 

A closer look at (3.2.1) reveals that the denominator determines the closed loop poles 

(closed loop characteristic polynomial). 

_
( ) det ss sI F

 
   

 
                                                                                             (3.2.4) 
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Let the allocation of the target closed loop poles be undertaken in the following way: 

0

( ) ( )
n n

n i
i i

ii

s s a s 



                                                                                  (3.2.5) 

There is equivalence between (3.2.4) and (3.2.5) in order to derive the state feedback 

matrix Fs. 
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s i
i

sI F s 



 
  

 
                                                                                        (3.2.6) 

To obtain a series of n linear equations, the coefficients related to si on both sides of 

(3.2.6) must be equivalent (since 0 = 1, the equation related to sn can be eliminated): 

1 1( )

( )

s

n s n

F

F

 

 




M                                                                                                         (3.2.7) 

With the linear function of Fs being denoted by i (.). 

Theorem: The state feedback law in (3.2.3) can be used to allocate the closed loop 

poles at random, provided that the system S (A, B, C, D) from (2.2.1) is fully state 

controllable. 

3.2.2 Assign closed loop zeros 

To make sure that precise equivalence exists between the actual output y(t) and the 

reference v(t) upon satisfaction of stable state requirements, the input feedforward 

gain H has to be selected. In other words, the innate stable state gain of the closed 

loop system is restrained based on selection of H. Hence, regarding (3.2.1) and based 

on the premise of a step reference v(t), it is logical to choose: 
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   
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             (3.2.8) 

The first step in the case of MIMO systems is to verify that they are controllable. If 

controllability is ascertained, system transformation into two SISO state-space 

systems can be undertaken to achieve the pole placement design. 

3.3 Decoupling Control 

In linear multivariable systems, a change in any input will usually result in changes 

in all outputs. Such systems are characterized by coupling or interaction. It may be 

useful for certain applications to obtain a system in which such interaction between 

controls does not occur (Soponariu and Lupu, 2014). In the last ten years, 

considerable attention has been paid to designing multivariable systems in such a 

way so as to prevent interaction or coupling (Zheng et al., 2009). The design 

objective of non-interacting (or decoupled) systems is to obtain a system in which 

each input affects only one output. The primary advantage of such a design is that 

once non-interaction is achieved, the system is reduced to a number of single 

input/single output channels (subsystems) to which the well-established design 

techniques may be applied. 

In the time domain analysis, the implication of non-interaction is not apparent and 

can only be expressed through a complicated mathematical relation. Therefore, it is 

essential to apply state feedback to convert the open loop state-space model into a 

closed loop model (Siekmann et al., 2003). 

To ensure simplicity without losing generality, the plant model S( A, B, C, D) (matrix 

D = 0) is considered. The first step is to obtain the state feedback controller in the 

following way: 
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( ) ( ) ( )u t F x t Hv ts                                                                                           (3.3.1) 

Where v(t) is the reference input of the controller. Let the differential equations of a 

linear multivariable system that is decoupled into m  first order subsystems be 

expressed as 

( ) ( ) ( ) ( )

{ }
o o

i

y t M y t v t M Cx t

diag 
   

 

g

                                                       (3.3.2) 

where { }idiag   , such that 0M , that is, any thi  output is affected by the thi  input, 

and 0M  is a diagonal matrix. The characteristic polynomial of this decoupled system 

is 

det( )osI M                                                                                                      (3.3.3) 

If the decoupled structure above were to be obtained by using a state feedback 

control law in (3.3.1), the closed loop differential equations 

. .
( ) ( ) ( ) ( ) ( )sy t C x t C A BF x t CBHv t                                                     (3.3.4) 

And comparing (3.3.4) with (3.3.2) to have the equivalent equations 

( )o sM C C A BF

CBH

 
  

                                                                                           (3.3.5) 

Then the state feedback matrix Fs and the input forward matrix H can be designed. 

1
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

 
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                                                                    (3.3.6) 
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Non-singularity of CB  is thus the primary requirement for the existence of the pair 

of matrices sF  and H , called the decoupling pair. The control law of (3.3.1) formed 

out of these two matrices is known as the state feedback decoupling control law. 

With regard to (3.3.6), it is important to mention that the elements of 0M  and  , 

specifying the poles and gains of the m decoupled channels, respectively, can be 

chosen freely while preserving input and output non-interaction. 

After application of the decoupling approach, the following system is obtained:  

11 12 1

21 22 2

( ) ( ) ( ) 0
( ) ( ) ( )

( ) ( ) 0 ( )
c c o

o c p
c c o

G s G s G s
G s G s G s

G s G s G s

   
     

   
                                            

(3.3.7) 

Where ( )oG s denotes the control system, ( )cG s  denotes the controller, and ( )pG s

denotes the plant or object, and the design methodology diagram for case study is 

shown in Figure 3-2. 

 

Figure 3-2 General Diagram of Decoupling Approach 
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3.4 Mamdani Fuzzy Control 

Considering the following system after the decoupling approach: 

11 12 1

21 22 2

( ) ( ) ( ) 0
( ) ( ) ( )

( ) ( ) 0 ( )
c c o

o c p
c c o

G s G s G s
G s G s G s

G s G s G s

   
     

   
                               (3.4.1) 

Where ( )oG s denotes the control system, ( )cG s  denotes the controller, and ( )pG s

denotes the plant or object, and the design methodology diagram for the case study is 

shown in Figure 3-2. 

 

Figure 3-3 General Diagram of Fuzzy Control on Decoupling Approach 

As the depyrogenation tunnel model is using the state-space approach and 

implementing state feedback decoupling method for first phase design, the controller 

design should contain the following key points: 

As the physical model is sensitive to the environment and inputs, this paper uses the 

maximum of membership (MOM) approach for defuzzification because it provides 
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greater ease of access compared to the other methods of defuzzification. For 

simplicity, the design includes two inputs dealing with Error and Error speed, and 

one output as input of the mathematical model. It is supposed that e and ec are the 

two inputs of the controller and uf is the output, while r is the number of rules in the 

knowledge base. UF [uf1, uf2] is defined as an interface connecting to the two inputs 

of the model, while in this design phase the uf2 is set as 1, reserved for the following 

design. 

The state feedback approach is applied to determine the natural domain of Error E (t) 

(e1(t), e2(t)) and Error Change EC(t) (ec1(t), ec2(t)) from the two states X(t) (x1(t), 

x2(t)) as the given reference input V (v1, v2). Error E and EC are expressed as 

follows: 
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                                                                           (3.4.3) 

Where Ts is the sampling time interval and denoted as 1 in this design. 

To create the control system, the output of controller UF(t) (uf1(t), uf2(t)) must be 

connected to the decoupling system. 

The expression of the designed system is denoted as follows: 
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Therefore, the fuzzy control system is expressed as follows: 
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 , Ad and Bd indicate the discrete state-space 

structure. UF(t) is the output of the controller and u(t) is the output of the decoupling 

controller. 

Since this controller consists of two inputs and one output, the fuzzy inference can be 

established in the following way: 

( )UF E EC R 
 

o                                                                                                  (3.4.6) 

Where E and EC are the antecedent membership functions and UF is the consequent 

membership function, R is the rule base, and o  denotes the fuzzy implication 

operator, which is the relation composition.   

3.5 Interval Type-2 Fuzzy Control 

3.5.1 Interval Type-2 Fuzzy Control  

The results of system analysis revealed air pressure control to be a significant issue. 

Compared to temperature control, the nature of pressure control is as follows: 

1. Sensitive to pressure variation. As the whole process is in an open space 

connected with the room, the pressure within the tunnel will be influenced by 
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many factors, such as occasional opening of the door, movements of inspectors or 

operators, slight change of pressure difference between the room and the tunnel 

for no apparent reason, and so on. 

 

2. Due to its sensitivity to pressure change, air flow simulation and anticipation of 

its impact on the vials during pressure variation are challenging. 

3. Compared with temperature control, there is no time delay, which is known as 

awful robustness.  

4. Requires fast response of actuators. 

Therefore, type-2 fuzzy control is used here to combine the experts’ language with 

such uncertainty to optimise the performance of the control system. 

3.5.2 Type-2 Fuzzification 

In general, the input of a system is determined and a fuzzifier is designed to map the 

determined input values into series of fuzzy sets, which is similar to type-1 fuzzy 

sets. In the case of type-2 fuzzy control, the type-2 fuzzifier is intended to map the 

determined input values into a series of type-2 fuzzy sets. 

3.5.3  Inference 

In practice, the application of interval type-2 fuzzy inference can be simplified 

significantly. According to Karnik and Mendel (2001), in the case of an interval type-

2 fuzzy system with N rules, the rules are considered as follows: 

nR : If 1x  is °1
n

X , and … and Ix  is °
n
IX , Then y is nY , where 1,2, ,n N L .       (3.5.1) 
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Here, °
n
iX  denotes interval type-2 fuzzy sets where ( 1, , )i I K , and = ,

nnnY y y 
  

 

denotes the interval output. Let =
nny y refer to the first simplification, so that the 

output of each rule inference will become a number. 

Give input vector as follows: 

1 2( , , , )Ix x x x    L                                                                                               (3.5.2) 

The inference is performed as the following steps: 

Step 1: Calculation of the membership of ix   on each IX  : 

   , 1, 2, , , 1, 2, ,n n
i i

i iX X
x x i I n N       

L L                                             (3.5.3) 

Step 2: Determination of the firing interval of the thn rule: ( )nF x : 

 

       
1 1

1 1,

, ( 1, , )

n n n n
I I

n

I IX X X X

nn

F x

x x x x

f f n N

   



          
    

uux uux
L L

L

                                         (3.5.4) 

Step 3: Type Reduction 

Normally, type reduction performs the combination of fired  nF x  and the 

corresponding consequent of rules. This combination is usually achieved with the 

method of centre-of-sets type-reducer (Mendel, 2001), as shown below:  
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   1
cos

( )

1

,
n n

n n

N
n n

n
l rN

f F x n
y Y

n

f Y
Y x y y

f








  



U                                                                     (3.5.5) 

Here  ,l ry y is considered as minimum and maximum value of output membership 

function (also called switch point), which is normally calculated with the Karnik-

Mendel (KM) algorithm (Karnik and Mendel, 2001). 

3.6 Conclusions 

This chapter introduces the methodologies that are used in this research, and the 

content is divided into two main parts, one is the part of modelling and system 

analysis, and the other is the control system design. As mentioned in Chapter 2, the 

state-space approach is employed for modelling and system analysis, and fuzzy 

control is used to design the control system. For modelling, to obtain a simple model 

that is closed to the mathematical model in practical use, the primary way of 

modelling is employed. In order to facilitate modelling, the relevant assumptions are 

made, and inputs, outputs and parameters are identified. And considered there are 

probably a coupled nature involved in this model, the pole placement control and 

decoupling control approach are used. Furthermore, in order to mount pole 

placement onto a non-standard-form state space model, an equivalent matrix 

transformation is designed. 

The second part is the control system design. In this research, two inputs, two outputs 

and two states are identified, based on decoupling control. Furthermore, two control 

systems are designed for two inputs and outputs separately. For temperature control, 

the most commonly used 2-dimentional Mamdani type fuzzy control is proposed and 

also the inputs of the control system are determined as error (E) and error change 

(EC), and the approach of Maximum of Membership for defuzzification method is 

employed, due to the rigid lower limit of temperature requirements.  
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For pressure control, the designed system must be very sensitive to change, that is 

why the interval type-2 fuzzy control is chosen. There are two reasons to use interval 

type-2 fuzzy method. The first one is, as the response speed is highly demanded, 

large quantities of calculations which will cause the delay of response will be put 

away. Secondly, as the turbulence is spatially dynamic distributed, a type-2 fuzzy 

control to deal with the situation, to realize a 3-D control is required. Therefore, the 

primary membership in this chapter is determined by the pressure difference itself; 

and the secondary membership is determined by a 3-D random turbulence.  
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4 Plant Modelling 

In this chapter, how the physical model is transformed into a state space model will 

be described step by step; after the SISO and MIMO model is created, the state 

feedback approach, discrecization will be applied to the model in order to test the 

response of this model. Furthermore, pole placement will be designed for the MIMO 

model to obtain its performance; decoupling approach will be also used to solve the 

coupled nature between inputs and outputs. It is worthy mention that, the work 

accomplished in this chapter is somehow independent to the following intelligent 

control system design, as the intelligent control system design and tune process 

doesn’t require a precise mathematical model of objects. 
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4.1 Plant Modelling 

Plant modelling has a number of key specifications, which are outlined in the 

following part, with the vials serving as illustrations: 

 Heating of all vial batches at a specified temperature and for a certain amount 
of time; 

 The requirement of temperature exceeding regulation until a given time must 
be satisfied by each vial in every batch; 

 Vials intended for sterilisation display sensitivity to pressure, and therefore the 
vials may collapse, resulting in system error or even disruption of batch 
production, if the pressure is unintentionally increased significantly or if the 
pressure difference in the plant is higher than the safety limit; 

 A single inlet for hot and dry air is designed; 

 A temperature and a pressure sensors serve as reference for the controller 
design; 

 The working premise is that process control can be achieved based on lumped 
parameter formulations. 

Apart from the above requirements, the plant must be simplified to make the 

modelling and design process easier, based on the following premises: 

 Plant operation is assumed to be stable, with more or less the same amount of 
supply air; 

 Solely heat conduction must be assumed to occur between the hot air and the 
vials, ignoring heat convection or heat radiation; 

 There are close similarities between the three plant sections regarding 
operating mechanism and the most important is the heating section, which will 
be employed for modelling and simulation in the present study. 
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4.1.1 Plant Analysis 

According to the systematic requirements, the temperature distribution and pressure 

difference must be homogeneous: 

 Inputs: T0, denoting heating air temperature, and P0, denoting heating air 

pressure; 

 Outputs: Tt, denoting the final object temperature, and Pt, denoting the final 

object pressure. 

 

Figure 4-1 System Analysis of Depyrogenation Tunnel 

The principle of energy conservation and the principle of pressure changing analysis 

are the two principles underpinning plant description. 

The principle of energy conservation: The energy input from the hot air and the 

energy possessed by the vials must be the same as the final post-heating energy 

possessed by the air and by the vials: 

       0 0 t tQ t t t Q t                                                                                  (4.1.1) 
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       0 0t tQ t Q t t t                                                                                    (4.1.2) 

The pre-heating amount of hot air heat is denoted by Q0(t), while the post-heating 

amount of hot air heat is denoted by Qt(t). The amount of object heat is denoted by 

θt(t). 

The formula of Specific Heat Capacity is as follows: 

*

Q
c

M T



                                                                                                          (4.1.3) 

The specific heat capacity, vial mass and temperature discrepancy are respectively 

denoted by c, M, and ΔT. 

Therefore, after a simple transform, the quantity of heat can be denoted as follows: 

* *Q c M T                                                                                                       (4.1.3) 

By integrating (4.1.3) into (4.1.2) and modifying the format, (4.1.4) is obtained, 

illustrating the energy conservation of the plant: 

       0 0*( ( ) * *( ( )*a a o oa t a t o oM T T c M Tc T                                                     (4.1.4) 

The specific heat capacity and mass of hot air are respectively denoted by co and Ma, 

while the particular heat capacity and mass of the vials are denoted by ca and Mo, 

respectively; the original and last temperature of the air are respectively denoted by 

T0(a) and Tt(a), while the original and last temperature of the vials are respectively 

denoted by Qa and Tt(o).  

(4.1.4) is simplified to (4.1.5), following the differential against time to the right-

hand side of the equation: 



Plant Modelling  CHAPTER 4 

73 

   0* *( ( ) * * o
a a o oa t a

d T
M T T c M

dt
c


                                                              (4.1.5) 

According to a rated quantity from equipment: 

* * * * *a a a a a aa aQ c M T c T q
 

                                                                                         (4.1.5-1) 

Where aq


is denoted the volume speed of hot air. As , ,a a ac T  comes from the selected equipment, 

hereby * *a a ac T   where  is a constant directly from the equipment. 

Therefore, (4.1.5-1) can be simplified as: 

a aQ q
 


                                                                                                                                    (4.1.5-2) 

Considered the influence brought in by pump: 

=o o o a a ap aC M T c M T                                                                                                             (4.1.5-3) 

Where  

a a aM q                                                                                                                                 (4.1.5-4) 

Therefore, taking deferential on both sides of (4.1.5-3), it will become the following: 

The volume velocity of air can be used to determine its velocity, since ca, co and Mo 

are constants. 

Pressure State Analysis 
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Figure 4-2 Pressure analysis 

Newton’s second law of movement specifies that: 

* * * *P S g S h                                                                                             (4.1.6) 

With P denoting the pressure at the pipe inlet; h and  respectively denoting the 

distance travelled by the hot air and the air density. The latter can be deemed to be 

constant, since it is assumed that the operation of the plant takes place under stable 

state. The cross-section area of the pipe inlet, S, is determined with the following 

formula: 

2

*
2

d
S     

 
                                                                                                        (4.1.7) 

Equation (4.1.5) can subsequently be integrated in: 

* *P g h                                                                                                         (4.1.8) 

The two sides of (4.1.7) can be modified following the differential against time: 

1
a * *

dP d h
g

dt dt
 

                                                                                                (4.1.9) 

The diameter of the hot air pipe, the pipe cross-section, and the distance travelled by 
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the hot air are respectively denoted by d, S, and Δh. 

If the pump influence is taken into account: 

The pump will increase the speed of the hot air, enabling the reformulation of (4.1.9) 

as: 

2

2
* * * * *pump

a a

dP d h
g at g t

dt dt
  

 （ ）=                                                              (4.1.9-1) 

Where a  is denoted the pump’s acceleration.  

Therefore, after putting them together, the equation 4.1.10 has been concluded from 

equations 4.1.9 and 4.1.9-1 as: 

2
1

2
+ = ( * )pump

a

dPdPdP d h d h
g t

dt dt dt dt dt
 

                                                           (4.1.10) 

Here t is denoted as a time unit, with a value of 1m/s. 

Since the total hot air volume rate, aq , is known from the equipment, the system 

representation can be derived based on the volume conservation: 

2

2
* * apq

d h
t S

dt

                                                                                                  (4.1.11) 

4.1.2 State Variable Determination 

Based on the above analysis, the state variables selected for this study are: 

1( ) ( )
d h

x t v t
dt


  , denoting the hot air speed indicative of pressure. 
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2 ( ) ox t T  , denoting temperature fluctuation of the objectives. 

4.1.3 State Space Equations 

While considering the pump influence, by integrating (4.1.11-1) into (4.1.5), the 

mathematical analysis for the plant can be simplified as: 

 * * * *a a a o o oc M T c M T                                                                               (4.1.12) 

Where  

a a apM q                                                                                                      (4.1.12-1) 

Put (4.1.12-1) into (4.1.12), equation 4.1.12-2 is obtained as follows: 

* * * * *a a ap a o o oc q T c M T                                                                        (4.1.12-2) 

As apq and oT  are the variables on both sides, take deferential on both sides against 

time, equation 4.1.13 is obtained as follows: 

2

2
* * * * * * *o

o o a a a

d T d h
c M c t S T

dt dt
 

                                                         (4.1.13) 

The volume velocity of the hot air,  
d h

dt


, is denoted by x1, while x2 denotes the 

temperature discrepancy between the vials, ΔTo. Reformulation of (4.1.13) and 

(4.1.12) based on state equations takes the following form: 
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1
1

2 1 *

a

a a a a a a

o o o o

x
x

t St

c T c T Q
x x

c M

Q

c MSgt






   


  

  


g
g

g
g

                              (State Equations)             (4.1.14) 

Let ΔTa and aQ
g

 to be u1 and u2, respectively (the plant input and controller output), 

the state space equation can be reformulated as in (4.1.15): 

1
1 1

2 1 1 1 2

1

*
- a a a

o o o o

x
x u

t St

c c
x x u u u

gtc M Sgt c M






  


  


g

g
                                                                (4.1.15) 

The output equation is as follows: 

1

2

1 0

0 1

x
Y

x

  
   
   

                                                                                                 (4.1.16) 

Equation (4.1.17) illustrates the state space model for plant following format 

simplification: 

1 1

2 2

1 1

2 2

1 00
1

0

1

*
0 0

1

0

a a a

o o o o

x uStt
X

c cx u
gtc M g St c M

x u
Y D

x u






                               
     

      
      

g

g

                                (4.1.17) 

It seems that this is a non-linear system model with inputs and outputs that are 

coupled. To decouple the inputs and outputs, the control system with decoupling 
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technique is applied based on the state feedback law in the next part. 

4.1.4 Control System Design 

Based on (4.1.17), the following matrices have been established for this model: 

1
0

0

0

0

1 0

0 1

1

*

0

a a

o o

a

o o

t
A

T

gtc M

St
B

c

g St c M

C

D







    
  

     
  
  
    
  

 
       




                                                                                (4.1.18) 

(1) Discretization 

Conversion of the state space continuous model to a discretised model is necessary 

for computational purposes. The expression of the discretised state space equations 

takes the following form: 

   [( 1) ] * *s d s d sX t T A X tT B u tT                                                                (4.1.19) 

The sampling time interval is denoted by Ts = 0.1. Hence, based on how differential 

equations are defined, 

0

[( ) ] ( )
( ) lim s s

s t

X t t T X tT
X tT

t 

  




g

                                                                  (4.1.20) 
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The value of Δt is set to be 1, allowing equation (4.1.20) to be expressed as: 

( ) [( 1) ]

[( 1)

(

] {[ ]

) ( ) ( )

} ( ) ( )

s s s s s s

s s s s s

X tT X t T X tT T AX t T Bu tT

T T TX Tt I A X t TB u t

   

 



 
g

g

                                              (4.1.21) 

Comparison of (4.1.21) with (4.1.19) gives: 

[ ]d

sd

sA I A

TB

T

B

 


                                                                                                    (4.1.22) 

where I is unit matrix. 

4.2 System Performance with Case Study 

The next step following the mathematical modelling of the system is development of 

computational experiments for plant modelling and simulation of control system 

operations with the use of the MATLAB software. Table 1 lists the simulation 

parameters and constants based on the assumption of a scenario in which 1500 

pieces/batch of petri dishes are introduced into the machine. Furthermore, the data 

from the table draw on the work conducted by Wang (2015) regarding the production 

process in a Chinese pharmaceutical plant. 

Given the type of gravity model employed in the present settings, gravity may be 

considered a constant because of its acceleration value, in keeping with data from the 

World Geodetic System 1984 (WGS-84), where the value of g was established to be 

9.8 m/s2 (Stevens and Lewis 2003). After incorporation of the parameters with the 

above values in the plant model, the following model representation is obtained: 
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=
0

B=
0.000051

1 0

0.027

0.001

1

0

2 0

0

1 0

0

A

C

D

  
  

 
    
  




    





  


                                                                                (4.1.23) 

Discretisation of the state space equations is the following step. Discretisation is 

understood as the division of continuous functions, model and equations into a 

limited number of discrete elements in order to enable those continuous functions, 

model and equations to be computed and implemented on digital computers. 

Furthermore, quantisation is essential for processing on a digital computer. 

Under the present circumstances, discretisation of the state space model is 

undertaken to obtain the equation below: 

[( 1) ] * ( ) * ( )s d s d sX t T A X tT B u tT                                                                               

(4.1.24) 

The sampling time interval is denoted by Ts = 0.1. Based on how differential 

equations are defined,  

0

[( ) ] ( )
( ) lim s s

s t

X t t T X tT
X tT

t 

  




g

																																											                            (4.1.25) 

If Δt = 1, then the previous equation can be expressed as: 

( ) [( ) ] ( )

( ) ( ) ( )
s s s

s s s s

X tT X t t T X tT

T AX t T AX t T Bu tT

   

  

g

                                                         (4.1.26) 
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 [( 1) ] [ ] ( ) ( )X t T I A T X tT BT u tT
s s s s s

   
g

                                                   (4.1.27) 

Comparison of the above equation with (4.1.27) gives the following:  

[ ]A T I A
d s

B BT
d s

 
 

                                                                                                (4.1.28) 

In the above, I is unit matrix. 

4.2 Pole Placement State Feedback System Design 

4.2.1 Observability  

If reconstruction of any particular state or control vector can be achieved solely 

based on data derived from the system output, then the system is considered to be 

fully observable. As it will become clear, observability is directly correlated with 

controllability. Conversely, if a system is not observable, then it will be difficult to 

gauge the impact of system stabilisation through a control signal on the plant, leading 

to the system being categorised as uncontrollable. The criterion for verifying if a 

system is observable is given in (4.2.1), where the matrix rank and the dimensions of 

matrix A are respectively denoted by rank (R) and n (Dutton, 1998). Equivalence 

must exist between the rank of matrix R and n for system A to be completely 

observable. 

1[ ... ]n TR C CA CA                                                                                    (4.2.1) 

Matrices A and C can thus be integrated in (4.2.1): 
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1 0 1 0 1 0
[ ]

0 1 0 1 0.027 0

1 0

0 1

1 0.027

T

TR C CA
      

              
 
   
                                                      (4.2.2) 

1 0

( ) 0 1 2

1 0.027

rank R rank

 
   
                                                                    (4.2.3) 

The observability of the system is confirmed as MATLAB indicates that the rank of 

matrix R is 2, meaning that it is compatible with the dimensions of matrix A. 

4.2.2 Controllability  

After the system is suitably modelled mathematically, the next step is to determine 

how controllable the system is by inspecting some of its structural characteristics 

based on the generated model. State and output are the two existing types of 

controllability. Only state controllability is addressed in the present study. It can be 

understood as the controller’s capacity to alter any internal state vector with an 

original value to any final value in a specific time frame. More specifically, for a 

dynamic system to be fully state controllable, an unconstrained control vector u(t) 

must be able to be created to enable the transfer of a particular original state x(t0) to 

a final state x(T) in a limited time frame t0 < t < T (Zhu, 2014). 

As shown in (4.2.4), there are close similarities between the criterion for assessment 

of state controllability and that of observability. The matrix rank and the dimensions 

of matrix A are respectively denoted by rank (P) and n (Zhu, 2014). 

1[ ... ]n TP B AB A B                                                                                      (4.2.4) 
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By introducing the values of matrix A and matrix B into (4.2.4), the following is 

obtained: 

[ ]

0.0012 0 1 0 0.0012 0

0 0.00051 0.027 0 0 0.00051

0.0012 0 0.0012

0 0.00051 0.0000324

2

T

P B AB

      
             

 
   


                       (4.2.5) 

The controllability of the system is confirmed as MATLAB indicates that the rank of 

P is 2, meaning that it is compatible with the dimensions of matrix A. The system 

was additionally validated to be fully state controllable based on running the code 

(see Appendix) in MATLAB. 

On the basis of the above results, it can be said that the plant is appropriate for 

adopting the pole placement technique for the allocation of random poles. 

4.2.3 Matrix Transformation 

The values allocated to the design damping ratio and undammed natural frequency 

are respectively ξ = 0.5 and ωn = 0.2. The Appendix provides the calculation of the 

assigned poles. 

MATLAB is applied in the present section to determine the system closed loop 

feedback gain matrix. 

A determinant is set based on the state feedback and (4.2.6) is derived from the 

previous section. 
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                                                                                (4.3.6) 

System controllability is unaffected by matrix modification. The transformation 

block diagrams are illustrated in the figures below. 

 

Figure 4-3 Block Diagram of State Space 

 

Figure 4-4  Block Diagram of State Space after Transformation 
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The system controllability matrix is denoted by matrix P. The transformation-related 

equations below have been obtained from the preceding figures.  

A determinant is identified based on (4.2.7) before the gain matrix can be identified. 

  1

2

( )

00 1 0 0.0012 0

00 0.027 0 0 0.000051

sI A BK

ks

ks

 


  



       
       

       

                                 (4.2.7) 

Matrix I constitute of a 2x2 unit matrix and it is assumed that the gain matrix is 

matrix 1

2

0

0

k
K

k

 
  
 

. 

Hence, expression of the determinant of sI – (A – BK) takes the following form: 

1

2

1 0.00121 0
( )

0.027 0.000051

s k
sI A BK

k s

  
     

                                                           (4.2.8) 

The determinant of ( )sI A BK   can be expressed as: 

*

2
1

( ) det[ ( )]

(0.00121 1)

f s sI A BK

s k s

  

  
                                                                              (4.2.9) 

The target poles can be identified with (4.3.10). 

* * * 1 *
1 0

1

( ) ( )
n

n n
i n

i

f s s s s a s a




      L                                                          (4.3.10) 

The preceeding two equations lead to: 
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*
1 1

*
0

0.0012 1

0

a k

a

  



                                                                                              (4.2.11) 

As indicated before, the system controllability has been clearly demonstrated, 

resulting in a non-singular transformation given in (4.2.12): 

x T x                                                                                                              (4.2.12) 

Where matrix T is represented as: 

1 1

1

1

1

[ ] *

1

n

n

n

a a

T B AB A B cam w
a







 
 
  
 
 
 

L

L N
L

N
                                     (4.2.13) 

The function ctrb() was applied in MATLAB to obtain the controllability matrix cam, 

while the function hankel() gave the controllability matrix w. 

0.0012 0 0 0.0012

0 0.00051 0 0.0000324

6.1500 0.0027 0 0

0.0027 0 0 0

0 0 0 0

0 0 0 0.00051

cam

w






 




  
  

 
  
  
  
  
  
  

                                                     (4.2.14) 

Hence, 

-3 1.2 0.0324
* 1*10 *

0.006 0
T cam w

  
    

                                                         (4.2.15) 

The state space equations can be converted to the Standard Controllable Form I, as 
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follows: 

x A x B u

y C x





 



g
                                                                                                 (4.2.16) 

Where 

 
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                                               (4.2.17) 

The expression of the state feedback gain matrix is: 

0 1 1nk kK k 
   L                                                                                 (4.2.18) 

This enables the equation of the closed loop state space to be derived: 

( )x A BK x Bv

y C x

   

 

g

                                                                                        (4.2.19) 

Where 
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                           (4.2.20) 

The system Standard Controllable Form I is derived from (4.2.17): 

1

1 3

0 1
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0
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  
  
  
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  
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       
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 


 
 

                                      (4.2.21) 

The characteristic polynomial of the system closed loop is expressed as: 

2
1 0 1

( ) ( )

(0.0025 1) ( 0.034 0.018 0.0002)

f s sI A BK

s k s k k

  

      
                                  (4.2.22) 

To ensure compatibility between the closed loop poles and the target poles, the 

formulas below must be satisfied: 

*( ) ( ) ( )f s sI A BK f s                                                                                      (4.2.23) 

With f*(s) being derived from equation (4.2.9). The gain matrix can be determined 

based on the coefficient of the same power factors on both sides of the equation. 

Thus, 

3.24 24.8K                                                                                                      (4.2.24) 
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Therefore, the input will be: 

1u v Kx v KT x                                                                                               (4.2.25) 

Hence, the closed loop gain matrix associated with the pole placement design will 

be: 

1 31*10 410.4822 0.0101
T

K KT                                                                  (4.2.26) 

4.3 Decoupling Control System Design 

Equation (3.3.6) gives the decoupling pair Fs and H. Following replacement, the 

control system is represented as in (4.2.1): 

         

     
   

* * * * *

* *

* * ( )

s o s s o s

s d s d s

s s s

Y tT M y tT u tT M C X t R u tT

X tT A x tT B u tT

u tT F X tT H v t

     

  
  

g

                         (4.3.1) 

where 

1

1

( ) [ ]

( )

s d o d

d

F CB M C CA

H CB





 

 
                                                                                   (4.3.2) 

Mo and T are calculated and then replaced in Fs and H: 

0.5 0

0 0.5

0.5 0

0 0.5

oM
  

  
  


      

                                                                                             (4.3.3) 
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Discretisation of the system representation against time from continuous equations is 

required to enabled modelling and simulation in MATLAB. Modification of system 

representation can be undertaken in the following way: 

 
   

 

[( 1) ] * * ( )

[( 1) ] * *

[( 1) ] *

s s s

s d s d s

s s

u t T F X tT H v t

X t T A X tT B u tT

Y t T C X tT

   


  
  

                                                             (4.3.4) 

As highlighted previously, to divide the inputs and the outputs, the state space 

models have to be subjected to decoupling. However, a common triangular 

decoupling issue may arise during this procedure. To solve this issue, Shen et al. 

(2015) suggested that the canonical decomposition of right invertible system [C, A, 

B] should be applied. The formulas provided by the authors define every achievable 

transfer function matrix for delineating the decoupling issue as well as the pole 

allocation issue. The premise underpinning the triangular decoupling issue is that the 

state variable feedback possesses a non-singular lower triangle form up to row 

permutation. This study adopts the recommendations of Shen et al. (2015) in the 

approach used to delineate the decoupling procedure. 

4.4 Conclusions  

In this chapter, the design of plant is given using state-space approach. Firstly is the 

plant modelling which firstly includes the analysis of this plant. This step includes 

the analysis of this plant which is to identify the inputs, outputs and states, also the 

relevant simplification and assumptions are figured out. Then this chapter follows the 

general process to establish a state-space model, defines two state variables, velocity 

of hot air,  
d h

dt


, and ΔTo, the tempeature discrepancy of vials.And then based on the 

principle of energy conservation, the state equations are established. After the model 

is established, the coupled nature between inputs and outputs is proved, the relevant 
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system analysis and control methods are implemented, respectively the pole 

placement and decoupling method. The designed state space model is non-standard 

form, therefore in the process of pole placement for the non-standard model, a matrix 

transform is designed to transfer the model to a standard form. 
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5 Control Systems Design 

In this chapter, control systems are designed for two inputs separately. Mamdani-type 

fuzzy control is adopted for temperature control, while the interval type-2 fuzzy 

control is adopted for pressure control, based on previous designed decoupling 

control.   
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5.1 Mamdani-type fuzzy control system design 

5.1.1 Control System Design 

Temperature and air pressure are the system control variables. The fuzzy control 

system in the present design is intended for temperature (e1), while the air pressure 

(e2) control is reserved for the following design. Hence, temperature and air pressure 

are respectively denoted by corner mark 1 and corner mark 2. Based on the design 

procedure, the control system design is approached in the following way: 

5.1.2 Define the domains 

E1: The natural domain is [-20, 20], as the required temperature is 320 ºC, with an 

error range of ±20ºC. 

The series of language variables associated with E1 is determined in the following 

way: 

 , , , , , , ,1E NB NM NS NZ PZ PS PM PB                                                                   (5.1.1) 

Figure 5-1 presents the membership function for E1 based on a fuzzy domain of [-6, 

6], with the scale factor being: 

12
0.3

20 ( 20)
Ke  

 
                                                                                            (5.1.2) 
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Figure 5-1 Membership Function for Input Variable E1 

EC1: As in the case of E1, the natural domain is established to be [-15, 15] and the 

series of language variables for EC1 can be determined in the following way: 

 , , , ZO, , ,1EC NB NM NS PS PM PB                                                                        (5.1.3) 

Figure 5-2 presents the membership function for EC1 based on a fuzzy domain of [-

6, 6], with the scale factor being: 

12
0.4e 1 15 ( 15)

K c  
 

                                                                                       (5.1.4) 
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Figure 5-2  Membership Function for Input Variable EC1 

UF1: The natural output domain is established to be [-15, 15] and the series of 

language variables for UF1 can be determined in the following way: 

 , , , ZO, , ,1UF NB NM NS PS PM PB                                                                        (5.1.5) 

Hence, as indicated in Figure 5-3, the membership function and scale factor are 

identical to those of EC1. 
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Figure 5-3 Membership Function for output UF 

5.1.3 Fuzzy Rule Base 

The experts’ experience has informed the development of the fuzzy rule base, which 

is underpinned by the following principles: 

E=NB and EC<0 

The temperature is not as high as required and exhibits a downward trend when error 

(x1-v1) is negative big (NB) and the error change rate 1 1( ) (t 1)e t e

Ts

 
 is negative as 

well. Under such circumstances, the controller must increase the temperature to 

offset the error and avoid the down trend. 

E= NB and EC>0 

The temperature is not as high as required but exhibits an upward trend when error 

(x1-v1) is negative big (NB) while the error change rate 1 1( ) (t 1)e t e

Ts

 
 is positive. 
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Under such circumstances, the controller must manage the small control output to 

offset the error and regulate the overshoot. 

E=NM 

The temperature is not as high as required when error (x1-v1) is negative middle 

(NM). To address the issue, the same measures should be adopted by the controller as 

in the case of E=NB. 

E=NS 

The system state is near the desired state when error (x1-v1) is negative small (NS). 

To stop the error from becoming positive if the error change rate is negative small, 

the controller needs to maintain the middle position (PM). To remove the error 

change rate if it is positive, the controller should adopt the positive small position 

(PS). 

Table 1 provides an overview of the fuzzy rule base developed in keeping with the 

above-mentioned principles and taking the form of an 8*7 matrix with 56 rules. 

Table 1: Fuzzy Rule Base 
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Hence, the temperature error (E1), temperature change rate (EC1), and the controller 

action (U) are connected by the following fuzzy relationship (R): 

( ) ( )

( )

( )

( )

R E U EC U E EC U

NB NB PBE UEC
NM NB PBE UEC
NS NB PME UEC

          
  

 

 

o

U

U

UL L

                                                                      (5.1.

6) 

The error, error change rate, and controller output are respectively denoted by E, EC, 

and U. 

5.1.4  Maximum of Membership Approach 

When just one calculation requires more than one rule, the most prominent one 

should be established as the controller output. 

5.2 Type-2 Fuzzy Control System Design 

As discussed in the third chapter, it is challenging to apply a mathematical method to 

describe pressure modification in the tunnel. This limitation can be offset with the 

type-2 fuzzy control system, which is constructed in the present part. By taking into 

account the value of pressure change and the position where pressure fluctuates, the 

pressure change should be established as the fuzzy variable, while the pressure 

fluctuation position should serve as the primary membership function. This position 

can be determined with the secondary membership function. 

5.2.1 Fuzzification 

The natural domain is [0, 5], because the pressure difference (PD’) is positive and its 

value does not exceed 5. 
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The series of language variables associated with PD can be determined in the 

following way: 

 , ,PD S M L                                                                                                      (5.2.1) 

Figure 5-4 presents the membership function based on a fuzzy domain of [0, 5], with 

the scale factor being: 

5
1

5
KPD                                                                                                            (5.2.2) 

 

Figure 5-4 Membership Function for PD 

The likelihood of vials falling off (pv) due to modifications in pressure is defined as 

the primary membership function, which is derived based on technicians’ language. 

This is applicable to the design outer layer as well. 
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Figure 5-5 Secondary Variables (Coordinates) 

The most significant pressure change at observation point ( , , ) ( , , )x y z X Y Z is the 

secondary fuzzy variable. For the design inner layer, sixteen spatially dynamic 

distributed intervals should be defined in the direction of the product flow, as 

indicated in Figure 5-5. 

Pressure change (PC) is established to be the output, constituting a crisp number. 

5.2.2 Inference  

The technicians’ experience-based language is used to formulate the rules for the 

outer layer: 

The pressure difference exceeds 5 if PD’ > 5, pv = 1, meaning that vials must be 

falling off the conveyor. 

If 3< PD<5, vp =[0.5,1], which indicates if pressure difference is between 3 to 5, 

Some vials will probably fall down from the conveyor. 

The pressure difference is in the range 0-5 if 0 < PD’ < 3, pv = [0, 0.5], meaning that 
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some vials might fall off the conveyor, which denotes a very small possibility. 

The system is on the point of disruption if PD’ is less than or equal to 0, which is the 

warning state. 

The position or zone in which the vials might fall off from is indicated by the inner 

layer. As shown in Figure 5-5, the zone is separated into 16 spaces, which are 

organised in the following way: 

16

1

, o 1, 2,3, 4; 1, 2; 1, 2;i o r q
i

N X Y Z r q


                                                         (5.2.3) 

The technicians’ experience-based language is used to formulate the rules. There is a 

direct correlation between the likelihood of the vials falling off and their position. 

Hence, the location where pressure change occurs dictates the primary membership 

function. 

5.2.3 Rule Base 

If the pressure difference is considered to be denoted by the output, the rules 

included in the rule base are as follows: 

1R : If pd  is ² 1PD , then 2uf  is 1U ; 

2R : If pd  is ² 2PD , then 2uf  is 2U ; 

3R : If pd  is ² 3PD , then 2uf  is 3U ; 

The control variable that represents the action of the valve is denoted by uf2. 
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5.3 Conclusions 

In this chapter, two control systems are respectively designed for temperature control 

and pressure control. Mamdani type fuzzy model is designed for temperature control. 

Based on two-dimensional process of error (Error and Error change), the control 

system is designed with two inputs. Therefore, for each input there is a fuzzification, 

after determine the fuzzy domain of the two inputs as well as the output, using scale 

factors respectively 0.3 and 0.4 to scale the real domain data to fuzzy domain inputs. 

Consequently, given two groups of language variables, the membership functions are 

determined for each input; establish the rule base according to experts’ language and 

then the rule base is also determined with 8*7 (56) rules inside, accordingly the 

language variables for output are determined. When a real domain datum entered the 

control system, it will be firstly transferred a datum that a fuzzy system can identify, 

then will be inferenced according to the fuzzy rules. Therefore, in order to scale the 

fuzzy type output datum into a real domain datum that can be identified by actuators, 

the Maximum of Membership defuzzification method with a fuzzy type output 

datum.  

An Interval type-2 fuzzy control has been designed in this Chapter for pressure 

control. There are two levels of fuzzy sets. The first level (primary level) is based on 

the input-output data, with similar “translation process” as Mamdani type, and still 

use Triangle type of membership functions; however, the secondary fuzzy sets are 

established based on limited work points spatially dynamic distributed, therefore the 

noise, or interference are considered as an impulse input added to the original step 

input. 
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6 Simulation Results and Analysis 

In this chapter, simulation results will be displayed and illustrated from two aspects, 

systems response and control system performance. System responses are listed from 

SISO state space model, MIMO state space model with state feedback, to pole 

placement and decoupling control design; each one is given a step input and input 

with random interference to illustrate system’s resistance to random interference. 

Control system performances are listed from mamdani type fuzzy control for 

temperature to interval type-2 fuzzy control for pressure. Each of them is also given 

step input and random interference to illustrate the robustness to disturbance.  

Additionally, the cross comparison among state feedback method, decoupling 

method and fuzzy control method is also made in this chapter.  
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6.1 System Performance 

In this research, Matlab programs were developed for computational experiments of 

plant modelling and control system operation simulation. In advance of modelling 

and simulation, the parameters and constants were given as follows, taking the 

situation of 5ml vials with 1500pcs per batch as simulation example: 

Table 2: Initial Value of Parameters 

Parameters Value 

ρa 0.615 kg/m3 (at 300 C ) 

Mo 2.4kg (5ml Vials*1500pcs for one batch) 

ca 1.0×103J/ (kg. C ) 

co 9.66*102J/ (kg C ) 

T0(a) 350 C  (specified) 

Tt(a) 320 C  (Ideally) 

T0(o) 280 C  

Tt(o) 320 C  (Required) 

d 0.3m 

g 9.8m/s2 

 

After Substitution of these values into the plant model, the specific model 

representation was acquired for this case: 

=
0

B=
0.00005

1 0

0.027

0.00

1

1

12 0

0

1 0

0

0

A

C

D

  
  

 
    
  





      








                                                                                  (6.1.1) 
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Given reference input v(t) as follows for SISO (because u1 is measured heat): 

1
( )

0
v t

 
  
 

                                                                                                       (6.1.2) 

Therefore, for this case study, Fs and H is calculated in (6.1.3): 

0.4167 0

0.0529 7.8431

0.4167 0

0 9.8039

sF

H

  
  

  


      

                                                                                                   (6.1.3) 

Based on the primary data, the following work related to system analysis has been 

done. 

6.1.1 SISO (temperature) System Performance 

After given three reference inputs respectively with u=0.5, u=0.8 and u=1, the 

simulation results show in Figure 6-1. When only one input and one output is 

considered, according to the figure, the system response is monotonous, without 

oscillation, which is close to the practical occasion, as the object will be heated 

gradually to a certain temperature rather than oscillated between a range. It is worthy 

of mention that the shown response and duration is a proportional data (as sampling 

data, the interval between sampling time can be defined accordingly).  Furthermore, 

Fig 6-2 shows the SISO system with considerable resistance to noises, at the work 

point of 1 with noise=0.0583 and noise = -0.0348. The performance of SISO system 

is concluded as follows: 

 Fig 6-1 and Fig 6-2 show very stable results. Figures show a monotonous curve 

no damping and no overshoot, which is very similar to the practical PID control 

results. It also explains that in order to control the cost of energy, the design of 

machine will sacrifice the response speed to privilege the accuracy. That is why 
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the results are monotonous curves (large delay). 

 However, there exists a large steady state error, around 20%. This is partly due to 

the introduction of the second state; at this stage it is a SISO model but with two 

states. 

 Given interference at work point u=1, the designed SISO model shows a strong 

robustness in interference resistance. The obtained performance shows a very 

stable response, no overshoot or damping response.  

In general, such a response matches the practical response using Classic PID. 

Furthermore, as the model shows a large positive steady error, it means if the 

pressure is considered into this model, such steady error will introduce a significant 

false high temperature.   
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Figure 6-1 Time Response for SISO State Space Model under 0.5,0.8, 1 

 

Figure 6-2 Time Response for SISO State Space Model under u=1 and noises 

6.1.2 MIMO (Temperature and Pressure) System Performance (state feedback) 

After introducing the input and output of pressure, the model is given two groups of 

reference inputs, which are respectively: 

1.5
( )

0.5
v t

 
  
 

                                                                                                          (6.1.4) 

And: 
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3
( )

0.5
v t

 
  
 

                                                                                                          (6.1.5) 

The results are shown respectively in fig 6-3 and 6-4. Although the curves return a 

steady response, such a significant steady error on both curves are not acceptable and 

it should be considered not stable. 

 

Figure 6-3 System Response for MIMO State-Space Model (v1=1.5,v2=0.5) 
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Figure 6-4 System Response for MIMO State-Space Model (v1=3, v2=0.5) 

After examining the figure shown in Fig.6-3 and Fig 6-4, according to the two 

labelled points at the same time with the same input while retuning a different data, it 

is apparently that when change one of the inputs, both outputs are changed 

accordingly, which is not convenient for control system design. 

6.1.3 pole placement design 

Pole placement is designed accordance with the input fig.6-5.  

In this research, used Matlab programs for computational experiment and control 

system operation simulation. As mentioned previously, in the specific model given 

input v(t) as: 
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3
( )

1
v t

 
  
 

                                                                                                          (6.3.1) 

Obtained state feedback gain matrix K as below, 

3.24 24.8K                                                                                                    (6.3.2) 

Give the inputs as below, 

1

2

1

1

u

u


 

                                                                                                                  (6.3.3) 

Therefore, proving a unit step response as input of the controller. With Matlab 

programming, the time response graph without control design in shown in Figure 6-4. 

Apparently, the system is somehow considered unstable.  

After implementing the pole placement control, the time response has been under 

control significantly. The results represent that after allocating poles, the temperature 

change in 11 time units becoming stabled and the velocity of hot air in 8 time units 

becoming stable (as Figure 6-5 the labelled points shown). 
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Figure 6-5 Time response for Pole Placement 

However, the existing issues are the follows: 

1. pole placement is designed accordance with desired output; if the desired output 

is changed, the whole process will start over again. 

2. It shows a large steady error, although the overshoot occurred in temperature 

control is quite a desired performance. 

3. The coupled nature between inputs and outputs are determined which requires a 

solution. 
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6.1.4 Time Response for decoupling design 

Fig 6-6 shows the system response under different input values for temperature but 

the same input of pressure (which indicates the action of temperature increase). After 

the decoupling control, however, giving different values of reference inputs, 

respectively v1=3, v2=4 and v1=5, v2=1, the result, (compared in Fig.6-7), indicates 

that the effect of coupled inputs and outputs has been separated to non-interaction. 

 

 

Figure 6-6 Time Response for different v1 values  

In this case, v1 is given three values, respectively 3, 4 and 5, and v2 remains the same 

value of 1. Two of the conclusions are drawn as follows: 

1. The decoupled nature has been loosed, that when v1 is changed v2 is remained, 

output y2 will not be changed along with v1. 
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2. After decoupling control, performance of temperature keeps monotonous, but the 

pressure control returns a small damping performance with long term of 

fluctuation. 

 

Figure 6-7 Time Response for different v2 values 

Fig 6-7 shows the system response under different input values for pressure but the 

same input of temperature (which indicates the action of pressure change). 

In this case, v2 is given three values, respectively 1, 1.5 and 2, while v1 remains as 5. 

Conclusions are drawn as follows: 

The decoupled nature has been loosed, that when v2 is changed v1 is remained the 

same value, and output y1 will not be changed along with v2. This is the proof that 

decoupling method works efficiently over this case. 
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Figure 6-8 Time Response for Decoupling Control  

Therefore, providing a unit step response as input of the controller, the time response 

for the representation is shown in Fig.6-8, where the upper curve represents the 

temperature change of hot air and the lower one represents r the velocity of hot air. 

Fig 6-8 shows the system response under pressure reference input of 1, and 

temperature input of 5. It leads to the following conclusions: 

1. Decoupling control generates good control performance which is stable but it 

shows no efforts on eliminating the steady error.  

2. However, it gives a longer response speed. 

3. It generates damping performance for pressure, with over 50% of overshoot 

value, and 10 time units of settle time (slow as temperature control), which is not 
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a desired performance.  

 

Figure 6-9 Decoupling control with noises 

In order to validate the system’s stability, random interferences are given to the two 

inputs. The results in figure 6-9 show the following conclusions: 

1. Performances reveals a good resistance to interference, with acceptable stability. 

2. With long settle time for about 12 time units.  

3. The prominent damping performance (with about 50% overshoot) for pressure 

control is still not very satisfied.   
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6.2 Control System Performance 

6.2.1  Mamdani-Temperature Control Performance 

After given the reference input V of the system as v1_1=0.5, v1_2=0.8 and v1_3=1, the 

simulation of mamdani fuzzy control system is achieved in MATLAB, and the 

simulation results are shown in Fig. 6-10.  

 

Figure 6-10 Mamdani type fuzzy control for temperature 

According to Fig.6-10, the following conclusions can be drawn: 

1. Simulation shows a stable control performance.  

2. The settle down time is increased to about 15 time units which indicates a slower 
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stability. 

3. There still exists some steady error. 

However, such amount of steady error contributes partly to the method for 

defuzzification, which is the Maximum of Memberships. Such steady errors are 

acceptable, as the bottom line of temperature is strict limited. 

 

Figure 6-11 Mamdani type fuzzy control with noises 

After given the interference to v1_1=1, the simulation of Mamdani fuzzy control 

system is achieved in MATLAB, and the simulation results are shown in Fig. 6-11. 

From Fig 6-11 the following conclusions are drawn: 
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The result shows an extreme good robustness, given two interferences, indexes are 

almost overlapping on each other, and no exceeded steady errors are introduced to 

the design. 

6.2.2 Type-2 Interval Fuzzy Control System Performance 

As the consequence of type-2 fuzzy control of pressure control, time response of 

system with three step inputs of 1, 2 respectively is shown in Fig. 6-12. For 

comparison, time response of system with step input of 3 (which is the warning level 

of pressure change) is shown in Fig. 6-12. All the responses show a small fluctuation 

around 9th time unit, and an even smaller fluctuation around 17th time unit, while Fig. 

6-12 shows a second slight fluctuation just after the first one, but none of the 

fluctuation exceed the warning level (5, -5). The steady error is almost 0, and the 

settling time is around 3 time units. The results show the design is successful under 

the assumption. 
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 Figure 6-12 System Performance for IT-Type-2 Fuzzy Control 
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Figure 6-13 Time response for noises to u2=3 

After given the two interferences to v2=3, the simulation of interval type-2 fuzzy 

control system is achieved in MATLAB, and the simulation results are shown in Fig. 

6-13. From Fig 6-13 the following conclusions are drawn: 

The result shows an extreme good robustness, given two interferences, significant 

indexes are not changed, and no exceeded steady errors are introduced to the design. 
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6.3 Comparison of Performance 

6.3.1 Comparison for temperature control 

 

Figure 6-14 control system performance among state feedback, fuzzy control and decoupling 

After implementing the method of state feedback, decoupling control and Mamdani 

fuzzy control, the time response has been improved significantly. The results 

represent that after decoupling control, rising time of system has increased 

(compared in Fig.6-14). After the decoupling control, however, giving different 

values of reference inputs, respectively v1=1, v2=1.5 and v1=1, v2=2, the result, 

(compare in Fig.6-14), indicates that the effect of coupled inputs and outputs has 

been separated to non-interaction. 

Three control methods show a stable system performance when given reference at 1. 
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Among the results, state feedback method returns a very quick response, no damping 

ratio, but contains a very large steady error (about 50%). Fuzzy control provides a 

slower response than decoupling control’s response with a smaller and acceptable 

steady error. It is partly because the small error is located in membership of PZ 

(steady state error=0.3 compared between Figure 6-8 and Figure 6-10 and the error 

change is also located in membership of ZO, so that the controller takes no further 

action, which should be eliminated in further design. Thirdly, after fuzzy control 

applied, the results show that more fluctuation has been introduced to the control 

system response. 

6.3.2 Comparison for Pressure Control 

 

Figure 6-15 performance comparison between type-2 fuzzy control and decoupling control 

After implementing the method of decoupling control and interval type-2 fuzzy 
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control, the time response has been improved significantly. Only with state feedback 

control, the system is not stable. The results represent that after decoupling control, 

rising time of system has increased (compared with the unstable state feedback 

control in Fig.6-14). However, interval type-2 fuzzy control process the input as 

impulse, and it gives a response like an on-off switch.  This makes more sense to 

reality, as most of pressure interference is fierce, fast, but won’t last long for 

unknown reason. That’s why, according to technicians, the plant sometimes shuts 

down for unclear reason. Therefore interval type-2 fuzzy control gives a more ideal 

control performance as expected. 

6.4 Conclusions 

In this chapter, all the simulation results are listed, illustrated and given cross 

comparisons. results are listed from two aspects, modelling and analysis, and control 

system performance. According to simulation results, the following conclusions can 

be drawn: 

1. SISO for temperature reveals very stable performance with extreme large steady 

error, which explains the plant in practice would have a false high expected 

value. 

2. MIMO for temperature and pressure seems like a stable one but with 

unacceptable steady error, as well as a large time delay. With the increase of 

input, performance shows a fierce damping nature. It explains why sometimes the 

practical plant will stop for some unknow reason. 

3. MIMO with pole placement method is stable with damping nature in pressure 

control, which is not quite desired in this case. Additionally, as pole placement is 

a customized control method which is moved forward based on a specific output 

performance, the method is not so suitable for the following design. 
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4. MIMO with decoupling method shows very good control performance, where the 

steady error is almost eliminated from the SISO design. Meanwhile, the twisted 

inputs and outputs are unlocked by this method, which facilitates the consequent 

study.  

5. Mamdani-type fuzzy control for temperature gives desired responses with a 

slightly floated steady error, and it shows a very good resistance against random 

interference.  

6. Type-2 fuzzy control for pressure shows a required response, where all the 

interferences are treated as an impulse input, and the system gives an on-off 

reaction, indicates a very impressive robustness. 

In conclusion, the design of fuzzy control returns a satisfied system performance 

with excellent robustness. 
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7 Conclusions and Future Work 

The research and analysis work is summarised and the further development is 

directed and the conclusions are drawn in this chapter. 
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7.1 Conclusions 

With the growing requirements of industrial systems for more accuracy while less 

energy consumption while suffering from complicated nature of the process, the 

spatially dynamic distributed systems are introduced to replace simple systems and 

soon become one of the popular research interests in system modelling and control 

area. Considering about complex systems with parameters, inputs or outputs 

distributed more than one dimension and cannot be ignored or simplified to a system 

represented by mathematical models conveniently, work in this thesis engages in 

enhancing the interests in this area to expand both theoretical research and practical 

applications. In the main, this thesis included the theoretical analysis and 

development, and the application simulation and demonstration with case studies. 

The research starts from introduces the motivation of the present research based on a 

general review. For clarity purposes, in the beginning chapter it also provides the 

layout of the thesis and highlights its contributions.  And then the research work has 

been illustrated in detail, consisting of background description and literature review 

of this research, and the content is discussed from four dimensions: 1). Spatially 

dynamic distributed systems as the object of this research. 2)State-space approach 

used for system analysis and modelling. 3)Fuzzy logic and fuzzy control adopted for 

control system design. 4)The Dyprygenation tunnel, which is the application case 

study. 

In the part of spatially dynamic distributed systems, a general definition or 

description is given: a system with parameters, or outputs, or inputs spatially 

distributing, is categorised as a spatially dynamic distributed system. According to 

this description, in fact most of our systems, especially those commonly used in 

industry, are spatially dynamic distributed systems. However, for many reasons, in 

practical almost all the systems treated as lumped parameter ones, which will 

undoubtedly lose some precision. Sometimes such simplification is a feasible 
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shortcut to deal with specific issues, but in some other situations it will expose the 

whole system to unknown risks, as the change of conditions. This section answers 

the question that why there’s a need to study spatially dynamic distributed systems 

when there are already mature simplification approaches. 

The consequent section is state space approach. In this chapter, state space approach 

is given for modelling, not only for its feasibility but also for its feasible 

superposition and the nature of involving many parameters / states. This is because 

the state space approach treat the parameters as state, thus the state is easily overlaid 

onto the state equations. As to this research, State-space approach suits the purpose 

of expanding SISO to MIMO, and taking another parameter into account. Therefore 

in this chapter the brief introduction is firstly made to reveal its characteristics and 

then the recent outcomes and development are reviewed; the results revealed that the 

work for 2 by 2 non-standard form of pole placement approach has not been studied 

very much. In this case, in this research the relevant work has been developed as 

well. 

The third part is fuzzy logic and fuzzy control. It is employed for the design of the 

control systems for the sake that: on one hand, it can be established without a 

mathematical model, which would possibly introduce other facets affecting the 

precision of control system performance. In this chapter, two approaches are referred, 

Mamdani type and interval T-S type-2 fuzzy control, and also in this part the 

difference between a type-2 fuzzy control and a 3-D fuzzy design (though both of 

them are of three-dimensional nature) is also addressed. 

 The last section is the introduction and application of a Deprygenation Tunnel. As 

this term rare shows up in common use, it is well explained in this research including 

its description and application. It is a specific plant used mainly in biochemical 

pharmaceutical industry, and is a live, typical sample of a spatially dynamic 

distributed system. The consecutive conveying of vials (glass bottles) represents 

spatial distribution, while the physical structure of this plant is a design of a lumped 
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parameter system.  

After the background and relevant literature review has been introduced, the 

methodologies are introduced consequently, and the content is divided into two main 

parts, one is the part of modelling and system analysis, and the other is the control 

system design. As mentioned in Chapter 2, the state-space approach is employed for 

modelling and system analysis, and fuzzy control is used to design the control 

system. For modelling, to obtain a simple model that is closed to the mathematical 

model in practical use, the primary way of modelling is employed. In order to 

facilitate modelling, the relevant assumptions are made, and inputs, outputs and 

parameters are identified. And considered there are probably a coupled nature 

involved in this model, the pole placement control and decoupling control approach 

are used. Furthermore, in order to mount pole placement onto a non-standard-form 

state space model, an equivalent matrix transformation is designed. 

After the theoretical study are introduced in detail, the modelling and simulation 

work are described clearly. First is modelling of plant, using state-space approach. 

Firstly is the plant modelling which firstly includes the analysis of this plant. This 

step includes the analysis of this plant which is to identify the inputs, outputs and 

states, also the relevant simplification and assumptions are figured out. Then this 

chapter follows the general process to establish a state-space model, defines two state 

variables, velocity of hot air,  
d h

dt


, and ΔTo, the tempeature discrepancy of 

vials.And then based on the principle of energy conservation, the state equations are 

established. After the model is established, the coupled nature between inputs and 

outputs is proved, the relevant system analysis and control methods are implemented, 

respectively the pole placement and decoupling method. The designed state space 

model is non-standard form, therefore in the process of pole placement for the non-

standard model, a matrix transform is designed to transfer the model to a standard 

form. 
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Based on modelling and system analysis, two control systems are respectively 

designed for temperature control and pressure control. Mamdani type fuzzy model is 

designed for temperature control. Based on two-dimensional process of error (Error 

and Error change), the control system is designed with two inputs. Therefore, for 

each input there is a fuzzification, after determine the fuzzy domain of the two inputs 

as well as the output, using scale factors respectively 0.3 and 0.4 to scale the real 

domain data to fuzzy domain inputs. Consequently, given two groups of language 

variables, the membership functions are determined for each input; establish the rule 

base according to experts’ language and then the rule base is also determined with 

8*7 (56) rules inside, accordingly the language variables for output are determined. 

When a real domain datum entered the control system, it will be firstly transferred a 

datum that a fuzzy system can identify, then will be inferenced according to the fuzzy 

rules. Therefore, in order to scale the fuzzy type output datum into a real domain 

datum that can be identified by actuators, the Maximum of Membership 

defuzzification method with a fuzzy type output datum.  

An Interval type-2 fuzzy control has been designed in this Chapter for pressure 

control. There are two levels of fuzzy sets. The first level (primary level) is based on 

the input-output data, with similar “translation process” as Mamdani type; however, 

the secondary fuzzy sets are established based on limited work points spatially 

dynamic distributed, therefore the noise, or interference are considered as an impulse 

input added to the original step input. 

Chapter 6 specifies all the simulation results, and the results are illustrated and given 

cross comparisons. results are listed from two aspects, modelling and analysis, and 

control system performance. According to simulation results, the following 

conclusions can be drawn: 

 SISO for temperature reveals very stable performance with extreme large 

steady error, which explains the plant in practice would have a false high 

expected value. 
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 MIMO for temperature and pressure is not stable at all, with large time delay. 

With the increase of input, performance shows a fierce damping nature. It 

explains why sometimes the practical plant will stop for some unknow reason. 

 MIMO with pole placement method is stable with damping nature in 

temperature control, which is not quite desired in this case. Additionally, as 

pole placement is a customized control method which is moved forward based 

on a specific output performance, the method is not so suitable for the 

following design. 

 MIMO with decoupling method shows very good control performance, where 

the steady error is almost eliminated from the SISO design. Meanwhile, the 

twisted inputs and outputs are unlocked by this method, which facilitates the 

consequent study.  

 Mamdani-type fuzzy control for temperature gives desired responses with a 

slightly floated steady error, and it shows a very good resistance against 

random interference.  

 Type-2 fuzzy control for pressure shows a required response, where all the 

interferences are treated as an impulse input, and the system gives an on-off 

reaction, indicates a very impressive robustness. 

7.2 Future Work 

The research work in this thesis will have the following future directions: 

1) Before state space modelling, a series of assumptions have been made, making 

the design job continuing easier but sacrificing some accuracy, while may lose 

some important information that would be critical to the modelling and control 

system design. In the future study, the relevant research needs effort to validate. 
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2) For pole placement, this study put effort forward to the MIMO type linear 

system, however, in fact, the object in this research is natured by dynamics and 

nonlinear parameters. Therefore, in the future study, the nonlinear issues shall be 

considered. 

3) For the type-2 fuzzy control, as in this research, an embedded type-2 fuzzy set is 

developed to facilitate the design job, there are two ways to go further: on the one 

hand, the embedded type-2 fuzzy set can be expanded to a general type-2 fuzzy 

set who will have better adaptiveness (dealing with more uncertainties); on the 

other hand, the 3-D nature of type-2 fuzzy control can be popularized to language 

uncertainties, to enhance the system adapting with more than one operators. 

Furthermore, if the calculation can be reduced type-3 fuzzy sets may also be 

developed in the future. 
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Appendix  

Part 1 SISO-system modelling 

% initialisation 
length=50; %timulation length 
X=[0 0]'; %initial stats 
u=0.5; % step input 
Y(1:length)=zeros; 
  
A=[-1 0;-0.027 0]; 
B=[0.0012 0;0 0.000051]; 
C=[1 0]; 
D=0; 
Ts=0.1; 
I=[1 0; 0 1]; 
Ad=Ts*(A+I); 
Bd=B*Ts; 
% generate state and output sequences 
for t=2:length 
X(:,t)=Ad*X(:,t-1)+Bd*u; 
Y(t)=C*X(:,t-1); 
end 
  
plot(Y) 
title('SISO modelling-temperature'); 
  
legend('u=0.5, u=1, u=1.5'); 
xlabel('time unit'); 
ylabel('tempature unit') 
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Part 2 MIMO system modelling 

%initialted at 22/10/2013 
%Induction of SISO state feedback 
  
%       . 
%       x = Ax + Bu 
%       y = Cx + Du 
% 
%with desired closed loop denominator: 
% 
%       s2 + 2*wns + wn2  
  
clear  
  
  
%The program started on 27/8/2013 
% initialisation 
length=100; %timulation length  
X=[0;0];%initial state 
%Y=zeros(2,length); 
Y=[0;0]; 
u1=zeros(1,length); % plant input 
u2=zeros(1,length);%plant input 
u=[u1;u2];%plant input; 
v=[1.5 0.5]';  %reference input 
  
echo on 
%System Parameters A,B,C,D 
   
A=[-1 0;-0.027 0]; 
B=[0.0012 0;0 0.000051]; 
C=[1 0;0 1]; 
D=0; 
Ts=0.1; 
I=[1 0; 0 1]; 
Ad=Ts*(A+I); 
Bd=B*Ts; 
  
%syms  Mo R 
  
%.     .  
%y(t)=cx(t)=C*(A+B*Fs)*x(t)=C*B*H*v(t) 
%Mo*C=(A+B*Fs) 
%C*B*H=R 
%==>Fs=inv(C*B)*(Mo*C-C*A) 
%   H=inv(C*B)*R 
            
%Mo=[0.5 0;0 0.5]; 
%R=[0.5 0;0 0.5]; 
%Fs=inv(C*Bd)*(Mo*C-C*Ad); 
%H=inv(C*Bd)*R; 
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%.This is for state feedback and decoupling design 
  
%y(t)=Mo*y(t)+R*u(t)=Mo*C*X(t)+R*u(t) 
%X(t)=A*x(t)+B*u(t) 
%u(t)=Fs*X(t)+Hv(t) 
% generate state and output sequences 
for t=2:length 
     
    u(:,t)=X(:,t-1)+v;   %feedback 
    X(:,t)=Ad*X(:,t-1)+Bd*u(:,t-1);%state 
    Y(:,t)=C*X(:,t-1)%+%D*u(:,t-1); %output 
     
end 
  
  
plot(Y(1,:),'r'); 
hold on; 
plot(Y(2,:),'b'); 
title('Time Response for 2I2O System design') 
xlabel('Time Unit') 
ylabel('temperature Response') 
legend('v1_1=0.5, v2_1=1'); 
 

 

  



Appendix____________________________________________________________ 

144 

Part 3 System Design and Decoupling Control 

%initiated at 22/10/2013 
%Induction of 2I2O state feedback and Decoupling Control 
  
%       . 
%       x = Ax + Bu 
%       y = Cx + Du 
% 
%with desired closed loop denominator: 
% 
%       s2 + 2*wns + wn2  
  
clear  
  
  
%The program started on 27/8/2013 
% initialisation 
length=30; %timulation length  
X=[0;0];%initial state 
%Y=zeros(2,length); 
Y=[0;0]; 
u1=zeros(1,length); % plant input 
u2=zeros(1,length);%plant input 
u=[u1;u2];%plant input; 
v=[1 4]';  %reference input 
  
echo on 
%System Parameters A,B,C,D 
  
%for t=1:100; 
    %A=[-0.6150 0; 3.0639*u2(t) 0]; 
     
%end 
A=[-1 0;-0.027 0]; 
B=[0.0012 0;0 0.000051]; 
C=[1 0;0 1]; 
D=0; 
Ts=0.1; 
I=[1 0; 0 1]; 
Ad=Ts*(A+I);   %system discretization 
Bd=B*Ts; 
  
syms  Mo R %State Feedback 
  
%.     .  
%y(t)=cx(t)=C*(A+B*Fs)*x(t)=C*B*H*v(t) 
%Mo*C=(A+B*Fs) 
%C*B*H=R 
%==>Fs=inv(C*B)*(Mo*C-C*A) 
%   H=inv(C*B)*R 
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Mo=[0.5 0;0 0.5]; 
R=[0.5 0;0 0.5]; 
Fs=inv(C*Bd)*(Mo*C-C*Ad); %decoupling design 
H=inv(C*Bd)*R; 
%. 
%y(t)=Mo*y(t)+R*u(t)=Mo*C*X(t)+R*u(t) 
%X(t)=A*x(t)+B*u(t) 
%u(t)=Fs*X(t)+Hv(t) 
% generate state and output sequences 
for t=2:length 
    u(:,t)=Fs*X(:,t-1)+H*v;   %feedback 
    X(:,t)=Ad*X(:,t-1)+Bd*u(:,t-1);%state 
    Y(:,t)=C*X(:,t-1); %output 
end 
  
plot(Y'); 
title('Time Response for Decoupling Control System') 
xlabel('Time') 
ylabel('Response') 
legend('v1=2.4;v2=4') 
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Part 4 Pole Placement Design 

%initiated at 25/09/2014 
%induction of system pole placement 
%controllability judgement 
%pole placement with damping ratio=0.5 and undammed natural 
frequency wn =0.2 
 
 
function m = controllable ([-1 0;-0.027 0],[0.0012 0;0 0.000051])  
% Controllability determination 
nc = rank(ctrb([-1 0;- 0.027 0],[ 0.0012 0;0 0.000051]));  
if n==nc flagc=’System is completely state controllable.’  
m=1;  
else flagc=’System is not completely state controllable.’  
m=0;  
end 
 
 
 
 
>> cam=ctrb([-1 0;-0.027 0],[ 0.0012 0;0 0.000051])  
% Determine controllability matrix 
cam =  
1.0e+03 *  
0.0141 0 -0.0870 0  
0 0.3678 -5.7981 0  
>> w=hankel([-1 0;-0.027 0],[10.0012 0;0 0.000051])  
Warning: Last element of input column does not match first element 
of  
input row.  
Column wins anti-diagonal conflict.  
> In hankel at 27 
 

 
 
 
w =  
-1 -409.8408 0 0  
-409.8408 0 0 0  
0 0 0 0  
0 0 0 367.7735 
 

 
 
 
 
 
num=[-5002.9285]; % Obtain transfer function 
den=[1 -1 0];  
[a,b,c,d]=tf2ss(num,den);  
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m=controllble(a,b); % check the system controllability  
if m==1 %fullrunk!controllability  
fy=poly(a)  
fq=conv([1 -0.0712],conv([1 -0.2449]))  
w=hankel([fy(length(fy)-1:-1:2)';1)  
cam=ctrb(a,b)  
T=cam*w  
i=length(fy):-1:2  
diffa=-(fy(i)-fq(i))  
K=diffa*inv(T)  
else  
message (‘This system not controllable, cannot pole allocation’)  
end 
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Part 5 Mandani Fuzzy Control 

%MIMO_program:FC_SI_main.m 
% Initiated 14/08/2015 
  
%model 
clear 
  
%Induction of 2I2O state feedback 
  
%       . 
%       x = Ax + Bu 
%       y = Cx + Du 
% 
%with desired closed loop denominator: 
% 
%       s2 + 2*wns + wn2  
  
  
% initialisation 
length=30; %timulation length  
X=[0;0];%initial state 
%Y=zeros(2,length); 
Y=[0;0]; 
u1=zeros(1,length); % plant input 
u2=zeros(1,length);%plant input 
u=[u1;u2];%plant input; 
v=[1 4]';  %reference input 
e=0; 
ec=0; 
uf2=v(2); 
%System Parameters A,B,C,D 
A=[-1 0; -0.0027 0]; 
B=[0.0012 0; 0 0.000051]; 
C=[1 0;0 1]; 
D=[1 0;1 0]; 
 
Ts=0.1; 
I=[1 0; 0 1]; 
Ad=Ts*(A+I); 
Bd=B*Ts; 
  
syms  Mo R 
  
%.     .  
%y(t)=cx(t)=C*(A+B*Fs)*x(t)=C*B*H*v(t) 
%Mo*C=(A+B*Fs) 
%C*B*H=R 
%==>Fs=inv(C*B)*(Mo*C-C*A) 
%   H=inv(C*B)*R 
            
Mo=[0.5 0;0 0.5]; 
R=[0.5 0;0 0.5]; 
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Fs=inv(C*Bd)*(Mo*C-C*Ad); 
H=inv(C*Bd)*R; 
%Start Fuzzy Control 
%###Determine nature domain, scale domain, calculate scale factors 
for e, ec and u########## 
DT=1;e0=e; 
em=1;EM=6;Ke=EM/em; 
ecm=1;ECM=6;Kec=ECM/ecm; 
UM=7;um=0.3;Ku=um/UM; 
U=[-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7]; 
%#########Calling Subprogram for fuzzy relationship maxtrix 
R:F_Relation_2.m################# 
[R,n,nE,nEC,nU,nfe,nfec,nfu,Me,Mec]=F_Relation_2; 
%################################################################ 
for k=1:length 
    %############Calculate FC 
output####################################### 
    %#########e Fuzzification#############################  
        e=v(1)-Y(1,k);% obtain accurate value of e 
    e1=round(e*Ke);%transfer value of e into scaled value 
    if e1>EM; 
        e1=EM; 
    end 
    if e1<-EM; 
        e1=-EM; 
    end 
    if e1<0; 
        j=e1+EM+1; 
    end 
    if (e1==0)&(e<0); 
        j=7; 
    end 
    if (e1==0)&(e>0); 
        j=8; 
    end 
    if e1>0; 
        j=e1+EM+2; 
    end 
     
    %Obtain Fuzzy Language Value of e 
    Fi=1; 
    mfE=Me(1,j); 
    for i=2:nE 
        if Me(i,j)>mfE; 
            Fi=i; 
            mfE=Me(i,j); 
        end 
    end 
    fe=Me(Fi,:); 
    %##########ec Fuzzification############################ 
    ec=(e-e0)/DT;  
    e0=e;%obtain accurate value of ec 
    ec1=round(Kec*ec);% transfer value of ec into scaled value 
    if ec1>ECM; 
        ec1=ECM; 
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    end 
    if ec1<-ECM; 
        e1=-ECM; 
    end 
    if ec1>-ECM&&ec1<ECM 
        e1=ec1; 
    end 
    j=ec1+ECM+1; 
    Fi=1; 
    %Obtain Fuzzy Language Value of ec 
    Fi=1; 
    mfEC=Mec(1,j); 
    for i=2:nEC 
        if Mec(i,j)>mfEC; 
            Fi=i; 
            mfEC=Mec(i,j); 
        end 
    end 
    fec=Mec(Fi,:); 
    %continue; 
    %################calling Fuzzy Decision-Making Subprogram for 
control variable u ########## 
    FU=F_Deduce_2(fe,fec,R,n,nfe,nfec,nfu); 
    %Using LOM method 
    nU=1; 
    mFU=FU(1); 
    for i=2:nfu 
        if FU(i)>mFU; 
            nU=i; 
        else 
            mFU=FU(i); 
        end 
    end 
     
    uf1=Ku*U(nU)+v(1);  
    uf=[uf1;uf2]; 
    %***************Simulation Calculation******************** 
   %. 
    %Y(t)=Mo*y(t)+R*u(t)=Mo*C*X(t)+R*u(t) 
    %X(t)=A*x(t)+B*u(t) 
    %u(t)=Fs*X(t)+H*v(t) 
    % generate state and output sequences 
    for t=2:length 
        u(:,t)=Fs*X(:,t-1)+H*uf;   %feedback 
        X(:,t)=Ad*X(:,t-1)+Bd*u(:,t-1); %state 
        Y(:,t)=C*X(:,t-1)%+D*uf;  %output 
    end 
end 
plot(Y') 
title('Time Response for Mamdani Fuzzy Control System') 
xlabel('Time') 
ylabel('Response') 
legend('v1=2.4;v2=4') 
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%F_Relation_2.c 
 
%Fuzzy Relationship Calculation Subprogram F_Relation_2.c 
function [R,n,nE,nEC,nU,nfe,nfec,nfu,Me,Mec]=func() 
%##Define language variables for E:1=PB,2=PM,3=PS,4=-
O,5=+0,6=NS,7=NM,8=NB#### 
nE=8;%number of language variables for Fuzzy set E,which is also the 
number of columns of control table  
E=[8 7 6 5 4 3 2 1]; 
nfe=14;%Scale numbers of E 
Me=[0 0 0 0 0 0 0 0 0 0 0.1 0.4 0.8 1.0; 
    0 0 0 0 0 0 0 0 0 0.2 0.7 1.0 0.7 0.2; 
    0 0 0 0 0 0 0 0.3 0.8 1.0 0.5 0.1 0 0; 
    0 0 0 0 0 0 0 1.0 0.6 0.1 0 0 0 0; 
    0 0 0 0 0.1 0.6 1.0 0 0 0 0 0 0 0; 
    0 0 0.1 0.5 1.0 0.8 0.3 0 0 0 0 0 0 0; 
    0.2 0.7 1.0 0.7 0.2 0 0 0 0 0 0 0 0 0; 
    1.0 0.8 0.4 0.1 0 0 0 0 0 0 0 0 0 0]; 
%###Define language variables for 
EC:1=PB,2=PM,3=PS,4=0,5=NS,6=NM,7=NB##### 
nEC=7;% number of language variables for Fuzzy set EC,which is also 
the number of columns of control table 
EC=[7 6 5 4 3 2 1]; 
nfec=13;%Scale numbers of EC 
Mec=[0 0 0 0 0 0 0 0 0 0.1 0.4 0.8 1.0; 
    0 0 0 0 0 0 0 0 0.2 0.7 1.0 0.7 0.2; 
    0 0 0 0 0 0 0 0.9 1.0 0.7 0.2 0 0; 
    0 0 0 0 0 0.5 1.0 0.5 0 0 0 0 0; 
    0 0 0.2 0.7 1.0 0.9 0 0 0 0 0 0 0; 
    0.2 0.7 1.0 0.7 0.2 0 0 0 0 0 0 0 0; 
1.0 0.8 0.4 0.1 0 0 0 0 0 0 0 0 0];  
%###Define language variables for 
U:1=PB,2=PM,3=PS,4=0,5=NS,6=NM,7=NB##### 
nU=7;%  number of language variables for Fuzzy set U 
U=[7 6 5 4 3 2 1]; 
nfu=15;%Scale numbers of U 
Mu=[0 0 0 0 0 0 0 0 0 0 0 0.1 0.4 0.8 1.0; 
    0 0 0 0 0 0 0 0 0 0.2 0.7 1.0 0.7 0.2 0; 
    0 0 0 0 0 0 0 0.4 1.0 0.8 0.4 0.1 0 0 0; 
    0 0 0 0 0 0 0.5 1.0 0.5 0 0 0 0 0 0; 
    0 0 0 0.1 0.4 0.8 1.0 0.4 0 0 0 0 0 0 0; 
    0 0.2 0.7 1.0 0.7 0.2 0 0 0 0 0 0 0 0 0; 
    1.0 0.8 0.4 0.1 0 0 0 0 0 0 0 0 0 0 0]; 
%#######################Fuzzy Control Rules Consequents 
Table######################### 
nfc=8;%%number of language variables for Fuzzy set E 
mfc=7;%%number of language variables for Fuzzy set EC 
UC=[1 1 2 2 2 3 4 4;1 1 2 2 2 3 4 4;1 1 2 3 3 4 5 6;1 2 3 4 4 5 6 7; 
    2 2 3 4 5 5 6 7;2 3 4 5 6 6 7 7;3 4 5 6 6 7 7 7]; 
%###########################Calculation 
R=ExECxU####################################### 
R=zeros(nfe*nfec,nfu); 
for i=1:mfc 
    for j=1:nfc 
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        %ExEC 
        ie=E(j); 
        iec=EC(i); 
        for k=1:nfe 
            for l=1:nfec 
                if Me(ie,k)<Mec(iec,l) 
                    Reec(k,l)=Me(ie,k); 
                else 
                    Reec(k,l)=Mec(iec,l); 
                end 
            end 
        end 
        %ExECxU 
        iu=UC(i,j); 
        n=0; 
        for k=1:nfe 
            for l=1:nfec 
                n=n+1; 
                for t=1:nfu 
                    if Reec(k,l)<Mu(iu,t) 
                        Reecu(n,t)=Reec(k,l); 
                    else 
                        Reecu(n,t)=Mu(iu,t); 
                    end 
                end 
            end 
        end 
        for k=1:n 
            for l=1:nfu 
                if Reecu(k,l)>R(k,l) 
                    R(k,l)=Reecu(k,l); 
                end 
            end 
        end 
    end 
end 
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%2-Inputs Fuzzy Decision Subprogram F_Deduce_2.m 
function FU=F_Deduce_2(fe,fec,R,n,nfe,nfec,nfu) 
%#######################Calculate 
E¡ÁEC##################################### 
n=0; 
for i=1:nfe 
    for j=1:nfec 
        n=n+1; 
        if fe(i)<fec(j) 
            feec(n)=fe(i); 
        else 
            feec(n)=fec(j); 
        end 
    end 
end 
%####################### Calculate 
(E¡ÁEC)¡£R################################ 
for l=1:nfu 
    for i=1:n 
        if feec(i)<R(i,l) 
            fu(i)=feec(i); 
        else 
            fu(i)=R(i,l); 
        end 
        FU(l)=max(fu); 
    end 
end 
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%2-inputs fuzzy control table calculation:FC_MI_CTable.m 
function FCU_T=FC_MI_CTable; 
U=[-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7]; 
%#############Calling Subprogram for fuzzy relationship matrix R: 
F_Relation_2.m############### 
[R,n,nE,nEC,nU,nfe,nfec,nfu,Me,Mec]=F_Relation_2; 
%###########################Control Table 
Calculation############################### 
for i=1:nfe 
    fE(i)=1; 
    mfE=Me(1,i); 
    for l=2:nE 
        if Me(l,i)>mfE; 

fE(i)=l;mfE=Me(l,i); 
        end 
    end 
    fe=Me(fE(i),:); 
    for j=1:nfec 
        fEC(j)=1; 
        mfEC=Mec(1,j); 
        for l=2:nEC 
            if Mec(l,j)>mfEC; 
                fEC(j)=l; 
                mfEC=Mec(l,j); 
            end 
        end 
        fec=Mec(fEC(j),:); 
        FU=F_Deduce_2(fe,fec,R,n,nfe,nfec,nfu);  
 
% Calling Fuzzy Decision Subprogram  
        %LOM to determine the output 
        mU=1;mFU=FU(1); 
        for l=2:nfu 
            if FU(l)>mFU; 
                mU=l; 
                mFU=FU(l); 
            end 
        end 
        FCU_T(j,i)=U(mU); 
    end 
end 
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Part 6 Interval Type-2 Fuzzy Control 

%initiated 08/15/2015 
 
function twolevel_QTS 
clc 
  
xk=[5;0;3;0]  
%initial input 
xkk=[0;0;0;0] 
  
p=[0.3;0.5;0.1;0.1]  
%weight of each rules 
  
  
xk1=xkk 
xk2=xk1 
xk3=xk2 
xk4=xk3 
xk5=xk4 
xk6=xk5 
  
  
u=[0.3;0.3;0.2;0.2]  
  
uk = 0 
  
M11=xk(1)*xk(1)/0.36  
%membership degree calculation for out layer: M11, M12, M21, M22 
if xk(3)==0 
    M12=1 
else 
    M12=[0.8*sin(xk(3))-sin(0.8)*xk(3)]/xk(3)/(0.8-sin(0.8)) 
end 
M21=1-M11 
  
if xk(3)==0 
    M22=0 
else 
    M22=[0.8*(xk(3)-sin(xk(3)))]/xk(3)/(0.8-sin(0.8)) 
end 
  
T=0.05 
  
A1=[0 1 1 0;1 2 0 0;1 0.36 0 0;0 0 1 0]               
%out layer State Matrixes 
A2=[0 1 0.0175 0;1 2 0 0;1 0.36 0 0;0 0 .0175 0] 
A3=[0 1 1 0;1 2 0 0;1 0 0 0;0 0 1 0] 
A4=[0 1 0.0175 0;1 2 0 0;1 0 0 0;0 0 0.0175 0] 
  
B1=[1.36;0;0;0] 
B2=B1 
B3=[1;0;0;0] 
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B4=B3 
  
C1 = [0 1 0 1.36;0 1 1 0] 
C2 = C1 
C3 = [0 1 0 1;0 1 1 0] 
C4 = C3 
  
D1 = [1;1] 
D2 = D1 
D3 = D1 
D4 = D1 
  
F1 = [4.9853 19.7671 -2.3501 -0.7059]         
%primary membership function coefficient 
F2 = [8.1979 31.7496 4.269 -2.2882] 
F3 = [13 106 -37 -15] 
F4 = [11.9651 78.8339 -21.3178 -8.0425] 
  
for i=1:1:30 

x_axis=0.01*rand;            
% assume a fluctuation position randomly 

    y_axis=0.01*rand; 
% out layer1:     
 if ((xk(1)<M11) && (xk(3)<M12))  
     
xkk=p(1)*inner(A1,B1,C1,F1,xk,xk2,xk3,xk4,xk5,xk6,x_axis,y_axis,T,u) 
     yk = C1*xk+D1*uk 
 end 
%out layer 2     
if ((xk(1)<M11) && (xk(3)<M22)) 
    
xkk=p(2)*inner(A2,B2,C2,F2,xk,xk2,xk3,xk4,xk5,xk6,x_axis,y_axis,T,u) 
      
    % x2kk=u(1)*x2kk1+u(2)*x2kk2+u(3)*x2kk3+u(4)*x2kk4 
    yk = C2*xk+D1*uk 
end 
  
% out layer 3 
if ((xk(1)<M21) && (xk(3)<M12)) 
    
xkk=p(3)*inner(A3,B3,C3,F3,xk,xk2,xk3,xk4,xk5,xk6,x_axis,y_axis,T,u) 
    %x3kk = u(1)*x3kk1+u(2)*x3kk2+u(3)*x3kk3+u(4)*x3kk4 
    yk = C3*xk+D1*uk 
end 
%out layer 4 
if ((xk(1)<M21) && (xk(3)<M22)) 
    
xkk=p(4)*inner(A4,B4,C4,F4,xk,xk2,xk3,xk4,xk5,xk6,x_axis,y_axis,T,u) 
    %x4kk=u(1)*x4kk1+u(2)*x4kk2+u(3)*x4kk3+u(4)*x4kk4 
    yk = C4*xk+D1*uk 
end 
 y1(i)=yk(1) 
 y2(i)=yk(2) 
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 %line(i,y1(i),'LineWidth',10,'Color',[.5 .5 .5]) 
 %line(i,y2(i),'LineWidth',20,'Color',[.9 .9 .9]) 
  
  
% xkk=p(1)*x1kk+p(2)*x2kk+p(3)*x3kk+p(4)*x4kk 
% yk =p(1)*y1k+p(2)*y2k+p(3)*y3k+p(4)*y4k 
  
  xk6=xk5; 
  xk5=xk4; 
  xk4=xk3; 
  xk3=xk2; 
  xk2=xk1; 
  xk1=xk; 
  xk=xkk; 
  
   M11=xk(1)*xk(1)/0.36;  
% determine which membership function is fired 
   if xk(3)==0 
      M12=1; 
   else 
      M12=[0.8*sin(xk(3))-sin(0.8)*xk(3)]/xk(3)/(0.8-sin(0.8)); 
   end 
   M21=1-M11; 
    if xk(3)==0 
      M22=0; 
    else 
      M22=[0.8*(xk(3)-sin(xk(3)))]/xk(3)/(0.8-sin(0.8)); 
    end 
  
end 
i=1:1:20 
plot(i,y2(i),'-b','LineWidth',2)    
% plot(i,y2(i),'-r',i,y1(i),'-b','LineWidth',4)  
grid 
  
  
function 
xkk=inner(Ai,Bi,Ci,Fi,xk,xk2,xk3,xk4,xk5,xk6,x_axis,y_axis,T,u) 
  
%using T-S method to determine secondary memebership degree 
  
%inner layer 1 
     if  (0< x_axis <= T) 
         if (0 <y_axis <= T) 
              xkk=u(1)*(Ai*xk+Bi*Fi*xk2) 
         end 
         if (T <y_axis <= 2*T) 
              xkk=u(1)*(Ai*xk+Bi*Fi*xk3) 
         end 
         if (2*T <y_axis <= 3*T) 
              xkk=u(1)*(Ai*xk+Bi*Fi*xk4)        
         else 
              xkk=u(1)*(Ai*xk+Bi*Fi*xk2) 
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         end 
     end 
 %inner layer 2 
    if  (T< x_axis <= 2*T) 
       if (0 <y_axis <= T) 
            xkk=u(2)*(Ai*xk+Bi*Fi*xk3) 
       end 
       if (T <y_axis <= 2*T) 
            xkk=u(2)*(Ai*xk+Bi*Fi*xk4) 
       end 
      if (2*T <y_axis <= 3*T) 
            xkk=u(2)*(Ai*xk+Bi*Fi*xk4)        
      else 
            xkk=u(2)*(Ai*xk+Bi*Fi*xk3)  
      end 
    end 
%inner layer 3 
if  (2*T< x_axis <= 3*T) 
       if (0 <y_axis <= T) 
            xkk=u(3)*(Ai*xk+Bi*Fi*xk4) 
       end 
       if (T <y_axis <= 2*T) 
             xkk=u(3)*(Ai*xk+Bi*Fi*xk5) 
       end 
       if (2*T <y_axis <= 3*T) 
             xkk=u(3)*(Ai*xk+Bi*Fi*xk6) 
       else 
             xkk=u(3)*(Ai*xk+Bi*Fi*xk4) 
       end 
   end 
 %inner layer 4   
   if ( x_axis >3*T) 
       xkk=u(4)*(Ai*xk+Bi*Fi*xk) 
   end 
   
   
   
 


