2,294 research outputs found

    In-vehicle channel sounding in the 5.8-GHz band

    Get PDF
    The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard. Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating in the 3- to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov-Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR), i.e., tap gains at different delays. Next, the CIR information is fed to an 802.11p simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments.The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard. Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating in the 3- to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov-Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR), i.e., tap gains at different delays. Next, the CIR information is fed to an 802.11p simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments

    Directive mmWave radio channel modeling in a ship hull

    Get PDF
    Wireless connectivity has been realized for multiple environments and different frequency bands. However, little research exists about mmWave communication in industrial environments. This paper presents the 60 GHz double-directional radio channel for mmWave communication in a ship hull for Line-of-Sight (LOS) and non-Line-of-Sight (NLOS) conditions. We performed channel measurements using the Terragraph channel sounder at different locations in the ship hull and fitted LOS path loss to a one-slope path loss model. Path loss and root-mean-square delay spread of the LOS path is compared to the reflected path with lowest path loss. NLOS communication via this first-order reflected path is modeled by calculating the path distance and determining the reflection loss. The reflection losses have a considerable contribution to the signal attenuation of the reflected path. The channel models are implemented in an indoor coverage prediction tool, which was extended with a ray launching algorithm and validated by comparison with an analytical electromagnetic solver. The results show that the mmWave radio channel allows high-throughput communication within a ship hull compartment, even when no LOS path between the transmitter and receiver is present.This work was executed within the Internet-of-Shipping (IoS) research project, co-financed by imec with support from Flanders Innovation & Entrepreneurship. The channel sounder has been granted as part of the Channel Sounder Program of the Telecom Infra Project (TIP). The authors would like to thank Ivan Renette and Franck Ntibashirakandi from Exmar Shipmanagement to facilitate the measurement campaign.Peer ReviewedPostprint (author's final draft

    Design of multiplierless correlators for timing synchronization in IEEE 802.11a wireless LANs

    Get PDF
    Timing synchronization for IEEE 802.11a WLANs requires using a correlator to correlate the received signal with a known waveform. Straightforward implementation of this correlator results in the need to perform 320 million complex multiplications per second. This significant requirement can be eliminated by using multiplierless correlators. In this paper, multiplierless correlators are designed based on constraining the real and imaginary parts of correlator coefficients to be sums of powers of two. Sets of coefficients that yield good synchronization performance for simple A WGN channels are first identified; then their goodness for indoor communication environments is verified by simulation for multipath fading channels. Several multiplierless correlators are found. Comparison among these correlators identifies a good one that requires to perform only 26 addition/subtraction operations per correlator output while a similar synchronization performance can be maintained.published_or_final_versio

    A Site-Specific Indoor Wireless Propagation Model

    Get PDF
    In this thesis, we explore the fundamental concepts behind the emerging field of site-specific propagation modeling for wireless communication systems. The first three chapters of background material discuss, respectively, the motivation for this study, the context of the study, and signal behavior and modeling in the predominant wireless propagation environments. A brief survey of existing ray-tracing based site-specific propagation models follows this discussion, leading naturally to the work of new model development undertaken in our thesis project. Following the detailed description of our generalized wireless channel modeling, various interference cases incorporating with this model are thoroughly discussed and results presented at the end of this thesis

    Simulation framework for multigigabit applications at 60 GHz

    Get PDF
    This dissertation describes the implementation of a OFDM-based simulation framework for multigigabit applications at 60 GHz band over indoor multipath fading channels. The main goal of the framework is to provide a modular simulation tool designed for high data rate application in order to be easily adapted to a speci c standard or technology, such as 5G. The performance of OFDM using mmWave signals is severely a ected by non-linearities of the RF front-ends. This work analyses the impact of RF impairments in an OFDM system over multipath fading channels at 60 GHz using the proposed simulation framework. The impact of those impairments is evaluated through the metrics of BER, CFR, operation range and PSNR for residential and kiosk scenarios, suggested by the standard for LOS and NLOS. The presented framework allows the employment of 16 QAM or 64 QAM modulation scheme, and the length of the cyclic pre x extension is also con gurable. In order to simulate a realistic multipath fading channel, the proposed framework allows the insertion of a channel impulse response de ned by the user. The channel estimation can be performed either using pilot subcarriers or Golay sequence as channel estimation sequences. Independently of the channel estimation technique selected, frequency domain equalization is available through ZF approach or MMSE. The simulation framework also allows channel coding techniques in order to provide a more robustness transmission and to improve the link budget
    • …
    corecore