1,385 research outputs found

    Nonlinearity and Noise Effects in Multi-level Signal Millimeter-Wave over Fiber Transmission using Single- and Dual-Wavelength Modulation

    Get PDF
    We transmit multilevel quadrature amplitude modulation (QAM) data-IEEE 802.16 schemes-at 20 MSps and an orthogonal frequency-division multiplexing (OFDM) 802.11 g signal (54 Mbps) with a 25 GHz millimeter-wave over fiber system, which employs a dual wavelength source, over 20 km of single mode fiber. Downlink data transmission is successfully demonstrated over both optical and wireless (up to 12 m) paths with good error vector magnitude. An analysis of two different schemes, in which data is applied to one (single) and both (dual) of the wavelengths of a dual wavelength source, is carried out. The system performance is analyzed through simulation and a good match with experimental results is obtained. The analysis investigates the impact of Mach-Zehnder modulator (MZM) and RF amplifier nonlinearity and various noise sources, such as laser relative intensity noise, amplified spontaneous emission, thermal, and shot noise. A comparison of single carrier QAM IEEE 802.16 and OFDM in terms of their sensitivity to the distortions from MZM and RF amplifier nonlinearity is also presented

    An Octave-Range, Watt-Level, Fully-Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off-Efficiency Improvement

    Get PDF
    The power mixer array is presented as a novel power generation approach for non-constant envelope signals. It comprises several power mixer units that are dynamically turned on and off to improve the linearity and back-off efficiency. At the circuit level, the power mixer unit can operate as a switching amplifier to achieve high peak power efficiency. Additional circuit level linearization and back-off efficiency improvement techniques are also proposed. To demonstrate the feasibility of this idea, a fully-integrated octave-range CMOS power mixer array is implemented in a 130 nm CMOS process. It is operational between 1.2 GHz and 2.4 GHz and can generate an output power of +31.3 dBm into an external 50 Ω load with a PAE of 42% and a gain compression of only 0.4 dB at 1.8 GHz. It achieves a PAE of 25%, at an average output power of +26.4 dBm, and an EVM of 4.6% with a non-constant-envelope 16 QAM signal. It can also produce arbitrary signal levels down to -70 dBm of output power with the 16 QAM-modulated signal without any RF gain control circuit

    Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has attracted a lot of interest in optical fiber communications due to its simplified digital signal processing (DSP) units, high spectral-efficiency, flexibility, and tolerance to linear impairments. However, CO-OFDM’s high peak-to-average power ratio imposes high vulnerability to fiber-induced non-linearities. DSP-based machine learning has been considered as a promising approach for fiber non-linearity compensation without sacrificing computational complexity. In this paper, we review the existing machine learning approaches for CO-OFDM in a common framework and review the progress in this area with a focus on practical aspects and comparison with benchmark DSP solutions.Peer reviewe

    Design and linearization of an efficient class E power amplifier using a test bench based on development boards

    Get PDF
    Nowadays, with the increase in small satellites applications for Earth observation, the need for high efficient transmitters capable of delivering the required power, taking into account not only the power consumption limitations of small satellites (solar powered), but also the required linearity to allow high data rates in the downlink, has fostered the research on alternatives to the classical transmitter amplification. This Master Thesis has the objective to mitigate the inherent trade-off between linearity and efficiency in communication transmitters by addressing the design of an efficient Power Amplifier (PA) combined with the implementation of Crest Factor Reduction (CFR) and Digital Predistortion (DPD) techniques. For this purpose, the deployment of a low-budget test bench based on development boards is proposed to carry out the PA evaluation and linearization avoiding the use of expensive laboratory equipment for signal generation and analysis. The experimental campaign was carried out using CFR technique to limit the Peak to Average Power Ratio (PAPR) in addition to the DPD linearization, this method not only allowed us to reduce spectral regrowth and minimize in-band distortion, but also was a crucial approach to maximize power amplifier efficiency fulfilling the linearity requirement imposed by the communications standards. The evaluation of the class-E PA designed (under the supervision of the Communication Engineering research group of the University of Cantabria) was performed using a LTE-like signal of 20 MHz employing Quadrature Amplitude Modulation (QAM) and Orthogonal Frequency-Division Multiplexing (OFDM). The measurements shown that it is possible to achieve an output power of 36,6 dBm with an efficiency about 50% in contrast to the typical class-AB PA efficiency figures ranging from 5-10% when operated with significant back-off levels to avoid saturation. Moreover, the Adjacent Channel Power Ratio (ACPR) is below -45 dB and the Error Vector Magnitude (EVM) is around 1,4% for a 64QAM signal in compliance with the communication standards

    Linear Operation of Switch-Mode Outphasing Power Amplifiers

    Get PDF
    Radio transceivers are playing an increasingly important role in modern society. The ”connected” lifestyle has been enabled by modern wireless communications. The demand that has been placed on current wireless and cellular infrastructure requires increased spectral efficiency however this has come at the cost of power efficiency. This work investigates methods of improving wireless transceiver efficiency by enabling more efficient power amplifier architectures, specifically examining the role of switch-mode power amplifiers in macro cell scenarios. Our research focuses on the mechanisms within outphasing power amplifiers which prevent linear amplification. From the analysis it was clear that high power non-linear effects are correctable with currently available techniques however non-linear effects around the zero crossing point are not. As a result signal processing techniques for suppressing and avoiding non-linear operation in low power regions are explored. A novel method of digital pre-distortion is presented, and conventional techniques for linearisation are adapted for the particular needs of the outphasing power amplifier. More unconventional signal processing techniques are presented to aid linearisation of the outphasing power amplifier, both zero crossing and bandwidth expansion reduction methods are designed to avoid operation in nonlinear regions of the amplifiers. In combination with digital pre-distortion the techniques will improve linearisation efforts on outphasing systems with dynamic range and bandwidth constraints respectively. Our collaboration with NXP provided access to a digital outphasing power amplifier, enabling empirical analysis of non-linear behaviour and comparative analysis of behavioural modelling and linearisation efforts. The collaboration resulted in a bench mark for linear wideband operation of a digital outphasing power amplifier. The complimentary linearisation techniques, bandwidth expansion reduction and zero crossing reduction have been evaluated in both simulated and practical outphasing test benches. Initial results are promising and indicate that the benefits they provide are not limited to the outphasing amplifier architecture alone. Overall this thesis presents innovative analysis of the distortion mechanisms of the outphasing power amplifier, highlighting the sensitivity of the system to environmental effects. Practical and novel linearisation techniques are presented, with a focus on enabling wide band operation for modern communications standards

    Passive and active components development for broadband applications

    Get PDF
    Recently, GaN HEMTs have been proven to have numerous physical properties, resulting in transistors with greatly increased power densities when compared to the other well-established FET technologies. This advancement spurred research and product development towards power-band applications that require both high power and high efficiency over the wide band. Even though the use of multiple narrow band PAs covering the whole band has invariably led to better performance in terms of efficiency and noise, there is an associated increase in cost and in the insertion loss of the switches used to toggle between the different operating bands. The goal, now, of the new technology is to replace the multiple narrow band PAs with one broadband PA that has a comparable efficiency performance. In our study here, we have investigated a variety of wide band power amplifiers, including class AB PAs and their implementation in distributed and feedback PAs.Additionally, our investigation has included switching-mode PAs as they are well-known for achieving a relatively high efficiency. Besides having a higher efficiency, they are also less susceptible to parameter variations and could impose a lower thermal stress on the transistors than the conventional-mode PAs. With GaN HEMTs, we have demonstrated: a higher than 37 dBm output power and a more than 30% drain efficiency over 0.02 to 3 GHz for the distributed power amplifier; a higher than 30 dBm output power with more than a 22% drain efficiency over 0.1 to 5 GHz for the feedback amplifier; and at least a 43 dBm output power with a higher than 63% drain efficiency over 0.05 to 0.55 GHz for the class D PA. In many communication applications, however, achieving both high efficiency and linearity in the PA design is required. Therefore, in our research, we have evaluated several linearization and efficiency enhancement techniques.We selected the LInear amplification with Nonlinear Components (LINC) approach. Highly efficient combiner and novel efficiency enhancement techniques like the power recycling combiner and adaptive bias LINC schemes have been successfully developed and verified to achieve a combined high efficiency with a relatively high linearity

    Enhancing the BER and ACLR for the HPA Using Pre-Distortion Technique

    Get PDF
    Power amplifiers are key components in wireless transceivers. Their function is to amplify signal and generate the required Radio Frequency (RF) power that allows to transmit the signal over an appropriate range. The Orthogonal Frequency Division Multiplexing (OFDM) systems are highly sensitive to nonlinear distortion introduced by High Power Amplifier (HPA). The HPA nonlinearity causes in-band and out-of-band distortions. The linearization techniques are used to compensate the nonlinear effects of the high power amplifier. These techniques correct the distortion effects resulting from nonlinearities in the transmitted signal. Many linearization techniques have been developed to improve power amplifier linearity and to decrease both Bit Error Rate (BER) and Adjacent Channel Leakage Ratio (ACLR). This work is set to run the high power amplifier in the nonlinear region. It is also attempting to analyze the resulting signal in terms of the BER and ACLR, next employs pre-distortion linearization techniques to reduce the distortion introduced in this region. According to Digital Video Broadcasting-Terrestrial (DVB-T) standard the linearization techniques, circuit and the OFDM transmitter and receiver is designed and implemented through using computer simulation of AWR Design Environment
    • 

    corecore