29,822 research outputs found

    Proceedings of the ACM SIGPLAN Workshop on Approaches and Applications of Inductive Programming (AAIP 2009)

    Get PDF
    Inductive programming is concerned with the automated construction of declarative, often functional, recursive programs from incomplete specifications such as input/output examples. The inferred program must be correct with respect to the provided examples in a generalising sense: it should be neither equivalent to them, nor inconsistent. Inductive programming algorithms are guided explicitly or implicitly by a language bias (the class of programs that can be induced) and a search bias (determining which generalised program is constructed first). Induction strategies are either generate-and-test or example-driven. In generate-and-test approaches, hypotheses about candidate programs are generated independently from the given specifications. Program candidates are tested against the given specification and one or more of the best evaluated candidates are developed further. In analytical approaches, candidate programs are constructed in an example-driven way. While generate-and-test approaches can -- in principle -- construct any kind of program, analytical approaches have a more limited scope. On the other hand, efficiency of induction is much higher in analytical approaches. Inductive programming is still mainly a topic of basic research, exploring how the intellectual ability of humans to infer generalised recursive procedures from incomplete evidence can be captured in the form of synthesis methods. Intended applications are mainly in the domain of programming assistance -- either to relieve professional programmers from routine tasks or to enable non-programmers to some limited form of end-user programming. Furthermore, in the future, inductive programming techniques might be applied to further areas such as supporting the inference of lemmata in theorem proving or learning grammar rules. Inductive automated program construction has been originally addressed by researchers in artificial intelligence and machine learning. During the last years, some work on exploiting induction techniques has been started also in the functional programming community. Therefore, the third workshop on |Approaches and Applications of Inductive Programming| took place for the first time in conjunction with the ACM SIGPLAN International Conference on Functional Programming (ICFP 2009). The first and second workshop were associated with the International Conference on Machine Learning (ICML 2005) and the European Conference on Machine Learning (ECML 2007). AAIP´09 aimed to bring together researchers from the functional programming and the artificial intelligence communities, working in the field of inductive functional programming, and advance fruitful interactions between these communities with respect to programming techniques for inductive programming algorithms, the identification of challenge problems and potential applications. For everybody interested in inductive programming we recommend to visit the website: www.inductive-programming.org

    Inductive programming meets the real world

    Full text link
    © Gulwani, S. et al. | ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Communications of the ACM, http://dx.doi.org/10.1145/2736282[EN] Since most end users lack programming skills they often spend considerable time and effort performing tedious and repetitive tasks such as capitalizing a column of names manually. Inductive Programming has a long research tradition and recent developments demonstrate it can liberate users from many tasks of this kind.Gulwani, S.; Hernández-Orallo, J.; Kitzelmann, E.; Muggleton, SH.; Schmid, U.; Zorn, B. (2015). Inductive programming meets the real world. Communications of the ACM. 58(11):90-99. doi:10.1145/2736282S90995811Bengio, Y., Courville, A. and Vincent, P. Representation learning: A review and new perspectives.Pattern Analy. Machine Intell. 35, 8 (2013), 1798--1828.Bielawski, B. Using the convertfrom-string cmdlet to parse structured text.PowerShell Magazine, (Sept. 9, 2004); http://www.powershellmagazine.com/2014/09/09/using-the-convertfrom-string-cmdlet-to-parse-structured-text/Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka-Jr, E.R. and T.M. Mitchell, T.M. Toward an architecture for never-ending language learning. InAAAI, 2010.Chandola, V., Banerjee, A. and V. Kumar, V. Anomaly detection: A survey.ACM Computing Surveys 41, 3 (2009), 15.Cypher, A. (Ed).Watch What I Do: Programming by Demonstration.MIT Press, Cambridge, MA, 1993.Ferri-Ramírez, C., Hernández-Orallo, J. and Ramírez-Quintana, M.J. Incremental learning of functional logic programs. InProceedings of FLOPS, 2001, 233--247.Flener, P. and Schmid, U. An introduction to inductive programming.AI Review 29, 1 (2009), 45--62.Gulwani, S. Dimensions in program synthesis. InProceedings of PPDP, 2010.Gulwani, S. Automating string processing in spreadsheets using input-output examples. InProceedings of POPL, 2011; http://research.microsoft.com/users/sumitg/flashfill.html.Gulwani, S. Example-based learning in computer-aided STEM education.Commun. ACM 57, 8 (Aug 2014), 70--80.Gulwani, S., Harris, W. and Singh, R. Spreadsheet data manipulation using examples.Commun. ACM 55, 8 (Aug. 2012), 97--105.Henderson, R.J. and Muggleton, S.H. Automatic invention of functional abstractions.Latest Advances in Inductive Logic Programming, 2012.Hernández-Orallo, J. Deep knowledge: Inductive programming as an answer, Dagstuhl TR 13502, 2013.Hofmann, M. and Kitzelmann, E. I/O guided detection of list catamorphisms---towards problem specific use of program templates in IP. InACM SIGPLAN PEPM, 2010.Jha, J., Gulwani, S., Seshia, S. and Tiwari, A. Oracle-guided component-based program synthesis. InProceedings of the ICSE, 2010.Katayama, S. Efficient exhaustive generation of functional programs using Monte-Carlo search with iterative deepening. InProceedings of PRICAI, 2008.Kitzelmann, E. Analytical inductive functional programming.LOPSTR 2008, LNCS 5438.Springer, 2009, 87--102.Kitzelmann, E. Inductive programming: A survey of program synthesis techniques. InAAIP, Springer, 2010, 50--73.Kitzelmann, E. and Schmid, U. Inductive synthesis of functional programs: An explanation based generalization approach.J. Machine Learning Research 7, (Feb. 2006), 429--454.Kotovsky, K., Hayes, J.R. and Simon, H.A. Why are some problems hard? Evidence from Tower of Hanoi.Cognitive Psychology 17, 2 (1985), 248--294.Lau, T.A. Why programming-by-demonstration systems fail: Lessons learned for usable AI.AI Mag. 30, 4, (2009), 65--67.Lau, T.A., Wolfman, S.A., Domingos, P. and Weld, D.S. Programming by demonstration using version space algebra.Machine Learning 53, 1-2 (2003), 111--156.Le, V. and Gulwani, S. FlashExtract: A framework for data extraction by examples. InProceedings of PLDI, 2014.Lieberman, H. (Ed).Your Wish is My Command: Programming by Example.Morgan Kaufmann, 2001.Lin, D., Dechter, E., Ellis, K., Tenenbaum, J.B. and Muggleton, S.H. Bias reformulation for one-shot function induction. InProceedings of ECAI, 2014.Marcus, G.F. The Algebraic Mind.Integrating Connectionism and Cognitive Science.Bradford, Cambridge, MA, 2001.Martìnez-Plumed, C. Ferri, Hernández-Orallo, J. and M.J. Ramírez-Quintana. On the definition of a general learning system with user-defined operators.arXiv preprint arXiv:1311.4235, 2013.Menon, A., Tamuz, O., Gulwani, S., Lampson, B. and Kalai, A. A machine learning framework for programming by example. InProceedings of the ICML, 2013.Miller, R.C. and Myers, B.A. Multiple selections in smart text editing. InProceedings of IUI, 2002, 103--110.Muggleton, S.H. Inductive Logic Programming.New Generation Computing 8, 4 (1991), 295--318.Muggleton, S.H. and Lin, D. Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited.IJCAI 2013, 1551--1557.Muggleton, S.H., Lin, D., Pahlavi, N. and Tamaddoni-Nezhad, A. Meta-interpretive learning: application to grammatical inference.Machine Learning 94(2014), 25--49.Muggleton, S.H., De Raedt, L., Poole, D., Bratko, I., Flach, P. and Inoue, P. ILP turns 20: Biography and future challenges.Machine Learning 86, 1 (2011), 3--23.Olsson, R. Inductive functional programming using incremental program transformation.Artificial Intelligence 74, 1 (1995), 55--83.Perelman, D., Gulwani, S., Grossman, D. and Provost, P. Test-driven synthesis.PLDI, 2014.Raza, M., Gulwani, S. and Milic-Frayling, N. Programming by example using least general generalizations.AAAI, 2014.Schmid, U. and Kitzelmann, E. Inductive rule learning on the knowledge level.Cognitive Systems Research 12, 3 (2011), 237--248.Schmid, U. and Wysotzki, F. Induction of recursive program schemes.ECML 1398 LNAI(1998), 214--225.Shapiro, E.Y. An algorithm that infers theories from facts.IJCAI(1981), 446--451.Solar-Lezama, A.Program Synthesis by Sketching.Ph.D thesis, UC Berkeley, 2008.Summers, P.D. A methodology for LISP program construction from examples.JACM 24, 1 (1977), 162--175.Tenenbaum, J.B., Griffiths, T.L. and Kemp, C. Theory-based Bayesian models of inductive learning and reasoning.Trends in Cognitive Sciences 10, 7 (2006), 309--318.Young, S. Cognitive user interfaces.IEEE Signal Processing 27, 3 (2010), 128--140

    Formalising Confluence in PVS

    Get PDF
    Confluence is a critical property of computational systems which is related with determinism and non ambiguity and thus with other relevant computational attributes of functional specifications and rewriting system as termination and completion. Several criteria have been explored that guarantee confluence and their formalisations provide further interesting information. This work discusses topics and presents personal positions and views related with the formalisation of confluence properties in the Prototype Verification System PVS developed at our research group.Comment: In Proceedings DCM 2015, arXiv:1603.0053

    Analytical learning and term-rewriting systems

    Get PDF
    Analytical learning is a set of machine learning techniques for revising the representation of a theory based on a small set of examples of that theory. When the representation of the theory is correct and complete but perhaps inefficient, an important objective of such analysis is to improve the computational efficiency of the representation. Several algorithms with this purpose have been suggested, most of which are closely tied to a first order logical language and are variants of goal regression, such as the familiar explanation based generalization (EBG) procedure. But because predicate calculus is a poor representation for some domains, these learning algorithms are extended to apply to other computational models. It is shown that the goal regression technique applies to a large family of programming languages, all based on a kind of term rewriting system. Included in this family are three language families of importance to artificial intelligence: logic programming, such as Prolog; lambda calculus, such as LISP; and combinatorial based languages, such as FP. A new analytical learning algorithm, AL-2, is exhibited that learns from success but is otherwise quite different from EBG. These results suggest that term rewriting systems are a good framework for analytical learning research in general, and that further research should be directed toward developing new techniques

    How functional programming mattered

    Get PDF
    In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper arguing convincingly ‘why functional programming matters’. More than two decades have passed. Has functional programming really mattered? Our answer is a resounding ‘Yes!’. Functional programming is now at the forefront of a new generation of programming technologies, and enjoying increasing popularity and influence. In this paper, we review the impact of functional programming, focusing on how it has changed the way we may construct programs, the way we may verify programs, and fundamentally the way we may think about programs

    Koka: Programming with Row Polymorphic Effect Types

    Full text link
    We propose a programming model where effects are treated in a disciplined way, and where the potential side-effects of a function are apparent in its type signature. The type and effect of expressions can also be inferred automatically, and we describe a polymorphic type inference system based on Hindley-Milner style inference. A novel feature is that we support polymorphic effects through row-polymorphism using duplicate labels. Moreover, we show that our effects are not just syntactic labels but have a deep semantic connection to the program. For example, if an expression can be typed without an exn effect, then it will never throw an unhandled exception. Similar to Haskell's `runST` we show how we can safely encapsulate stateful operations. Through the state effect, we can also safely combine state with let-polymorphism without needing either imperative type variables or a syntactic value restriction. Finally, our system is implemented fully in a new language called Koka and has been used successfully on various small to medium-sized sample programs ranging from a Markdown processor to a tier-splitted chat application. You can try out Koka live at www.rise4fun.com/koka/tutorial.Comment: In Proceedings MSFP 2014, arXiv:1406.153
    • …
    corecore