421 research outputs found

    Pairwise Discriminative Speaker Verification in the I-Vector Space

    Get PDF
    This work presents a new and efficient approach to discriminative speaker verification in the i-vector space. We illustrate the development of a linear discriminative classifier that is trained to discriminate between the hypothesis that a pair of feature vectors in a trial belong to the same speaker or to different speakers. This approach is alternative to the usual discriminative setup that discriminates between a speaker and all the other speakers. We use a discriminative classifier based on a Support Vector Machine (SVM) that is trained to estimate the parameters of a symmetric quadratic function approximating a log-likelihood ratio score without explicit modeling of the i-vector distributions as in the generative Probabilistic Linear Discriminant Analysis (PLDA) models. Training these models is feasible because it is not necessary to expand the i-vector pairs, which would be expensive or even impossible even for medium sized training sets. The results of experiments performed on the tel-tel extended core condition of the NIST 2010 Speaker Recognition Evaluation are competitive with the ones obtained by generative models, in terms of normalized Detection Cost Function and Equal Error Rate. Moreover, we show that it is possible to train a gender- independent discriminative model that achieves state-of-the-art accuracy, comparable to the one of a gender-dependent system, saving memory and execution time both in training and in testin

    Weighted LDA techniques for I-vector based speaker verification

    Get PDF
    This paper introduces the Weighted Linear Discriminant Analysis (WLDA) technique, based upon the weighted pairwise Fisher criterion, for the purposes of improving i-vector speaker verification in the presence of high intersession variability. By taking advantage of the speaker discriminative information that is available in the distances between pairs of speakers clustered in the development i-vector space, the WLDA technique is shown to provide an improvement in speaker verification performance over traditional Linear Discriminant Analysis (LDA) approaches. A similar approach is also taken to extend the recently developed Source Normalised LDA (SNLDA) into Weighted SNLDA (WSNLDA) which, similarly, shows an improvement in speaker verification performance in both matched and mismatched enrolment/verification conditions. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that both WLDA and WSNLDA are viable as replacement techniques to improve the performance of LDA and SNLDA-based i-vector speaker verification

    Compensation of Nuisance Factors for Speaker and Language Recognition

    Get PDF
    The variability of the channel and environment is one of the most important factors affecting the performance of text-independent speaker verification systems. The best techniques for channel compensation are model based. Most of them have been proposed for Gaussian mixture models, while in the feature domain blind channel compensation is usually performed. The aim of this work is to explore techniques that allow more accurate intersession compensation in the feature domain. Compensating the features rather than the models has the advantage that the transformed parameters can be used with models of a different nature and complexity and for different tasks. In this paper, we evaluate the effects of the compensation of the intersession variability obtained by means of the channel factors approach. In particular, we compare channel variability modeling in the usual Gaussian mixture model domain, and our proposed feature domain compensation technique. We show that the two approaches lead to similar results on the NIST 2005 Speaker Recognition Evaluation data with a reduced computation cost. We also report the results of a system, based on the intersession compensation technique in the feature space that was among the best participants in the NIST 2006 Speaker Recognition Evaluation. Moreover, we show how we obtained significant performance improvement in language recognition by estimating and compensating, in the feature domain, the distortions due to interspeaker variability within the same language. Index Terms—Factor anal

    Anti-spoofing Methods for Automatic SpeakerVerification System

    Full text link
    Growing interest in automatic speaker verification (ASV)systems has lead to significant quality improvement of spoofing attackson them. Many research works confirm that despite the low equal er-ror rate (EER) ASV systems are still vulnerable to spoofing attacks. Inthis work we overview different acoustic feature spaces and classifiersto determine reliable and robust countermeasures against spoofing at-tacks. We compared several spoofing detection systems, presented so far,on the development and evaluation datasets of the Automatic SpeakerVerification Spoofing and Countermeasures (ASVspoof) Challenge 2015.Experimental results presented in this paper demonstrate that the useof magnitude and phase information combination provides a substantialinput into the efficiency of the spoofing detection systems. Also wavelet-based features show impressive results in terms of equal error rate. Inour overview we compare spoofing performance for systems based on dif-ferent classifiers. Comparison results demonstrate that the linear SVMclassifier outperforms the conventional GMM approach. However, manyresearchers inspired by the great success of deep neural networks (DNN)approaches in the automatic speech recognition, applied DNN in thespoofing detection task and obtained quite low EER for known and un-known type of spoofing attacks.Comment: 12 pages, 0 figures, published in Springer Communications in Computer and Information Science (CCIS) vol. 66

    Acoustic Approaches to Gender and Accent Identification

    Get PDF
    There has been considerable research on the problems of speaker and language recognition from samples of speech. A less researched problem is that of accent recognition. Although this is a similar problem to language identification, di�erent accents of a language exhibit more fine-grained di�erences between classes than languages. This presents a tougher problem for traditional classification techniques. In this thesis, we propose and evaluate a number of techniques for gender and accent classification. These techniques are novel modifications and extensions to state of the art algorithms, and they result in enhanced performance on gender and accent recognition. The first part of the thesis focuses on the problem of gender identification, and presents a technique that gives improved performance in situations where training and test conditions are mismatched. The bulk of this thesis is concerned with the application of the i-Vector technique to accent identification, which is the most successful approach to acoustic classification to have emerged in recent years. We show that it is possible to achieve high accuracy accent identification without reliance on transcriptions and without utilising phoneme recognition algorithms. The thesis describes various stages in the development of i-Vector based accent classification that improve the standard approaches usually applied for speaker or language identification, which are insu�cient. We demonstrate that very good accent identification performance is possible with acoustic methods by considering di�erent i-Vector projections, frontend parameters, i-Vector configuration parameters, and an optimised fusion of the resulting i-Vector classifiers we can obtain from the same data. We claim to have achieved the best accent identification performance on the test corpus for acoustic methods, with up to 90% identification rate. This performance is even better than previously reported acoustic-phonotactic based systems on the same corpus, and is very close to performance obtained via transcription based accent identification. Finally, we demonstrate that the utilization of our techniques for speech recognition purposes leads to considerably lower word error rates. Keywords: Accent Identification, Gender Identification, Speaker Identification, Gaussian Mixture Model, Support Vector Machine, i-Vector, Factor Analysis, Feature Extraction, British English, Prosody, Speech Recognition

    Constrained discriminative speaker verification specific to normalized i-vectors

    Get PDF
    International audienceThis paper focuses on discriminative trainings (DT) applied to i-vectors after Gaussian probabilistic linear discriminant analysis (PLDA). If DT has been successfully used with non-normalized vectors, this technique struggles to improve speaker detection when i-vectors have been first normalized, whereas the latter option has proven to achieve best performance in speaker verification. We propose an additional normalization procedure which limits the amount of coefficient to discriminatively train, with a minimal loss of accuracy. Adaptations of logistic regression based-DT to this new configuration are proposed, then we introduce a discriminative classifier for speaker verification which is a novelty in the field

    Max-margin Metric Learning for Speaker Recognition

    Full text link
    Probabilistic linear discriminant analysis (PLDA) is a popular normalization approach for the i-vector model, and has delivered state-of-the-art performance in speaker recognition. A potential problem of the PLDA model, however, is that it essentially assumes Gaussian distributions over speaker vectors, which is not always true in practice. Additionally, the objective function is not directly related to the goal of the task, e.g., discriminating true speakers and imposters. In this paper, we propose a max-margin metric learning approach to solve the problems. It learns a linear transform with a criterion that the margin between target and imposter trials are maximized. Experiments conducted on the SRE08 core test show that compared to PLDA, the new approach can obtain comparable or even better performance, though the scoring is simply a cosine computation
    • …
    corecore