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Abstract

There has been considerable research on the problems of speaker and language recognition
from samples of speech. A less researched problem is that of accent recognition. Although this
is a similar problem to language identification, different accents of a language exhibit more
fine-grained differences between classes than languages. This presents a tougher problem
for traditional classification techniques. In this thesis, we propose and evaluate a number of
techniques for gender and accent classification. These techniques are novel modifications and
extensions to state of the art algorithms, and they result in enhanced performance on gender
and accent recognition.

The first part of the thesis focuses on the problem of gender identification, and presents a
technique that gives improved performance in situations where training and test conditions are
mismatched.

The bulk of this thesis is concerned with the application of the i-Vector technique to accent
identification, which is the most successful approach to acoustic classification to have emerged
in recent years. We show that it is possible to achieve high accuracy accent identification without
reliance on transcriptions and without utilising phoneme recognition algorithms. The thesis
describes various stages in the development of i-Vector based accent classification that improve
the standard approaches usually applied for speaker or language identification, which are
insufficient. We demonstrate that very good accent identification performance is possible with
acoustic methods by considering different i-Vector projections, frontend parameters, i-Vector
configuration parameters, and an optimised fusion of the resulting i-Vector classifiers we can
obtain from the same data.

We claim to have achieved the best accent identification performance on the test corpus
for acoustic methods, with up to 90% identification rate. This performance is even better than
previously reported acoustic-phonotactic based systems on the same corpus, and is very close
to performance obtained via transcription based accent identification. Finally, we demonstrate
that the utilization of our techniques for speech recognition purposes leads to considerably
lower word error rates.

Keywords: Accent Identification, Gender Identification, Speaker Identification, Gaussian
Mixture Model, Support Vector Machine, i-Vector, Factor Analysis, Feature Extraction, British
English, Prosody, Speech Recognition.
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Chapter 1
Introduction

This chapter will give an overview of the research presented in this thesis. Particularly we will

look at the research questions that are explored, the reasons why they should be addressed, and

the general context in which they are addressed. Finally, we also give a breakdown of the rest of

the chapters in this thesis.

1.1 Research Aim

The speech signal carries a wealth of information about the speaker. The goal of speech from

a linguistic perspective, is to convey a message from a speaker to a listener. Speech to text

transcription is the goal of Automatic Speech Recognition (ASR). But this information is encoded

differently according to the language, dialect and accent being utilized. From an acoustic

perspective, there are individual characteristics that define the voice of a speaker, or a speaking

style, the approximate age of a speaker, the mood the speaker is in, and in some cases, speech

pathologies when there is something evidently wrong with the voice production mechanism.

This range of information makes the study of voice very multidisciplinary, and the computa-

tional methods that can be devised to model, characterise, and study speech data have different

uses, not just in computing science, but in voice forensics, medical analysis, speech therapy and

linguistic studies, to name a few. It is important to discover and improve ways to measure,

model and compare speech characteristics as accurately and as robustly as possible.

The idea of inferring the speaker’s identity from speech has many practical applications.

This task is generally split up into two sub-problems. The first is identification, where given
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a speech sample from a speaker, we would like to identify the person from among a pool of

possible identities. The second is verification, where we have a prior claim of who the speaker

is, and given a voice sample from the claimant, we want to ascertain that this is either true or

false. These two general themes of speaker identification and verification can be extended to

other speaker characteristics such as age, gender, language, accent etc.

Being able to have a complete speaker profile based on all these categories is desirable. Any

security system based on this form of biometric identification is prone to spoofing, so having a

multi-dimensional speaker profile would make it even more secure e.g. if it were possible to

successfully mimic a speaker’s overall acoustic characteristics, but not their accent, then the

user is locked out. But security is not the only application area for such a technology. Manually

labelling corpora for future analysis is very costly and time-consuming. With the onset of “big

data” and the voluminous amount of (cheap) unlabelled multimedia data available, systems

based on identifying speaker characteristics such as language, accent, gender, age etc. can be

used for unsupervised annotation, provided they are reliable enough.

Speech classification problems are often split into two methods of analysis: supervised and

unsupervised methods. In supervised analysis, the transcription of the speech at some level

and at some accuracy, is known prior to acoustic analysis. If we know the transcription of

an utterance, then we can devise a model that is context-based, bound by the transcription.

Measurements and comparisons are then based on template models for that linguistic content.

Unsupervised methods are used when there is no transcription available. The expectation

(and reality) is that supervised systems perform better than unsupervised methods, but the

application of unsupervised methods is much broader.

1.2 Defining Accents

There are generally a number of frequently conflated definitions of what an accent is. We choose

a definition that is useful for this thesis. In Volume I of “Accents of English”, the definition Wells

gives is “a pattern of pronunciation used by a speaker for whom English is the native language

or, more generally, by the community or social grouping to which he or she belongs” [5]. This

thesis therefore will not consider dialect, which is about the use of specific words or phrases that

are specific to one region but not another. For example, when a speaker of US English uses the

words “elevator” and “sidewalk” to refer to what a British English speaker means by “lift” and

”pavement”, this is an example of dialect. However, when somebody from the north of England
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pronounces “bath” with the same vowel sound as “rat”, rather than the vowel in “part”, as a

southern English speaker would, this is an example of accent.

In the UK, Received Pronunciation (RP) is usually the accent generally used by national

news broadcasters (although this is not always the case). This does not mean that there is a

correct or incorrect way of pronouncing English, but it does imply that the articulatory phonetics

differ from one accent to another [6].

Furthermore, this thesis is concerned with the accents of native British English speakers

from the British Isles. One can categorize British English accents into five broad regions: the

North and South of England, Scotland, Wales and Ireland. The northern region can be split

further into the Midlands, mid-North and far-North. The southern region can be split further

into the London area, the surrounding counties, East Anglia and the South-West [7]. However,

splitting accents into groups does not mean that each accent group has a single particular set

of characteristics unique to itself. There may well be variability of the same accent within a

particular accent group, as well as some shared traits across multiple accent groups. Accents

should therefore be more precisely defined as existing within a continuous space representation.

Over recent years, accents have been receiving more attention in speech processing, but

the attention to classification has been relatively poor. For instance, in Interspeech 2013 (the

major conference for speech processing), there were a total of eleven papers related to accent

and language identification. Only three of those were about accents as we define it above. The

others were in the more popular area of language classification. But since accents are a major

source of variation in speech, together with gender and speaker differences, having good accent

identification performance has potential applications in ASR, annotation, biometric profiling

etc. The recent work in accent identification has followed from the state of the art in language

identification. Our work primarily follows from the recent work on accent classification by

Hanani et al. [4], which used the same accent dataset as the one we utilize in our research.

The current state of the art Speaker Identification(SID)/Accent Identification(AID)/Language

Identification(LID) is based on short-term acoustic features that are variants of Mel Frequency

Cepstral Coefficients (MFCC). These features describe the short-term spectral characteristics

of speech. The basic idea behind modelling these features via adapted Gaussian Mixture

Models (GMM) is that when class specific features are chosen, say for speakers in SID, or

languages in LID, or accents in AID, the resulting model would generalize well towards the

class it has to represent. Also, the short-term duration of speech represents pseudo-phones

or pseudo-syllables — and it is a segmentation that is unsupervised, which is important for
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acoustic-only classification methods.

However, it will become very apparent that there the major source of error in AID is the

inherent acoustic difference in speakers within or across the same accent group. This, coupled

with the unsupervised nature of our analysis, makes it very difficult for a GMM to accurately

model the class. The accent information is relatively diluted by these speaker differences, as

well as by generic modelling of phonetic inventory. We will therefore demonstrate the extent of

how the standard statistical modelling technique of adapted Gaussian Mixture Models, whilst

being quite appropriate for tasks such as SID, is inadequate for the AID task. For this reason,

this thesis has a major focus on AID experimentation and analysis. Because of the fine-grained

differences in accents as opposed to languages, it may seem surprising to some how important

speaker compensation methods based on i-Vectors are crucial to this problem, especially on the

acoustic-only setting.

1.3 Research Questions

This thesis is entitled “Accent and Gender Classification Based on Acoustic-Only Features”.

Below are the most important research questions we address:

1. Gender is one of the primary sources of speaker variation in speech. Gender Identification

(GID) has been given some attention in the past. Are there any additions to standard

algorithms that can improve GID performance across multiple corpora, and different

speaker populations, under shifted datasets (e.g. different recording conditions) for

training and testing?

2. The most successful approaches to AID have analysed the differences in phonetic realization

of equivalent words or phrases spoken across different accents. However, we want to

perform AID for unlabelled, text-independent modelling and classification. Can reliable

AID accuracy be achieved in these conditions? How does it compare to more traditional

methods of AID?

3. If traditional methods of acoustic classification do not work so well for the AID problem,

what changes (if any) have to me made to the classification framework? And what is the

acoustic-phonetic underpinning for these changes?

4. Are traditional acoustic-only front-end systems suitable for the AID problem? How can

they be improved? Is there a difference between utilizing short-term or long-term features

4
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within the context of acoustic-only classification?

Some of these questions will be answered in a self-contained manner. Others are answered

as this thesis progresses across multiple chapters.

1.4 Chapter Breakdown

The chapters that follow are organised as follows:

Chapter 2 is a reference for the technical background for this thesis. It contains an overview

of feature extraction from speech. We also describe the important acoustic-only classification

techniques employed in the field of SID, LID, and AID. In particular we focus on the GMM,

Support Vector Machines (SVM) and some commonly used dimensionality reduction techniques.

Chapter 3 gives an overview of the literature on GID and AID systems, whilst touching

on SID systems where relevant. It will focus on identification techniques as a whole, and will

include material that is not intended solely for acoustic-only AID. We also give an overview on

human and animal perception of speech and acoustics. The chapter ends with considerable

detail on the i-Vector paradigm and how it evolved from the standard GMM paradigm.

Chapter 4 will describe the datasets used in the various experiments performed in this

thesis. In particular we shall describe the TIMIT, WSJCAM0, and ABI-1 corpora. The TIMIT,

WSJCAM0 and ABI-1 datasets are used for our experiments in Chapter 5. The ABI-1 is used

exclusively in Chapters 6, 7 and 8.

Chapter 5 presents our research in the area of GID. It will evaluate the performance of

standard techniques on GID, and show some of the weaknesses of these systems. It then

proposes modifications to the standard algorithm based on pitch models for specific acoustic

contexts, and the agreements between classifiers when pitch shifting is applied to the original

signal. The results are compared to show that our proposed modifications are robust to changes

in speaker sets and corpora.

Chapter 6 presents work on AID using short-term feature vectors. We investigate the

differences across different classification techniques, prior to the introduction of the i-Vector

framework. We also evaluate the utility of some long-term prosodic features on AID. This

chapter will evaluate the difficulty in unsupervised/unlabelled prosodic features for AID over a

number of different experiments.
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Chapter 7 presents our work on AID with the application of the state-of-the-art i-Vector

paradigm in SID and LID. We show how the gains observed in SID and LID can also apply to

native AID. We then discuss our proposed enhancements to the scoring mechanism used by

the classifier to build what we believe to be the best unsupervised AID classifier to date. The

enhancements included an iterative variant of LDA scoring, as well as a fusion mechanism that

combines different i-Vector extractors together.

Chapter 8 extends the previous chapter by looking into more detail at the short-term feature

vectors that are suitable for AID. We show that the ones traditionally used in SID and LID,

though helpful, are generally not the best for AID. We experimentally derive an improved set of

feature vectors based on different front-end configurations. We also investigate the performance

of our AID system based on utterance of various durations. Furthermore, we take an initial

look at how the unsupervised AID developed in this thesis can have a very practicable effect on

the design of ASR systems.

Chapter 9 concludes this thesis by highlighting both the quantitative achievements, and by

summarizing the salient qualitative contributions which will be useful for future work in this

field.

1.5 Research Contributions

This thesis produces a number of contributions to the field of automatic classification of speaker

gender and accent. They can be summarised as follows:

1. The modification of a standard GID classifier to better handle changes across different

corpora, the use of context dependent pitch GMMs and the use of pitch-shifting to sort

out ambiguous cases where gender scoring is not all clear. Refer to publication 1 in the

next section.

2. The first investigation of the effectiveness of the i-Vector technique for identifying regional

accents of British English. Refer to publication 2 in the next section.

3. The demonstration of the incompleteness of learning accent factors based on a single

i-Vector configuration, which are fused at score level. Refer to publication 3 in the next

section.

4. Joint work with other researchers in the field to assess the validity of unsupervised AID to
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provide quasi-real-time model selection for ASR. Refer to publication 4 in the next section.

5. The analysis of AID with different front-end systems, and the gains we can get by utilising

a large set of weak i-Vector systems for a final classification.

1.6 List of Publications

The following is a list of publications arising out of this thesis at the time of print:

1. A. DeMarco and S.J. Cox, “An Accurate and Robust Gender Identification Algorithm”,

Proc. Interspeech 2011, Florence, Italy, 2429-2432, 2011 [8].

2. A. DeMarco and S.J. Cox, “Iterative Classification of Regional British Accents in i-Vector

Space”, Proc. MLSLP 2012, Portland, USA, 1-4, 2012 [9].

3. A. DeMarco and S.J. Cox, “Native Accent Classification via I-Vectors and Speaker Com-

pensation Fusion”, Proc. Interspeech 2013, Lyon, France, 1472-1476, 2013 [10].

4. M. Najafian, A. DeMarco, S.J. Cox and M. Russell, “Unsupervised Model Selection for

Recognition of Regional Accented Speech”, Proc. Interspeech 2014, Singapore, 2014 [3].

1.7 Summary

In this chapter, we have given an overview of the thematic questions and focus that this thesis

investigates. We introduced the idea of accents, and the acoustic-only classifier limitations we

are imposing in our investigation. A list of publications that arise out of this work is shown,

together with a breakdown of the chapters that follow.
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Chapter 2
Technical Background

In this chapter we give a background to some technical material that is essential to all the

experimentation and processing in this thesis. Firstly, we give an overview of the front-end

analysis of speech signals. Following this is an overview of acoustic-only classification methods

that are generally applied to classification problems in GID, AID and SID. This chapter will

serve as a summary of essential background to understand the application of feature extraction

and techniques underlying the basis of classification methods as applied in later chapters. We

then go over some of the most fundamental methods to build classification systems and how

the dimensionality of the feature space for these models can be reduced. Finally we give a

brief overview of genetic algorithms for the purposes of the requirements of this thesis. The

techniques are discussed in a mostly abstract fashion. In later chapters, we will tie individual

methods and features to specific methods and experiments as tried in literature, and in our own

work.

2.1 Speech Production

A general assumption in this field of study is that the more we understand about the physiological

process of how speech signals are produced and further on understood in the human speech

perception processes, then the closer we can approximate an artificial system that can do the

same job to the same extent as humans do [11]. The speech signal is the common element

between the output of the speech production system and the input to the speech perception

system. We usually think about speech in terms of language and grammatical constructs such

as sentences, phrases and words. However these are linguistic explanatory constructs: here, we
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focus on the process of production of speech and the resulting acoustic signal.

The first stage of speech production consists of the speaker formulating the message content

that has to be conveyed to a listener (a mental process). This content has somehow to be

translated to a code that can be pronounced by the speaker and understood by both speaker and

listener. In speech production, this code is a series of neuromuscular commands that cause the

vocal apparatus to move as and when appropriate, and to shape the vocal tract in such a way

that a properly intonated sequence of sounds is generated and output at the lips. The end result

is an acoustic signal. The neuromuscular commands are directly responsible for simultaneously

controlling all aspects of motion of the articulatory muscles [12].

The acoustic speech signal is received by the listener, and the process of decoding the

information in the message is called the speech perception process. The acoustic signal is

processed along the basilar membrane of the inner ear, which provides spectral analysis of the

incoming signal. This spectral signal is converted to activity signals on the auditory nerve with

a neural transduction process. These activity signals are converted into a language code to

higher levels of processing in the brain. How this is done, is not yet very much understood.

Finally the meaning of the signal (as conveyed by the speaker) is achieved [12].

The speech production process provides information on not only the information content

(or message), but also the speaker’s voice, gender, accent, language, etc. Similarly, the speech

perception process determines not only the information the speaker wanted to communicate, but

also enables a listener to listen to and ‘learn’ a speaker’s voice and the various sub-characteristics.

That is why both processes must be well understood for the purpose of determining gender,

accent and speaker voice by an automatic system.

Production of speech sounds is roughly based on an air source (from the lungs) that passes

through the vocal folds. These folds are either held open, or vibrate. The rate of vibration of the

vocal cords is determined by their size and the muscle tension placed on them. In adult males,

the vocal cords are usually longer and larger than those in children, whilst adult females are

intermediate. Similar to string instruments, the longer and thicker the strings, the lower is the

rate of vibration, resulting in listeners hearing a lower pitch voice. The output from vibrating

vocal cords is referred to as a voiced speech signal. However unvoiced speech is also possible,

when the vocal folds are open, allowing air to flow from the larynx to the vocal tract.

The air flow from voiced or unvoiced speech is then modified when passing through the

vocal tract. Figure 2.1 is a simplified diagram of the human speech production system. The vocal
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Figure 2.1: Schematic view of the human vocal mechanism [1].

tract begins at the opening of the vocal cords (found between the larynx and the esophagus),

and ends at the lips. The vocal tract consists of the pharynx (connecting the esophagus to the

mouth) and the mouth, or oral cavity. In the average male, the total length of the vocal tract

is about 17cm. The cross-sectional area of the vocal tract, determined by the positions of the

tongue, lips, jaw, and velum, varies from zero (complete closure) to about 20cm2. The nasal

tract begins at the velum and ends at the nostrils. When the velum is lowered the nasal tract

joins the vocal tract to produce the nasal sounds of speech. Depending on the position of the

articulators (i.e. jaw, tongue, velum, lips, mouth), different sounds can be vocalised [12].

The characteristic of the net effect of air flow that is modified as it passes through through

the vocal tract is modelled, rather crudely, by the source-filter model [13]. A simplified way

to visualise the vocal tract as a continuously varying cross-sectional area chamber. A useful

model of this can be made using coupled tubes of different cross-section areas [2]. This concept
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is shown in Figure 2.2 which shows of a sequence of tubes, each of which represents a different

area of the vocal tract. Each tube has a different cross-sectional area denoted by Ak. The tubes

have varying length across the vocal tract, denoted by Lk. Each tube in the model will have

a set of resonant frequencies that depend on the length. Longer lengths have lower resonant

frequencies, compared to shorter tubes with higher resonant frequencies.

Figure 2.2: Acoustic tube model of speech production [2].

This model can be as complex or as simple as required. The more tubes in the model, the

higher the resolution, and therefore the closer we get to the actual cross-sectional area vocal

chamber, at the cost of a more complex model to work with. In continuous speech, the speaker

can move the various articulators such as the tongue, lips and jaw in different configurations.

At any point in time, this positioning can be approximated by the tube model. Just as the sound

from a loudspeaker is modified changes according to the room/chamber it is transmitted in, the

spectral properties of the sound waves change as they go through the vocal tract.

2.2 Front-End Preprocessing

Having discussed the physiological process of voice production, it is important to relate this to

the mathematical extraction of features that map to the physical process of voice production.

The primary operations for voice signal processing prior to feature extraction are digitization,

pre-emphasis, frame blocking and windowing.
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2.2.1 Digitization

Firstly an analogue voice signal has to be digitized to enable any kind of computational

processing. During this step, the microphone and recording channels introduce undesired

effects depending on their quality. For digitization theory and effects the reader is referred

to [14].

2.2.2 Pre-emphasis

Some feature extraction systems pre-emphasise the signal before further processing. When

acoustic energy is radiated through the lips it is subject to a boost of 6 dB/octave because

of the radiation properties of the lips (compared to the glottal source for voiced sounds at a

6dB/octave slope). To counter this effect the signal is neutralised by a simple first-order filter

that emphasizes the higher frequencies [15, 16] by an additional 6 dB/octave to reduce the effect

of spectral tilt. The pre-emphasis filter in the time domain is shown in Equation 2.1 [17].

s̃(n) = s(n) − λs(n − 1) (2.1)

The value of the pre-emphasis coefficient λ is in the interval [0.90, 0.98]. For fixed-point

implementations a value of λ = 15/16 = 0.9375 is commonly used [17, 18].

2.2.3 Short-Term Frame Blocking

The properties of speech signals are statistically stationary over periods of about 10-30ms.

Because of this, many approaches in speech signal processing are based on short-term analy-

sis [19]. For this reason, a speech signal is blocked into frames of N samples of short duration

in the 10-30ms range. The signal is then analysed one frame at a time, with frames advancing

according to a “sliding window” with 30-50% overlap. An example of this process is shown in

Figure 2.3.

The overlap is required in order to preserve any characteristics that are found in between

frame boundaries. If a characteristic is present at a boundary and continues in another frame,

then the overlap will allow gathering of this characteristic, as opposed to losing this information

when no overlap is present. The amount of overlap therefore controls how quickly changes in

parameters are noticed from frame to frame [20, 17].
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Figure 2.3: The short-term frame blocking process.

2.2.4 Windowing

The framing process described above introduces spectral artefacts, distorting some of the

original spectral information in the Fourier transform. To reduce or avoid (when possible)

this effect, windowing techniques are employed. In the time domain, a signal is point-wise

multiplied by a window-weighting function. By convolution theory, this corresponds to

convolution of the short-term spectrum of the frame with the window function magnitude

spectrum response [21, 19, 22].

There are different window functions, and the choice of which is used is important for

separating spectral components which are near one another in frequency or where one component

is much smaller than another. For more details on window theory, the reader is referred to [20, 23].

Suffice to say that a good window function has a narrow main lobe and low sidelobe levels in

their transfer functions. Every window function has a tradeoff between these two properties —

a narrower main lobe increases side-lobe levels, and vice versa [21, 24]. When the Fast Fourier

Transform (FFT) algorithm is applied to data (a fast implementation of the Discrete Fourier

Transform (DFT)), spectral information from the FFT results occur at the wrong frequencies —

the spectral information leaks over into adjacent frequency bins. This leakage is impossible to

eliminate completely. However, the application of a window function reduces the most negative

effects of spectral distortion [25]. The simplest windowing possible is no windowing at all,
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Figure 2.4: The generalized Hamming window with various values for α.

referred to as rectangular windowing, defined in Equation 2.2 [26].

w(n) =


1, 0 ≤ n ≤ N − 1

0, otherwise
(2.2)

A rectangular window keeps the original waveform unchanged and is not usually used, because

it simply does not help with spectral leakage. Better windows are Hamming, Hann, Blackman,

Bartlett and Kaiser windows. The generalized Hamming window is defined in Equation 2.3 [26].

w(n) =


α−(1−α) cos(2πn/N)

β , 0 ≤ n ≤ N − 1

0, otherwise
(2.3)

The value α is the window constant in the range [0, 1], and N is the window duration in samples.

To implement a Hamming window (our window of choice), the window constant is set to

α = 0.54, whereas to implement a Hann window, α = 0.50. The value β is defined as the
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normalization constant. Many implementations do not include this value as part of the equation.

However, normalisation is important, so that the windowed function will give the same overall

power of the signal as it was before windowing was applied (by modifying β such that the root

mean square value of the window is unity). The value of β is defined in Equation 2.4 [17].

β =

√√√
1
N

N∑
n=1

w2(n) (2.4)

The generalised Hamming window can be seen in Figure 2.4, together with various values for α,

including the special case for the Hann window.

2.3 Feature Extraction

After pre-processing, the voice signal is passed on to feature extraction modules. In this phase,

each of the speech frames is converted to a low-dimension parameter-set that represents the

acoustic information as a numerical vector. The algorithms used to obtain these feature vectors

can be applied to both the time and the frequency domain. We describe the important techniques

over the next section. When dealing with spectral domain (frequency) signals, the feature

extraction methods available are more elaborate, and form the bulk of the signal processing

that needs to be done in automatic speech systems. The spectral domain methods that we shall

discuss all assume that the time domain signal has been transferred to the spectral domain via

the DFT algorithm. It is beyond the scope of this chapter to discuss this algorithm here, but the

interested reader is referred to [27].

2.3.1 Frame Energy and Power

Voice signals in the time domain can be thought of in terms of a function with varying amplitude

through time. In this regard, the strength, or energy, of a signal can be measured by calculating

the area of the function. However, voice signals have negative as well as positive amplitude

values. The sections with negative amplitude do not have any less signal strength than sections

with positive amplitude. In general, the power of a signal is proportional to its squared

amplitude. Energy is the sum of the squared magnitude of all the digitised samples from 1 to N,

as shown in Equation 2.5 [28].

E =

N∑
n=1

s2(n) (2.5)
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It is also common to find the use of power, rather than energy as a feature, particularly the

logarithm of the power, multiplied by 10, which is defined as the power of a signal in decibels.

This is based on what is believed to be the logarithmic response of the human ear to audio. The

signal being received by our brains, through our ears is not the same signal emitted from the

source, and this has to be taken into consideration [28, 17].

2.3.2 Filter Banks

A signal has energy in many subbands (ranges in frequency), and we might wish to process

each of these subbands independently, with different filters, instead of processing the entire

signal under one filter. Feature extraction is then performed on the output of each subband

filter [29]. This idea is simplified in Figure 2.5 [30].
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Figure 2.5: Subband-based feature extraction.

This technique was one of the first techniques ever specifically designed for speech signal

processing, because it could be implemented easily with analogue circuits. It can also be

implemented in the time domain using a set of recursive equations. However, its primary use

is in the spectral domain. The advantage here is that once each subband is created form the

signal, the same feature extraction techniques can be used as for a fullband signal, using regular

frame-based processing [29]. Given that each subband is processed individually, the resolution
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of the subband can be controlled more easily than in fullband processing [30]. In the frequency

domain implementation, the processing is simply a multiplication of the signal spectrum with

the filter magnitude response. Therefore, if we consider:

• an N-point magnitude spectrum (the spectral representation of a speech frame) S( j), j =

1, . . . ,N

• an M-channel filterbank (M subbands) with sampled magnitude response specified in the

arrays Hi( j), i = 1, . . . ,M

the output of the ith filter Y(i) is given in Equation 2.6 [31]. Every channel output is the frequency

region (subband) weighted by the filter response (which can be any filter). The filter bank

provides a tremendous drop in dimensionality (M� N).

Y(i) =

N∑
j=1

S( j)Hi( j) (2.6)

An example of a filterbank magnitude response is shown in Figure 2.6. This filter bank is linearly

spaced along the frequency range 0-8kHz. There are 20 filters (each colour coded differently),

and every filter has a zero response outside of its passband. The triangular shape acts as a filter

that changes the magnitude weight from 0 to 1 and back to 0 along the filter. In contrast, a

rectangular filter bank would have a constant magnitude weight of 1 all along the filter. As

a result, the output of the filtered subband would be the original information in the subband.

A filterbank can be thought of as a simple model of the initial stages of the human auditory

system, where frequencies within a certain bandwidth of certain frequency cannot be heard

because of the phenomenon of “critical bands” [17, 32].

We have so far considered filter banks whose centre frequencies are linearly spaced. However

studies have shown how frequencies perceived by humans are not linear with respect to the

original source. Scales to model the psycho-acoustically motivated warping functions were

proposed for the first time in 1937 by Stevens, Volkman and Newman, who proposed the mel

scale. The mel scale is a scale of pitches as perceived by human listeners, and it shows that the

perceived pitch of a human listener is not linear with respect to the real pitch emitted from a

sound source [33]. This scale is shown in Figure 2.7 and can be computed using Equation 2.7.

fm = 2595 log10

(
1 +

f
700

)
(2.7)

The mel scale gives an approximately linear response to frequencies below 1kHz. However, the
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Figure 2.7: The mel scale curve.

response for frequencies above 1kHz is logarithmic. If we had to apply this frequency warping

scale to the linear triangular filter bank used previously we would get the result shown in

Figure 2.8.

Another important frequency warping scale used in speech technology applications is the

Bark scale, proposed later on in 1961 by Barkhausen, which was a scale built on the perceived

loudness of sounds by human listeners. The Bark scale is defined in Equation 2.8 [17].

fb = 13 arctan
(

0.76 f
1000

)
+ 3.5 arctan

(
f 2

75002

)
(2.8)

There are some reservations in the literature as to whether using these scales in speech
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Figure 2.8: Mel scale warped triangular filterbank.

classification problems is advantageous. The argument is that there is no guarantee that the

human auditory system is optimally designed for SID, AID etc., and for this reason, studies have

been cautious about using these scales or not. By using these scales, the implicit assumption is

that any information ignored by the human auditory system is not important for the speech

systems. However, this may not be the case for some or all automatic speech systems, in that

other data could be possibly useful computationally [34].

2.3.3 Cepstral Analysis

Having previously discussed how the vocal tract works via the acoustic tube model, we can

discuss an important result that enables useful analysis via the spectral domain. The shape of

the vocal tract can be estimated from the spectral shape of the emitted signal [2]. A voice signal

can be represented as the convolution of a quickly varying source signal e(n) (or excitation

signal) with a slowly varying impulse response h(n) of the vocal tract [22]. Therefore the voice

production model we have described, would summarise the voice signal by time domain

convolution as shown in Equation 2.9.

s(n) = e(n) ∗ h(n) (2.9)

The problem with this representation is that once the voice is recorded, we only have access

to s(n), the voice signal itself. It is desirable to separate the source signal (excitation) and the

filter (impulse response of the vocal tract), so analysis can be performed on these components
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individually. But with these components convolved non-linearly, it is very hard to extract this

information. This problem is very much simplified in the frequency domain. The same result

can be expressed in the spectral domain as shown in Equation 2.10.

S( f ) = E( f ) H( f ) (2.10)

By taking the logarithm of both sides, the result is the one shown in Equation 2.11, which

dissolves the component into two additive parts [35].

log |S( f )| = log [|E( f )||H( f )|] = log |E( f )| + log |H( f )| (2.11)

The spectral domain has transformed our signal to a linear multiplication (compared to

convolution of the time domain) as show in Figure 2.9 [36], whilst the logarithm of the spectral

domain converts the signal output to a summation of two distinguishable components. The log

domain therefore provides us an additive superimposition, and the two components can be

separated using conventional signal processing techniques.

= x

Speech magnitude spectrum Excitation response for 'fast' 
spectral variations

Vocal system responsible for 
'slow' spectral variations

Speech magnitude spectrum

'Slow' variations 
(envelope)

'Fast' variations 
(pulses)

|E(w)| |H(w)||S(w)|

Figure 2.9: Spectrum components of a voice signal.

The techniques of cepstral analysis allows us to extract these two separate components.

If the inverse Fourier transform is applied to the logarithm domain components, we have a

mathematical guarantee that this will be applied individually to both of the components. This

kind of processing is called cepstral analysis. Essentially, in cepstral analysis we are performing a

frequency analysis of the spectral domain itself, creating a new domain called the quefrequency

domain. The inverse Fourier transform will separate both the slowly varying and quickly

varying parts of the signal, on different areas of what is called the quefrequency axis. This idea

is demonstrated in Figure 2.10 [36].
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Figure 2.10: A voice cepstrum decomposition.

The low quefrequency terms of the cepstrum correspond to the slowly-varying properties

of the voice signal, and hence represent the behaviour of the vocal tract for the particular

voice frame. The high quefrequency terms on the other hand represent the quickly-varying

characteristics of the voice frame, and describe the excitation pattern for the frame.

The resulting cepstrum is a vector of coefficients called cepstral coefficients. However,

we have seen that the low quefrequency values are what are most important to describe the

behaviour of the vocal tract. And for this reason, only the first few coefficients are important.

The advantage in selecting only a subset of the cepstrum coefficients is that dimensionality is

further reduced. The number of coefficients selected is usually in the order of 12 to 20 coefficients.

The zeroth coefficient is usually dropped out because it represents the average log energy of the

frame, and does not carry any speaker specific information [37, 38]. Having a maximum vector

size of 20 coefficients to describe the vocal tract at a particular instant in time (the voice frame)

is a very compact representation, and also very easy to work with.

We have previously described the psycho-acoustically motivated Mel and Bark scales. These

scales can be used when performing cepstral analysis as well. The process is similar to cepstrum

calculation, except that an extra step is inserted. The frequency axis is warped according to the

particular scale prior to cepstral analysis [38]. The coefficients resulting from Mel scale warping

are called MFCC. Some authors do not agree that the psychoacoustic analysis on which MFCC

are based is suitable for problems such as SID [34]. However, in practice no feature set seems to

beat MFCC in performance in SID [39, 40, 41].

2.3.4 Temporal Derivatives

Once absolute measurements such as MFCC have been extracted from the voice signal, it has

become standard procedure to also add extra temporal information. The spectral parameters

gathered via spectral feature extraction only gather characteristics of a particular instance in
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time. However, when speaking, the articulators are continuously changing their positions, with

specific rates of change. These rate of change of the articulatory movements depends on the

speaking style, the speaking rate, and the speech context itself. At a lower level, these changes

also depend on how the speaker blends various unit sounds together to form larger unit sounds

such as diphthongs. It is usually desirable to capture these spectral dynamics.

Figure 2.11: Deriving first and second order derivatives from absolute coefficients.

In order to do this, higher order time derivatives of the absolute measurements are captured.

These time derivatives are known as delta-features [37]. If cn(i) denotes the ith cepstral frame,

the first order derivatives are defined in Equation 2.12. However, second-order derivatives

can also be gathered similarly, by re-deriving from the first-order derivatives. This concept
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is demonstrated in Figure 2.11. The first order derivatives and second order derivatives are

most commonly referred to as delta and delta-delta parameters respectively. The value of d is

usually assigned in the range of one to three frames. The process can be extended to higher

order derivatives, however in speech signal analysis, first and second order derivatives are those

used [17]. Note that this is the simple differences method of extracting temporal derivatives.

The HTK book [42] provides the simple differences implementation, as well as an additional

implementation, based on regression. However for the purpose of this thesis, we use the

differences implementation for its simplicity.

∆cn[i] = cn[i + d] − cn(i − d) where n = 0, . . . ,N and i = 0, . . . , k − d (2.12)

The output generated from spectral dynamics processing is a parameter vector that includes

both the original absolute parameters as well as the temporal derivatives. Of course, the

dimensionality of the vector space increases with every parameter that is added. Therefore

constructing a reliable voice model for all the dimensions will require more training data. This

fact should not be overlooked, because if training data is sparse, then it is probably better to

leave out temporal derivatives altogether [37].

2.3.5 Shifted Delta Cepstra

The use of delta features can be found in many SID applications. For the problem of LID, a

new feature set called Shifted Delta Cepstra (SDC) was introduced, and improved performance

when compared to traditional delta features. [43, 44].

∆SDCcn[t, i] = cn[t + iP + d] − cn[t + iP − d] where n = 0, . . . ,N and i = 0, . . . , k − 1 (2.13)

SDCs are an extension over temporal derivatives. They are constructed by combining the delta

cepstra computed across multiple frames of speech. A SDC configuration is made up of four

parameters with a notation N-d-P-k. N is the number of cepstral coefficients computed for

each frame, d represents the look-ahead and look-back delay for the delta computation, k is the

number of units for which delta coefficients are concatenated to form the final feature vector and

P is the time shift between consecutive units. This concept is demonstrated in Figure 2.12. In

this example the N-d-P-k are set as 7-1-3-7, which is a popular choice for LID [44, 45], resulting

in a final SDC feature vector of 49 dimensions. If cn(t, i) denotes the ith cepstral frame at time t,

the SDC are defined in Equation 2.13.
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Figure 2.12: Deriving shifted delta cepstra from absolute coefficients in a 7-1-3-7 configuration.

2.3.6 Feature Normalization

The features collected from speech signals usually vary quite a bit due to noisy conditions and

variations caused by channel differences. These effects can be very detrimental to classification

systems such as GID, AID, LID, SID etc. There are a number of techniques that can be applied

to the original features in order to attenuate these effects. The most common ones used are

Cepstral Mean Normalization (CMN) [46], Mean and Variance Normalization (MVN) [47] and

Feature Warping [48].

2.3.6.1 Cepstral Mean Normalization

In this feature normalization method there is an assumption that throughout the entire utterance,

there is a stationary response present e.g. the frequency response of a specific microphone being

used for recording. If this is so, the channel will effectively have been filtered by this transfer

function throughout the entire utterance. We have seen earlier how convolution is equivalent

to an additive component in the log domain, such as the log cepstral domain. By subtracting

the mean cepstral vector from the whole utterance we remove the (stationary) offset dictated
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by the channel. A variant of CMN adapts for varying channel effects, where CMN is applied

to windows of speech within the utterance, rather than the whole utterance. Some slowly

time-varying channel characteristics can be attenuated this way. An example of the effect of this

technique on a cepstral component is shown in Figure 2.13. The overall shape of the distribution

is unchanged, since the same mean vector is subtracted from all other vectors.
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Figure 2.13: Cepstral mean normalization for c1 over an utterance.

2.3.6.2 Mean and Variance Normalization

In this feature normalization method, the same process as in CMN is applied. In addition each

cepstral vector is normalized by the variance cepstral vector of the whole utterance. The resulting

features after MVN will have zero mean and unit variance, as opposed to just zero mean in

CMN. An example of the effect of this technique on a cepstral component is shown in Figure 2.14.

The shape of the distribution is also unchanged, however the entire variance is shifted (the

x-axis variance is shifted to a common range for all vectors and all utterances). In addition to the
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advantages offered by CMN, in this case, if features collected from different channel conditions

etc. have different distributions, they are all remapped to the same distribution after variance

normalization.
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Figure 2.14: Cepstral mean and variance normalization for c1 over an utterance.

2.3.6.3 Feature Warping

In this feature normalization method, individual cepstral features are conditioned to follow

a specific target distribution over a certain time window duration. The short-term mean is

implicitly also removed, and so the linear behaviour of the channel is removed. In addition

to mean and variance, feature warping normalizes the flatness and skewness of the feature

distribution. Additive noise effects are attenuated when the distribution shape is conformed to

a particular distribution. Slowly changing additive noise can reduce the variance and distort

or skew the distribution of spectral features. Feature warping is capable of conditioning this

feature distribution by remapping the upper percentile of the source distribution to the upper
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portion of the target (Gaussian) distribution, resulting in far more limited skew by noise. This

method is similar to histogram equalization of picture pixel intensities. The target distribution

of choice is generally the normal distribution with zero mean and unity variance. In addition

the warping technique is performed over a window of three seconds in [48]. The choice of

three seconds is loosely based on the assumption that over this short period, the underlying

distribution of cepstral features is close to the normal distribution.
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Figure 2.15: Feature warping (gaussianization) for c1 over an utterance.

Given a window, only the central frame of the window is warped via a cumulative distribution

function (CDF) to match the desired distribution. The features of a given window are sorted

in descending order and ranked, with the most positive value obtaining a ranking of 1, while

the most negative a ranking of N where N is the number of features in the window. This

ranking is used as an index into a CDF lookup table for the corresponding warped feature

value. The lookup table is calculated via Equation 2.14, where h(z) is the target distribution. The

warped feature can be determined by finding m in this equation. An example of the effect of this

technique on a cepstral component is shown in Figure 2.15. Here the shape of the distribution
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is entirely different (Gaussianized), and so is the variance range, which is centred around the

mean for all utterance vectors to which this process is applied.

N + 1
2 − R

N
=

∫ m

z=−∞

h(z)dz (2.14)

2.3.7 Time Domain Fundamental Frequency Estimation

A very important vocal feature is fundamental frequency (or pitch period). By approximating

the pitch behaviour of a speaker, we can identify groups of speakers with different pitch

characteristics, such as in GID. Grouping would allow for a logical segregation of speakers, and

the models constructed say, for AID or SID would be specific to a particular gender.

The fundamental frequency (F0) is the frequency at which the vocal cords vibrate during

a voiced sound, and it is usually estimated on a logarithmic scale to match the resolution of

how humans perceive pitches. The range of fundamental frequencies for both male and female

voiced sounds lies in the range 50 Hz < F0 < 500 Hz. On the other hand, for unvoiced speech,

where the vocal folds do not vibrate periodically, pitch is undefined, and implemented as

F0 = 0 [49].

If we assume a periodic signal, then the frequency of oscillation is the inverse of the period

of oscillation. However, as more components are added to a simple waveform, the concept

of a main signal frequency is no longer clear. There are methods that attempt to derive F0

directly from the time domain. The reasoning is that if a waveform is periodic, then there

are time-repeating events that can be extracted and counted to derive F0. However, the main

difficulty with time domain analysis is that complex waveforms such as voice data very rarely

have one event per cycle that can be extracted. On the other hand, time domain methods are

mostly simple to understand and implement, and they are very computationally efficient [49].

The most successful time domain methods are those based on the autocorrelation properties

of voice signals, particularly the short-time average magnitude difference function (AMDF).

This is defined in Equation 2.15 [17].

RD(k) =
N−k∑
n=1

|s(n) − s(n + k)| k=0,1,. . . ,N-1 (2.15)

The value of k represents the lag (delay) time between the acoustic waveform and the copy

of itself. As the time lag increases to equal the period duration of the short-time frame, the
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Figure 2.16: Fundamental frequency estimation via the AMDF algorithm.

correlation decreases to a strong minimum value (kmin) because the waveform is completely out

of phase with its time-delayed copy [49]. The fundamental frequency can then be calculated as

shown in Equation 2.16 [17].

F0 =
fs

kmin
(2.16)

This is better shown through a demonstration. In Figure 2.16 we are shown a vowel ‘a’ in the

time domain by a male speaker. The AMDF for this speech frame is in the second plot. The

minimum value for k is found at the first local maximum, which in this case is k = 30. Given

that fs for this sample is 8000 Hz, then F0 = 266 Hz.

The AMDF algorithm is computationally fast. However AMDF is only accurate for highly

periodic signals, and can result in false period detection with signals that are either noisy, or

signals with less obvious periodicity [49].
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2.3.8 Spectral Domain Fundamental Frequency Estimation

Having previously discussed fundamental frequency estimation in the time domain, we now

turn to the same concept as presented in the frequency domain. Reliable methods of F0

estimation in the frequency domain are based on cepstral analysis. We have already described

how a cepstrum is the Fourier transform of the log of the magnitude spectrum of the input

waveform. In a frequency spectrum of a voiced sound, naturally occurring periodic information

is present but it is difficult to automatically extract the pitch period from this information. The

cepstrum though, moderates this effect to a great degree, especially for speech signals which are

spectrally rich and have evenly spaced characteristics in short-time segments [49].

If the spectral information contains regularly spaced peaks that are not linearly visible,

the cepstrum will reduce the peaks (now called rahmonics) and scale their amplitude to a

usable setting. The result is a periodic waveform over the quefrequency axis (which is very

closely related to time). The period (distance between rahmonics) is related to the fundamental

frequency of the signal [50] The peak of the cepstrum is found by reading the quefrequency

value (in time) with the highest amplitude, and converting this value back to the spectrum

equivalent, thus obtaining F0.

This is better shown through a demonstration. In Figure 2.17 we are shown a vowel ‘a’ in the

time domain by a male speaker. This frame of audio is then converted to the spectral domain

(second plot), and cepstral analysis is performed to bring out the quefrequency domain. The

peak of the cepstrum can be seen in the 0.012 to 0.014 range of the quefrequency axis. The peak

value can be then mapped back to its equivalent value in the spectrum. In this case F0 = 74.0741

Hz.

Having discussed the general idea of both time and spectral domain fundamental frequency

estimation, this thesis makes use of the algorithm in [51] to perform estimation. Whilst it is

beyond the scope of this chapter to describe this algorithm in full, it is worth noting that this

algorithm attempts to overcome some of the general shortcomings of the techniques described

here, by utilising a normalized cross-correlation function (NCCF) [52]. In this implementation,

two versions of the time-domain speech signal are provided, one at the original sample rate and

another at a significantly reduced rate. The NCCF is computed for the low sample rate signal

and locations of pitch maxima are noted. A second-pass NCCF is operated upon the regions

of interest on the high sample rate equivalent portions to improve location and amplitude

estimates. Therefore this thesis ultimately bases pitch tracking on the actual speech signal rather
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Figure 2.17: Fundamental frequency estimation via cepstral analysis.

than through cepstral analysis.

2.4 Feature Modelling and Classification

When feature vectors are generated for speech signals, the generic process that is required to

build a speech system is that of modelling and classification. By modelling, we mean a way to

characterise or distinguish between patterns amongst the various classes of data. In terms of a

collection of speakers, classes can for instance refer to speaker groups of gender, accent, or at

the lowest level, speakers themselves. A generic overview of this concept is summarized in

Figure 2.18. The speech signals, and the respective feature vectors form part of the class from

which they are collected. Classification methods usually depend on the modelling method

being used, and are usually in the form of statistical inference based on the results obtained

during the modelling stage. This chapter will cover core techniques underlying modelling and

classification systems relevant to this thesis, with some reference to how they are conceptually

applied to speech data. It is however, beyond the scope of this chapter to go through all the
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possible variations available. The important variations related to this thesis will be dealt with in

later chapters.

Speech Input Feature 
Extraction

Maximum 
Score

Class ID...

Model for 
Class #1

Model for 
Class #N

Figure 2.18: The feature classification process.

The task of classification for various class types can be split into two distinct approaches:

text-dependent and text-independent methods. In text-dependent classification systems,

training data is provided for for an utterance which is phonologically (though not necessarily

phonetically) the same as that of the utterances used in the test phase. The techniques assume a

direct dependency on training and test cases, and therefore each utterance is predefined. On the

other hand, a text-independent system, does not have such dependencies and the training and

test utterances can be totally different phonologically. Text-dependent systems directly exploit

the features and cues associated with a predefined set of words and sounds. These systems are

bound to achieve higher performing recognition rates. However, from both a computational

and a forensic point of view, the applications of this technique are very much limited. In real

life scenarios, we would not know a priori what the utterance should be. The aim is to go as far

as possible in classifying voices and vocal traits from the acoustic cues, and to avoid explicit

dependence on the content. This thesis deals with acoustic-only, text-independent techniques.

However, our experimental results will later on be compared with text-dependent methods for

completeness.

In text-independent classification, the utterance given by a speaker is not predefined. The

words or sentences that are being spoken in the test phase are always unknown. A reference

model for the class characteristics like gender, accent, speaker etc. is built on training samples,

and because of the fact that the utterance is not predefined, the amount of data required for

training usually has a strong bearing on the identification rate. For this reason, the acoustic
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structure of a particular codeword cannot be exploited. Instead, reliable acoustic models

covering as much as possible of the acoustic information (acoustic space) that a class can

generate must be built with the available training utterances.

2.4.1 Vector Quantization

Vector quantization (VQ) models, or centroid models, are perhaps the simplest, and some of the

most computationally efficient ways to model voice traits for text-independent classification.

VQ reduces the data to a sequence of K symbols down from the original symbols comprising of

the entire data set. Let us consider an acoustic class for which a number of vectors K representing

short-term reference (training) utterances are available R = {r1, r2, . . . , rK}. Each of these vectors

has N dimensions, depending on the number of parameters in each vector. A traditional

MFCC vector would have 13 dimensions, for example. The set of vectors R would take up a

specific section of the vector space that is covered by the acoustical features for a particular class

trait. Therefore every class model would ideally cover their own fraction of the vector space.

When test vectors for an unknown class are acquired in the form T = {t1, t2, . . . , tX}, they can

be matched to the current vectors in the vector space, and the closest vector in N dimensions

is identified. Therefore the class similarity and identification would be a result of finding the

average distortion of the test vectors to each reference point, and selecting the reference with a

lowest distortion value. Other techniques are possible, and this simple measure is called single

nearest neighbour classification.

However, direct comparison of the test vectors to all the reference vectors for every class

is computationally intensive, and mostly prohibitive for a large number of classes [53]. VQ

therefore introduces codebooks to cluster the reference vectors into groups that are identified by

a single centroid. The number of centroids would be considerably smaller than the number of

reference vectors, speeding up the identification process by drastically reducing the number of

comparisons required [54]. An example of a codebook for two clusters is shown in Figure 2.19.

Two choices must be made when using VQ for model training. The first is the decision on

what clustering algorithm to use (since this has an effect on the resulting centroids), and the

second is the size of the codebook (since every clustering algorithm requires this as an input

parameter). A detailed study has been done in [55]. Six different clustering algorithms were

analyzed for speaker identification (not accent):

1. Random: random codebook
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Figure 2.19: A dataset is reduced to a codebook of K = 2. The points associated with the
different cluster centroids are colour-coded.

2. GLA: Generalized Lloyd algorithm [56]

3. SOM: Self-organizing maps [57]

4. PNN: Pairwise nearest neighbour [58]

5. SPLIT: Iterative splitting technique [59]

6. RLS: Randomized local search [60]

The work in [55] shows that the choice of clustering method has little, if any, effect on the correct-

ness of identification. The centroids produced by these algorithms are only marginally different,

making the corresponding recognition rates similar. The SPLIT algorithm is recommended for a

large class database where running time is important, whilst the RLS algorithm is recommended

for its implementation simplicity, and the slightly better results it achieves.

The most important task, though, is selecting an appropriate codebook size, which greatly

34



Chapter 2. Technical Background

affects recognition rates. The best way to increase, and guarantee a good classification accuracy

is to increase the codebook size high enough. Side-effects in increasing the codebook size are

running-time, but also over-fitting, in cases where there are far too few samples for the codebook

size. For a task such as speaker identification, the minimum recommended codebook size is 64.

For 64 codes, four out of the six algorithms managed to achieve a 100% correct identification

rate over the test speakers [55]. Increasing the codebook size to 256 did have some effect in

that some algorithms performed better, whilst others performed worse. However, the average

identification rate over all the algorithms remained the same.

Having a codebook for every class, and test vectors that require an identification, a measure

of how distant the test vectors are from all the codebook vectors of a class is given by the average

quantization distortion, shown in Equation 2.17, where d(·, ·) is a distance measure between

two vectors. The choice of the distance measure is arbitrary. A common measure used is the

Euclidean distance. Also, DQ(T,R) , DQ(R,T) in practice due to a different number of test and

reference vectors, making the relation a non-symmetric one [61].

DQ(T,R) =
1
X

X∑
x=1

min
1<k≤K

d(tx, rk) (2.17)

The smaller the average quantization distortion between T and R the more indicative it is that T

and R originate from the same class. The centroid group for a class giving the smallest average

quantization distortion identifies the class.

2.4.2 Mixture Models

The Gaussian Mixture Model (GMM) is a very popular and mature stochastic model. Stochastic

models provide better flexibility and more meaningful results through probabilistic compari-

son [62]. GMM-based techniques have become the basis of many popular methods for modeling

the distribution of vocal features in acoustic classification, and were originally introduced to

speaker recognition by Reynolds [63, 64, 65].

We can represent the GMM by λn, as the model that represents the nth class, which is built

using the training data for the class. Therefore, for N classes, we will have N GMMs. As

used previously the training utterance can be represented as a sequence of feature vectors as

R = {r1, r2, . . . , rK}, having K frames. In order to identify a class (from the group of classes N) from

which the test utterance is generated, we need to identify the model that gives the maximum

a posteriori probability for the observed utterance. So if the test utterance is represented
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by T = {t1, t2, . . . , tX} having X frames, then the required model can be found by computing

Equation 2.18 [62].

N
∗ = arg max

1≤n≤N
P(λn
|T) = arg max

1≤n≤N

P(T|λn)P(λn)
P(T)

(2.18)

The derivation follows from Bayes’ rule of probability. The classes are all equally likely to

have generated the test utterance (In our testing conditions we expect all test regions to be

represented equally. Of course, in reality, one could factor in populations and conditions which

would mean that this assumption would have to be compensated for in real operation.), and

therefore P(λn) = 1/S. Also the value of P(T) is an equal value for all the class models (this

is an assumption we make, as we expect a balance dataset), and therefore we can summarize

the relation as shown in Equation 2.19. Once a probability for each model is given, the class is

identified by the highest scoring GMM, since the density of a GMM is an indication as to how

close the model fits the observed (test) data. This reasoning is summarized in Equation 2.19 [62].

N∗ = arg max
1≤n≤N

P(T|λn) (2.19)

The task we need to perform is to compute a suitable model λ (we drop the superscript n for

clarity) for each class. GMM models are conceptually very similar to VQ methods, and are often

considered to be the stochastic extension to the centroid based clustering methods. The general

idea is to have overlapping cluster boundaries. A feature vector would not be assigned to just

one centroid, but rather, to all clusters, with a different non-zero probability for each cluster.

Therefore every vector is a member of every cluster, but to a different degree of strength.

A GMM is built up by assuming that a set of feature vectors X is a linearly weighted finite

mixture of M multivariate Gaussian probability density functions (PDFs). This is shown in

Equation 2.20.

P(t|λ) =

M∑
m=1

PmN(t|µm,Σm) (2.20)

where Pm is the prior probability (or mixture weight) of the mth Gaussian, since each Gaussian in

the mixture can be theoretically assigned a different weight. The term N(x|µm,Σm) is the Gaussian

density function with D dimensions, and is defined in Equation 2.21 (adapted from [66]), with

mean vector µm and covariance matrix Σm.

N(t|µm,Σm) =
1

(2π)
D
2 |Σm|

1
2

exp
[
−

1
2

(t − µm)T(Σm)−1(t − µm)
]

(2.21)

For simplicity, we denote a class GMM by λ = {Pm, µm,Σm} for m = 1, . . . ,M. What needs to
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be done at this point is find proper values for the number of mixtures M, the mean vectors,

the covariance matrix and the weights, such that the GMM properly fits the observed training

data. An example of how the previous VQ codebook is represented parametrically by a GMM

is shown in Figure 2.20.

Most spoken languages are made up of 30 to 40 phoneme units. Since the target of a GMM

is to fit a model covering this space, a value larger than 32 is usually used for M. Also, for

computational reasons, the covariance matrix is taken to be a diagonal one [67]. The reason is

that using a full covariance matrix requires a lot of training data (that is usually unavailable)

and is very expensive computationally. For examples of estimation using full covariance, the

reader is referred to [68].
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Figure 2.20: A dataset is reduced to a codebook of K = 2. The points associated with the
different cluster centroids are colour-coded. The dataset is also defined in parametric form by
density contours of a GMM which has been designed to represent the data by two Gaussian
mixtures. The mean of the Gaussian mixtures are the codebook means. The covariance of each
component in the mixture defines the general shape of the Gaussian.
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2.4.2.1 Maximum Likelihood Training

In order to train a GMM, the maximum likelihood (ML) approach is used. The average

log-likelihood for a set of reference vectors R for a GMM λ is given by Equation 2.22 [39].

LLavg(R, λ) =
1
K

K∑
i=1

log
M∑

m=1

PmN(rk|µm,Σm) (2.22)

A higher average log-likelihood value indicates that the model is more accurately modelling

the data points in our reference vectors. To optimize and maximize this value, the Expectation-

Maximization (EM) algorithm is used [67, 69, 70]. It consists of two steps: an E-step (Expectation)

and a M-step (Maximization).

The GMM model parameters for this class are initialized using a clustering algorithm such

as k-means, or other algorithms used in VQ. The EM algorithm for computing the GMM model

parameters for a class is given below. Note that we have dropped the class specific superscript

n for clarity.

1. The E-Step: Posterior probabilities are calculated for all the training feature vectors of the

given class model λ using Equation 2.23.

P(m|rn, λ) =
PmN(rn|µm,Σm)∑M
i=1 PiN(rn|µi,Σi)

(2.23)

2. The M-Step: The M-Step uses the posterior probabilities from the E-Step to estimate model

parameters by using Equations 2.24, 2.25 and 2.26.

P̂m =
1
K

K∑
k=1

P(m|rk, λ) (2.24)

µ̂m =

∑K
k=1 P(m|rk, λ)rk∑K

k=1 P(m|rk, λ)
(2.25)

Σ̂m =

∑K
k=1 P(m|rk, λ)(rk − µ̂m)(rk − µ̂m)T∑K

k=1 P(m|rk, λ)
(2.26)

3. Set Pm = P̂m, µm = µ̂m, and Σm = Σ̂m and iterate the sequence of E-Step and M-Step a few

times till convergence is reached. On each iteration of the EM algorithm, the variance is

limited by a variance floor to reduce singularities in the final model [40]. Only a small

number of iterations (or none at all) are required for the algorithm to converge [71, 72, 73].
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One important consideration to make when building these acoustic models, is that the

acoustic environment and recording channels can vary between the training and testing phase.

Therefore, if we are to build a statistical model representing the acoustical behaviour of a class,

we must make sure that the models can adapt well to new recording channels and environments.

For this reason, a system to model the variability of different speakers and environments is

built, in a similar fashion to models for individual class. This model will be built using hours of

speech from many different classes, to represent cohort speakers and environment variability,

and is termed as the Universal Background Model (UBM) [74].

2.4.2.2 Maximum a Posteriori Adaptation

Given that the UBM represents class-independent voice features, we can state that the UBM

has prior knowledge about the feature distribution of the general class parameters. As a

result, UBMs have been used for more efficient construction of class specific models. Instead

of computing a new GMM from scratch for every class, the UBM is used a starting estimate

of the class specific GMM. The parameters are then adapted to model the differences for a

particular class. Practice has shown that this method is more efficient computationally, and that

the accuracy of results is equivalent [74]. Some studies report that it is advantageous to build

gender-dependent UBMs and extracting new class models based on gender, since male and

female acoustic properties can vary widely on parametric models such as GMMs [75].

Adapting the UBM model to create a class-specific model is done via the maximum a

posteriori (MAP) algorithm [74]. If we consider the training samples X = {x1, x2, . . . , xT}, and

the UBM defined as λUBM = {Pm, µm,Σm} for m = 1, . . . ,M, then we can define the new adapted

mean vector µ̂m by Equation 2.27. The adaptation depends on the relevance parameter r, which

controls the degree of effect of the training samples on the UBM mean vectors [74, 39].

µ̂m = αmx̂m + (1 − αm)µm where

αm =
nm

nm + r

x̂m =
1

nm

T∑
t=1

P(m|xt)xt

nm =

T∑
m=1

P(m|xt)

P(m|xt) =
PmN(xt|µm,Σm)∑M
i=1 PiN(xt|µi,Σi)

(2.27)
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Once the class specific models are created, class identification becomes a trivial task. The

matching score depends on both the class-specific model and the UBM. In order to identify a

class, the difference of average log likelihood ratios is calculated as shown in Equation 2.28.

LLDdiff = log P(X|λs) − log P(X|λUBM) (2.28)

This difference is calculated for every class in the set, and the highest average log likelihood

difference score would identify the class. Class verification is also done in the same manner,

where instead of calculating a score over all the class set, only the claimed class model is used,

and the resulting score is compared to a threshold value Θ. The claimed class is accepted if

LLDdiff > Θ and rejected otherwise.

2.4.3 Support Vector Machines

The classification methods we have considered so far consider feature vectors that model

the distribution of classes. These methods are termed generative classifiers. Another way of

modelling classes is with the use of discriminative classifiers, where the model focuses on what

discriminates one class from another. With this philosophy in mind, support vector machines

(SVMs) [76, 77, 78] have proved to be a very good alternative to GMMs for acoustic classification

problems, especially in classifying unseen data, or relevant test data that differs a lot from the

matching reference examples [45, 79].

SVMs are primarily a binary classifier, where a sample is classified as either belonging to a

class, or not. In training, SVMs need to be supplied with labels denoting positive or negative

membership to a class. Formally, for a training set of size N, with dimensionality D, and labels

+1 for positive examples and −1 for negative examples, then the training set is a tuple xi, yi,

where i = 1, 2, . . . ,N and yi ∈ {−1,+1} , x ∈ RD. We shall go over some important properties of

SVMs in detail to give some intuition about the properties of the discriminative mechanism for

this model.

An SVM is a binary classifier that separates two sets of data. One set of data represents

the positive reference vectors of the target class (green), while the other set of negative data

(red) would represent all reference vectors not belonging to the target class. The task of an SVM

is to find a hyperplane (decision surface) between the positive and negative class examples.

This is demonstrated in Figure 2.21 for two dimensions (the separator is a line) and Figure 2.22

for three dimensions (the separator is a plane). In general, if the data is in N-dimensions, the
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Figure 2.21: A decision surface in R2 space.

separator dimensionality will be of N − 1.

A hyperplane is defined by a point (P0) and a perpendicular vector (~w) to the plane at that

point. This is demonstrated in Figure 2.23. Firstly, we consider ~x0 = ~OP0 and ~x = ~OP, where

P is some arbitrary point on a hyperplane. If P is on a hyperplane, then the condition for it is

that ~x − ~x0 is perpendicular to ~w. By the law of cosines, the dot product of any two vectors

perpendicular to each others is 0, and therefore, we can derive the SVM hyperplane equation in

Equation 2.29.

Therefore for any hyperplane in RD space, ~w is a normal vector to the hyperplane which

specifies the orientation of the hyperplane, and the bias b determines the offset of the hyperplane

from the origin. For different values of b, we get parallel hyperplanes. The distance between

two parallel hyperplanes ~w · ~x + b1 = 0 and ~w · ~x + b2 = 0 is equal to D = |b1 − b2|/||~w||.
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Figure 2.22: A decision surface in R3 space.

Figure 2.23: Equation of a hyperplane derivation.
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Figure 2.24: A SVM with multiple decision hyperplanes.

2.4.3.1 Primal Formulation

There are many possible hyperplanes that can separate the classes. The objective of SVM

training is to find the best hyperplane [76] — the one that maximizes the distance between

the hyperplane and the support vectors (samples/vectors lying on the margins across from the

hyperplane). This is called the maximum margin hyperplane. An example of this is shown in

Figure 2.24, where the hyperplane is maximized between two margins which are defined by the

marked support vectors for the respective classes. The task of the learning stage is therefore

of finding the best separation for each class reference set. We can see that the positive class

(green) is defined by a support vector that lies on the hyperplane ~w · ~x + b = −1. Conversely, the

negative class (red) is defined by a support vector that lies on the hyperplane ~w · ~x + b = +1. The

position of other samples in these classes do not matter to the SVM, since we are only interested

in finding a hyperplane in between the support vectors of opposing classes that maximizes

distance from the support vectors to the hyperplane. This is the optimization problem that a

SVM solves.

~w · (~x − ~x0) = 0

~w · ~x − ~w · ~x0 = 0

~w · ~x + b = 0

(2.29)

43



Chapter 2. Technical Background

This enables us to define linear constraints on the problem. Primarily, for the positive class,

~w · ~x + b <= −1 and for the negative class, ~w · ~x + b >= +1. These constraints make sure that all

the samples are correctly classified. If we assume that yi denotes the class label for a particular

sample, then, the full constraint is defined in Equation 2.30.

~w · ~x + b <= −1 if yi = −1

~w · ~x + b >= +1 if yi = +1

therefore

yi(~w · ~x + b) >= 1

(2.30)

The gap between one class and the other is defined as the distance between the parallel

hyperplanes. Since D = |b1 − b2|/||~w||, then D = 2/||~w||, defines this distance. To maximize the

gap between hyperplanes we can equivalently minimize ||~w|| (or 1
2 ||~w||

2
2), subject to the constraint

in Equation 2.30. In the test case, a new instance ~x is classified by Equation 2.31.

f (~x) = sign(~w · ~x + b) (2.31)

This derivation is called the primal formulation of the linear SVM optimization problem. The

summary is given in Equation 2.32, for a problem with D variables (wi, i = 1, . . . ,D)) where D is

the number of dimensions in the dataset.

Minimize
1
2

D∑
i=1

w2
i subject to yi(~w · ~x + b) − 1 >= 0 for i = 1, . . . ,D (2.32)

2.4.3.2 Dual Formulation

It is often common to reformulate the primal formulation into the dual formulation, with the

application of Langrange multipliers. A Lagrangian is defined in Equation 2.33 for N variables

(αi, i = 1, . . . ,N), where N is the number of samples.

ΛP(~w, b, ~α) =
1
2

D∑
i=1

w2
i −

N∑
i=1

αi(yi(~w · ~xi + b) − 1) (2.33)

It is beyond the scope of this chapter to derive the dual formulation of linear SVM optimization.

The dual formulation is defined in Equation 2.34. The solution is defined in Equation 2.35.
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Mazimize
N∑

i=1

αi −
1
2

N∑
i, j=1

αiα jyiy j~xi · ~x j subject to αi >= 0 and
N∑

i=1

αiyi = 0 (2.34)

f (~x) = sign(
N∑

i=1

αiyi~xi · ~x + b) (2.35)

There are two important points to make here. The first is that the solution is now dependent

only on dot products of original data, and not the data itself. Also, the number of free parameters

is bounded by the number of support vectors, and not the dimensionality of the data e.g. a

dataset of 100 samples with 2000 dimensions will only require 100 parameters.

In the dual form, the only variables which need to be calculated are the Lagrange multipliers

of the form αi. By finding these Lagrange multipliers it is then possible to maximize the dual

form with its constraints. The solution to this quadratic optimization is in the form of quadratic

programming.

2.4.3.3 The Kernel Trick

So far we have discussed the use of SVMs in cases where classes are linearly separable. In

many cases, however, there will be classes that do not have a linear separation. This concept is

illustrated in Figure 2.25. A linear separation to separate the positive (green) from the negative

(red) class does not exist. However there does a exist a non-linear separation as shown in

Figure 2.26. The original points have been transformed into a higher dimensional space, where

it would be possible to find a linear hyperplane to ‘slice’ between the two classes. The linear

hyperplane in R3 space translates to a non-linear separation in R2 space via the transformation.

The convention is to use the symbol φ to denote the transformation.

The technique of data transformation in higher dimensional spaces makes finding class

separation much easier. The problem is to find an optimal transformation φ to apply to training

and testing data, and then performing normal linear SVM training and testing. However,

this can lead to impractical computational requirements. To solve this, the ‘kernel trick’ is

used. Based on the ‘dual formulation’ described earlier, it is possible to not require the explicit

calculation of data samples from one subspace to another of higher dimensionality, but rather

the pair-wise dot products of the data samples. There exist a set of functions called kernels that

are capable of calculating the dot product in a higher dimensional subspace without explicitly

transforming the original samples via φ. The kernel functions act in the original subspace,
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Figure 2.25: No linear decision surface in R2 space.

requiring no additional memory. The only addition is computational time to calculate the kernel

K(~xi, ~x j) for all data pairs. Not all functions can be used as kernel functions. To be used as kernels,

the functions must satisfy Mercer’s conditions [80]. An example will make this clearer. Suppose

we have two dimensional data: ~x = (x1, x2) and ~z = (z1, z2). We define a kernel K(x, z) = 〈~x · ~z〉2.

The derivation of a kernel into a transformation based on φ is shown in Equation 2.36.

K(x, z) = 〈~x · ~z〉2

= (x1z1 + x2z2)2

= (x2
1z2

1 + 2x1z1x2z2 + x2
2z2

2)

=
〈
(x2

1,
√

2x1x2, x2
2) · (z2

1,
√

2z1z2, z2
2)
〉

= 〈φ(~x) · φ(~z)〉

(2.36)

It is now apparent how the mapping function φ is fused within the kernel K, where
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Figure 2.26: Original data plotted in R3 space by the transformation [x1, x2] = [x1, x2, x2
1 + x2

2]

φ(~x) = (x2
1,
√

2x1x2, x2
2). However the higher dimensional subspace produced by φ is no longer

required. Only the dot product-based kernel form is needed. The result is equivalent in the

original dimensionality subspace. Given that the data is maintained in the original subspace

dimensionality, the SVM can be solved in dual form, also depending on the dot products of

data pairs rather than the actual data samples in expanded subspace form. With most classes in

speech problems such as GID, AID and SID represented by highly non-linear samples, SVMs

have become a very important tool for classification.

2.4.3.4 Soft Margin SVM

We have so far discussed SVMs where we expect datasets to be completely separable. This

is rarely the case in real datasets. To help with this situation, it is necessary to introduce

slack variables. Whereas before, our margins were defined by the hard margin constraints of

Equation 2.30, the new constraints with slack variables is as in Equation 2.37.
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yi(~w · ~x + b) >= 1 − ξi where ξi >= 0 (2.37)

This new constraint permits a functional margin that is less than 1, and an associated penalty

(or cost) often denoted by C, calculated as Cξi for all data points that fall within the margin on

the correct side of the separating hyperplane, when 0 < ξi <= 1, or on the wrong side of the

separating hyperplane when ξi > 1. What this aims to achieve is a margin that classifies the

training data as correctly as possible whilst at the same time softening the constraints to allow

for non-separable data. The penalty of misclassified points in training data is proportional to

the amount of misclassifications. The value C can therefore be modified to achieve varying

levels of flexibility.

2.4.4 Kernel Function and Parameter Selection

In the work presented in this thesis, we make use of the RBF kernel. This seems to be a reasonable

first choice, if not optimal to the specific problem. The RBF kernel provides a nonlinear mapping

of samples to a higher dimenionality space. Given that the AID problem provides classes where

the relation between class labels and their attributes are nonlinear, then a nonlinear kernel is an

appropriate choice. It is also possible to model a linear kernel with a RBF kernel, depending

on the choice of parameters. A linear kernel with a cost parameter of C can have equivalent

performance with a RBF kernel SVM with specific parameters (C,γ). The same can be said for

the sigmoid kernel given certain parameters [81, 82].

Another reason why the RBF kernel is a popular choice is the number of hyperparameters

that influence the behaviour of this kernel. Other kernels e.g. the polynomial kernel can be

more complex to tune. The RBF kernel has also less numerical difficulties with kernel values

falling between hard limits as opposed to polynomial kernels where kernel values have far less

strict bounds. The RBF kernel is however not suitable in cases where the feature dimensionality

is very large. The next section will in fact discuss popular dimensionality reduction methods

which are often performed on the original feature space prior to utilising a RBF kernel. It is also

suggested that when the feature space is of a high dimensionality, it is probably best to just use a

linear kernel. This thesis does not go into very much details exploring new kernel functions, nor

does it go into any details justifying which kernel choice would be most appropriate. The use of

a RBF kernel is therefore meant as a heuristic, or rule-of-thumb choice, rather than founded in a

geometric analysis of the feature space.
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Another important factor when utilizing SVM is the selection of appropriate hyperparameters

for the problem. The RBF kernel requires two hyperparameters to be configured, the cost C

and the gamma value γ. There is no prior way of knowing which combination of values is

best suited for any problem. One of the popular methods for determining good parameters

is the grid-search approach. The idea is to split training data further into a training set and a

development set. Various parameters are tried in grid-search fashion, and a RBF kernel trained

on the training set, and tested on the development set. This way, the development set is an

unseen portion of data, similar to future test sets. Multiple training/development folds are tried

for cross-validation. During this procedure, the aim is to find a set of parameters that isn’t

specifically aimed at getting the highest performance for the test set (this leads to overfitting),

but a set of parameters that generalize well to unseen data sets. The LIBSVM toolkit makes

a suggestion of trying out different pairs of (C,γ) with exponentially growing sequences for

these hyperparameters. This thesis does not perform this kind of cross-validated grid search.

The main reason for this is that we feel there is not sufficient data in the ABI-1 corpus to have

training sets split further to include a development data set. Insofar as grid-search parameter

tuning is not performed, all SVMs used are based on their default parameters in LIBSVM. We

think this fact is important to state and we will revisit this claim when surveying results for

SVM-based classification.

2.5 Dimensionality Reduction

In many classification problems, it is quite common to perform some form of dimensionality

reduction of the feature space prior to building a model for classification. We shall discuss two

important methods: Principal Component Analysis (PCA) and Linear Discriminant Analysis

(LDA), which can be used separately, or combined together.

The prime difference between LDA and PCA is that PCA does individual feature classification,

in order to rank each feature by the amount of information it provides with respect to the data,

and is blind to any classes present. A common analogy is that we would have more information

about a pen if we look at a projection of it showing the side, rather than a projection showing the

point. On the other hand, LDA does data classification with respect to discriminating classes

in a supervised way. In PCA, the shape and location of the original data sets changes when

transformed to a different space whereas LDA only tries to provide more class separability and

draw a decision region between the given classes.
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2.5.1 Principal Component Analysis

The aim of PCA [83] is to find the principal components of a dataset. The principal components

are the directions of most variance in the data. The intuitive idea of PCA is to rotate the entire

dataset about an axis (or plane), such that maximal variance in the data can be seen. The

direction of rotation is defined by the principal components under which the majority of the

variability is visible. This concept is demonstrated in Figure 2.27. When the data points are

projected (via the arrows) to different principal components (p1 and p2), we can see that p1

accounts for a wider variance in the dataset than the direction given by p2, and therefore this

makes the first principal component a better choice to describe the variance in the dataset.

Figure 2.27: Different PCA principal components on the same dataset.

We shall define the process formally. Given a sample X = x1, . . . , xn, xi ∈ Rd,

1. compute sample mean: µ̂ =
1
n

∑
i

(xi)

2. compute sample covariance: Σ̂ =
1
n

∑
i

(xi − µ̂)(xi − µ̂)T

3. compute eigenvalues and eigenvectors of Σ̂ by Singular Value Decomposition (SVD)

An eigenvector is a direction. The eigenvectors in Figure 2.27 are the vertical or horizontal

vectors to which the data points are projected. The eigenvalue is a score which gives a rank

of how much variance (spread) exists in the direction of the corresponding eigenvector. The
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eigenvectors are ranked by their eigenvalues. There is one eigenvector per dimension of the

original dataset. Also all the eigenvectors of a dataset put together have to account for all the

variance in the dataset, and therefore, all eigenvectors for a dataset are orthogonal to each other.

The new axes set of the data become the actual eigenvector direction. Nothing changes in the

dataset, except that it has been rotated around the eigenvector axes. Dimensionality reduction

can be achieved by choosing the dimensions in the order of their maximal eigenvalues.

2.5.2 Linear Discriminant Analysis

When utilizing PCA, there is no reference to the classes within a dataset. It is unsupervised. The

entire dataset is treated as a whole, and a representation of lower dimensionality is obtained

whilst preserving most of the variation. LDA [84] differs in that it is a supervised technique that

reduces dimensionality whilst maximizing the separability of the classes. The aim of LDA is

also to find a projection for the original data, in C − 1 dimensions, where C is the number of

classes in the data, and the ratio of between-class and within-class scatter matrix is maximized.

This concept is visualized in Figure 2.28. There are two orthogonal projection lines w1 and w2

to which the data from the two classes can be remapped to. It is clear that a linear boundary

(dashed blue) line can be maintained to distinguish the two classes if the data is projected onto

w1. On the other hand, if the data was projected onto w2, the linear boundary between classes

would not be maintained.

Figure 2.28: LDA maximal class separation.
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The ratio between the between-class and within-class scatter matrices for LDA is defined in

Equation 2.38. The term SB is the between-class scatter matrix, and the term SW is the within-class

scatter matrix, define in Equation 2.39 and Equation 2.40 respectively. In this set of equations x̄

denotes the mean of the dataset, whilst µc denotes the mean of a class.

J(w) =
wTSBw
wTSWw

(2.38)

SB =
∑

c
(µc − x̄)(µc − x̄)T (2.39)

SW =
∑

c

∑
i∈c

(xi − µc)(xi − µc)
T (2.40)

With these matrices, it is possible to solve the maximization of J(w). The eigenvectors are ranked

by their eigenvalues, and the first C− 1 eigenvectors of the LDA projection matrix are kept. This

projection matrix is then applied to the dataset to obtain the LDA-reduced dataset.

2.6 Genetic Algorithms

In this thesis, we make use of Genetic Algorithms for classifier fusion. Considering that we may

employ different classifiers to classify the accent of an utterance, fusion allows us to obtain a

final classification based on the combined guesses of different classifiers. There is a question

as to which classifiers are better than others (and we can measure this as classification error

for each classifier). Another question is that of which classifiers should be fused together

to produce an optimal (or quasi-optimal) final classification, with the lowest error. This is a

problem for which a GA can be employed. A GA is a search algorithm that is loosely based

on Darwinian evolutionary theory and the principle of survival of the fittest, and introduced

in [85]. The general template of a GA is an iterative technique where each iteration is called a

“generation”. In each of these generations, a number of solutions, termed “chromosomes” are

evaluated, “mutated” and some form of “crossover” reproduces new “chromosomes” for the

next generation. We shall go over this process briefly.

The first step to implementing a GA is to decide on the encoding of a chromosome i.e. the

representation of a solution. Since we want to discover an optimal combination of classifiers

for which the classification error is reduced, then we can opt for a binary encoding. Each

chromosome is therefore a string of binary values (1 or 0). The value 1 indicates that the classifier

should be included in the fusion, whilst 0 indicates that the classifiers should not be included in
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fusion. The encoding really depends on the kind of search problem at hand. The second stage is

the random set of a population of chromosomes to be the first generation of possible solutions.

Assuming that we need to select the best combination out of a set of ten classifiers, then each

chromosome is a binary string of ten characters. Each chromosome is assigned a fitness value,

which is determined by a fitness function. The scope of the fitness function is to determine how

well the chromosome can survive the scenario it is being tested for. In the case of the fusion

problem, the classifiers selected by the chromosome are fused together to give a final error rate,

and this is an indication of how good or bad the solution given by the chromosome is [86].

The third stage is the selection of which chromosomes are to take on the role of parents

in crossover (creating new offspring). By evolutionary theory, the fittest individuals should

survive more generations and take part in more creation of offspring, whilst the weaker solutions

eventually die off earlier. There are many possible methods of selection. For the purposes of this

thesis, the Stochastic Universal Sampling method is used [87], where a number of individuals

from a shuffled order of chromosomes are selected, giving strong and weak solutions a fair

chance to participate in creating other offspring. There are many available sampling methods,

and this choice is mostly arbitrary. However, one of the best properties of this sampling method

is that it gives weaker members of the population a chance to be chosen, reducing the bias

of unfair fitness-proportional selection methods. We do this because the fitness criteria we

employ may not be the absolute best for the particular problem. The fourth step is to perform

crossover. There are many types of methods for crossover. For the purposes of this thesis, single

point crossover is considered. This is best demonstrated by an example. Consider two parents

(Chromosome A = 10011|101011 and Chromosome B = 11001|010100), where ‘|’ is the crossover

point. The segments to the right of this point are exchanged to create new children (Child A =

10011|010100 and Child B = 11001|101011) [86].

Once all crossovers are completed, the next step is mutation. Mutation is the process of

a slight alteration to the information in each chromosome, say the inversion of one or more

randomly selected bits. This allows for some additional diversity to the population, and helps

the GA not to get locked up in locally optimal solutions, but instead, varies the gene pool for

the next generation. Crossover and mutation are controlled by parameters called the crossover

and mutation rates. The crossover rate is a value from 0% to 100%, and this determines how

many times crossover is carried out in the current generation. Therefore, 0% means the next

generation will be made entirely of the same chromosomes in the current generation, whilst

100% means that all the chromosomes in the next generation will be newly created offspring
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resulting from crossover. The mutation rate (also between 0% and 100%) determines how many

genes in a population are to be mutated. Each gene is one bit from each chromosome [86].

Once the crossover and mutation is complete, the new generation can start. At the start

of the generation, the least fit chromosomes are removed. The number of chromosomes to

keep is determined by the generation gap, which is also a value between 0% and 100%, and

determines how much of the new generation is replaced. Termination of the GA is based on a

predetermined number of generations or else it can be based on some convergence criteria. If

the error of the best solution does not improve and is constant for a long number of generations,

the GA is allowed to terminate [86].

2.7 Summary

In this chapter we have given an extensive overview of a number of concepts that are involved

in acoustic classification problems. We have introduced concepts of the speech production

mechanism and seen what kind of processing is performed on speech signals to extract important

features. We have also seen how more meta-information can be derived from raw features,

as well as what steps must be taken to remove the effect of adverse and varying recording

conditions. We have gone over a number of standard classification methods which are applied

to these features, and the dimensionality reduction techniques that can be employed. Finally

we have given a brief description of genetic algorithms and how they can operate for finding

quasi-optimal solutions for classifier fusion. There are a number of problem-specific techniques

that are used in the specific areas of GID, AID, LID, SID etc. which build upon the techniques

described here. We describe these in the next chapter, which relies on the background we have

described here.
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In this chapter, we first give an overview of literature about human and animal speech perception

theories, some of which strengthens the validity of acoustic-only models for apparently linguistic-

oriented constructs such as languages. We will describe a number of classification systems that

are used in acoustic classification problems. In particular, we will discuss methods that are

not very specific to accent or gender classification. In fact, most systems in literature deal with

speaker and language classification in general. It is only very recently that such systems have

been developed for use with accents, and this thesis will ultimately deal with the state-of-the-art

in accent classification.

For the purposes of this thesis, we deal only with acoustic-only classification. We shall

not be discussing supervised, transcription based systems. This thesis does not make use of

phonotactic systems either. However, we discuss this particular method as being somewhere in

between supervised and unsupervised systems, and it is a good system to compare our accent

classification results with in later chapters.

Since this thesis deals primarily with two different classification problems, GID and AID,

we will be using the term “classes” as well as “languages”, “accents”, “genders” etc. somewhat

interchangeably. We do not refer to any methods as being solely designed for one particular

classification problem. We shall highlight this in the sections when this is not applicable, and

when referring to specific works in literature. The first sections will deal with the construction

of specific classification methods that are employed in general for the use of AID, LID, SID etc.

whilst the second part of the chapter will give an overview of specific work done in the fields of

GID and AID prior to this thesis.
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3.1 Human and Animal Speech Perception

The work in this thesis is somewhat inspired by some details in the theory of speech perception

in humans and animals. We therefore consider it an important aspect of the approach to the

work presented. This section will give an overview of the major theories of speech perception in

the literature, and experimental findings that motivate the acoustic-only classification systems

we present.

The task of listening to and learning specific voice characteristics is crucial to classification

methods from speech. We have discussed how speech is perceived in terms of an acoustic

signal, which is built up of concatenated sounds (phonemes). The human ear is capable of

receiving and interpreting this acoustic signal, but not before having been properly trained

through experience. This is what makes an analysis of the topic of speech perception interesting

for the application to a machine learning-oriented treatment of speech signals.

Phonemes are the basic units that enable us to differ between words that have similar sounds,

such as ‘lap’ and ‘rap’ [88]. Phonemes are pronounced differently depending on how they are

combined with other phonemes. If we had to record the words ‘ran‘ and ‘run‘, and isolate the

/r/ phoneme, we would be able to distinguish the /r/ phonemes. This is because the articulatory

configuration to produce these words, blends the phonemes, making each roughly separable

acoustically, but it is still hard to determine where the shift from one phoneme to the next is

occurring within the signal. This phenomenon is called ‘co-articulation’, and the basic unit of

speech perception is co-articulated phonemes [89].

In [90], a study considers the uncertainty of whether co-articulated phonemes are the basic

unit of speech that speech perception theories should build upon. In this study, humans are

compared to a typewriter, which makes use of distinct phonemes. It is argued that humans

do not have a separate vocal tract for each phoneme, in the way a typewriter has a separate

hammer to produce each letter. Instead, our single vocal tract has to alter its shape to produce

each sound. The studies of co-articulation gave rise to different theories on speech perception.

3.1.1 Motor vs. Auditory Speech Perception

A theory of speech perception must explain how humans can hear the word ‘ran’ and realize

that the phoneme /r/ was heard. Co-articulation effects cause the phoneme /r/ to be pronounced

differently with different blendings, but at the same time, seem like an indistinguishable sound
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merged with another sound. The motor theory assumes that a human listener is capable of

distinguishing phonemes because he himself is a speaker. The listener knows what articulatory

gestures are required to produce a syllable prior to hearing it. What the speaker produces, is a

coded sequence of phonemes that the listener can decode [91].

The motor theory considers speech perception to be an innate, species-specific ability.

Research found that humans have special neural detectors that respond uniquely to human

acoustic signals. These findings support the motor theory, in that they suggest that a physical

trait evolved to support the processing of human acoustic signals [88, 91].

Another study [92] also credits the motor theory. It investigated verbal transformation effects

(VTE). VTEs are the perceptual changes that occur when a waveform for a word, is repeated in

a loop to a listener for a prolonged period. For example, after hearing the word ‘pace’ for three

minutes, subjects reported hearing words that are phonologically similar, such as ‘face’, ‘space’,

‘base’ or ‘case’. This kind of result cannot be explained in terms of how the ear functions, since

all ears were fed with the same acoustic signal over and over, with no changes, but they could

be explainable with motor theory as ‘decoding gone wrong’ in the process of repetition.

Another effect that supports motor perception theory is that of categorical perception. This

concept stems from the studies related to voice onset time, which is the delay between the

time the speaker opens their mouth to release air, and the time the vocal cords begin to vibrate.

Studies showed how different phonemes could be recognized and categorized within specific

ranges of voice onset times [88].

There have been additional studies that are somewhat related to the motor theory of speech

production. In [93] a commentary is made on proposals made about disorders of cerebellar

development which could be part of the cause of impairments in reading and writing — classical

characteristics of dyslexia. The authors state that the ideas of this hypothesis are in agreement

with the general premise of the motor theory of speech perception. Similarly in [94] we can find

an investigation of different cerebrum activity as a reaction to speech and non-speech stimuli,

suggesting a motor construct specifically targeted at human voice signals.

However, as research progressed, evidence was found that contradicted motor theory.

Research into how animals communicate gave rise to the auditory theory of speech perception,

challenging the motor theory. Chinchillas have an auditory system that demonstrates categorical

perception [88]. When sounds with manipulated voice onset times were played to humans, the

differences people noticed were forgotten once the sounds were categorized together [88]. Also,
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categorical perception was shown to be caused by rapid decay of auditory memory, and not as

a special trait of human speech [95]. Other animals were found to possess neural detectors for

specific acoustic signals for each of their own species [91].

The auditory theory states that the speech perception process is not limited to humans alone,

and it does not occur because of special knowledge of how speech is produced by speaker and

listener. It is instead derived from general properties of the auditory system [88]. As testimony to

this, in [96] studies were conducted to compare human newborns and tamarin monkeys, lending

further support to the auditory theory of speech perception. The study showed how human

newborns and tamarins were both capable of discriminating sentences from Dutch and Japanese.

The study setup was the same for both humans and monkeys, with the exception of how speech

perception was exhibited. The monkeys were habituated with a particular language. Then upon

hearing the same language again, after utterances from another language, the monkeys tilted

their heads towards the loudspeaker in recognition. No special training was required for this

study. Both monkeys and humans noticed changes in language and even speaker. The authors

suggested that this experiment was enough to show that humans are simply relying on general

properties of the primate auditory system, in common with the tamarins. However this is not

enough to explain, in totality, some speech perception phenomena.

3.1.2 Parallel vs. Serial vs. Active Speech Perception

We shall now try to look at models of speech perception that are targeted to explain how the

perception process works, in terms of sequences (rather than physiology). These sequences can

be divided into two main perspectives; series models with a sequential order to each sub-process,

or parallel models with several sub-processes acting simultaneously. We shall also mention

active models which refer to an active listener who generates an internal by-signal to assist the

speech perception process.

A series model begins with the listener receiving the speech signal, and then subjecting it

to auditory analysis. Phonetic analysis then passes the signal to a morphological (or lexical)

analysis block. Finally a syntactic (or grammar) analysis of the signal results in a semantic (or

meaning) analysis of the message. Each block in the series is said to reduce/refine the signal and

pass additional meta-parameters to the next level for further processing [97]. Series models

imply that decisions made at one level of processing affect the next level, but do not receive

feedback. In [97] it is suggested that speech perception is, in reality, more dynamic, and that

series models are not an adequate representation of the process.
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The need to extract several phonemes from any syllable at once is taken as evidence that

speech perception is a parallel process. Parallel models demonstrate simultaneous activity in

the sub-processes of speech perception. This means that a process at one level may induce a

process at another, without any sequential hierarchy [97]. The parallel model is made up of five

successive stages:

1. acoustic parameter extraction

2. micro-segment detection

3. identification of phonetic elements

4. identification of sentence structure

5. semantic interpretation

Each stage includes meta-data of previously acquired knowledge, though not necessarily in the

previous stage of processing. The system also has comparator modules between the successive

stages, with the possibility of direct connection between the lowest and highest levels [97].

Work in [94] is in agreement with this and makes an important conclusion about speech and

non-speech analysis, in that the results suggested early separation of speech and non-speech

auditory processing. Humans process speech differently at a very early stage of the perception

process, and a full acoustic analysis is not performed before it is processed as speech, as the

series theory would suggest.

In [98] the effects of varied speaking rate on perception were investigated, suggesting

the active models of speech perception. When we speak, we may change our speaking rate

throughout the dialogue. An example demonstrated in [98] is the problem of differentiating a

/w/ at a fast speaking rate (which may be a /b/ at a slower rate). Listeners must have a notion

of rate to be able to accurately grasp the speaker’s message. Humans therefore are capable

of normalizing rate differences in real-time. This is consistent with views of active cognitive

systems, and normalization is an actively controlled process. To test this theory, participants in

an experiment were given the task of locating a target phoneme as quickly as possible amongst

16 syllables read at two different rates. The participants were split up in two groups. The first

group was read words at a constant rate, whilst the second group was read words at a varied

rate. The recognition times of the first group were faster than those of the second group. This

result is consistent with the hypothesis that rate normalization does increase the cognitive load

of the listener, and is active in the perception process.
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3.1.3 Multimodal Speech Perception

We have so far spoken about speech perception in terms of acoustic signals. However, an

interesting perspective of human speech perception is that it is multimodal in nature. The

McGurk effect [99] was a result of research that linked acoustic signal recognition to processing

of facial expressions corresponding to the speech waveform. It is possible to confuse speech

perception by showing a video of a person mouthing one phrase, whilst simultaneously playing

another phrase on a loudspeaker.

In [100] more studies examined the McGurk effect on children. These results were important

because they determined to which extent our visual signal integration is learnt with age, or

whether this effect is innate. The studies showed how changes of the McGurk effect are detectable

as we age. It appears that there are differences in the knowledge of how aural and visual data

are used in speech perception depending on the age group. The implication here is a question of

what metric is best for combining aural and gestural cues. In [101] evidence is used to show that

word recognition accuracy using two sources is greater than the sum of the individual sources.

Another interesting study supporting multimodal theories of speech perception is that of

speaker normalization (as an active process) in the context of speaker gender. The conclusion

is that speaker normalization is based on abstract, subjective knowledge of the conversation.

Speakers modify their perception according to the totality of information available, including

direct cues from gender, which would imply different pitch in voice, and different visual cues.

When listeners identify a talker as either male or female, they automatically set expectations

for what the talker should sound like, and employ these expectations actively for speech

perception [102].

3.2 Phonotactic Systems

The state-of-the-art approach to LID has been based on phonotactic systems [103, 104, 105, 106,

107, 108, 4, 109, 110]. The idea in these systems is to start off from the fact that there are very

observable language-dependent differences in the sequences of sounds between one language

and another. By modelling these sequences explicitly, we are able to build a Language Model

(LM) for each language, which differ considerably from others.

If we consider the fact that words of any language are made up from a sequence of phonemes,

then it stands to reason that although there is great overlap in the set of phonemes across
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languages, the vocabulary of different languages differs, and as a consequence the observed

sequences of phonemes differs as well. We can think of AID in a similar fashion. The language is

the same, so we do not require a LM that tracks phoneme sequence differences across languages.

However, we have defined accents earlier as the different pronunciation of the same word, from

one region to another. The changes in pronunciation result from a change in the realization of

phonemes for a specific word or phrase, in particular accent regions. So though the extent of

differences in accents are somewhat less obvious than those across language, we can still build

a LM for different accent regions. Put simply, accents are treated as different languages. The

construction of the phonotactic system is unchanged.

3.2.1 Phone Recognition

The first stage of a phonotactic system is phone recognition - sometimes called tokenization. In

this stage, the speech signal has to be converted into a sequence of symbols (or tokens), each

representing a particular phoneme. In order to do this, a phone recognizer is used. There

are two approaches to performing tokenization. The most common method used is based on

phoneme recognition from triphone trained models (one of the blocks in an ASR system), whilst

the second method is based on a GMM acoustic space model. We refer to these as supervised

and unsupervised phoneme recognition respectively.

3.2.1.1 Supervised Phoneme Recognition

In the case of LID, since many languages are involved, the phone recognizer is preferably

language independent. If the phone recognizer is language-dependent, then the phone recognizer

would have been limited in training by the phones that exist in that particular language. There

are some phones that are specific to one language and not another. This information is important

for LID, and therefore it is preferable to have multiple phone recognition systems trained on

different languages, working together, to cover a wider set of possible phones. The advantages

here are two-fold. Firstly, a phone recognizer trained on one language, will produce a language

specific error for unobserved phones coming from other languages. Secondly, the phones of a

particular language that are not in another are catered for by at least one of the phone recognizers,

weighting up these observations when compared to others common to all languages. The

conventional LID systems based on a phone recognizer trained on a single language are referred

to as Phone Recognition Language Modelling (PRLM), whilst those built on multiple language
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phone recognizers are in turn called Parallel Phone Recognition Language Modelling (PPRLM).

This kind of phoneme recognition system is one of the building blocks of a typical ASR system,

and a typical configuration is a phone decision tree triphone recognizer, using MFCC feature

vectors, where every state is represented by a low-order GMM e.g. 8 components. This is

combined with a dictionary of triphones and words of a particular language. Therefore in order

to build such an LID system, there needs to be a phonetic transcription of training data to build

a phone recognizer — this is seen as a limitation for adding additional languages, since each

language is often built with word-level transcriptions.

3.2.1.2 Unsupervised Phoneme Recognition

There is an alternative to using an ASR frontend for tokenization. This is however a less

popular choice. In this system, a GMM is built for a large amount of training data from multiple

languages. We have discussed earlier how the number of components in a GMM is loosely

tied to the number of phonemes of a language. Given that we are cocnerned with modelling

differences across multiple languages or accents, resolution is an important factor. The more

training data available, the higher the resolution (in terms of number of components) of a GMM

can be. Higher order GMMs e.g. 2048 components, would provide sufficient resolution for

LID or AID. Hence phoneme sequences are replaced by a sequence of GMM indexes. Every

feature vector in a stream is replaced by the GMM component index which gives the highest

likelihood for that vector. Once the stream of input vectors is converted to GMM indexes, the

same principles for all phonotactic systems apply [44, 111].

3.2.2 Vectorization

Given phoneme sequences or tokens, it is now possible to calculate the probability of a certain

sequence occurring for a particular language or accent. These sequences are called n-grams,

where n represents the number of tokens in a sequence. We can set D as the set or predefined

n-gram sequences that we want to observe in all utterances. Given D, every utterance can be

summarized as a D-dimensional vector p = (p1, p2, . . . , pD). Each term pi refers to the probability

of an n-gram Ci being observed in the utterance. The maximum likelihood estimation of pi is

defined in Equation 3.1.

pi =
Count(Ci)∑D

j=1 Count(C j)
(3.1)
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The result of the vectorization process is that every utterance is converted to a fixed-length

vector of D dimensions. The values estimated by pi can be weighted to emphasize class-specific

components of the vector. Typical methods used are the Inverse Document Frequency (IDF)

and the Log-Likelihood Ratio (LLR) [112]. Based on the results in [113], the LLR weighting

method outperformed IDF for AID. The LLR weighting emphasizes the most discriminative

components (n-grams that are common in one language or accent, but not in any other), whilst

at the same time weighing down n-grams that are common across all the classes. The LLR

weighting is shown in Equation 3.2, where gi is a smoothing function to compress the dynamic

range e.g. gi =
√

x. The denominator p(Ci|All) is the probability of n-gram Ci across all the

languages or accents.

wi = gi

(
1

p(Ci|All)

)
(3.2)

In the case of n-gram components that are non-existent across all accent training material,

these are removed and not considered further. This reduces the dimensionality of the resulting

feature vectors. This is especially useful for higher order n-gram models, where empty

components are quite common, and the dimensionality (due to more possibilities) is generally

very large, increasing exponentially as Sn, where S is the number of tokens or phonemes

used. There is another problem to deal with when modelling n-gram systems. By Zipf’s

Law [114], when the term frequency for a document is ranked, the frequencies follow a decaying

exponential. At the top, the high ranking words with high probability are not useful for

discrimination, since they appear across all document vectors. On the other hand, the low-rank

words, though seemingly very discriminatory, are unreliable and not statistically significant.

The area of interest is somewhere in between, where the results collected from training data are

both statistically significant and provide a range of discriminatory power. For these reasons,

two thresholds can be defined. First, the threshold T1 is a maximum value on the weightings

w j, so that no minority of components dominates the scores alone. Another threshold T2 is a

minimum value on the weightings, such that the most common components are de-emphasised

further.

3.2.3 SVM Language Model

In a traditional LID system, the n-grams gathered over an utterance could be used to train

language specific n-gram language models. The set of possible n-grams would be equivalent

for all languages (or accents). The LMs are trained with the maximum likelihood criterion. The

63



Chapter 3. Literature Review

n-gram is translated to a conditional probability value that is based on the current phone given

the preceding n − 1 phones. This can be done by collecting counts of n-grams from training

data, successively increasing n to collect higher order counts and using the history of phones to

calculate the conditional probabilities of higher order n-grams. In [115] it is demonstrated that

n-gram statistics can be computed from the n-gram posterior probabilities taken from the phone

lattices generated by a phone recognizer. The best lattices for a phone sequence observation are

all taken into account, and therefore the estimates of the n-gram probabilities are more reliable,

improving performance. This concept is usually described as a limited context ‘chain rule’ of

n-gram probabilities. The algebraic chain rule would consider the entire (and not immediate)

context in calculating the likelihood of a sequence. If we consider a sequence of components

occurring after each other as P(C1C2 . . .C3), we can define a context-limited ‘chain rule’ as in

Equation 3.3.

P(C1C2 . . .C3) = P(C1) × P(C2|C1) × . . . × P(Ci|Ci−1) (3.3)

An alternative to this is to use SVMs to discriminatively train n-gram models. The weighted

vectors described above are used as a feature vector for SVM training and testing. This has

proven very effective for LID, and actually outperforms the traditional n-gram based LM

technique. One SVM is trained for every class, discriminating it from all other classes. This

concept can also be extended for the PPRLM system. Multiple systems using phone recognition

trained on different languages are constructed, and the SVM LMs for each are utilized in

parallel, and scores are fused together for a final classification. An overview of a SVM LM-based

phonotactic LID system is given in Figure 3.1.

Figure 3.1: A block diagram of a phonotactic LID system.
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3.3 Acoustic Systems

Another way of modelling acoustic classes as opposed to one based on phonotactics, is to use

acoustic modelling. The idea here is to use class-specific features to build a model for each

class. The features of the different languages should be different enough so that the contructed

acoustic model will be able to model these differences. The resulting language-dependent

model (or accent-dependent) models can then be used to perform classification on test feature

vectors. The idea of acoustic systems is very popular in SID, since the short-term spectrum

of speech contains a lot of speaker-specific information, and therefore the resulting acoustic

models perform very well. The approach is less popular in LID systems, though some positive

results have been achieved in literature. Acoustic systems can be split into systems based on

generative models (GMMs) [116, 117, 118, 119, 120], and others based on discriminative models

e.g. (SVMs) [116, 45, 120, 121, 122].

3.3.1 GMM-UBM Classifcation

In a GMM-UBM classification, a UBM is constructed from front-end feature from all languages

(or accents, speakers etc.). Class-dependent GMMs are constructed by MAP-adptation of the

UBM to training data for the particular class. There is a consensus that only means-adaptation

is usually required, and the covariances are not updated in the process. The standard way of

using a GMM for classification is to have a test utterance converted to the same feature vectors,

and the GMM class model giving the best likelihood for the features of an utterance identifies

the utterance as being from that class.

3.3.1.1 Kullback-Leibler Divergence

In the case of class verification rather than identification from a pool of possible classes the

Kullback-Leibler divergence [123] can be used to measure the ‘distance’ between two GMMs.

Given two probability distribution models f (x) and g(x), which are models representing two

classes f and g, the Kullback-Leibler divergence is defined as in Equation 3.4 [124].

KL( f ||g) =

∫
f (x) log

f (x)
g(x)

dx (3.4)

This divergence measure satisfies three properties:
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1. Self similarity: KL( f || f ) = 0.

2. Self identification: KL( f ||g) = 0 only if f = g.

3. Positivity: KL( f ||g) ≥ 0 for all f , g.

The divergence measure however, is not symmetric. A variant that provides symmetry is more

commonly used for measure similarity in classes in speech applications, and is defined as in

Equation 3.5.

KLsymmetric( f ||g) = KL( f ||g) + KL(g|| f ) (3.5)

When data is used to MAP-adapt a UBM to create a class or utterance-specific GMM, the

Kullback-Leibler divergence for two GMMs is bounded by Equation 3.6 [125].

KLgmm( f ||g) ≤ KL(w f
||wg) +

M∑
1

w f
i KL(N(.;µ f

i ,Σ
f
i )||N(.;µg

i ,Σ
g
i )) (3.6)

The term KL(w f
||wg) is the Kullback-Leibler divergence between the weights w f and wg. The

term KL(N(.;µ f
i ,Σ

f
i )||N(.;µg

i ,Σ
g
i )) is the Kullback-Leibler divergence between the ith Gaussian

component of the GMM f and the ith Gaussian component of the GMM g. For this bound to be

correct the ith Gaussian components must correspond to each other, which is usually the case

when a GMM component is the MAP-adapted component of a UBM.

Given that we have said earlier that in most speech applications such as SID and LID, only

the means of a UBM are adapted to form a GMM, the symmetric Kullback-Leibler divergence

for two GMMs can be simplified as in Equation 3.7.

KLgmm( f ||g) = KL( f ||g) + KL(g|| f )

=

M∑
i=1

wi

(
µ f

i − µ
g
i

)T
Σ−1

i

(
µ f

i − µ
g
i

)
= D( f , g)

(3.7)

The term D( f , g) gives a similarity measure valid for a means-only adapted pair of supervec-

tors for GMMs f and gIt serves as an upper bound for the Kullback-Leibler divergence. If two

GMMs are far from each other, then D( f , g) for the two GMMs will be large, and the converse is

also true.

Recalling GMM theory, we can define a score for a particular utterance X = {x1, x2, . . . , xN}
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as belonging to a particular GMM m with Equation 3.8, where λubm represents the UBM.

Scorem(X) =
1
N

N∑
n=1

log
(

P(xn|λm)
P(xn|λubm)

)
(3.8)

With this in mind, SID or LID (or any other classification) can be scored equivalently

via the Kullback-Leibler divergence between the GMM model m and the UBM model as in

Equation 3.9 [124], by utilizing terms of the form in Equation 3.7, where λx is the MAP-adapted

GMM obtained from the test data.

Scorem(X) = D(λx, λubm) −D(λx, λm) (3.9)

A block-diagram overview of the verification process of an utterance belonging to a particular

class is given in Figure 3.2.

Figure 3.2: A block diagram of a GMM-based verification system.

3.3.2 SVM Classification

In SVM classification, the same feature vectors used GMM-UBM classification are used to train

SVMs. The difference here is that instead of building a generative model to characterise a class,

SVMs focus on the features that fall at the boundary between different classes. SVMs are binary

classifiers, meaning that in order to classify languages, a single SVM can only find a hyperplane

between a particular language and all other impostor languages. This is not sufficient for

multi-class classification problems. There are two strategies usually employed to tackled this
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problem. The first method is to construct multiple binary classifiers for all possible pairs of

classes to identify one language from the other. The second method is to construct multiple

one-against-all SVMs, where every SVM classifies one language against all other impostor

languages. The chosen strategy is usually dependent on the data available. With a large volume

of training data, a one-against-all SVM could have very long training times given a larger

optimization problem. On the other hand a series of binary classifiers could more suitably deal

with larger data sets. Whilst one-against-all SVMs seem more popular in speech classification

literature, there is no general consensus as to which method is better. It is usually left as a choice

for each particular system.

One important factor in performance of SVM classification is the choice of kernel to use for

the acoustic features. It is very hard to classify say, a language, at the frame level. Therefore

classifying frames individually with an SVM is not usually performed. Two popular kernel

choices are the Fisher Kernel and the Generalized Linear Discriminant Sequence (GLDS) Kernel.

3.3.2.1 The Fisher Mapping Kernel

The Fisher mapping kernel is a popular kernel choice that combines generative models with

discriminative training in SVMs [126, 127, 128]. The SVM input vectors are derived from the

generative model itself. So in effect the class dependent GMMs are still derived by MAP-

adapting a UBM for class-specific training data. The GMM plays the role of the generative

model. If we assume a GMM class c parameterized by λ and an utterance sequence X, then the

Fisher mapping kernel is based on the first derivative of the GMM likelihoods. It is obtained by

Equation 3.10 [124].

ffisher(X) : X 7→ Oλ log P(X|c, λ) (3.10)

Given this mapping function, the kernel score between two utterances is computed as in

Equation 3.11 [124]. The term R is the covariance matrix of the data in the Fisher mapping space,

and is determined by R = E
[

ffisher(X) ffisher(Y)
]
.

kfisher(X,Y) = ffisher(X)R−1 ffisher(Y) (3.11)
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3.3.2.2 The Generalized Linear Discriminant Sequence Kernel

In sequence kernels, the basic approach is to compare two utterances by training a model on

one utterance and then scoring the resulting model on another utterance. The GLDS is a linear

kernel and given an utterance of frames X, then the mapping function of the GLDS kernel is

expressed in Equation 3.12 [129, 124].

fGLDS(X) : X 7→
1
N

N∑
n=1

b(xn) (3.12)

The term b(xn) is the polynomial expansion of the speech frame. Given this mapping

function, the kernel score between two utterances is computed as in Equation 3.13. The term

R is the normalization matrix obtained by R = MtM, and M is defined in Equation 3.14 [124].

The terms fGLDS(XC1) and fGLDS(XZi) are the polynomial expansion of the class and impostor

data sequences respectively. The terms NC and NI represent the number of class and impostor

sequences

kGLDS(X,Y) = fGLDS(X)R−1 fGLDS(Y) (3.13)

fGLDS(XC1)

fGLDS(XC2)

· · ·

fGLDS(XCNC )

fGLDS(XZ1)

fGLDS(XZ2)

· · ·

fGLDS(XZNI )



(3.14)

A main characteristic of this kernel is that the average of all the projected vectors removes

the context variability resulting from phonemic context, which results in loss of information.

However this kernel was found to be useful for SID and LID problems.

3.3.3 GMM-SVM Classification

In GMM-SVM classification, the idea is to first model the sequence of acoustic vectors of

an utterance as a GMM (adapted from the UBM), and then to define a kernel function that

measures the similarity between different utterances (as GMMs), which satisfies the Mercer
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conditions. The GMM is usually represented as a supervector, which is a high-dimensional

vector made up of the concatenation of GMM component mean vectors. If M is the number

of components of a GMM, and D is the dimensionality of the fronend feature vectors, then

the supervector has a dimensionality of M ×D. The GMM-SVM classification scheme can be

considered a direct extension of the GMM-UBM verification process as shown in Figure 3.3. As

with SVM classification, it is important to make the right choice of kernel to leverage the use

of GMM systems within an SVM framework that satisfies Mercer’s conditions. The following

sections show how the previously described Kullback-Leibler divergece used in the GMM-UBM

framework is extended for SVM kernels.

Figure 3.3: A block diagram of a GMM-SVM classification system.

3.3.3.1 Linear GMM-SVM Kernel

Given utterance based GMMs, there needs to be a way to score one utterance with an other

to find out how similar they are. One way to measure the similiarity between GMMs is

the Kullback-Leibler divergence. However, the Kullback-Leibler divergence does not satisfy

the Mercer Conditions for SVM kernels because the kernel matrix of distances based on

symmetric Kullback-Leibler divergences is not a positive definite matrix. However, there is

an approximation to the Kullback-Leibler divergence to represent the distance between two

GMMs which is suitable for a linear SVM kernel. This is given in Equation 3.15 [130, 131, 124].

klinear(X,Y) =

M∑
i=1

wiµ
X
i Σ−1

i µ
Y
i

=

M∑
i=1

(√
wiΣ

−1/2
i µX

i

)t (√
wiΣ

−1/2
i µY

i

) (3.15)
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The terms µX
i and µY

i are the adapted means of GMM component i for utterances X and

Y respectively. The terms wi and Σi are the weights and variances of the UBM. The resulting

supervectors from MAP-adapting a UBM to an utterance are used with Equation 3.15 to train an

SVM per language in a one-against-all setup. During recognition, each test utterance is mapped

to a supervector by MAP-adaptation of the same UBM. The resulting supervector is input to all

the SVM language models, and a score is given. A positive output score indicates membership

of the test utterance in a class, whilst negative scores indicate that the utterance belongs to the

non-target classes.

3.3.3.2 Non-Linear GMM-SVM Kernel

During the period of development of the linear GMM-SVM kernel above, a new non-linear

kernel was suggested based on the same symmetric Kullback-Leibler divergence. This kernel

function is given in Equation 3.16 [132]. This non-linear kernel is equivalent to a Radial Basis

Funtion (Gaussian) kernel applied in GMM supervector space.

knonlinear(X,Y) = e−
∑M

i=1 wi(µX
i −µ

Y
i )t ∑−1

i (µX
i −µ

Y
i ) (3.16)

3.4 GID in Literature

In this section we give an overview of GID techniques and results from selected papers in

literature. This overview is by no means exhaustive. The section goes over the breadth of

different techniques covering state-of-the-art performance from many different contributions

leading up to this thesis. The evaluations are performed in a very different fashion across the

literature, so it is hard to draw a full comparison across these works. We try to group related

studies together (though not necessarily chronologically) to help in this regard.

The problem of automatic gender identification in speech has been studied using various

techniques. In [133] various features extracted from clean speech are considered (autocorrelation,

linear prediction, cepstrum, and reflection). The features are applied specifically to represent

vowels, voiced and unvoiced fricatives. The evaluation compared a number of distance

measures, filter orders and recognition methods. The results shows that in general, all feature

types are effective for GID, even when using a simple Euclidean distance measure, which

gave the most robust results. The claim made is that gender is time invariant, independent of

specific phonemes, and gender groups can be recognized quite easily without requiring speaker
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compensation. This study achieved 100% GID accuracy over a database of 52 speakers. This

early attempt at GID, though on a limited speaker corpus and controlled recording conditions,

showed that GID is not a very hard task, and there is a certain flexibility as to which features

can be used.

In another study that considers GID over short segments of sound [134], gives some surprising

results from tests on the TIMIT corpus. Speech was represented by cepstral coefficients and first

order delta coefficients. Classification was made on individual coefficients by a single Gaussian

classifier. Since the TIMIT corpus is phonetically labelled, tests can be run for general speech,

acoustic classes, or individual phonemes. The author expected that training on phonemes would

give the best performance and superior to a classifier trained on general speech parameters.

The results showed the contrary, where except for fricatives, training and testing by sound class

was better than phoneme-based classification. Also, except for stop sounds, a system based on

sound classes was better than training and testing on general speech. The GID classification

rates ranged from 55% to 95%. Although the error rates were large in some cases, this work

proves that GID can work, in some cases, on very short speech segments.

A study by [135] related to GID for different languages combines acoustic analysis and pitch.

Genders are matched to HMMs from speech features using the Viterbi algorithm. The acoustic

analysis extracts 12 cepstra, 12 transitional cepstra, energy and transitional energy. LDA was

applied to the male and female models for speaker normalization. GID was performed by

extracting frame features, and matching them to the male and female models (under the same

LDA transformation). The model producing the most matches is used for the classification

result. Testing on other languages than the one trained on gave low error rates of less than

5.2%, and an average of 2.0%. Another study revolving around language independence is [136],

which describes a novel Gaussian Mixture Model (GMM) classifier based on a concatenation

of pitch values with the corresponding RASTA-PLP feature vector. A small order GMM (4-8

components) is sufficient in their experiments. The results range from 98% for clean speech and

goes down to 95% for the noisiest speech when degraded to a SNR of 0dB.

The work in [137] demonstrates 63 different GID systems based on the fusion of many

knowledge sources using a linear classifier implemented as a simple perceptron rule-learner.

The learner acts as a fusion system for multiple GMMs that model different speech features

such as MFCCs, reflection coefficients, autocorrelation coefficients and log area ratios. The GID

system is tested on different languages in the OGI speech corpus. The main result shows that

training a classifier on a diverse set of languages (rather than one) improves GID classification.

72



Chapter 3. Literature Review

This further suggests that the phonetic context, albeit at a general level, is useful in GID.

The work in [138] proposes an automatic gender identification algorithm based on building

separate Hidden Markov Models (HMM) for the genders. This work makes the assumption

that speakers in the training and testing sets have a closed vocabulary that they can use for

utterances. With a closed vocabulary, it is possible to construct a HMM for each gender, based

on the sequences of observations in the training set. In the test case, the utterance is then

matched against both gender HMMs, and the HMM that gives the highest score is selected.

Low error rates were reported in this experiment (2.4% for male speakers, and 6.1% for female

speakers). The main problem with this approach however is that in normal conversational

speech, the vocabulary is virtually unlimited, making gender identification systems built on

closed vocabulary HMMs impractical. On the other hand, this work shows that knowing the

context of a sound (via HMM states, in this case) has a strong impact on the performance of

a gender identification system. In this approach, training was performed on a relatively low

number of test samples, from a low number of speakers (8 males and 8 females).

In another study [139], the focus is solely on pitch and cepstral features namely LPCCs,

MFCCs and PLPs. The purpose of this study was to measure the effect of which cepstral features

are better across corpora with unmatched training and testing conditions. The results indicate

that using voiced speech frames, and modelling higher order spectral detail (by using higher

order cepstral coefficients) along with delta dynamics improve the GID robustness. Pitch is

generally complementary to GID. However, results are better in noisy conditions if pitch is

removed from the feature vector. The study in [140] attests to the complementarity of pitch

for GID in clean conditions. The study looks at the effect of pitch, formants and combinations

of both for GID. The authors recorded a ten Hindi digits database for fifty speakers. GID is

tested separately for formants and pitch. Pitch was also tested by different extraction methods

(autocorrelation, cepstrum and AMDF). The combination of formants with pitch information

gave the best results. Moreover, a feature vector consisting of pitches from all methods together

was also tested. For open-set testing, the autocorrelation pitch method performs best, whilst

for closed-set tests, the combined feature vector gave best performance. The use of formants is

also mentioned in the work by [141] which investigates the use of GID over a few sentences

to perform model selection for speech recognition. The GID system employed is based on the

location of the first two formants in the frequency domain. The analysis is based on a frequency

bin that is common to both males and females, discovered from training data. Within that range,

the position of the formants is then used as an indicator of gender during classification.
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The introductory claim in[142] is that most of the current GID systems are not suitable for

speech in audio-visual data, since a lot of assumptions are made about the quality of speech as

well as the preprocessing required for silence removal, voiced speech detection and phoneme

recognition. The authors use a general audio classifier that does not have any particular

constraints on speech quality, segment lengths etc. Their system reaches an accuracy of 92%.

They propose the use of the long term features for GID. The feature vectors are extracted over

larger windows (1s), and are made up of the first order statistics of the signal’s spectrum (a set of

Mel Frequency Spectral Coefficients) gathered with a 10ms frame rate. The mean and variance of

these are estimated over a long term window. The features are fed into a Multi Layer Perceptron

Neural Network classifier. Moreover, the training data was split into different sets and many

Neural Network experts are combined for classification. The test data contained recording

from French and English radio stations, telephone speech, outdoor speech and studio speech.

The accuracy of 92% is relatively high for the mixed conditions used for testing. However no

comparison is made with a traditional short-term feature based GID classifier.

This section has reviewed a selection of published literature relating to gender classification.

The comparisons between methods are hard to make. The corpora being utilised vary quite a lot

in material and scope across these studies. Some of the conclusions made in some studies are

local to a particular corpus and are not verified in a generic form. The work on GID seems to

suggest that GID is not a hard problem. However, the different training and testing conditions

require different feature sets, since there are issues of robustness when conditions change. Given

the right feature sets, GID classification rates are quite high, with little problems related to

speaker or language differences. Depending on the application area, there is also a division

between using short-term, phoneme level feature vectors or longer term statistics. Again, these

methods are not compared with each other, but rather confined to the particular corpora utilized

in the respective papers. Our work on GID will try to show cross-corpora performance (on

relatively well-known corpora) via our novel classification system, and assess what happens in

these cases, and how to mitigate certain problems in a generically applicable framework.

3.5 AID in Literature

In this section we give an overview of AID approaches and results from selected papers in

literature. There is an overlap in AID and LID, with LID being the more general field under

which AID falls, and most AID techniques have come about from the development of LID.
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This is not necessarily the correct approach to take, and there have, in fact, been some very

interesting AID-specific techniques developed that do not feature in LID systems. However,

AID has received more attention in the last few years than ever before, and has proven to be a

very challenging problem for researchers. In our own work, speakers from an accent are chosen

as a homogeneous population, having lived all their lives in a particular accent region. But the

very concept of an accent requires us to think in terms of a continuous spatial representation of

speakers within and across different accent regions. This is perhaps one of the main differences

between AID and LID — the distinction is much more fine-grained in accents. Another thing to

consider is that often in literature, reference is made to “dialect” to mean what we refer to as

“accent” in this thesis, rather than our own definition of “dialect”.

One of the earliest works in AID [143] describes an accent identification technique which

aims to differentiate between various accents of Latin American Spanish speech. The problem

is a two-class problem between Cuban and Peruvian accents, although the claim is that the

technique could be extended easily to other accents. This work uses a PRLM system for

identification. The phone recognizer is trained on English from the TIMIT corpus. The two-class

problem here consisted of 143 Cuban and Peruvian speakers. The data was partitioned into three

sets. Training is done on one of only two sets, and testing on the remaining two sets. The two

sets used for training contained speech from speakers who were judged to be typical regional

speech by each of the individual speakers. The third set was not used for training. Training

and testing is performed on three-minute long utterances (with some speech removed since it

belongs to the interviewer). The system reports an error rate of 16% on this two-class problem.

Interestingly, the authors also introduce the creation of a new speech corpus to support future

research — the “Miami” Latin American Spanish speech corpus. The problem, something that

is still evident now, is the lack of corpora built with AID problems in mind, which have a good

balance of number of speakers and accents.

Another early attempt at AID is the work in [144], which takes the acoustic approach, with

text-dependency. The feature vector for this system comprised of mean cepstral and duration

features per phoneme. Only a limited set of phonemes (primarily vowels) are considered. Data

is collected from four regions. The classifier is a linear discriminant in this feature space to

classify two broad regions of Northern US speakers from Southern US speakers, or a two-class

problem between a pair of the four original regions. The authors report a 13% error rate in their

experiments. The error rates for pair-wise classifications showed how the regions with least

training data obtained the largest error rates of around 50%. A four-class problem, compensated
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for gender, yielded an average error rate of 15%. When not compensated for gender, the

error rate for the four-class problem goes up to 25%. Interestingly, the authors note in their

conclusions that it seems hard to group speakers by the notion of geographical regions for

speaker clustering. The more principled approach would probably be to replace this with

abstract notions of similar speakers. The task would therefore not be one of classifying speakers

into predetermined groups, but to cluster data into consistent groups.

The work in [145] takes on another interesting problem caused by accents, that of the

influence of a foreign speaker’s native language on his or her spoken English. In this work,

a database is developed for words and phrases that are known to be sensitive to accent. The

classifiers built are based on isolated words or phonemes, and the feature set used consists of

MFCCs, energy, and the first order derivatives. The classification framework utilized is to input

the extracted features into four separate Hidden Markov Models (left-to-right, with no state

skips), one for neutral accents, and three others for Turkish, Chinese and German language

accents respectively. The model giving the largest probability gives the classification. The

accuracy of the system increased with longer utterance length, with isolated word strings of

seven or eight words yielding a 93% AID rate for four different language accents. Training data

came from 16 speakers, and testing was done on 12 speakers.

The work in [146] is interesting since it is concerned with two unsupervised approaches

to AID. The techniques do not require a prior transcription for training. The comparison is

between a low-level acoustic method based on mixture component usage, and a phonotactic

system. In the first system, a set of Gaussian Mixture Models (256 components) are shared

across a semi-continuous Hidden Markov Model. These components are used to model the

complete speech space (all accents). At training time, for each speaker, the index of the most

likely mixture-component for each frame is recorded, as well as the most likely state for the

same frame. A new feature vector is created with the indices of the mixture components often

used by the speaker in each state of each model. This is followed by speaker clustering by

first creating a matrix of distances between all mixture components. For every speaker pair, a

distance, per component, can be summed from this matrix. The speakers are clustered into as

many groups as there are accents, and the centroids of the cluster represent the accent. This

training phase clustering yielded one cluster with 29 American speakers and 13 British speakers,

whilst the second cluster had 16 British speakers and no American speakers. At testing time, the

same components index is collected, and then matched to the two clusters for nearest-neighbour

classification. The second method is one based on diphone phonotactics and bigram language
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modelling. The results go up to 96% accuracy for the mixture component usage method, and

100% for the phonotactic method.

More recent work [147] suggests the use of stochastic trajectory models for AID. This method

is a text-independent system built on phone-based models. The idea is to capture the spectral

evolution information as a cue for accent behaviour, in order to capture the coarticulation

flow of an utterance. The speech utterance is converted into a stream of feature vectors, and

then tokenized into a set of phone sequences. The sequence of tokens represents a trajectory.

These trajectories are then mapped to different subspaces by PCA and LDA. Data is used for

accents from speakers of British English, American English, Mandarin Chinese, French, Thai

and Turkish. The results yields between 75% to 90% accuracy for pairwise classification tasks

over isolated word concatenations, comparing neutral American English and a choice between

Chinese, Thai or Turkish.

Another interesting take on AID, described in [148], is called Word-Based Dialect Clas-

sification (WDC) where the text-independent decision problem is converted into a word by

word text-dependent decision problem. Every word is classified separately and the decisions

are combined into a higher level classifier at the utterance level. A Hidden Markov Model is

created for every word in a set of common words across all dialects. Transcripts for all words

in all dialects are used to build a language model, which is used during testing to perform

word recognition to pick only effective words from a test utterance. The language modelling is

therefore task-dependent, albeit being dialect-independent. The word models are used to score

the input words at test time as conditional probabilities. Finally the utterance classifier acts in

this probability space as a majority vote over all words. Two-class classification is considered,

and the classification error ranges from 1.6% to 3.4%. On a classification between eight dialects,

classification error rates are in the range 20% to 26%.

One of the most recent interesting developments in AID is the ACCDIST metric by Huck-

vale [149]. The focus is to create a metric to quantify the accent distance between two speakers,

rather than use data to learn the accent characteristics and then use standard metrics/classifiers

over the model. The task was to create a metric that is very sensitive to, but at the same time

uninfluenced by speaker and gender characteristics in speakers, even if operating from spectral

envelope features. This technique was also tested on the ABI corpus, the corpus we use in this

thesis for our experiments. In the first step, transcriptions of the utterances are generated from

a trained Hidden Markov Model phoneme recognizer for Southern British English. Subsequent

analysis was limited to vowel segments, which gave 145 vowel measurements per speaker in
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the corpus. Formant locations were estimated by LP analysis. These formants were Z-score

normalized per speaker. The spectral envelope for a duration of half a vowel was represented

as the mean MFCC vector. In the next stage, an agglomerative bottom-up clustering method

was used to combine speakers intro groups. Each speaker starts as their own sub-tree. At

each iteration, two sub-trees are combined. The choice of which sub-trees are combined

depends on the similarity between speakers and the linkage method. Single, complete and

average linkage were tested. The distance metrics included correlation distance, Euclidean

distance, weighted Euclidean distance and finally the ACCDIST metric. First, for each speaker

N, a table of distances between all segment pairs i, j is calculated (SSN
ij = dist(sN

i , s
N
j )). Then

these corresponding distance tables between speaker pairs are used to find the correlation

between speakers, resulting in the ACCDIST metric (ACCDIST = corr(SS1,SS2)). The end

result is a distance measure based on relative similarities rather than absolute properties. The

speaker-specific segment pairs account for speaker variability, whilst the correlation accounts

for speaker-wide differences, which in clusters, form accent specific distances. This metric gave

very good cluster purity results when used with spectral envelope parameters and the complete

or average linkage methods. Also, the work reports an AID recognition accuracy of 92.3% on

the 14 accents of British English in the ABI-1 corpus.

We have already discussed the use of PRLM techniques and how they can be applied to AID.

The work in [150] focuses on the idea that accents have finer-grained differences as opposed to

languages, and suggests discriminative language models. The general framework is one based

on converting speech to a sequence of tokens, and n-gram analysis is performed, and used with

a sequence kernel SVM to model and predict classes. The paper then proposes two additions.

The first is SVM feature selection, where an iterative wrapper on top of SVMs are applied to

pick significant n-grams. For a set of features S, an SVM solution with model w is found. The

features are ranked, and low ranking features are removed. The process is iterated multiple

times. The resulting kernel is a sum of kernels up to the desired n. The SVM is trained and

n-grams ranked according to their magnitude (sign of significance) of the entries in the SVM

model w. The second addition revolves around the idea that higher order n-grams are more

discriminative than lower order ones. Therefore, by first finding discriminative lower order

n-grams, one can build very discriminative higher order n-grams with the already discriminative

sub-sequences. Results are analysed for three dialects of neutral English, Mandarin and Arabic.

Relative improvements of between 10% and 30% are recorded over standard PPRLM systems.

The work in [151] presents a study on five dialects of Arabic, using a phonotactic approach,
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and resulting in an overall accuracy of 81.60% for 30s test utterances. The technique is a PPRLM

system as described earlier in this chapter. The interesting aspect of this paper is the relatively

larger test base compared to some of the earlier papers, and the five way classification problem

(with a high accuracy) as opposed to smaller two or three way classification problems. The

authors extend their work on this problem in [152]. This work focuses on the phones which

are realized differently across dialects, using a kernel that computes phonetic similarity. The

architecture is that of a phone-GMM-supervector based SVM kernel. Firstly, utterances are

passed through a phone recognizer. For each phone, feature vectors for each frame within

the phone instance are extracted. For each phone type, the features for the phone-type are

used to train a GMM-UBM, across all dialects. With 34 phone types in the data, the result is 34

phone GMM-UBMs. Each phone GMM-UBM can be MAP-adapted to create a supervector for a

dialect specific phone feature set. So each phone instance is represented as a supervector. An

utterance is represented as a sequence of supervectors. SVMs are trained for each pair of dialects.

The kernel used computes the similarity between pairs of utterances, as a sum of RBF kernel

distances between all pairs of supervectors in a sequence. The order of supervectors in the

sequence is unimportant. What is important is the the distance calculated over the supervectors

of the same phone type. Classification follows the same supervector per phone extraction for an

utterance. The final score is a sum over classifications of all supervectors in an utterance. Testing

is compared for standard PRLM, standard GMM-UBM, the phonotactic approach in [151], and

a discriminatively trained GMM-UBM system. The kernel method gives the best identification

results, with an overall error rate of 4.9% for four Arabic dialects.

The recent work in [153] looks at the effect of analysing different frequency bands for SID

and AID. The results are based on the ABI-1 corpus. The task here is not particularly to construct

the best classifier for these tasks, but rather to evaluate processing the frontend using different

configurations. Classification is based on GMM-UBM systems for both SID and AID. SID being

the easier task, shows up to 100% accuracy when the entire bandwidth of the recorded signal is

used (11.025kHz). At telephone band-pass filtered speech (0.23-3.4 kHz), SID accuracy goes

down slightly to 97.54%. In contrast, the optimal AID performance of 60.34% is obtained when

using band-pass filtered speech. The authors also test individual sub-bands, where the entire

bandwidth is divided into 28 overlapping sub-bands. SID related information lies mostly in

the regions of 0-0.77kHz (where primary vocal tract resonance information for vowels and

nasal sounds appears) and 3.40-11.02 kHz (corresponding to high frequency sounds such as

fricatives). On the other hand, for AID, related information lies in the region of 0.34-3.44kHz, a

range where information about general voiced sounds is present. This information will always
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be affected by the individual speaker and physiology, and it is therefore up to the classifier to

try and attenuate these effects in favour of linguistic information related to accents.

Table 3.1: Performance in terms of Equal Error Rate (EER) and AID accuracy for the various
systems in [4].

System
AID (ABI-1)
30s EER %

AID (ABI-1)
30s Acc. %

AID (ABI-1)
SPA EER %

AID (ABI-1)
SPA Acc. %

GMM-UBM (4096) 16.16 56.11 13.46 61.13
GMM-SVM (4096) 13.0 67.72 9.41 76.11
GMM-uni-gram 14.95 60.12 13.54 72.28
GMM-bi-gram 19.69 52.12 18.5 57.83
Acoustic-fused 12.33 73.6 8.3 77.32

Phonotactics 9.18 74.05 6.5 82.14
Acoustic-Phonotactics-fused 6.4 88.8 4.52 89.6

ACCDIST-Corr. — — 2.66 93.17
ACCDIST-SVM. — — 1.87 95.18

The most recent work that is relevant to this thesis also uses the ABI corpus [4] of 14 accents

of British English. It is perhaps the most comprehensive and relevant set of results which we

shall refer to in this thesis, together with the ACCDIST results. This work deals with LID, AID,

and within-region dialects in Birmingham. The interesting part of the work for this thesis is

that on AID. A number of methods are tested out, GMM-UBM, GMM-SVM, GMM-uni-gram,

GMM-bi-gram, Acoustic-fused, Phonotactics, Acoustic-Phonotactics-fused, ACCDIST (original),

and ACCDIST-SVM. We have already described the general ideas behind GMM-UBM and

GMM-SVM systems. GMM-n-gram systems are the tokenized version of phonotactic SVM

classifiers. Fusion is performed using Brummer’s multi-class linear logistic regression toolkit.

The phonotactic system is a PPRLM system based on fusing 16 different phonotactic systems

(4 phone recognizers, with unigram, bigram, trigram, 4-gram SVM language models). The

acoustic-phonotactics fused system is a combination of all systems together. The ACCDIST

(original) system is included for reference in [4]. However, the authors suggest an extension, the

ACCDIST-SVM method. In this system the speaker distance tables are averaged for a particular

accent, and vectorized for SVM training and testing. A test speaker vectorized distance table is

evaluated against all accent models. The correlation distance kernel is used for training and

evaluating the SVM. A summary of the results obtained is shown in Table 3.1.

This section has reviewed a selection of published literature relating to accent classification.

AID lacks a unified evaluation database and system, such as the Language Recognition

Evaluation (LRE) for languages, and thus comparisons are hard to make across different

methods. However there is a sense of continuity in techniques and experiments that one can get

from the quasi-chronological overview we gave in this section. A lot of the work has focused
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heavily on some form of transcription, or at the very least, a phone recognition system as part

of the front-end. The systems that do not make use of such a front-end, in fact, perform very

poorly on the AID problem.

3.6 Variability Compensation

We have only touched on some of the primary issues that significantly degrade the performance

of AID systems. These are changes in channel, within-class speaker differences and noise.

Techniques to compensate for these effects have evolved together with the mainstream techniques

for SID, LID etc. We have described feature normalization techniques earlier on in this thesis.

Other techniques focus on modifying the class model, or the class features prior to modelling.

One of the earliest techniques to deal with inter-speaker variability within, say, a language for

speech recognition is Vocal Tract Length Normalization (VTLN)[154], while compensating for

noise can be done with techniques such as noise masking [155] and Parallel Model Combination

(PMC) [156]. When it comes to classification tasks, it is, however, very important to maintain

the class characteristics, rather than normalize the spectrum to conform to a a particular model

for efficient speech recognition.

3.6.1 Score Normalization

Aside from feature normalization techniques, initial methods for classification problems revolved

around score normalization [157, 158, 159]. Successful examples of these are Zero Normalization

(or Z-Norm) and Test Normalization (or T-Norm). Both have been successful in SID as well as

other classification problems. The idea of score normalization is that the raw verification score

is normalized to a different set of background speakers called cohorts. Scores from a system

are shifted towards a common range of values, so that a speaker-independent verification

threshold can be estimated. Score normalization follows the form in Equation 3.17, where s′ is

the normalized score, s is the original score, and µI and σI are the mean and standard deviation

of the cohort score distribution.

s′ =
s − µI

σI
(3.17)

The cohort distribution statistical estimates vary depending on what kind of normalization

scheme is used. In Z-Norm, µI and σI are computed offline during speaker enrolment, by

matching non-target utterances against the target model, to obtain values of mean and standard
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deviation. On the other hand in T-Norm, the parameters are computed on the fly during

testing by matching the unknown speaker feature vectors against a set of cohort speaker models.

Z-Norm and T-Norm can also be used in combination, usually producing better results [160]. A

variation of Z-Norm and T-Norm is H-Norm (and HT-Norm) [161, 74, 162], which is a handset

(or channel) oriented version of the two normalization methods. The process is the same except

statistics are gathered on channel-dependent variants of the target or cohort models.

Score normalization, though effective to reduce verification error rates is highly dependent

on the right cohort utterances being selected. If the acoustic and channel conditions are still

too different from those of enrolment and testing utterances, then the effect can be detrimental.

It is believed [163] that score normalization may be altogether removed if eigenchannel

compensation of speaker (or class) models are well-optimized. On the other hand, for the

deployment of verification systems based on Joint Factor Analysis (which we describe later on),

score normalization is essential [164].

3.6.2 Model and Feature Mapping

Two techniques are proposed in [165] for SID. The first is called Speaker Model Synthesis.

First, a channel independent root UBM is trained using data from many different channels.

Channel-dependent data is then used to build GMM for a specific channel with MAP-adaptation.

This means that there is a direct correspondence between the UBM components and the adapted

channel GMM component. Transformations can be calculated between different channel GMMs

by computing the mean shift, variance scale and weight scale that transforms one channel GMM

into another channel GMM. During speaker enrolment, the most likely channel is assumed for

a speaker, but transformations to all other channel GMMs are applied to the speaker GMM

model. During testing, the most likely channel GMM is detected, and the speaker GMM for that

particular channel is used. The second technique proposed in [165] performs feature mapping,

which maps features from different channels into a common channel independent feature

space. The appeal here is that features are aggregated into a single model, rather than requiring

multiple models to be constructed. A channel-independent UBM is constructed using data

from multiple channels. Channel dependent GMMs are constructed similarly to Speaker Model

Synthesis. The feature space mapping between the original UBM and the channel GMMs can be

calculated. Given enrolment data from a speaker, the most likely channel GMM is detected,

and the mapping function calculated between this GMM and the UBM is used to map the

features to create a channel-invariant speaker GMM. Results on a number of SID experiments
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showed improvements over a baseline system. However the main drawback is the requirement

of knowing the channel type for training data.

3.6.3 Inter-Session Compensation

One of the most recent techniques suggested to work very well for LID [166], and also the

method of choice for the AID work in [4, 153, 167] is that of Inter-Session Compensation. Within

the context of LID, we can consider many factors causing variability, such as different speakers

within a language, different channels, noise, utterance length etc. The idea of Inter-Session

Compensation (ISC) is that the variability present in the high dimensional supervector space

can be represented by a small number of parameters in a much lower dimensional subspace.

These parameters are called the channel factors [168]. In [166], ISC is applied to the feature

domain, as opposed to the original suggestion of model domain adaptation in [168, 169]. Basing

the work on the GMM-UBM framework, model domain compensation is achieved by shifting

the mean supervector of the UBM, together with the language-dependent GMM supervectors

towards an inter-session variability direction which is estimated from the test utterance, as

shown in Equation 3.18 [167].

µ̄sv = µsv + Ux (3.18)

The terms µ̄sv and µsv are the shifted and original supervectors respectively. The term x is an

R-dimensional vector comprising the channel factors for the test utterance whilst U is a low rank

matrix projecting the channel factors x from the low-dimensional channel factor subspace to the

high-dimensional supervector domain. U is referred to as the Eigen-channel subspace matrix.

The directions (eigen-vectors) where the supervector are mostly affected by inter-session

variation, are defined by a CF×R matrix U where C, F and R are the number of GMM components,

the feature dimensionality, and the chosen number of eigen-vectors. R is usually taken to be

≥50. Therefore, U is given by a set of R eigen-vectors of an average within-class covariance

matrix. Each class is represented by supervectors estimated from utterances of that class. In the

case of LID, for each language l, and each utterance of the language { j = 1, . . . , Jl}, the UBM is

adapted by the utterance to obtain supervectors for the utterances, denoted by sl j. The average

supervector for a language is then given by Equation 3.19 [167].

s̄l =
1
Jl

Jl∑
j=1

sl j (3.19)
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The average supervector s̄l is subtracted from each of the supervectors of the language sl j.

The resulting vectors are formed into columns of an CF × J matrix S, where J is the number of

all utterances from all languages. The model assumption is that as ŝl is subtracted from sl j, the

resulting supervector is due to inter-session variability. The columns of the matrix U are given

by the R eigen-vectors of the covariance matrix SST (CF × CF), corresponding to the R largest

eigenvalues. However, for large component GMMs, using PCA to compute the eigen-vectors

can be infeasible.

Once the eigen-channels are estimated, a GMM for every language can be adapted to

the channel of the test utterance by shifting the supervector in the directions dictated by the

eigen-channels, to better fit the test utterance data. If s is the supervector representing the

model to be updated, and P(O|s + Ux) is the likelihood of the test utterance O = o1, o2, . . . , oT,

given the adapted supervector, then it can be shown [169] that the value of x is given by

Equation 3.20 [167].

x = A−1
C∑

c=1

UT
c

T∑
t=1

γt(c)
ot − µc

σc
(3.20)

The term Uc represents the F × R section of the entire U matrix for the cth GMM component.

The term γn(c) is the probability of mixture component c for the frame n, whilst µc and σc

are the cth mixture component mean and standard deviation. The term A is defined by

Equation 3.21 [167].

A = I +

C∑
c=1

U
′

cUc

T∑
t=1

γt(c) (3.21)

The above ISC method is a very effective method to reduce the effects of channel variability.

It is applied during recognition given an arbitrary test utterance. Of course, different GMM

configurations require different estimates of U. However, the technique can be applied at a

feature level, prior to building class GMMs for training channel compensated class models. The

compensated feature frame is given by Equation 3.22 [167]. This way, frames for training data

are also compensated for channel differences, as well as those at testing time. This allows the

construction of GMM-SVM systems to be used with ISC.

ôt = ot −

C∑
c=1

γt(c)Ucx (3.22)
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3.6.4 Joint Factor Analysis

In the ISC technique we focused on how supervectors, or features, can be compensated for

session variability, and this has been useful in SID and LID applications, as well as newer AID

applications. In this section we discuss a more complete setup, based on generative modelling

to reduce various forms of variability. This technique is based on GMM and factor analysis, and

called Joint Factor Analysis (JFA) [170, 124].

Figure 3.4: Traditional MAP adaptation producing rough perturbations of the actual class.

In traditional MAP adaptation, as shown in Figure 3.4, the mean vectors of a UBM are

adapted to speaker specific data to build a speaker model, whilst variance and weights are

usually left unadapted and shared across all speakers. So, the speaker can be represented as the

concatenation of mean vectors, which we call the supervector. A speaker may have different

training utterances, and the resulting supervectors will not be the same, and are therefore not

representing the actual speaker, especially when the recordings come from different channels.

Since training and testing may be altogether performed on different channels, we have seen that

it is important for channel variability to be compensated in order to have consistent scoring of

speaker models. To do this, the channel variability needs to be modelled explicitly, rather than

incorporated into a monolithic model with the speaker information.

JFA considers the variability of a Gaussian supervector as a linear combination of the speaker

and channel components. For a training utterance, the resulting GMM supervector M can

therefore be decomposed into two statistically independent components as in Equation 3.23,

where s and c refer to the speaker and channel supervectors, respectively.

There is no prior justification to consider channel and noise factors as existing solely in

separate subspaces to the speaker voice factors. This is an educated assumption of the JFA
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Figure 3.5: Decomposition of the supervector M into speaker s and channel c components by
factor analysis.

model. For any given speaker, the speaker factors are assumed to be constant for all recordings

of that speaker, but the channel factors may or may not change for each and every recording.

Factor analysis is used (instead of PCA on GMM supervectors), to find the subspace components,

since the random vector M is not observable from the data (or hidden), and there is no analytical

way of estimating s and c.

M = s + c (3.23)

The assumption in Equation 3.23 is that the speaker and channel effects lie in different subspaces

of the supervector space. This is what makes factor analysis decomposition practicable. The

concept is shown in Figure 3.5, where the speaker component s lies in a speaker subspace of

two dimensions, and the channel component c lies in a channel subspace of two dimensions

whilst the supervector M lies in the supervector space of three dimensions.

The details of JFA can be a bit complex to understand. Before describing the JFA paradigm,

it will be useful to define a number of terms and ideas. Most of the operations to create a JFA

system are defined in terms of sufficient statistics. These provide complete information of an

arbitrary utterance needed to compute an estimate of GMM parameters [171]. If we assume that

the set of utterances of a speaker s is given as a sequence of T feature vectors of dimensionality
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F, represented as a F × T matrix of observations O = [o1, . . . ,oT], then the alignments of each

frame to each GMM component c are defined by the sufficient statistics in Equations 3.24- 3.26.

These are referred to as the zero, first, and second order statistics respectively.

Nc(s) =

T∑
t=1

γt(c) (3.24)

Fc(s) =

T∑
t=1

γt(c)ot (3.25)

Sc(s) =

T∑
t=1

γt(c)oto′t (3.26)

These component based statistics can be expanded in supervector form as in Equations 3.27-

3.29.

NN(s) =



N1(s)I 0 · · · 0

0 N2(s)I · · · 0
...

...
. . .

...

0 0 · · · NC(s)I


(3.27)

FF(s) =


F1(s)
...

FC(s)

 (3.28)

SS(s) =



S1(s) 0 · · · 0

0 S2(s) · · · 0
...

...
. . .

...

0 0 · · · SC(s)


(3.29)

MAP adaptation can now be redefined in terms of sufficient statistics in a closed-form

solution as shown in Equation 3.30. The term µ(c)
ML is the maximum likelihood estimate of the

mean (weights and covariance are fixed to the UBM values), and τ is the relevance factor that

controls the degree of interpolation between the UBM and the adapted GMM (e.g. it takes τ

frames to move the parameter values half way between the UBM and the ML estimate). We

shall redefine this kind of MAP adaptation as relevance-MAP adaptation [124].

µ(c)
MAP = β(c)µ(c)

ML + (1 − β(c))µ(c)
UBM (3.30)
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where

β(c) =
Nc(s)

Nc(s) + τ
(3.31)

and

µ(c)
ML =

1
Nc(s)

Fc(s) (3.32)

3.6.4.1 ML-Trained MAP Adaptation

For this relevance-MAP adaptation technique, the prior distribution of a GMM speaker

supervector s is normally distributed with mean vector E[s] = µUBM = m, and a covariance

diagonal matrix Cov(s, s) = 1
τΣ. In relevance-MAP, the value of τ is found empirically. The

work in [172, 173] proposed a way to find a ML-based estimation of the a priori variance of the

speaker population with a training corpus. In this new model, the supervector s for an arbitrary

speaker is written in the form of hidden variables as in Equation 3.33 [124].

s = m + Dz (3.33)

The term m is still the speaker and channel-independent UBM mean supervector of dimension

CF. The vector z is a hidden vector of dimension CF, which has a standard normal distribution,

and D is a diagonal matrix with a dimensionality of CF×CF. To obtain the posterior distribution

that defines the supervector s, we require to know the a priori probability of the supervector s.

With a prior normal distribution of this supervector (like in relevance-MAP), we can define the

following two derivations in Equation 3.35 and Equation 3.40 [124].

E[s] = E[m + Dz] (3.34)

= m + DE[z] (3.35)

Cov(s, s) = E[(s − E[s])(s − E[s])′] (3.36)

= E[(Dz −DE[z])(z′D′ − E[z]′D′)] (3.37)

= E[Dzz′D′ −DzE[z]′D′ −DE[z]z′D′ + DE[z]E[z]′D′] (3.38)

= DE[(z − E[z])(z − E[z])′]D′ (3.39)

= DCov(z, z)D′ (3.40)
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Since the prior distribution of the hidden variable z is known to be a standard normal

distribution, the mean vector and covariance matrix of the a priori distribution of supervector s

are simplified as in Equation 3.41 and Equation 3.42 [124].

Prior expectation of s = m (3.41)

Prior covariance matrix of s = DD′ (3.42)

The matrix D is derived from the a priori distribution of speaker supervectors, estimated

iteratively from a training corpus of recordings with multiple recordings per speaker. Given the

model parameters m and D and speaker training samples, the posterior distribution to calculate

s is based on the posterior probability of the hidden variable associated with the particular

speaker. The posterior distribution of the supervector s is therefore modelled in the same way

as for Equation 3.35 and Equation 3.40, this time based on the posterior (rather than the prior)

of the latent variable z with a mean vector E[z] and covariance matrix Cov(z, z). The term E[s]

of the speaker posterior probability is the new GMM supervector estimated without relying

on the relevance factor. This type of modelling, unlike relevance-MAP takes into account

the uncertainty of the estimation of the speaker GMM, which is modelled explicitly with the

covariance matrix Cov(s, s). The more training data is available, the less the influence of Cov(s, s).

Provided D is well-conditioned with a small determinant, this form of MAP adaptation is

equivalent to Maximum Likelihood training of the speakers when sufficient data is available for

adaptation.

3.6.4.2 Eigenvoices MAP Adaptation

Another form of MAP-adaptation was found to be much more effective with short training

samples than relevance-MAP [174]. Recalling the fact that for a speaker GMM, we can summarize

the speaker model by a supervector of CF dimensions, the idea behind eigenvoice modelling is

that PCA can be used to constrain this large supervector space (which requires a large amount

of training data for proper adaptation from the UBM) to a much smaller subspace, with little

loss of accuracy. The much smaller subspace, in turn, requires much less training data for

proper adaptation. If we consider MO and B to be the mean and covariance matrix of all the

supervectors for a given speaker population, then the assumption is that most of the eigenvalues

of B are near zero, and are unimportant for speaker modelling. The eigenvectors of B that

correspond to nonzero eigenvalues define the eigenvoices of the population. The problem is
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therefore to impose a constraint that a speaker supervector lies in the eigenspace.

The mechanism of eigenvoice adaptation is similar to the ML-based MAP adaptation. The

assumption of the model is that the speaker space can be represented by a low rank rectangular

matrix V of dimension CF × R, where R � CF. The supervector s for a speaker is therefore

defined as in Equation 3.43 [124]. Again, m is the UBM mean supervector.

s = m + Vy (3.43)

The term y is the hidden vector of dimension R with a standard normal prior distribution.

Similarly to the case of Equation 3.33, the expectation and covariance matrices of the prior

distribution of s is defined by Equation 3.44 and Equation 3.45 [124].

Prior expectation of s = m (3.44)

Prior covariance matrix of s = VV′ (3.45)

Again, the prior distribution of the supervector s is used to estimate the posterior distribution.

Also, the eigenvoice adaptation models the mean vector E[s] and covariance matrix Cov(s, s) as

in Equation 3.46 and Equation 3.47, respectively [124].

E[s] = m + VE[y] (3.46)

Cov(s, s) = VCov(y, y)V′ (3.47)

One other strong point of eigenvoice adaptation is that it models correlations between GMM

components (bound by the factors in the subspace), whereas MAP adaptation does not (acting in

the full supervector space), and therefore non-observed Gaussians are also adapted. A problem

with this method however is that the rank of R is less or equal to the number of speakers

available in the training corpus. There must be a significant amount of speaker diversity in the

training corpus for a proper estimation.

With both traditional MAP and eigenvoices having advantages and disadvantages, they can

be combined linearly to complement each other. The supervector for a speaker is therefore now

defined as in Equation 3.48 [124].

s = m + Vy + Dz (3.48)
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3.6.4.3 Eigenchannel Model

In the previous section in ISC, we have seen that it is important to model session variability. So

far in the JFA model, we have only spoken about the speaker model. JFA can be easily extended

to support session variability explicitly as well as shown in [164]. Similar to the eigenvoice

model of speaker space, we want to model the channel space, via a channel supervector c written

in latent variable form as in Equation 3.49 [124].

c = Ux (3.49)

As for Vy in eigenvoice modelling, U is a low-rank rectangular matrix of dimension CF×Rc,

where Rc � CF. The columns represent the eigenvectors of the channel covariance matrix, and

defines the channel space. The hidden variable x has a standard prior normal distribution, and

the components define the channel factors. Following the naming convention of eigenvoice

adaptation, this channel variability model is called eigenchannel adaptation, and follows the

same exact training procedure as eigenvoice training. By combining the channel variability with

the rest of our speaker supervector definition, the result is shown in Equation 3.50 [124], which

is the full specification of the JFA paradigm.

s = m + Vy + Ux + Dz (3.50)

3.6.4.4 JFA Training Procedure

The matrices U, V and D are called the hyperparameters of the JFA model, and are estimated

beforehand on large datasets. In [170, 164] is suggested to calculate V, then U, then D. The full

JFA decomposition is shown in Equation 3.50. Training the JFA hyperparameters is done by:

1. Training the eigenvoice matrix V, assuming that U and D are zero.

2. Training the eigenchannel matrix U given the estimate of V, and assuming D is zero

3. Training the residual matrix D, given the estimates of V and U.

The next sections will show a step by step calculation of the JFA model via the sufficient

statistics defined earlier, and are a reproduction of the procedure as outlined in [175].
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3.6.4.5 Training the V matrix

1. lv(s) = I + V′ ∗ Σ−1NN(s) ∗ V (V is randomly initialised)

2. y(s) N(l−1
v (s) ∗ V′ ∗ Σ−1

∗ FF(s), l−1
v (s))

3. ȳ(s) = E[y(s)] = l−1
v (s) ∗ V′ ∗ Σ−1

∗ FF(s)

4. Nc =
∑

s
Nc(s)

5. Ac =
∑

s
Ncl−1

v (s)

6. C =
∑

s
FF(s) ∗ (l−1

v (s) ∗ V′ ∗ Σ−1
∗ FF(s))′

7. NN =
∑

s
NN(s)

8. V =


V1
...

VC

 =


A−1

1 ∗ C1
...

A−1
C ∗ CC

 where C =


C1
...

CC


9. update covariance Σ = NN−1

∑
s

SS(s)

 − diag((C) ∗ V′)


10. Run around 20 iterations of steps 1-9 with new estimates of V and Σ

3.6.4.6 Training the U matrix

1. Compute estimate of speaker factor y for each speaker

2. Compute 0th sufficient statistic for each utterance (utt) of each speaker (s) in training data

3. Nc(conv, s) =
∑

t∈conv,s

γt(c)

4. Compute 1st sufficient statistic for each utterance (utt) of each speaker (s) in training data

5. Fc(utt, s) =
∑

t∈utt,s

γt(c)ot

6. For each speaker (s) compute the speaker shift using matrix V and speaker factors y

7. spkrshift(s) = m + V ∗ y(s)

8. For each utterance of each speaker in training, subtract Gaussian posterior-weighted

speaker shift from first order sufficient statistics
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9. F̄c(utt, s) = Fc(utt, s) − spkrshift(s) ∗Nc(utt, s)

10. NN(utt, s) =


N1(utt, s) ∗ I

. . .

NC(utt, s) ∗ I



11. FF(utt, s) =


F̄1(utt, s)

...

F̄C(utt, s)


12. Use NN(utt, s) and FF(utt, s) to train U and x in the same way we used NN(s) and FF(s) to

train V and y (again, around 20 iterations)

3.6.4.7 Training the D matrix

1. For each speaker (s) compute the speaker shift using matrix V and speaker factors y

2. spkrshift(s) = m + V ∗ y(s)

3. For each utterance (utt) of speaker (s), compute the channel shift using matrix U and

channel factors x

4. chanshift(utt, s) = U ∗ x(utt, s)

5. For each speaker in training, subtract Gaussian posterior-weighted speaker shift and

channel shifts from first order sufficient statistics

6. F̄c(utt, s) = Fc(utt, s) − spkrshift(s) ∗Nc(utt, s) −
∑

conv∈s
chanshift(conv, s) ∗Nc(conv, s)

7. NN(s) =


N1(s) ∗ I

. . .

NC(s) ∗ I



8. FF(s) =


F̄1(s)
...

F̄C(s)


9. lD(s) = I + D2

∗ Σ−1NN(s) (D is randomly initialised)

10. z(s) N(l−1
D (s) ∗D ∗ Σ−1

∗ FF(s), l−1
D (s))

11. z̄(s) = E[z(s)] = l−1
D (s) ∗D ∗ Σ−1

∗ FF(s)
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12. Nc =
∑

s
Nc(s)

13. a =
∑

s
NN(s) ∗ l−1

D (s)

14. b =
∑

s
FF(s) ∗ (l−1

D (s) ∗D ∗ Σ−1
∗ FF(s))′

15. NN =
∑

s
NN(s)

16. D =


D1
...

DC

 =


a−1

1 ∗ b1
...

a−1
C ∗ bC

 where b =


b1
...

bC


17. Use about 10-20 iterations of steps 10-18 with new estimates of D

3.6.5 The i-Vector Model

The work in this thesis does not make use of the JFA model as presented in the last section.

However the detailed overview of this model is given because it was extended in [176, 177]

into another model, which we make use of for our AID research. We have seen how the

JFA model defines a number of different subspaces to model speaker and channel variability.

The approach proposed in [176, 177] is that of defining a single subspace, which contains all

modes of variability. This subspace is called the total variability space. It is defined by a total

variability matrix which contains the eigenvectors corresponding to the largest eigenvalues of

the total variability covariance matrix. Contrary to JFA, there is no distinction between sources

of variability from speaker effects or channel effects that influence the GMM supervector space.

For a given utterance, the speaker- and channel-dependent GMM supervector M is defined in

Equation 3.51 [124].

M = m + Tw (3.51)

As in the JFA model, m represents the UBM mean supervector. The matrix T is the factor

loading matrix of low rank, and w is a random vector having a standard normal distribution

N(0, I). Following the style of definitions for the JFA model, the vector M is assumed to be

normally distributed with a mean m and a covariance TT′. The process for training T is exactly

the same as the eigenvoice matrix V training in JFA, with one difference. During eigenvoice

training, the number of recordings from a particular speaker (or class) are considered to be as

such i.e. from the same speaker/class. In total variability training, each utterance is considered to
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come from a different speaker/class. Training the total variability space is now straightforward to

understand. The same sufficient statistics calculated for JFA are gathered (separating utterances

as being all from different speakers), and the matrices NN(s),SS(s) and F(s) are defined as in

JFA. The following section shows a step by step calculation of the total variability model via the

sufficient statistics defined earlier, and are a reproduction of the procedure as outlined in [175].

3.6.5.1 Training the T matrix

1. lT(s) = I + T′ ∗ Σ−1NN(s) ∗ T (T is randomly initialised)

2. w(s) ∼ N(l−1
T (s) ∗ T′ ∗ Σ−1

∗ FF(s), l−1
T (s))

3. w̄(s) = E[w(s)] = l−1
T (s) ∗ T′ ∗ Σ−1

∗ FF(s)

4. Nc =
∑

s
Nc(s)

5. Ac =
∑

s
Ncl−1

T (s)

6. C =
∑

s
FF(s) ∗ (l−1

T (s) ∗ T′ ∗ Σ−1
∗ FF(s))′

7. T =


T1
...

TC

 =


A−1

1 ∗ C1
...

A−1
C ∗ CC

 where C =


C1
...

CC


8. Use abot 10-20 iterations of steps 1-7 with new estimates of T.

The motivation for containing all the variability within one subspace is that the experimen-

tation performed in [124] showed that the assumption that channel factors of the JFA system

normally model only channel effects was not entirely correct, and that some speaker information

was also contained in this subspace. The vector w is a random variable, and the posterior mean

of it estimated from an utterance is termed an i-Vector. Unlike the JFA supervector, it is not

compensated for channel effects. In the i-Vector paradigm, channel compensation is carried out

in the total factor space rather than in the GMM supervector space.

The advantage of applying channel compensation in the total factor space is the low

dimension of these vectors, resulting in much less computation than for JFA modelling. The

work in [177] proposes three ways of channel compensation: LDA, Within-Class Covariance

Normalization (WCCN) [178], and Nuisance Attribute Projection (NAP) [179]. For the purposes

of speaker verification, it was found that LDA followed by WCCN gave the best performance [177,
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180]. As a final note, the i-Vector paradigm has since become the state-of-the-art model for many

tasks such as SID and LID [124, 177, 180, 181, 182, 183]. In this thesis, we shall also apply and

study the behaviour of the i-Vector paradigm for the AID problem. We will show that, with

some additions, it can achieve state-of-the-art performance for this problem as well.

3.7 Prosody and Supra-Segments

In this section, we discuss some interesting work that relates to the analysis of rhythmic and

prosodic information in speech in accents and languages. Some of the work we discuss here

have not been used explicitly in LID or AID systems. However, features extracted from this

work could add additional information to the feature extraction stage of these systems. In fact,

we take inspiration from this work, and the thesis will report on results obtained for some of the

rhythmic and prosodic information extracted from speech.

As mentioned earlier, we aim to build an AID system using approaches that do not rely on

phonological language model knowledge of the accents, whether the transcription of phonemes

is acquired in supervised or unsupervised form. Some research has shown that knowledge of

the language for which accents are being analysed is not crucial in identifying accents. In [184],

experimental evaluation showed that American human listeners performed only slightly better

than non-native English speakers at classifying three British accents, as opposed to British

listeners who outperformed all others by a wide margin. American listeners have linguistic

knowledge of the English language, but this does not help much in AID tasks compared

to speakers who are not speakers of English. Rather, British speakers, more accustomed to

the accents (rather than just the language), performed better in these tests. Whilst linguistic

knowledge has an effect on accent perception, the AID task seems to be partly acoustic problem,

and perhaps AID does not depend on a prior tokenization of the speech signal. Another

interesting set of findings is documented in [185] where the authors perform experiments in

which speech utterances from different languages are either preserved or degraded in a number

of ways. The findings support the idea that syllabic rhythm is necessary (and sufficient) for

French adult subjects to discriminate English from Japanese.

Although some languages can be roughly differentiated, even by tamarin monkeys, the

work in [186] demonstrates that greater neural activity is found for native-language speakers

for perceptual identification, consistent with the hypothesis that native-language speakers use

auditory phonetic representations more extensively than second-language speakers. This may
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aid the identification of the subtle differences in accents as opposed to languages, corroborating

the findings in [184].

The study in [187] shows how only a few studies in ASR have departed from the traditional

Hidden Markov Model-based architecture with short-term feature vectors. The suggestion is

that knowledge of the speech production process should be used to a larger degree, and that

there has been limited research in the field with some interesting results. The authors review a

number of works that attempt to map the traditional acoustic features to multiple streams of

acoustic-only, acoustic-articulatory, articulatory-only features. The task of mapping acoustic

features to articulatory features is however, not trivial. We can record acoustic information

easily, but it is very impractical to record articulatory information. Therefore, researchers have

focused on suggesting techniques for one-to-many acoustic-to-articulatory mappings, such as

in [188, 189, 190].

There has been work investigation the classification of languages from rhythmic and

supra-segmental features from speech such as [191, 192], extracted automatically, whilst others

are done based on hand-labelled data [193, 194]. The common problem is always that of

segmenting speech into correct supra-segmental units. There seems to be general agreement

about correlates between the speech signal and linguistic rhythm [195], but reaching a consistent

vector representation is difficult. The main ideas have focused around segmenting speech into

short segments (bursts) that contain transient parts of speech such as coarticulatory behaviour.

Following the extraction of these segments, combinations that contain transitions over time

between consonants (C), vowels (V) and back to consonants (C) can be summarised by statistical

representations. For this, vowel detection is necessary. The combinations of C-V-C transitions

are normally termed pseudo-syllables. The automatic extraction of these transitions gives no

guarantee of actual syllables being present. There have been reported relatively good results on

LID with these features, based on traditional modelling and classification systems. However,

taking into account speakers, results are inferior, showing that even at the supra-segmental

level of analysis, the features are correlated with speaker behaviour (such as tempo). This kind

of analysis is also mentioned (lightly) in relation to the AID problem, though in general there

has been much less focus on AID when compared to LID e.g. [196, 197].
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3.8 Summary

In this chapter we have given an extensive review of specific models, techniques, challenges

and variations of ideas to solve various problems that occur in the identification of gender,

speakers, languages and accents from acoustic waveforms. Principles are borrowed across SID,

LID, GID, AID etc. and we have given an overview that is both generic to all these problems,

as well as very specific in some cases. The first sections of this literature review showed how

past work in this field of research has successfully constructed a number of what we now

consider to be standard approaches. We later on described the most recent developments

for state-of-the-art techniques based on compensating for within-class differences, as well as

channel differences. These techniques were first developed for SID but they have been very

recently been transformed to the LID domain. As the later chapters of this thesis will show, we

test these compensation techniques for the AID field, as well as propose some additions to the

classification mechanisms based on how the i-Vector model behaves in the AID domain. Finally

we gave an overview of the potential use and challenges for supra-segment, prosodic segments

for the task of LID, and we use this as inspiration for some of our trials in AID, as we will show

later in this thesis.
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A number of different acoustic classification problems are considered in this thesis for GID

and AID. For the evaluation of our experiments, a number of speech corpora were used. This

chapter gives an overview of these datasets.

4.1 The TIMIT Acoustic-Phonetic Continuous Speech Corpus

The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus [198] consists of read speech

from 640 subjects spread across eight major dialects of American English. The sentences are

chosen to be phonetically rich. There are 438 male subjects and 192 female subjects. Each subject

reads 10 sentences, for a total of 6300 spoken sentences.

The dialect region is chosen by the geographical area of the United States where the speakers

have lived during their childhood years. The breakdown is given in Table 4.1.

Table 4.1: Dialect regions represented in the TIMIT Corpus.

TIMIT Code Region #Male #Female Total
dr1 New England 31 (65%) 18 (27%) 49 (8%)
dr2 Northern 71 (70%) 31 (30%) 102 (16%)
dr3 North Midland 79 (67%) 23 (23%) 102 (16%)
dr4 South Midland 69 (69%) 31 (31%) 100 (16%)
dr5 Southern 62 (63%) 36 (37%) 98 (16%)
dr6 New York City 30 (65%) 16 (35%) 46 (7%)
dr7 Western 74 (74%) 26 (26%) 100 (16%)
dr8 Army Brat (moved around) 22 (67%) 11 (33%) 33 (5%)
1-8 all regions 438 (70%) 192 (30%) 630 (100%)
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The text material in the TIMIT corpus prompts consists of 2 dialect sentences designed

at the Stanford Research Institute (SRI), 450 phonetically-compact sentences designed at the

Massachusetts Institute of Technology (MIT), and 1890 phonetically-diverse sentences selected

at Texas Instruments (TI). The dialect sentences (the SA sentences) were meant to expose the

dialectal variants of the speakers and were read by all 630 speakers. The phonetically-compact

sentences were designed to provide a good coverage of pairs of phones, with extra occurrences

of phonetic contexts thought to be either difficult or of particular interest. Each speaker read

five of these sentences (the SX sentences) and each text was spoken by seven different speakers.

The phonetically-diverse sentences (the SI sentences) were selected from existing text sources —

the Brown Corpus and the Playwrights Dialog - so as to add diversity in sentence types and

phonetic contexts. The selection criteria maximized the variety of allophonic contexts found in

the texts. Each speaker read 3 of these sentences, with each sentence being read only by a single

speaker. A breakdown of the speech material is given in Table 4.2.

Table 4.2: TIMIT material breakdown.

Sentence Type #Sentence #Speakers Total #Sentences/Speaker
Dialect (SA) 2 630 1260 2

Compact (SX) 450 7 3150 5
Diverse (SI) 1890 1 1890 3

Total 2342 6300 10

The TIMIT recordings were made using a close-talking noise-cancelling head-mounted

microphones, and sampled at 16kHz.

4.2 The Accents of the British Isles (ABI-1) Corpus

The Accents of the British Isles (ABI) speech corpus [199] represents 13 different regional accents

of the British Isles, and standard (southern) British English (sse). It was recorded on location in

the 13 regions listed in Table 4.3 and contains speech from 285 subjects.

Each subject read twenty prompt texts, ranging from “task oriented” texts which are

representative of generic applications of automatic speech recognition, to “phonetic” texts

chosen for their phonetic content. The latter are the data used for our experiments.

For every accent group, twenty people were recorded (ten women and ten men) who were

born in the region and had lived there for all of their lives. The standard southern English

speakers were selected by a phonetician. Each of the 285 subjects read a set of 20 prompt texts,
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Table 4.3: Accents represented in the ABI Corpus.

ABI Code Location Broad accent
brm Birmingham North, Midlands
crn Truro, Cornwall South, South West
ean Lowestoft, East Anglia South, East Anglia
eyk Hull, East Yorkshire North, Mid-North
gla Glasgow, Scotland Scotland
ilo Inner London South, London
lan Burnley, Lancashire North, Mid-North
lvp Liverpool, NW Eng. North, Mid-North
ncl Newcastle, Tyneside North, Far-North

nwa Denbigh, N Wales Wales
roi Dublin, Ulster Ireland
shl Elgin, Scottish Highlands Scotland
sse Standard Southern English South
uls Belfast, Ulster Ireland

which were divided in two categories of short or long phrases. The short phrases included:

• game commands e.g. “change view”, “select left”

• selected words that elicit specific vowel sounds e.g. “hide”, “hoid” (rhyming with “void”),

“hoed” (rhyming with “showed”),“howd” (rhyming with “loud”)

• letters and international radio operator’s alphabet e.g. “G P Y O”, “yankee”, ”oscar”)

• digit sequences e.g. “four zero nine one”

• short phrases e.g. “while we were away”, “has a watch”

The long phrases contained:

• Equipment control commands e.g. “navigation select route home”

• SCRIBE sentences (British English version of the TIMIT sentences) e.g. “I itemise all

accounts in my agency”

• An accent diagnostic passage

The ABI-1 recordings were made using head mounted and desk microphones, and sampled

at 22.05kHz. The microphones used across the recording locations were the same. For the

accent recognition experiments reported here, we are interested in the long accent diagnostic

passage (we refer to as the sailor passage), which is split into three parts of approximately equal
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length. We refer to these passages as ‘SPA’, ‘SPB’ and ‘SPC’. The respective lengths are 92, 92

and 107 words, and have average durations of 43.2s, 48.1s and 53.4s. Only the head-mounted

microphone recordings were used.

4.3 The WSJCAM0 Corpus

The WSJCAM0 [200] was recorded at the University of Cambridge and is the British English

equivalent of a subset of the US American English Wall Street Journal corpus. It consists of

speaker-independent read material, split into various sets that are usually used for training and

testing in speech recognition applications.

The first set contains 90 utterances from each of 92 speakers. These sentences were taken

from a subset of the WSJ0 training set of around 10,000 sentences, selected randomly. The same

sentences could occur across different speakers, but never for the same speaker.

The second set contains 80 utterances from each of 48 speakers. Out of these, 40 of the

utterances contain only words from a fixed 5,000 word vocabulary. The other 40 utterances are

from a 64,000 word vocabulary.

The third set contains 18 adaptation utterances from all 140 speakers. These utterances

include a single 3-second recording of background noise, two phonetically balanced sentences

and the first 15 of the 40 sentences used for adaptation in the original WSJ0 corpus. These

sentences were randomly selected and each sentence was allowed to occur in only one speaker’s

prompt material. No sentence repetition between or within speakers was allowed for this

portion of the corpus. A breakdown of the WSJCAM0 corpus is given in Table 4.4.

Table 4.4: WSJCAM0 material breakdown.

Dataset #Utterances #Speakers Selection Material
A 90 92 10,000 sentences

B(1) 40 48 5,000 words
B(2) 40 48 64,000 words

C 18 140 all

All recordings were made from two microphones: a far-field desk microphone and a

head-mounted close-talking microphone, and sampled at 16kHz.
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4.4 Summary

This chapter gave an overview of all the speech corpora for the various experimentation and

analysis in this thesis. The TIMIT corpus consists of recordings collected across speakers from

eight US dialect regions. All this material was used in our experiments. The ABI-1 corpus

consists of read speech recordings collected from 13 different regions in the British Isles plus

standard British English. Our work uses only the short passage utterances for our regional

accent recognition experiments. This limits the amount of data available for having separate

training, development and test sets. We shall later on describe how this dataset can be used

in a “jack-knife” fashion, where we subdivide the data into three speaker-independent sets to

overcome this limitation. Finally, the WSJCAM0 corpus consists of another set of recordings

with various vocabulary limitations on different subsets of the corpus.

Table 4.5: A summary of speech corpora used in this thesis.

Corpus Style Channel Sample Rate Speakers Utterances Use
TIMIT Read Head mic 16kHz 640 6300 GID
ABI-1 Read Head mic 22.05kHz 285 855 GID + AID

WSJCAM0 Read Head mic 16kHz 125 625 GID

An overview of these corpora is given in Table 4.5. The ABI-1 corpus alone was specifically

used for the AID classification experiments. For GID classification experiments, all the corpora

described above are utilized.
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Gender classification is useful in automatic speech systems. It is generally reported that having a

good gender classification method is useful to separate models used for speaker identification or

accent identification into gender dependent models [201, 202]. Gender accounts for a significant

proportion of general speaker variability, and hence gender ID enables speaker identification

systems to prune out a large number of speakers in a speaker classification system. Over an

equally distributed population of speakers, perfect gender classification will localize the problem

to 50% of the population at each test. In this chapter we see how the most popular acoustic

correlate of gender differences in voice (pitch) is tricky to define over a large population. We then

propose modelling pitch that is specific to a particular acoustic-phonetic context. Furthermore,

we provide a feedback mechanism for “ambiguous” voices based on real-time pitch-shifting

of the speech signal, which looks at how close/far the speech signal is from “unambiguous”

gender training data, thus enabling a final decision to be made.

5.1 Gender and Pitch

One of the most pertinent features reported as useful for discriminating speaker voices is the

fundamental frequency of the voice. Generally, typical values of F0 for male voices lie in a lower

range than that for female voices. A demonstration of this is shown in Figure 5.1. The analysis

was done on 6300 utterances from the TIMIT corpus (with 4380 male utterances and 1920 female

utterances). The F0 pitch values were obtained using the algorithm by Talkin [51].

There are a number of observations we can make. The results obtained show that there
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are two distinct pitch distributions for male and female pitch values. What is perceived to

be a low pitch for males and a high pitch for females is a general trend in pitch values for

these population subsets. The mean values (shown by dashed lines) might be taken to be the

perceived zone of where we expect the pitch values of the respective genders fall. However, we

can also notice that we should also expect some overlap, where high pitched male voices and

low pitched female voices can crossover.
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Figure 5.1: The probability density estimate of F0 values for the the TIMIT corpus with a kernel
density estimator based on a normal kernel function.

We would like to perform a more detailed analysis to explain the factors that cause the

overlap observed. We can hypothesise that, as well as the inherent range of pitch across different

speakers of the same gender, age might be a factor, or perhaps, a particular phoneme of a

language can exhibit its own range of pitch values within a gender.
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5.2 Discovering Context

If we have a look at the same data, and this time account for speaker differences, by plotting a

distribution based on individual speaker data, we obtain the results in Figure 5.2. The general

distribution of both genders is equivalent to that in Figure 5.1. However, if we look at the

distributions of individual speakers, we notice that the variance of each speaker is confined to a

small fraction of the variance of the entire gender population. Female speakers exhibit wider

variances on average than their male counterparts. This trend is also present in the distributions

as observed in Figure 5.1.
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Figure 5.2: The distribution of F0 values for the speakers of the TIMIT corpus.

If we had prior knowledge of the speaker identity, then we could use that knowledge to

make gender classification easier, as we would be able to model pitch behaviour for a particular

speaker. The task we usually have, however, is to utilize information such as gender to identify

a speaker, and not the other way round. We can look at the data from another perspective, that

of phonetic context. Every frame is a unique vector of MFCCs, and it is not very useful to try

and define the phonetic context by this information alone. Instead, we perform VQ over the
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frames of the TIMIT corpus to obtain a codebook. Then, each MFCC frame is associated with

the closest centroid in the codebook. This is what defines a more general phonetic context for

a particular frame. Each frame has an associated pitch value. The algorithm used for pitch

tracking is the one described by Talkin [51], and implemented in the ‘Voicebox’ toolkit [203].

We can now analyse at specific pitch distributions for each of the centroids in the codebook, for

each gender. We show results for different numbers of context centroids in Figure 5.3.

There is not much variation in the behaviour of male pitch values as more centroids are added

to the VQ codebook. At higher values of k, we can see two main pitch distributions of F0 values

for male speakers. However, in the case of female speakers, VQ-based phonetic contexts show

a multitude of varied pitch distributions within the main female pitch distribution observed

initially in Figure 5.1. If the pitch of a speaker varies over a wide range of F0 values based not

only on gender, but on the actual phonetic content that is being uttered, than F0 alone is a good,

but not complete indication of gender. The production of a certain phonetic combination of

sounds may require a lower/higher pitch relative to the actual perceived average pitch of a

speaker (or entire gender group). But for the same phonetic combination by another speaker,

also requiring a lower/higher pitch relative to another average pitch, the gender difference can

be still detectable via these pitch values.

Even with just k = 8 and k = 16 context centroids defined, we can see how the distributions

vary their mean considerably, despite some distributions having major regions of overlap.

The male distributions appear to be more stable, and we can only observe two particular

distributions, no matter what value of k is chosen. Modelling the actual pitch distributions for

each phonetic context can be done with a low-order number of Gaussians, which would mostly

be required by female speakers rather than male speakers.

It seems possible that an adequate number of contexts coupled with an adequate number

of Gaussians to model each context can capture the variability in F0 for both genders under

different acoustic contexts. For this reason, our approach [8] is designed to find a close acoustic

context to the content that is being analyzed in speech using predefined acoustic templates

built by MFCC codebooks. Once the acoustic context is determined, the pitch information

expected within that acoustic context is compared to male and female pitch templates and a

gender decision is made. Furthermore, we exploit inconsistencies between gender classifiers by

looking at the effect of pitch-based distortions of the original speech signal to give a refined

classification where possible.
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Figure 5.3: The distributions of F0 values across all speakers for different phonetic contexts (left
to right, top to bottom: 2,4,8,16,32,64 contexts) of the TIMIT corpus.
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5.3 Gender Classification Methodology

5.3.1 Baseline Classification

In our baseline classifier, we use MFCC feature vectors extracted from continuous speech, either

from the TIMIT [198] or from the ABI [199] corpora. Two different vector quantizer models

are built, one per gender, by clustering (K-Harmonic Means) the MFCC feature vectors from

the training data of each gender. The MFCC vectors utilized had 12 coefficients, where the 0th

coefficient was excluded. To classify a test utterance X = {x1, . . . , xT}with the reference centroids

R = {r1, . . . , rK} from the clustering, the standard average quantization distortion is calculated as

in Equation (5.1), where d(·, ·) is the Euclidean distance ‖ xt − rk ‖.

Dq(X,R) =
1
T

T∑
t=1

min
1≤k≤K

d(xt, rk) (5.1)

Each frame from a test utterance is therefore associated with a particular centroid (the closest)

from the VQ codebooks from the male and female training data. The distance/distortion is

measured for all frames for both male and female codebooks. The codebook that gives the least

over all distortion for the test utterance X is assumed to originate from the particular gender

model that holds R with the smallest distortion.

5.3.2 Context-Dependent Classification

The centroid models provided by MFCC clustering give an unlabelled indication of where

different units of sound lie in MFCC space. Rather than using these directly in a classifier, we

construct Gaussian Mixture Models (GMMs) of the pitch values associated with each MFCC

vector that was included in the calculation of the centroid. The motivation of this technique is

that the MFCC centroid positions correspond to different contexts of sounds, and these contexts

can affect the pitch produced. This is evident from various experiments of pitch distributions

and ranges for various sounds, and combinations of sounds.

The architecture of this method is illustrated in Figure 5.4. Three frames from an utterance

need to be classified. A prior codebook in MFCC space has been generated for each gender,

with k = 4 centroids per gender. Each frame is associated with the closest centroid for each

gender codebook. In this case, the MFCCs from the first frame are associated with centroid B

(from the male codebook) and C (from the female codebook), the MFCCs from the second frame
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Figure 5.4: Gender classification is based on the acoustic context that is associated with a
particular frame, and specific pitch models for that context only are used to classify a particular
frame. In this example, the MFCCs for the first frame are associated to centroid B (from the male
VQ codebook) and centroid C (from the female VQ codebook). Consequently, the F0 value for
the frame is scored under the pitch model for these selected centroids only. The same applies
for every frame in the utterance.

are associated with centroid F (from the male codebook) and H (from the female codebook),

and the MFCCs from the third frame are associated with centroid D (from the male codebook)

and G (from the female codebook). Each centroid from the codebook has a specific pitch GMM

associated with it as discussed earlier, and these GMMs are used to calculate the log likelihood

of the pitch for the frame under the GMM for both the male and female distributions for the

contexts in question. For the whole utterance, these likelihoods are summed to check which

overall gender model gives the best fit for the observed utterance.

5.3.3 Pitch-Shifting Loop-Back Classification

If both the classifiers described above in Section 5.3.1 and Section 5.3.2 give the same classification,

then there is reasonable confidence that the classification result is correct and the gender is

confirmed. However, if there is disagreement, an additional “acoustic loop-back” process is

utilized.
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Groen et. al [204] perform a number of experiments related to the human perception of

gender in voice for children. Their interest was in investigating the difference in response

time between children with high-functioning autism and normal children. The main finding

of interest to us is that the response time for gender perception for both groups changes in

specific cases, as the pitch of a voice is artificially transformed into subsequent pitch categories

by shifting formant ratios and median-pitch levels, from male to female voices. This suggests

that the brain process that classifies gender can have different cognitive loads in cases where

gender determination is ambiguous. This observation motivates us to propose an extra layer of

processing to resolve the classification in cases where the two classifiers disagree, which we take

as an indication that the gender information is ambiguous. This processing can be visualized as

measuring whether the ambiguous utterance is in fact closer to the male or the female gender in

the pattern-space. We do this by small artificial pitch-shifts on the utterance in either the male

or female direction, and then re-classifying it with the two classifiers described earlier, to see if

they now agree.

Figure 5.5: Pitch-shifting on an utterance. Shifting to the right from the neutral position implies
an upward shift of pitch towards the female gender, shifting to the left implies a downwards
shift towards the male gender. After each semitone shift, the decisions of the two classifiers
(‘MFCC’ and ‘Pitch’) are shown. Agreement on the gender is reached after only one semitone
shift downwards, but after two semitones upwards, so the utterance is classified as a ‘male’.

The process works as follows: in cases where there is a disagreement in the classification re-

sults from the two classifiers, two copies of the utterance are made. Copy 1 is shifted downwards

progressively in pitch steps of a semitone, and Copy 2 is shifted upwards progressively in pitch

steps of a semitone, to a maximum shift of two semitones. After the first shift, the utterance is

re-classified by the two classifiers. If the classifiers now agree on one gender (only), this gender

is taken as the class, and the process ends. If not, another shift is applied. Figure 5.5 gives

an example. With no pitch-shift applied, the two classifiers disagree. Agreement is reached
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between the classifiers in two situations: either when the pitch is shifted downwards by one

semitone, or when shifted upwards by two semitones. Because the utterance requires only one

semitone shift downwards to make the classifiers agree on ‘male’, then this gender is taken as

the correct class.

The process of upwards/downwards pitch-shifting and reclassification is iterated until one

of the following exit conditions is met:

• The classifiers agree on the class ‘male’ after a downwards pitch-shift, and this shift is

smaller than the last upwards pitch-shift, after which they still disagreed. In this case, the

gender ‘male’ is chosen.

• The classifiers agree on the class ‘female’ after an upwards pitch-shift, and this shift is

smaller than the last downwards pitch-shift, after which they still disagreed. In this case,

the gender ‘female’ is chosen.

• The classifiers agree on the class ‘male’ after a downwards pitch-shift of two semitones,

and on the class ‘female’ after an upwards pitch-shift of two semitones. In this case, the

classification made by the acoustic context classifier result is used.

• The pitch has been shifted by two semitones in both directions and the classifiers still

disagree. In this case, the classification made by the acoustic context classifier result is

used. This is because the classifier in Section 5.3.2 is generally more accurate than the one

in Section 5.3.1.

Pitch-shifting is done using the ‘SoundTouch’ audio processing library [205].

5.4 Experiments

A number of experiments were performed on the TIMIT [198], ABI-1 [199] and WSJCAM0 [200]

corpora. The TIMIT corpus contains 438 male speakers and 192 female speakers, where each

speaker speaks 10 phonetically rich short utterances. The ABI-1 corpus subset used contained

145 male speakers and 140 female speakers (chosen to balance the number of speakers in each

gender), where each speaker speaks 3 extracts of 6 seconds each from accent diagnostic passages.

The WSJCAM0 corpus subset contained 55 female speakers and 70 male speakers, where each

speaker speaks 5 utterances of around 3-5 seconds each.
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For every experiment we conduct, 100 male and 100 female speakers are selected to train the

gender models. Only the TIMIT and ABI-1 corpora were used for training, at various stages of

experimentation. The WSJCAM0 was not included as a training set. This ensured that at least

one corpus was presented to the tested algorithms as a completely new dataset. The speakers

chosen for training were consequently not utilised for testing, which was done on the remaining

set of speakers. The entire set of experiments were conducted with 5-fold cross-validation, with

results pooled together for the GID accuracy rate.

We used four different experimental training and testing data pairs. TIMIT/TIMIT is a

classification of TIMIT data based on training over TIMIT data. ABI/ABI is a classification of

ABI-1 data based on training over ABI-1 data. TIMIT/ABI is a classification of ABI-1 data based

on training over TIMIT data. TIMIT/WSJCAM0 is a classification of WSJCAM0 data based on

training over TIMIT data. In TIMIT/ABI and TIMIT/WSJCAM0 experiments, training data was

collected from 100 male and 100 female TIMIT speakers, whilst tests were performed on all the

ABI-1 and WSJCAM0 speakers.

The frontend processing is common to all experiments. Utterances are framed in 30ms

segments with a 15ms frame rate. Each frame is represented by a 12-dimensional MFCC vector,

where the 0th coefficient was excluded. A pitch value for each frame was estimated with the

pitch tracker algorithm by Talkin [51]. All unvoiced frames (where no pitch is present) are

discarded. No frame normalization techniques like CMS or feature warping were applied at

any stage.

5.4.1 Matched Dataset Tests

For matched dataset tests, we consider the cases where the testing utterances are from the

same corpus as those used for training, albeit different speakers. The results for TIMIT/TIMIT

experiments are shown in Figure 5.6, whilst the results for ABI/ABI experiments are shown in

Figure 5.7.

The results for TIMIT/TIMIT tests show that the MFCC classifier performance improves

gradually as the value of k (number of cluster centroids) increases from 2 to 16. At this point a

performance barrier is reached, and no improvement can be seen at higher values of k. However,

the context-dependent classification as well as the pitch-shifting loopback classification maintain

a steady performance across all values of k. The variance in the results obtained by the context-

based classifier and the pitch-shifting loopback classifier we are proposing in this paper shows
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Figure 5.6: GID accuracy for TIMIT/TIMIT experiments.

Figure 5.7: GID accuracy for ABI/ABI experiments.

greater stability compared to the baseline MFCC classifier, as well as giving higher gender

identification performance across all experiments. On the other hand, there is no regular gain

observed for the pitch-shifting loopback classifier, which performs better or worse depending

on the value of k.

The results for ABI/ABI tests show that globally, identification results on all classifiers
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perform slightly worse on the ABI-1 corpus, when compared to performance on the TIMIT

corpus. However both the context-based classifier and the pitch-shifting loopback classifier still

perform better than the MFCC classifier. The MFCC classifier performance improves gradually

as the value of k (number of cluster centroids) increases from 2 to 16, and drops for k > 16.

The overall drop in performance on the MFCC classifier (compared to TIMIT/TIMIT tests) is

associated with a drop in performance in the other classifiers. Again, the pitch-shifting loopback

classifier does not always perform better than the context-based classifier.

5.4.2 Mismatched Dataset Tests

For mismatched dataset tests, we consider the cases where the testing utterances are from a

different corpus from those used for training. The results for TIMIT/ABI experiments are shown

in Figure 5.8, whilst the results for TIMIT/WSJCAM0 experiments are shown in Figure 5.9.

Figure 5.8: GID accuracy for TIMIT/ABI experiments.

The results for TIMIT/ABI tests show that the baseline classifier accuracy is lower than in

cases where the training and testing sets are the same, and is much lower when training is

performed on TIMIT and testing on ABI-1. This indicates that the method is not very robust

for classification on different training/testing data sets. The drop in the MFCC classifier is of

approximately 30%. On the other hand the context-based classifier maintains a very high and

stable classification score in the range of 93-94% accuracy. The pitch-shifting loopback classifier

further boosts the results in almost all cases, with a stable result of 95% region for values of

115



Chapter 5. Gender Identification from Speech

Figure 5.9: GID accuracy for TIMIT/WSJCAM0 experiments.

k > 8, which is very close to the classification accuracy obtained in TIMIT/TIMIT and ABI/ABI

tests. The gain for this extra classification stage is therefore greater in TIMIT/ABI tests, and the

conclusion is that it is reconciling many errors that occur due to unmatched training/testing

data sets.

The results for TIMIT/WSJCAM0 tests show that the baseline classifier starts very poorly, in

a similar way to TIMIT/ABI tests. The performance improves at higher values of k. However,

the performance of the acoustic context and pitch-shifting classifiers is very high on all values of

k, further again demonstrating the gain these algorithms have on mismatched training/testing

sets. To note is that GID performance at or close to 100% accuracy was achieved in some of

these tests. This suggests that the WSJCAM0 corpus presents a particularly easy speaker set for

GID. The GID task has had ample research and is not considered to be a hard problem. The

experiments we report here are meant to look at the differences (all else being equal) of different

algorithms as datasets are shifted from training to testing.

5.4.3 Pitch-Shifting Utilization

The relative number of male and female utterances classified without pitch-shifting and using

1 or 2 semitone shifts is shown in Table 5.1. Analysis of results shows that female utterances

require the intervention of the pitch-shifting process earlier than male utterances, and in the
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greater majority of cases require two pitch-shifts before classifiers could agree on gender

classification. Also, gender-identification on female speech utterances require more intense use

of pitch-shifting (2 shifts) than in male speech utterances. This corroborates the experimental

results by Groen et. al [204], which concluded that humans take longer to classify gender for

female speakers when it is ambiguous than they do for male speakers, and secondly, that more

female utterances than male utterances sound ambiguous in pitch. Also, if we refer back to

the analysis leading to the results in Figure 5.3, where the female speakers pitch values had

very distinguishable sub-regions as more phonetic contexts were defined. Quite a large number

of these contexts for female speakers overlapped considerably with the pitch distributions for

male speakers, which however, have a much more stable distribution no matter how many

contexts are defined.

Table 5.1: Pitch-shifting utilization across utterance for male and female speakers. The columns
show the relative number of tested utterances that required no pitch shift, one pitch shift or two
pitch shifts respectively.

% 0 shifts % 1 shift % 2 shifts
Males 65.68% 24.55% 9.77%

Females 46.43% 16.47% 37.10%

The pitch-shifting classifier, in general gives some improved results over the context-based

pitch model classifications, especially for mismatched training and test sets. In the case of

equivalent training and test sets the pitch-shifting classifier can actually give slightly worse

performance. So whilst these results provide some analytical interest, the differences in

performance obtained by pitch-shifting over context-based classification are not that statistically

significant, and we cannot guarantee that the results obtained in these experiments would apply

in all conditions.

5.5 Summary

In this chapter we have first looked at the behaviour of the acoustic correlate of “gender” in

speech, most often interpreted to be pitch. Pitch is of course not exclusive, and there are other

useful correlates one could investigate, such as formants. We have seen how the behaviour of

pitch differs to quite an extent between male and female populations. The female population

has considerably more pitch variability for different acoustic contexts when compared to the

male population. Because of this, we have constructed a representation where the phonetic

context divides the pitch values for each gender into specific submodels (GMMs of low order).
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Each voice frame extracted from speech can be analysed in a more local way, and the results of

an entire utterance can be pooled together for a final decision.

Furthermore, we have described a simple pitch-shifting process guided by classifier fu-

sion, that gives a useful gain in gender identification performance, especially on unmatched

training/testing sets. The behaviour of the pitch-shifting process loosely corroborates some

of the observations made in experiments on cognitive load in humans for speech gender

classification. It would be interesting to find other speech features that exhibit similar properties

on warping/shifting. In some cases, the upper bound of the accuracy of the MFCC classifier is

holding down the potential of the context-based classifier. Therefore a replacement of MFCC

features with a feature set that is more gender-specific, rather than speaker-specific, could boost

the results of the techniques presented here.
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Acoustic Accent Identification

The next chapters of this thesis will focus on the problem of accent identification from speech.

In this particular chapter we will give an overview of a first set of experiments, based on a

number of standard generative and discriminative classifiers that usually perform well on other

identification problems such as speaker and language identification. However, the performance

obtained for accent identification was sometimes very poor and overall, disappointing — thus

setting accent identification apart from these other problems. Whilst these standard techniques

have been applied to accent identification in previous work, they have been combined with

some form of frame or model based speaker normalization techniques, which we do not apply

in this chapter. The next chapters will consider the problem of speaker variability modelling

and how this effect can be attenuated. In order to compare the differences obtained with speaker

variability modelling, it is important to have a baseline starting point, which we develop in this

chapter. This chapter will attempt to demonstrate how, without such forms of compensation,

the information that characterises accents is obscured somewhat by speaker variability. The

experiments in this chapter are a sequence of “approaches”, which build on the insight gained

from the previous approach to solve the accent identification problem, and build up to a

moderately good classification system by the end of the chapter.

6.1 GMM-UBM (Approach I)

The GMM-UBM classification system is popular in speaker and language identification research.

It is a simple and effective modelling and classification solution that gives good performance in

the SID and LID domains. Given short-term feature vectors estimated from speech utterances,
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describing spectral information, a class can be modelled, and the models should differ enough

in their spectral content to be able to infer reliable classifications of speakers or language. This

first experiment is to assess whether the raw spectral information extracted from utterances are

good enough for the accent identification problem.

6.1.1 Feature Extraction

Every utterance is framed into segments of 30ms with a 15ms frame rate. Voice activity detection

(an implementation of [206]) is performed to remove silent portions of the signal. MFCCs are

extracted from the utterance: 13 coefficients over 30 filters that range over the full bandwidth of

the utterances (11025 Hz). The MFCCs are then converted to shifted delta cepstra (SDCs) with a

7-1-3-7 parametrization (see Section 2.3.5). The original MFCCs are then Gaussian-warped over

three second time windows(see Section 2.3.6.3). The warped MFCCs are then concatenated to

the SDCs to form the final feature vector. Each frame is therefore described by a 62-dimensional

feature vector.

6.1.2 GMM Modelling

The first trial is designed to set a baseline for AID. The experiment is based on the GMM-UBM

classification technique. The GMM is a sound statistical model. The acoustic features under a

GMM are modelled without any reference to their position within a particular linguistic unit

or the prosodic style that generated it. The assumption is that any frame sequence extracted

from an utterance is statistically independent from all other frames in the sequence. The second

assumption is that the acoustic features extracted are distributed over some mixture of normal

distributions and are uncorrelated (diagonal covariance matrices are used in the components).

As explained in Section 4.2, the ABI-1 corpus is split into three roughly equal sets speakers

for each accent, where data from one speaker is found in one set alone, and in no other sets.

Three test trials are performed. In each trial, two sets are used for training and one for testing,

and the results are pooled for a final classification result. In the GMM-UBM experiment, a single

UBM is created from the entire training section of the corpus. Consequently one GMM per

accent is created by means only MAP-adaptation (with a relevance factor of 16) of the UBM to

training data for each accent. We have to note that by doing so, UBM training for AID is different

to UBM training in speaker recognition. In a speaker identification system, the UBM usually

comes from a completely different set of speakers so that the eventual recognizer can ‘enroll’
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new speakers sequentially. Furthermore, at test stage, one cannot use other target speakers

for normalization purposes. Of course, in the problem of accent identification, we expect the

same accents in the training set as in the test set, albeit from different speakers. So no actual

‘enrollment’ occurs. The database conditions are therefore more static in AID compared to SID.

An important consideration in our UBM modelling is the estimation of parameters to define

the UBM. Each mixture component in the UBM is defined by a mean, covariance matrix, and

weight. Though there are methods that estimate a Gaussian Mixture Model given a dataset,

we were noticing that since our corpus was not a large one, components tended to converge

to singularities (this is when a mixture component collapses on a particular point, with the

point becoming the mean, and the component has zero variance, with a likelihood approaching

infinity) when training GMMs of large component sizes such as 512 and 1024. Therefore

we opted for a stable way to estimate a GMM. Firstly, we obtain a VQ codebook via the

Linde-Buzo-Gray (LBG) algorithm. The codebook splitting criteria we used was to double the

number of centroids at every LBG iteration, and then the centroid means were re-estimated

via traditional k-means algorithm until the desired number of centroids is reached. Once the

cluster centroids (the VQ codes) are estimated, the covariances and weights of each cluster are

estimated. This initial estimation is then passed on to a GMM trainer to perform five iterations

of Expectation-Maximization, which outputs the final UBM. By using this method of GMM

training as opposed to direct Expectation-Maximization on the dataset, we resolved all our

singularity problems even on large component GMMs. Even so, given the rather small amount

of data in the ABI-1 corpus, we limit all our models to a maximum of 1024 components, as

larger GMMs (say 2048 or 4096) would require exponentially more data to create stable models.

6.1.3 Scoring

Given a particular set of frames for an utterance X = {x1, x2, . . . , xN}, we can calculate the sum of

log probabilities of the entire set of frames under a particular GMM λm with Equation 6.1. No

normalization term is used here. We are dealing with a closed-set identification problem, so the

normalization term is the same for all accent groups, and is therefore not necessary.

Scorem(X) =
1
N

N∑
n=1

log (P(xn|λm)) (6.1)

Given that we are classifying 14 different accents, each utterance is scored under all 14

GMMs representing each accent. The model with the highest score for the utterance is chosen as
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the classification result and the accent associated with that model is assigned to the utterance.

6.1.4 Results

The results for GMM-UBM classification on short-term feature vectors are shown in Figure 6.1.

The results show a clear trend of improving as the number of components increase. The actual

classification results are however, quite poor. Given 14 different accents, the chance level is

at 7.14%. So there is definitely some measure of accent classification being executed correctly

given the speaker-independence in our tests, ranging from 28% to 42% AID accuracy.

Figure 6.1: Accent identification results for Approach I: GMM-UBM classification on short-term
feature vectors.

6.2 GMM-UBM with Prosody (Approach II)

In the second approach, the same GMM-UBM training and scoring system is used as in Approach

I. The differences are in the feature vectors collected for an utterance.

6.2.1 Feature Extraction

Every utterance is framed into segments of 30ms with a 15ms frame rate. Voice activity detection

is performed to remove silent portions of the signal. MFCCs are extracted from the utterance:
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13 coefficients over 30 filters that range over the full bandwidth of the utterances (11025 Hz).

The MFCCs are then Gaussian-warped over three second time windows. The MFCCs are then

converted to shifted delta cepstra (SDCs) with a 7-1-3-7 parametrization. For each frame the

pitch and first formant and bandwidth for the formant are also calculated. The first derivatives

(or deltas) of the pitch values of the signal are also calculated. Unvoiced frames (those with no

corresponding pitch value present) are discarded. The original MFCCs are not included, and

therefore each frame is described by a 53-dimensional feature vector.

6.2.2 Results

The results for GMM-UBM classification on short-term feature vectors that included cepstral

features as well as prosodic and intonational features are shown in Figure 6.2. Again, the results

show a clear trend of improving as the number of components increase. The actual classification

results, though still relatively poor, are better than the ones in Approach I for all the GMM

component sizes tested. The main difference is that some importance to pitch information

is given in this approach, whilst the standard MFCC information is discarded, as well as all

unvoiced frames. The range of accent identification accuracy now stands in the range of 29% to

49%.

Figure 6.2: Accent identification results for Approach II: GMM-UBM classification on short-term
feature vectors that include prosody and intonational information.

The results from this approach suggests that by adding some prosodic information with
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dynamic cepstral information and removing the basic MFCC feature vector, we might create a

frontend configuration that is more tuned to the accent identification problem.

6.3 GMM-UBM with Prosody Context (Approach III)

We require a way of segmenting speech signals into long-term syllabic-like acoustic segments

which may be characteristic of different accents. Of course, this has to be done without an actual

phone-recognition front-end. In this approach we split utterances into contiguous segments of

100 frames each, which at a 15ms frame rate, amount to 1.5s of speech data. These segments

of speech are not overlapping. A few subjective listening tests seemed to suggest that 1.5s of

speech contains, in some cases, prosodic structures that are quite telling of accents. However,

we note that the duration of 1.5s was ultimately an arbitrary decision.

Figure 6.3: Tilt parameters to calculate pitch dynamics for a speech segment.

For this task, we want to capture prosodic information that can not only adequately represent,

in a limited number of dimensions, the prosodic behaviour of an utterance, but also information

that can be modelled in such a way as to show differences across accents. We assume that the

dynamics of the pitch contour are roughly consistent for the same speaker speaking the same
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utterance. The pitch contour is not only dependent on the speaker, but also on the underlying

co-articulated sound units. The long-term pitch contour of the vocal system in a time window,

combined with the phonemic units utilized to generate the contour, could say something about

the particular accent. Our aim is to have a mapping between a particular prosodic behaviour,

and the underlying syllable structures. We do not need to link the syllable structure with

the prosodic behaviour into one feature vector, as this will be an explicitly modelled via our

classification system described later on.

At =
|Ar| − |A f |

|Ar| + |A f |

Dt =
|Dr| − |D f |

|Dr| + |D f |

∆F0 = F0p − F0v

(6.2)

The dynamics of pitch contours are represented using tilt parameters, in the way encoded

in [207]. We characterize the possible pitch change (∆F0), rises, falls, or rises followed by falls in

segments by using tilt parameters for amplitude (At) and duration (Dt) defined in Equation 6.2.

Ar and A f represent the rise and fall in pitch amplitude with respect to F0p, the pitch peak in

the contour. Dr and D f represent the duration for the rise and fall respectively. This concept is

summarized in Figure 6.3. There are other techniques for pitch contour parametrization that we

unfortunately did not have time to investigate in this thesis, and further experimentation with

different techniques (such as Legendre polynomial expansions in [208, 209]) are recommended.

6.3.1 Context-Dependent GMM-UBM Accent Models

The accent models we propose are based on using prosodic feature vectors to provide context,

and the short-term feature vectors for a segment to characterize the syllabic inventory for a

particular prosodic behaviour under a particular accent group. Given a prosodic feature vector

for a speech segment (which encompasses multiple short-term frames of equal length, which

we term ‘frame sequences’), we find the closest matching centroid in our reference model, for

each prosodic vector in an utterance.

The ‘frame sequences’ of the speech segment are passed on to the construction of a Gaussian

Mixture Model (GMM) for the centroid that is associated with the prosodic feature vector. This

concept is demonstrated in Figure 6.4. Each accent is therefore modelled with k sub-GMMs,

where the value of k is equal to the number of centroids in the prosodic behaviour space model.
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Figure 6.4: An utterance has three segments. Each of the prosodic vectors derived from the
segments is associated with one of the centroids of the prosodic space. In this example, segment
1 is associated with centroid B, segment 2 is associated with centroid E, whilst segment 3 is
associated with centroid D. For this reason, the short-term vectors from the first segment are
used as part of the training set for the short-term accent GMM of prosody index B, the second
segment frames are used as part of the training set for the short-term accent GMM of prosody
index E, and the third segment frames are used as part of the training set for the short-term
accent GMM of prosody index D. Moreover, the short term frames from the each segment, will
therefore not be involved in the training of accent GMM of other prosodic regions: frames used
to train a model for B are not used for training in E and D etc.

6.3.2 Classification

Given these accent models, the ranking of an utterance U with segments 1 . . . S for a specific

accent model a, can be summarized as the sum over the probabilities of each segment, as in

Equation 6.3.

<a(U) =

S∑
s=1

ξ(s) (6.3)

The term ξ(s) is the rank of the prosodic segment s for the particular accent, and is defined in

Equation 6.4, where n = 1 . . .N is the sequence of N feature vectors for a particular prosodic
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segment (the frame sequence for the segment).

ξ(s) =

N∑
n=1

p(s|n) (6.4)

Each term p(s|n) is equivalent to p(s|λ) such that λ is the accent GMM chosen for a particular

segment, as defined in Equation 6.5, by choosing the closest centroid from 1 . . .K for a given

frame. The index k of the chosen centroid is then used to obtain a classification of the kth

GMM for the accent in question, out of K GMMs constructed during training. Therefore, the

short-term vectors for each segment are used to find the closest centroid from 1 . . .K for each

frame, resulting in N indexes, one per frame. The index of each targeted centroid is used to

calculate the terms p(s|n) . . . p(s|N).

λ = min
1<k≤K

d( fn, λk) (6.5)

Each classifier will give a ranked probability for each segment. The higher the ranked probability,

the more likely that segment is generated by the accent.

Ac = max
1<a≤A

<a(U) (6.6)

The utterance U is given a rank by all accent models, and the accent model with the highest

ranking is the final classification Ac of the utterance, as shown in Equation 6.6. Within this

scheme, the traditional GMM-UBM scoring (as in Approach I) is a special case of Approach

III, where there is only one prosodic context (the whole set), and therefore only one GMM per

accent.

6.3.3 Results

The results obtained for Approach III are shown in Figure 6.5. A number of trials were performed

for different codebook sizes of the prosodic context. The results show how AID performance

deteriorates as the codebook size (and therefore number of GMM models per accent) increases.

Similar to the trends observed for Approach I and II, performance generally improves as the

number of components used for GMM models increases.

The results in Figure 6.6 compared the best of Approach III, with the previous results

for Approach I and II. The results show that the general case of having only one GMM per

accent (Approach I) performs slightly worse than Approach III. However, the solution provided

127



Chapter 6. Acoustic Accent Identification

Figure 6.5: Accent identification results for Approach III: Prosodic context-based GMM-UBM
classification on short-term feature vectors that include only spectral information.

by Approach II (combined feature vectors of short-term spectral information with prosodic

information) gives the best performance.

Figure 6.6: Comparison of different GMM-UBM based approaches to accent identification.
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6.4 GMM-SVM Class Supervectors (Approach IV)

The GMM-SVM class supervectors approach is a direct extension of Approach I. The same

accent-specific GMMs are constructed by MAP-adapating a UBM through data from specific

accents. The supervector is extracted as a concatenation of the GMM mean vectors over all the

GMM components. Since the GMM is based on training data from multiple utterances and

multiple speakers, the resulting supervector is an utterance independent, speaker-independent,

but accent-dependent supervector. Each accent is therefore represented by a single supervector.

6.4.1 Feature Extraction

Feature extraction is exactly the same as performed in Section 6.1.1. The dimensionality of the

supervector depends on the number of GMM components and the dimensionality of the original

frame feature vectors. For a GMM of k components, the final supervector dimensionality is

therefore k×62 dimensions. A sample plot of accent supervectors plotted in low dimension is

shown in Figure 6.7.

6.4.2 Classification

For this approach, we employ a number of SVM classifiers from the LIBSVM library. The

resulting SVM is then employed to classify individual test utterances. The data from each

utterance is used to MAP-adapt the UBM to an utterance-dependent GMM, and the resulting

supervector from the GMM is passed to the SVM for classification.

For reference, we document the default parameters for the SVM library at the time of writing,

since these may change over time:

• Degree: degree in kernel function, default set to 3

• Gamma: gamma in kernel function, default set to 1/number of features

• Cost: cost parameter, default set to 1

• Shrinking: whether to use shrinking heuristics, default set to 1

• Epsilon: set tolerance of termination criterion, default set to 0.001

• Weight: set the weight parameters of each class, default set to 1
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Figure 6.7: Accent supervectors plotted in low dimension obtained by plotting the first three
LDA dimensions.

In some of the results we report for SVM classification in this chapter, performance is poor. It

cannot be ruled out that these poor results are sometimes obtained due to the default parameter

settings reported above. In fact, a search for optimal parameters against a development dataset

was not performed. The reason for this was that a development dataset would severely reduce

the amount of actual training data available, and would impact performance in the long term,

especially for the classifiers we build in later chapters, based on i-Vectors. For this reason,

a thorough search for optimal parameters was bypassed, and default configurations used.

We therefore do not exclude the possibility that these results could be much improved, if an

appropriate data set and parameter finding exercise is performed.

6.4.3 Results

The first experiment is performed on a SVM with a Radial Basis Function (RBF) kernel, and

default parameters from the LIBSVM library. The results for this classifier are shown in Figure 6.8.
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The results show how the GMM-SVM technique performs worse than the GMM-UBM technique

in Approach I. Also, the trend of improved results with the increase of GMM components is not

observed with GMM-SVM classification on an RBF kernel. In fact, performance deteriorates

rapidly with larger GMM sizes.

Figure 6.8: Accent identification results for Approach IV with an RBF kernel SVM: GMM-UBM
classification (Approach I) performs better in all tests.

The second experiment is performed on a SVM with a linear kernel. The results for this

classifier are shown in Figure 6.9. Even in this case, the results for GMM-SVM classification are

much worse than those in Approach I, and are interestingly equivalent to an RBF kernel SVM

classifier.

The third experiment is performed on a SVM with a polynomial kernel of varying degrees.

The results for this classifier are shown in Figure 6.10. As with other SVM classifiers, the

performance is poor compared to those in Approach I. Also, performance degrades as the degree

of the polynomial kernel is increased.

6.5 GMM-SVM Utterance Supervectors (Approach V)

The previous section focused on SVM classification based on single accent supervectors. In all

the experiments, the performance obtained for utterance-based supervector classification was

poor. There are a number of possible reasons for this. The supervectors are probably too much
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Figure 6.9: Accent identification results for Approach IV with a linear kernel SVM: GMM-UBM
classification (Approach I) performs better in all tests. Interestingly, the performance for an RBF
and a linear kernel is equivalent.

Figure 6.10: Accent identification results for Approach IV with a polynomial kernel SVM:
GMM-UBM classification (Approach I) performs better in all tests. The performance decreases
rapidly for kernels of polynomial degree >1.

influenced by speaker information. The supervector itself does not represent just the accent, but

also all the other information contained in the utterances used to train the accent supervector.

This presents a problem for an SVM classifier — the distinction between accent classes cannot
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be appropriately modelled, and classification performance suffers. It is curious that Approach

I, based on GMM-UBM classification, performs better than all the attempts in Approach IV

(techniques that use SVMs). After all, the supervector is simply a vectorized representation

of the GMM for each accent. We postulate that the SVM was used in a sub-optimal manner,

which could explain the performance difference. The SVM implementation is based on default

configurations as provided by the LIBSVM library.

In this section, we try out a different form of GMM-SVM classification. The goal this time

is to model all utterances as individual supervectors. Therefore instead of having a single

supervector to represent an accent, each accent is represented by a number of supervectors, one

per utterance in the training set. Hence, as far as front-end feature extraction is concerned, the

configuration is exactly the same as in Approach I and Approach IV. However, the frames of

each utterance are used to MAP-adapt the UBM into a GMM, and consequently a supervector.

6.5.1 Results

The first experiment is performed on a SVM with a Radial Basis Function (RBF) kernel, and

default parameters from the LIBSVM library. The results for this classifier are shown in

Figure 6.11. The results show how the GMM-SVM technique for utterance based supervectors

now performs better than both Approach I and Approach IV for the same classifier. There is no

improvement resulting from models created by supervectors from GMMs of a different number

of components, and results are close across the board.

In these results, we can not guarantee that the SVM parameters have been optimally set,

and it is probably that the default configurations causes increasingly bad performance as

the supervector dimensionality increases. In the next experiment, PCA is performed on the

supervector training set (and consequently the PCA mapping is applied during testing time as

well), to see if reducing the dimensionality of the supervectors has any effect on performance

under the same RBF kernel SVM and same default LIBSVM configuration. The results, for

various PCA dimensionality is shown in Figure 6.12.

The performance obtained when classifying supervectors that have been reduced to a low

dimensionality by PCA degrades very slightly compared to the performance obtained without

dimensionality reduction. The dimensionality reduction however allows us to utilize the

PCA-reduced supervectors to create another feature extraction layer prior to classification, one

that could compensate for the differences in supervectors of an accent caused by utterance
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Figure 6.11: Accent identification results for Approach V with an RBF kernel SVM: This new
approach performs better than GMM-UBM classification (Approach I) and GMM-SVM with
RBF kernel for single supervectors per accent (Approach IV).

Figure 6.12: Accent identification results for Approach V with an RBF kernel SVM and PCA
applied to supervectors: Though the results without PCA are the best, PCA does not really
degrade performance very much at a dimensionality of 250 to 500.

and speaker-specific variations. In the following plots, we can see a set of supervectors after

PCA reduction is performed (Figure 6.13), and consequently, after LDA projection is performed

(Figure 6.14).
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Figure 6.13: Dimensionality reduced supervectors after PCA is applied to GMM-UBM super-
vectors. (PCA dimensionality = 100)

When both PCA and LDA are applied after each other, the accent clusters are much more

discernible than with just the application of PCA. Also, the class separation is potentially better

when the dimensionality of PCA is increased from 100 to 500. The plots in Figure 6.16 and

Figure 6.17 are the same supervectors, being mapped by PCA and LDA, with a higher PCA

dimensionality of 500. The higher PCA dimensionality results in much more discernible accent

clusters once LDA is applied.

The next test to perform is therefore SVM classification via a default RBF kernel over PCA

and LDA-reduced supervectors. The results for this experiment are shown in Figure 6.15. The

best results are observed on supervectors that have been PCA-reduced with high dimensionality,

and contrary to Approach I, on low order GMM sizes. Finally, a comparison of results of different

approaches is summarized in Figure 6.18. The best results are obtained by Approach V. The LDA

stage of supervised training is strongly conditioning the supervectors to attenuate non-class

specific information, and the plots showing clearer accent clusters confirm this. Surprisingly,

changing SVM kernel and parameters does nothing to aid the AID classification performance
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Figure 6.14: Dimensionality reduced supervectors after PCA and LDA are applied to GMM-UBM
supervectors. (PCA dimensionality = 100)

prior to the PCA+LDA stages, except give slighlty better performance than GMM-UBM when

multiple supervectors per accent are used for training.

6.6 Accent Confusion Analysis

As reported in the previous section, the best accent identification performance obtained so

far using standard classification methods that are popular across gender/speaker/language

identification is given by Approach V: utterance-specific supervectors, reduced in dimensionality

by PCA, and further optimized by LDA and combined with a SVM classifier with a RBF kernel.

It is interesting to look at which accents are being confused with which other accents. This

analysis can provide some insight into whether some accents are harder or easier to classify, and

in the case of wrongly classified accents, whether the chosen wrong classification has some basis

in acoustics and phonetics, rather than being purely a consequence of the classifiers used. A

confusion matrix showing the correct versus predicted classification of utterances of the corpus
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Figure 6.15: Accent identification results for Approach V with an RBF kernel SVM and PCA+LDA
applied to supervectors: These results show that LDA produces more discernable clusters which
aid the SVM classifier, giving some relatively good AID classification performance, especially
on the low order GMM sizes and high PCA dimensionality.

for Approach V is given in Table 6.3. A list of closest confusions per accent is given in Table 6.1.

There does not seem to be any direct relation to the broad accent geographic formation (see

Section 4.2) in most cases based on the confusions across accents.

Another analysis which can be looked at is the proximity of accents to each other after

the training phase is completed, through the Euclidean distance of the mean of each accent

cluster. This is shown in Table 6.2. Again, there is no regular pattern of accents clustering

close to each other in terms of the broad accents of the British Isles as in Section 4.2. This is

overall a bit disappointing, in that the learnt structure of accents from acoustic, rather than

acoustic-phonetic feature vectors does not define accents in the same terms as one would expect

accents to morph and overlap across geographic regions. It implies, however, that there is some

element of accent information that is defined purely acoustically/intonationally. This will be

discussed even further in later chapters as we approach the problem with different techniques.

6.7 Summary

In this chapter we have evaluated a number of standard classifiers classically employed for

speaker and language identification. We have also tried to utilize some additional structures
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Table 6.1: Ordered list of closest confusions per each accent as given by the Approach V classifier.
Where no confusions are made, columns are left empty.

Accent Closest Accents
brm nwa ean ilo eyk crn lvp ncl sse
crn ilo ean nwa sse brm lvp ncl eyk shl uls
ean brm sse crn ilo lan
eyk ilo lan shl ean brm sse ncl nwa roi
gla ncl ilo brm shl ean eyk lvp nwa
ilo brm ean eyk gla lan crn nwa roi
lan eyk nwa ilo brm ean ncl shl
lvp nwa brm eyk lan crn ean gla ilo ncl
ncl nwa brm ilo lvp ean roi sse crn eyk gla
nwa brm crn lvp roi ilo lan ncl eyk sse
roi uls nwa brm crn ilo lvp lan
shl lan ncl
sse brm ean nwa crn ilo ncl eyk lan roi
uls roi crn brm ilo lan sse

Table 6.2: Ordered list of closest accents for every other accent as given by the Approach V
training results.

Accent Closest Accents
brm ean eyk ilo nwa gla ncl lvp lan sse crn uls roi shl
crn ilo nwa ean gla ncl sse uls brm lan eyk lvp roi shl
ean ilo brm ncl crn lan gla eyk sse nwa lvp uls roi shl
eyk brm lan sse lvp ean ilo ncl gla nwa uls roi crn shl
gla ncl ilo ean nwa brm crn eyk lan lvp sse uls shl roi
ilo ean crn ncl gla nwa brm eyk lan sse lvp uls roi shl
lan eyk ean ncl ilo brm lvp gla sse nwa uls shl roi crn
lvp ncl eyk brm ilo lan ean nwa gla sse crn shl uls roi
ncl nwa gla ilo ean lvp lan brm eyk crn sse uls shl roi
nwa ncl crn ilo brm ean gla sse eyk lvp lan uls roi shl
roi uls sse eyk lan nwa ilo ean shl crn brm gla ncl lvp
shl lan uls sse gla ilo eyk roi ncl ean lvp crn brm nwa
sse eyk ean ilo brm nwa crn uls lan roi gla ncl lvp shl
uls roi sse ean ilo lan crn ncl shl gla eyk brm nwa lvp
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Figure 6.16: Dimensionality reduced supervectors after PCA is applied to GMM-UBM super-
vectors. (PCA dimensionality = 500)

to give prosodic meaning and context to speech frames within the classifier — with no real

gain in performance. The best gain obtained was based on first reducing the dimensionality of

utterance-dependent supervectors by PCA, and then finding a linear discriminant projection

for the classes via LDA, which of course has some variability compensating power over the

supervectors, and performance reaching around 65% accuracy. This is a good first step. However,

the error margin is still large. In the next chapters, we set out the first applications of i-Vector

modelling to the problem of accent identification, and a number of fusion enhancements for

speaker compensation.

The experiments in this chapter, especially the ones that give reasonable results on supervec-

tors, are based on long utterances of around 30s of speech (once silence and unvoiced frames

are removed). The nature of MAP-adaptation of a UBM suggests that performance would drop

considerably if the duration of utterances is much shorter than this. This is a general problem in

speech classification problems, including speaker and language identification. The focus of this

thesis in the next chapters will be to build even better classifiers on the same 30s utterances.
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Figure 6.17: Dimensionality reduced supervectors after PCA and LDA are applied to GMM-UBM
supervectors. (PCA dimensionality = 500)

Figure 6.18: A comparison of the best set of results from all approaches in this chapter.
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Once we obtain a highly-optimised AID system, we will then look into how such a system scales

with shorter utterances, since good performance on a few seconds of data is very desirable in

these systems.

Another aspect of our analysis in future chapters will be a direct comparison of the confusion

matrix obtained by different classifiers. Will other (and better) classifiers simply enhance the

confusion matrix we obtained in this chapter? Or will the “proximity” of accents change

according to the different accent patterns learnt by the different classification systems? Moreover,

will there by any classifier that gives some semblance of geographic/linguistic accent proximity?

So far, the approaches discussed in this chapter give no such insight into accents, and we find

this to be disappointing if we compare the results with methods that tackle accent classification

from an acoustic-phonetic perspective such as the ACCDIST metric and phonotactic systems as

the ones described in Chapter 3.
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Chapter 7
Accent Identification in i-Vector Space

So far we have looked at the problem of AID from the perspective of the most popular speech

classification algorithms prior to the development of the JFA and i-Vector paradigms. We have

shown that AID is subject to quite large errors when using standard techniques such as the

GMM-UBM and GMM-SVM methods, which, on clean recorded data, usually report very

good performance on problems such as speaker and language identification. It is highly likely

that some of the fine-grained accent distinctions of the British Isles are blurred or obscured

by individual speaker differences. The phonetic differences, which are not being modelled

here explicitly as is done in say, a phonotactic system, could be very easily obscured when

compared to a similar problem in structure such as language identification, where many phonetic

differences are observed between one language and another. We can recall the LID task is

apparently not too hard even for tamarin monkeys. So an obvious approach is that if it is to

cancel out all, or most, of the speaker variability within a class. We have attempted this in the

GMM-SVM system already through the use of LDA, and the results obtained showed some

promise.

This chapter will focus on the application of the i-Vector paradigm to the problem of accent

identification. We will initially assess the effect of the i-Vector paradigm on the AID problem,

and compare it to the baseline approaches we discussed in the previous chapter. Furthermore,

we will then propose a number of additions to the paradigm, specifically designed to improve

results on the AID problem in question — that of native accents of a language. A number of

points will be highlighted. Firstly, the trend of the i-Vector paradigm becoming the standard

in speech classification problems is also confirmed here, with i-Vector systems giving better

results than GMM-UBM and GMM-SVM systems. Secondly, we will highlight a possible
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incompleteness resulting from the application of feature dimensionality reduction techniques

in i-Vector space, and suggest ways to circumvent this, obtaining even better results. Thirdly,

we will show how certain standard projections that have been demonstrated to work well for

problems such as speaker and language identification from speech do not necessarily apply that

well to the problem of accent identification.

7.1 Frontend and UBM Construction

The i-Vector paradigm is a direct extension of the GMM-UBM method (Approach I). To be able

to make direct comparisons, the feature frontend of utterances and the construction of the UBM

is exactly the same as in the case for Approach I, which we reproduce below for completeness.

To extract features from an utterance, we first perform voice activity detection to remove

silent portions of speech. Following this, 13-dimensional MFCC vectors on the speech utterance,

with a window of 30ms and a frame rate of 15ms are extracted over 30 filters spread out to 11025

Hz. Each MFCC vector is converted into a 49-dimensional shifted delta cepstra vector with

7-1-3-7 parametrization. The original MFCC features are then warped to a standard normal

distribution with a 3 second time window to minimize effects of channel mismatch, and these

warped features are concatenated to the SDCs to form a final set of 62-dimensonal feature

vectors.

Training of the universal background model (UBM) is based on the codebook splitting

criteria defined in the previous chapter. About eight hours of data is available for training

and testing, and therefore, training is performed on approximately five hours of data, rotated

for each of the three test sets. If we utilize standard UBM construction techniques of direct

estimation, when using a large number of mixture components, there is a high chance of running

into problems of components having very small variances (singularities). To circumvent this

problem, we use a slower, but more stable way of estimating a UBM from a few hours of training

data. The reader is referred to Section 6.1.2 for full details.

7.2 The i-Vector Model

The first uses of total variability and i-Vector methods for speech classification were in the area

of speaker verification. The i-Vector representation was based on the success of the Joint Factor
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Analysis (JFA) technique. For the purposes of speaker identification, factor analysis is used to

construct a low-dimensional subspace, termed the total variability space. This space contains

factors of both speaker and channel variability. Unlike JFA, all the variability is contained in a

single subspace, whereas each kind of variability is modelled in an explicitly separate subspace

in JFA. Once the total variability space is estimated (using the training set only), various methods

of intersession compensation can be performed. For the purpose of speaker identification, one

would perform compensation say, on channel effects, to retain only speaker-discriminatory

information. The premise of a representation of the data in total variability space is that a

universal background model (UBM), trained on data from multiple speakers, can be adapted to

a given utterance, creating an utterance-dependent Gaussian mixture model (GMM).

M = m + Tw (7.1)

If we assume that the GMM supervector for a speaker is entirely observable and estimated

correctly, then the i-Vector model decomposes the GMM supervector as an additive component

to the original UBM, as in Equation 7.1, with M being the GMM supervector, m is the UBM

supervector, T is a factor loading matrix for the total variability subspace, and w is the total factor

(or i-Vector), a random vector which is a point estimate of an utterance in the total variability

subspace with a normal distributionN(0, I).

The derivation and calculation of the i-Vector is described earlier in this thesis and the

reader is referred to Section 3.6.5 for full details. The i-Vector representation technique has

been successfully applied to language recognition, and we treat accent recognition as a similar

problem, although the differences between classes are much finer in accent recognition. In

speaker identification, the total variability space T is estimated using all utterances of a particular

speaker as belonging to the different speakers altogether. The same concept is used in language

or accent classification, where every utterance is considered as coming from a different language

or accent class. This is because each utterance has variability due to both speaker differences

and language/accent differences.

7.3 Classification of i-Vectors via LDA (Approach VI)

In the first trial of i-Vector modelling, we configure different i-Vector systems based on the

number of UBM components, and the number of factors in the total variability space. The
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i-Vectors are then compressed with LDA, and classified with an LDA classifier.
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Figure 7.1: Utterances from various accents are transformed as point estimates in the total
variability subspace. First three dimensions of the data are shown.

The i-Vectors in the total variability subspace (Figure 7.1) replace the PCA subspace utilised in

Approach V. Following the supervised learning procedure of LDA, the i-Vectors are transformed

into a lower-dimensionality subspace of 13 dimensions (LDA gives a dimensionality of n − 1

where n is the number of classes). This is shown in Figures 7.2 and 7.3. These figures show

different degrees of separation between accent classes. Figure 7.2 is based on having a total of

100 factors in the i-Vector subspace, whilst Figure 7.3 is the result of 400 factors in the i-Vector

subspace. Both projections, however, are based on the same UBM of 64 components. The larger

subspace shows more separation between classes. The question is whether more factors allow

for better class separation, or whether this is due to over-fitting factors.

Our testing explores different combinations of UBM component sizes and factor dimensions.

The results are shown in Figure 7.4. In this case, classification is also done via LDA. There are

a number of things to point out. Firstly, the performance of the i-Vector system gets better as
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Figure 7.2: Utterances from various accents are transformed as point estimates in the total
variability subspace (100 factors), which are then passed on to LDA, resulting in maximally
linear discriminant formation between the classes. The first three dimensions of the data
obtained by LDA reduction are shown.

more components are used to train the UBM model. However, this performance improvement

is not a general trend for every factor dimensionality. For lower factor sizes of 100 and 150,

the performance increases as the number of components increases but the same cannot be said

for higher factor dimensions in the i-Vector space. Also, even though we observed tighter

cluster formations with higher factor dimensions, the results on accent identification are poorer.

This suggests that a careful selection of i-Vector model parameters has to be made, as the AID

accuracy ranges from 39% to 74%.

7.4 Classification of i-Vectors via QDA (Approach VII)

The LDA classification assumes that there is a linear boundary between all classes. From the

low-dimensional plots we have shown earlier, whilst some accents seem to be roughly separable
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Figure 7.3: Utterances from various accents are transformed as point estimates in the total
variability subspace (400 factors), which are then passed on to LDA, resulting in maximally
linear discriminant formation between the classes. The first three dimensions of the data
obtained by LDA reduction are shown.

linearly, there are several accent clusters that overlap each other to some extent. It is interesting

to see whether a more general form of discriminant plane such as that given by Quadratic

Discriminant Analysis (QDA) gives any improvement on the classification results. Figures 7.5

and 7.6 show the accent class covariances, and the separating discriminant planes for LDA and

QDA respectively.

Here, testing explores different combinations of UBM component sizes and factor dimensions.

The results are shown in Figure 7.7. The trend of obtaining better classification results with a

larger number of components for the UBM continues in this case as well. Also, lower factor

dimensions give better AID accuracy performance than larger factor dimensions. General

performance however, is poorer for QDA classification than for LDA classification. The

apparently more powerful QDA classification does not solve the problems of large overlap of

accent clusters, clearly observable in Figures 7.5 and 7.6. The AID accuracy obtained in this
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Figure 7.4: The first trial of the i-Vector paradigm on accent identification.

approach ranges from 32% to 65%.

7.5 Classification of i-Vectors via SVMs (Approach VIII)

The previous approach shows that a more powerful classifier may not necessarily give the best

results. Linear classification by LDA gives considerably better results than QDA, based on

quadratic boundaries between classes. In this approach, we perform trials with linear and RBF

kernel SVMs to see if there is any difference or improvement in AID accuracy.

Linear discriminants and linear support vector machines have very common characteristics

in that they are both methods that find a linear separation between classes. The added complexity

of an SVM implies that it will maximize the distance between the lines that separate classes,

and therefore has a more sophisticated learning rule than LDA. We can arguably interpret a

linear SVM as a more powerful and general form of LDA, with a more flexible and sophisticated

learning rule. With this in mind, the first test we perform is based on linear SVM classification.

The initial i-Vectors are still compressed by LDA to suppress non-accent information. It is the

classifier that is changed from an LDA classifier to a linear SVM. The results for this test are

shown in Figure 7.8.

The trend of obtaining better classification results with a larger number of components for
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Figure 7.5: The i-Vectors are transformed by the LDA projection and are then classified with a
LDA classification boundary. The first two dimensions of the data obtained by LDA reduction
are shown.

the UBM continues in this case as well. Also, lower factor dimensions give better AID accuracy

performance than larger factor dimensions. General performance however, is roughly the same

for linear SVM classification and LDA classification. The apparently more powerful linear

SVM classification does not solve the problem related of overlap of accent clusters. The AID

accuracy obtained in this approach ranges from 42% to 73%. This equivalent performance is

also surprising and suggests that the LDA dimensionality reduction in 13 dimensions (for 14

accents) may be putting an upper-limit restriction on classification performance.

The next trial makes use of a non-linear RBF kernel SVM classifier on the same data. The

RBF kernel parameters are the default parameters from the LIBSVM toolkit. The results for this

test are shown in Figure 7.9. The trend of obtaining better classification results with a larger

number of components for the UBM continues in this case as well. In this case, the lower factor

dimensions give better AID accuracy results as well. However, the higher factor dimensions
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Figure 7.6: The i-Vectors are transformed by the LDA projection and are then classified with a
QDA classification boundary. The first two dimensions of the data obtained by LDA reduction
are shown.

give considerably very poor results when compared to other tests on i-Vector classification so

far. For the lowest factor dimensionality of 100, performance is better than classification with

a linear SVM . However, all other tests showed considerably poorer performance. Although

the best SVM classifier obtains equivalent performance to the LDA classifier at 74%, the LDA

system in general is very much ahead, as the AID accuracy for SVM classifiers ranges from 7%

(equivalent to chance level) to 74%.

7.6 Iterative LDA/QDA Projection Optimization (Approach IX)

From the projections obtained by LDA on i-Vectors in Figure 7.5 we note that there is a noticeable

separation between accents into three superclusters (a collection of smaller clusters). One cluster

is formed by the Ulster and Republic of Ireland accents, another by the Scottish Highlands
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Figure 7.7: The second trial of the i-Vector paradigm on accent identification using QDA rather
than LDA classification.

Figure 7.8: The third trial of the i-Vector paradigm on accent identification, using linear SVM
classification on LDA-reduced i-Vectors.

and Glasgow accents and a final and larger cluster is formed by the other ten accents. There is

a potentially problematic situation in this large supercluster of overlapping accents, which if

resolved, could potentially boost the classification results we are obtaining. In Figure 7.10 we

show the clusters of accent data from these ten highly overlapping clusters alone, after the LDA
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Figure 7.9: The third trial of the i-Vector paradigm on accent identification - RBF SVM
classification on LDA-reduced i-Vectors.

projection is applied.

This detail of ten accents shows that there is some separation between classes, but the

amount of overlap is too large for good accent classification. If we assume for a moment, that

we only had to perform accent classification on these ten classes, then the LDA projection we

obtain would have been different. This is shown in Figure 7.11. It is evident that the spread

between classes has improved, as by reducing the original amount of data and classes to the

LDA algorithm, we have provided it with a way to maximize class separation even further.

With this in mind, we can argue that during test time, we can use the rough location of the

LDA-projected i-Vector of an utterance to roughly assess the zone of interest, rather than to do

direct classification. This zone of interest might allow us to re-optimize the LDA projection for

only a subset of classes which are within this zone of interest. We propose a novel classification

framework (first demonstrated in [9]) based around two generative classification methods: one

LDA, and another based on QDA. Classification of a test utterance proceeds as follows:

1. Obtain initial LDA classifier L∗ and QDA classifier Q∗ using all accent classes.

2. L← L∗ , Q← Q∗

3. Classify test utterance using L and Q and rank classes in order of likelihood. Identify

lowest ranking class and remove it from training data.
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Figure 7.10: A large supercluster (or collection of clusters) of 10 accents out of the original 14
from the original LDA projection over all i-Vectors from 14 accents. The first three dimensions
of the data obtained by LDA reduction are shown.

if a single class remains in the training data then

Classify utterance (see below)

else

Re-train LDA/QDA classifiers using reduced training data

L← L∗ , Q← Q∗

Goto 3 with new classifiers L and Q

end if

Traditional LDA/QDA classification would produce a result after the first scoring, by selecting

the class with the highest likelihood. However, by applying the above iterative algorithm,

we remove at an early stage classes that are likely to be incorrect (not in the zone of the test

utterance), and hence strengthen the accumulation of evidence for classes that appear to be

good contenders for the correct class. Because each iteration of the algorithm removes a class,

the vector dimensionality reduces by one on each iteration, which is another bonus in this
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Figure 7.11: A large supercluster (or collection of clusters) of 10 accents with a specific LDA
projection obtained from i-Vectors from only 10 out of the 14 original accent classes. The first
three dimensions of the data obtained by LDA reduction are shown.

technique.

The motivation for this iterative approach is that it could help to eliminate the larger

acoustic overlap between classes in accent identification for the highly overlapping accent

classes. The proposed algorithm attempts to iteratively sharpen the separation between classes

by removing the weakest candidates at each iteration: these classes contribute mainly noise to

the classification process. The rank of each class and the order in which classes are removed is

recorded for the test utterance. Two possible ways in which this information could be used are:

• Classification method 1: the last class to be eliminated is the classification result, or

• Classification method 2: the class that had the best (top rank) likelihood for most iterations

is the classification result

We can consider a few classification examples to put these methods into perspective. Three
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Table 7.1: This table shows three examples (starting at columns two, five and eight respectively)
of the iterative classification procedure working. For each example, the target class is given in
the first column, the second columns shows the ranked position of the target class and the third
column shows the identity of the class removed at each iteration.

It-
era-
tion

Target
(Real

Accent)

Rank
of Tar-

get

Class
Re-

moved

Target
(Real

Accent)

Rank
of Tar-

get

Class
Re-

moved

Target
(Real

Accent)

Rank
of Tar-

get

Class
Re-

moved
1 ULS 4 shl ULS 1 shl CRN 6 ean
2 ULS 3 ean ULS 1 ilo CRN 6 shl
3 ULS 3 lan ULS 1 nwa CRN 6 uls
4 ULS 2 crn ULS 1 ean CRN 5 gla
5 ULS 4 ilo ULS 1 eyk CRN 5 roi
6 ULS 3 eyk ULS 1 lan CRN 5 lan
7 ULS 3 lvp ULS 1 crn CRN 4 eyk
8 ULS 1 ncl ULS 1 lvp CRN 5 brm
9 ULS 3 nwa ULS 1 ncl CRN 4 ncl

10 ULS 1 sse ULS 1 gla CRN 4 lvp
11 ULS 1 gla ULS 2 brm CRN 3 sse
12 ULS 1 brm ULS 2 sse CRN 3 crn
13 ULS 1 roi ULS 2 uls CRN - nwa
14 ULS 1 uls ULS - roi CRN - ilo

examples of the classification processes are shown in Table 7.1. The first example shows a

case where the target rank gradually climbs to one as incorrect classes are removed by the

LDA/QDA classifier during the iterative procedure. The second example is a case where the

final classification would be incorrect under the first classification technique, but is correct using

the second. The third example is a case where classification is incorrect under both classification

methods. However, we can see that the iterative procedure has still managed to increase the

target class rank during the iterations.

Results are shown in Figures 7.12 and 7.13. Both classification decision methods perform

well, but the second classification method gives better performance in all conditions. The range

of AID accuracy for classification method 1 is at 36% to 76%, whilst the range of AID accuracy

for classification method 2 is at 40% to 78%. Both of these techniques produce better AID

accuracy than standard LDA when selecting the best performing configuration. However, the

worst classifier for classification method 1 performs worse than standard LDA classification.

With the utilization of QDA classification giving slightly worse performance than with

LDA classification, we expect the same from the iterative counterpart as well. The second set

of results in Figures 7.14 and 7.15, shows iterative QDA classification for both classification

decision methods.

For both classification decision methods, performance of iterative QDA is better than
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Figure 7.12: Performance of iterative LDA using classification method 1.

Figure 7.13: Performance of iterative LDA using classification method 2.

standard QDA classification. Iterative LDA achieves overall better AID accuracy. For both

iterative LDA and iterative QDA, the trend of better accuracy with more GMM components and

low factor dimensions continues as with standard LDA and QDA, as well as SVM classification.

The AID accuracy range for the first classification method is at 28% to 67%, whilst for the

second classification method, performance ranges from 30% to 66%. As with the non-iterative
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Figure 7.14: Performance of iterative QDA using classification method 1.

Figure 7.15: Performance of iterative QDA using classification method 2.

counterparts, LDA is better suited to this classification problem.

We find the results of these experiments encouraging. Given the same i-Vectors for all

experiments prior to dimensionality reduction and classification, we can observe that the

projection and eventual classification have a bearing on the final classification result. We can also

construct a simple confidence measure using output from the iterative classification algorithm
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which should be useful in any techniques that integrate decisions from different classifiers.

For a given test utterance, let NC be the number of times the correct class was top-ranked at

each iteration, which is a maximum of 14 (the number of classes), and a minimum of zero.

Figure 7.16 shows the distribution of a confidence measure, CM = NC/14, for correctly classified

utterances and incorrectly classified utterances. Although there is some overlap between the

two distributions, it is clear that higher values of CM are correlated with correct classification,

and this encourages us that CM will be useful in fusion with other classifiers.
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Correct Classification

Incorrect Classification

Confidence Measure

Figure 7.16: Box and whisker plot for confidence measure.

A more detailed breakdown of the distribution of confidence measures is shown in Figure 7.17.

The distributions are very different. For incorrect classification, we can observe a quasi-normal

distribution around a mean of 0.7 confidence. On the other hand, for incorrect classification,

the distribution is heavily weighted towards higher confidence values growing exponentially

from a minimum of 0.5 to a maximum of 1.0 confidence. It is clear that using this confidence

measure, for most of the correct classifications, the algorithm provides very high confidence,

very regularly. The opposite is true for those utterances resulting in incorrect classification.
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Figure 7.17: Histograms of confidence measures for iterative discriminant analysis classification.

159



Chapter 7. Accent Identification in i-Vector Space

7.7 Accent Confusion Analysis (Part 1)

We shall now have another look at which accents are being confused with others and evaluate

whether the i-Vector paradigm gives better insight into whether some accents are harder or

easier to classify, and in the case of wrongly classified accents, whether the chosen wrong

classification has some acoustic/phonetic basis. A confusion matrix showing the correct versus

predicted classification of utterances of the corpus for Approach IX is shown in Table 7.4. A list

of closest confusions per accent is given in Table 7.2. This presents a very different picture to the

results we observed in Section 6.6. The i-Vector paradigm provides some associations that are

worth pointing out in the way accents are classified when comparing the classifications to the

broad accent geographic formation (see Section 4.2).

Table 7.2: Ordered list of closest confusions per each accent as given by the Approach IX
classifier. Where no confusions are made, columns are left empty.

Accent Closest Accents
brm ilo sse ean lan lvp
crn ilo sse eyk brm ean ncl
ean crn eyk sse brm ilo ncl
eyk lan ilo sse nwa brm crn gla ncl
gla shl eyk ilo lan ncl
ilo crn eyk brm ean sse nwa shl
lan eyk brm nwa gla lvp ncl sse
lvp nwa brm crn ilo ncl
ncl nwa eyk sse ilo lan lvp
nwa ncl brm sse crn eyk lan
roi uls brm
shl gla
sse ean ilo brm crn eyk roi
uls roi brm gla sse

The Birmingham accent (North, Midlands) has been confused with the North Wales accent,

which is a northern (albeit independently Welsh) accent. The Cornwall accent (South, South

West) has been confused with the Inner London accent (South, London). The Glasgow accent is

confused with the Newcastle accent - and both are geographically far North. Lancashire and

East Yorkshire are both North to Mid-North accents and have been confused together. The same

can be said for the Liverpool accent confused with both the North Wales and the Birmingham

accents. The Newcastle accent utterances are confused with the North Wales accent, and the

Scottish Highlands accent is confused only with the Glasgow accent (the closest geographic

region to it). Standard Southern English is confused mainly with other Southern accents like the

East Anglia and Inner London accents. The Republic of Ireland accents is confused with Ulster
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(Northern Irish) accent, and followed by North Wales. Ulster in turn is also confused back with

the Republic of Ireland accent. There are other accents that are confused in a way that does not

make much sense in terms of how the accents are mapped across the British Isles. However for

most accents, the primary confusion seems to be from accents that can be considered “similar”

and “related”.

Table 7.3: Ordered list of closest accents for every other accent as given by the Approach IX
training results.

Accent Closest Accents
brm ilo ean sse ncl nwa eyk lan crn lvp gla roi uls shl
crn ilo sse ncl nwa eyk ean brm lvp roi lan shl gla uls
ean brm ilo sse eyk ncl crn lan nwa lvp roi gla uls shl
eyk lan ilo ean nwa sse ncl brm crn roi lvp gla uls shl
gla shl ilo ncl eyk lan lvp uls crn roi sse nwa brm ean
ilo sse crn brm eyk ean ncl lan nwa lvp gla roi uls shl
lan eyk ilo ncl brm nwa sse ean lvp crn gla roi uls shl
lvp nwa ncl ilo sse eyk lan crn brm gla ean roi shl uls
ncl nwa brm ilo crn sse eyk lan lvp ean gla roi shl uls
nwa ncl sse eyk brm lvp crn lan ilo ean roi gla uls shl
roi uls sse eyk crn ncl nwa ilo gla brm ean lvp lan shl
shl gla crn ncl eyk ilo lvp sse nwa roi lan ean uls brm
sse ilo brm nwa crn ean eyk ncl roi lan lvp gla uls shl
uls roi gla sse ncl eyk ilo crn nwa brm ean lan lvp shl

Another analysis which can be looked at is the proximity of accents to each other after the

training phase is completed, through the Euclidean distance of the mean of each accent cluster.

This is shown in Table 7.3. Even here, the accent mapping learnt in the training phase closely

matches the confusions in the classification stage for 12 of the 14 accents. The disagreements

occur for the Standard Southern English accent, which is closest to the Inner London accent

as opposed to most confusions having been with the East Anglian accent, and the East Anglia

accent which is (strangely) closest to the Birmingham accent as opposed to most confusions

having been with the Cornwall accent. Despite some inconsistencies, this is overall a big

step ahead both in classification results, and on the intuitive accent mapping that the i-Vector

paradigm has learnt from the training data. The iterative classification techniques we proposed

in this section have given some measure of improvement over standard algorithms. All other

conditions being equal, improving the LDA stage of the i-Vector framework seems to be a

crucial step, and in the next section we propose a different idea to improve results. The work

in the last section also described the first application of the i-Vector paradigm, together with

our own improvements, on the problem of accent identification. As with all other similar

speech classification problems like speaker and language identification, the i-Vector paradigm

161



Chapter 7. Accent Identification in i-Vector Space

Figure 7.18: Comparison of AID performance for the best configurations under different
classification techniques: Approach V (RBF kernel SVM after PCA+LDA dimensionality
reduction), Approach VI (i-Vector classification via LDA projection and LDA classifier), Approach
VII (i-Vector classification via LDA projection and QDA classifier), Approach VIII (i-Vector
classification via LDA projection and linear SVM classifier), Approach IX (i-Vector classification
via LDA projections and iterative LDA classification).

also improves results for accent identification over previous methods. A final comparison of

performance results across the best approaches prior to the utilization of the i-Vector paradigm,

with the i-Vector based methods is shown in Figure 7.18.
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Chapter 7. Accent Identification in i-Vector Space

7.8 The Effect of i-Vector Length Normalization

Length normalization over i-Vectors is reported to give performance gains in some classification

tasks [210]. This process is performed by normalizing every i-Vector to a unit vector. The reason

for doing so is that the i-Vectors may be exhibiting non-Gaussian behaviour, and the non-linear

transformation in length normalization allows for better used of probabilistic modelling that has

Gaussian assumptions such as the UBM followed by i-Vector extraction paradigm. In principle,

one expects an i-Vector extractor to produce vectors that have a normal distribution. However

the work in [210] has observed that it is common to have length mismatches from an i-Vector

extractor given development and test data that is different in some respects.
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Figure 7.19: Length normalization of i-Vectors after LDA dimensionality reduction was applied.
The first three dimensions of the data obtained by LDA reduction are shown.

We perform an analysis of the effect of i-Vector Length Normalization in our experiments as

well. In the first trial, we extract the i-Vectors as before, perform length normalization on the

i-Vectors, then perform LDA dimensionality reduction, and then proceed to LDA classification.

In the second trial, we extract the i-Vectors, perform LDA dimensionality reduction first,
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followed by length normalization, and then proceed to LDA classification. An example of

length-normalized i-Vectors on the unit sphere is shown in Figure 7.19. The results of these

trials are shown in Figures 7.20 and 7.21 respectively.

Figure 7.20: AID classification accuracy for i-Vectors that have been first length normalized and
then projected to a lower dimensionality via LDA. Classification is performed via non-iterative
LDA.

Figure 7.21: AID classification accuracy for i-Vectors that have been first projected to a lower
dimensionality via LDA and then length normalized. Classification is performed via non-
iterative LDA.
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There are a number of interesting results arising from this experiment. The results in

Figure 7.20 show that AID accuracy performance falls in the range of 43% to 79%, whilst the

results in Figure 7.20 show results in the range of 43% to 76%. Both of these results are better

than those obtained in the original LDA experiment in Approach VI, which had results in the

range of 39% to 74%. The iterative-LDA procedure with the second mode of classification in

Approach IX produced AID accuracy results in the range of 40% to 78%. This means that length

normalization prior to LDA dimensionality reduction over standard LDA obtains even better

results than the iterative LDA technique. The total improvement on the best configuration is of

only 1%. When we compare the results with the original LDA technique, we realize that length

normalization gives an improvement of 5%, which is quite significant.

7.9 Speaker Compensation Fusion (Approach X)

There seems to be something in the various projections given by a learnt transformation with

a number of assumptions that limits the overall class-learning ability. A number of these

assumptions may be incorrect. The arbitrary choices of the number of factors is also undesirable,

even though we have identified better performance from lower factor numbers. In a new

approach, we propose a way of fusing the different systems (built from a different number of

GMM components and different factor dimensions) to increase performance.

If we consider one form of classification, say LDA classification, then we have 35 possible

classifiers output from five GMM orders and the seven different factor dimensions for each

order. We can consider a simple fusion mechanism where for the 35 classifier outputs, we take

the majority class label as the final classification. But it may be that some classifiers are better

than others in classifying utterances, and perhaps there is a special combination that gives the

best possible classification output. To find the optimal solution, trying out
(
35
1

)
+

(
35
2

)
+ . . .+

(
35
35

)
combinations of classifiers would be required, and this takes too long. For this reason we

employ a binary genetic algorithm (GA) to find a quasi-optimal set of classifiers (although it

is not known if this is the optimal combination). Each “chromosome” is a binary vector of

35 entries, with each binary entry indicating whether a particular classifier output should be

considered in the majority vote (1) or not (0). The initial population is of 5000 individuals, with

a generation gap of 0.9, a crossover rate of 0.5, and a mutation rate of 0.0175. The GA runs for

100 generations. The scoring function simply ranks each individual with the accuracy obtained

by the fusion of the particular set of classifiers selected by that individual. All i-Vectors are
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length normalized prior to LDA dimensionality reduction and classification. By the end of the

GA optimization, the best classifier selection is compared with our previous results where no

fusion was involved. These results are shown in Figure 7.22. The fused result is better than all

other singular classifiers, and the performance of the best single classifier is improved by 7%,

from 79% to 86% AID accuracy.

Figure 7.22: AID classification accuracy with fusion based on GA solution selection for LDA
dimensionality reduction.

Of particular interest is the final choice of classifiers combined to form a majority vote

classifier that achieves the optimised AID accuracy. This is shown in Table 7.5. For most

factor dimensions, the GA selected higher GMM components, which we have already observed

as giving better performance than lower GMM orders at an individual level. However, the

combination of these together in a majority vote gives a considerable jump in performance.

We can conclude, therefore, that the individual classifiers are better and/or worse on different

utterances, further showing how the learnt projections, though very useful, are incomplete due

to their assumptions.

Before proceeding further we note that the classifier combination technique we used (majority

voting) is a very simple form of classifier combination. Other, more advanced, and potentially

better techniques exist. We consider that an individual investigation for this problem area

would be more than worthwhile, especially as corpora become more extensive and varied to

reflect more realistic world scenarios.
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Table 7.5: Genetic Algorithm selection for best classifier combination under for length-
normalized i-Vectors, LDA projection and LDA classification.

K 100
Factors

150
Factors

200
Factors

250
Factors

300
Factors

350
Factors

400
Factors

64
128 X X
256 X X X
512 X X X X
1024 X X X X X

Another note is that the criteria to achieve fusion was selected for expediency in obtaining

an optimistic upper bound on performance. The GA was optimised in each iteration to

reach a quasi-maximum score for the particular test set. For real-world scenarios, the use of

another development dataset would be required to avoid an over-fit solution. The scope of

the experiment here is analytical, and meant to show the gap in performance from the actual

classifiers built so far, to what is theoretically possible to achieve using the same classifiers, if

a sophisticated fusion mechanism is designed for this purpose. In utilising the test set itself

for expediency, we have explicitly induced a substantial optimistic bias. The reader is referred

to [211] for a discussion of over-fitting in model selection and bias in evaluation.

7.10 Alternative Projection Methods

The experiments carried out so far have given some insight into how the performance of

classification with an i-Vector system has a strong dependency on at least three factors: the i-

Vector configuration itself (GMM components, factor dimensionality), the supervised projection

to suppress non-class information (LDA, QDA), and the classifier used on the dimensionality-

reduced i-Vectors. We proceed in our experimentation with a number of alternatives to LDA and

QDA projections. We propose a boosted i-Vector classification system (first described in [10])

that makes use of different projection methods to extract more class specific information than

LDA alone.

7.10.1 Regularized linear discriminant analysis

In the case of high dimensionality feature vectors, LDA suffers from the small sample size

problem, and has shortcomings such as the assumption of a common covariance matrix for all

classes. There is no reason to consider that all accent classes satisfy the latter criterion. One
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way of circumventing this assumption is to assume a separate covariance matrix for each class,

leading to quadratic discriminant analysis (QDA). There is, however, an intermediate method

between LDA and QDA, proposed by Friedman [212], termed regularized-LDA (R-LDA). In

R-LDA, a regularization term is used to shrink the separate class covariance matrices in QDA

towards a common covariance as in LDA.

Figure 7.23: AID classification accuracy with fusion based on GA solution selection for
regularized LDA dimensionality reduction.

Table 7.6: Genetic Algorithm selection for best classifier combination under for length-
normalized i-Vectors, regularized LDA projection and LDA classification.

K 100
Factors

150
Factors

200
Factors

250
Factors

300
Factors

350
Factors

400
Factors

64
128 X X
256 X X X X X X
512 X X X X X
1024 X X X X X X

Figure 7.23 shows the results when LDA is replaced by regularized LDA. Performance is

quite similar to standard LDA, with a slighlty lower fusion result of 85%. The best performing

single classifier for this set performs at 78% accuracy, which is slightly lower than in LDA. The

worst performing single classifier for this set performs at 43%, which is equivalent to standard

LDA.

Looking at the final choice of classifiers combined to form a majority vote classifier that
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achieves the optimised AID accuracy, shown in Table 7.7, there is a reliance on mostly higher

component GMMs as expected, with some added dependence on lower GMM orders for 150

and 200 factor dimensions.

7.10.2 Semi-supervised discriminant analysis

Semi-supervised discriminant analysis (SDA) was proposed by Cai et. al. [213]. Similarly to

RLDA, it also aims to overcome some of the problems with LDA, specifically that of not having

enough training samples, and therefore creating an ill-formed projection. The idea of SDA is

to use labelled data just like in LDA to maximize class separability, but also to use unlabelled

samples to estimate the intrinsic geometric structure of the data. SDA is designed to estimate a

projection that satisfies the LDA objective, but also avoids an ‘overfit’ in the data projection

manifold. This is a very interesting idea for accent classification, since the different speakers

in the three test sets can produce very different LDA projections. By using unlabelled test-set

points at testing time, we build a smoother manifold, which is more representative of our test

data.

Figure 7.24: AID classification accuracy with fusion based on GA solution selection for SDA
dimensionality reduction.

When LDA is replaced by SDA for dimensionality reduction, some interesting results emerge,

as shown in Figure 7.24. Firstly, performance for all factor dimensions perform better on large

order GMMs than in LDA. On low order GMMs however, performance in LDA is better. When
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Table 7.7: Genetic Algorithm selection for best classifier combination under for length-
normalized i-Vectors, SDA projection and LDA classification.

K 100
Factors

150
Factors

200
Factors

250
Factors

300
Factors

350
Factors

400
Factors

64
128
256 X X X X X
512 X X X X X
1024 X X X X

the same GA-based fusion optimization is performed to find a quasi-optimal combination of

classifiers for a majority voting result, we obtain equal performance at 86%. The best performing

single classifier for this set performs at 80% accuracy, which is slightly better than in LDA. The

worst performing single classifier for this set performs at 18%, which is much worse than for the

LDA testing set at 43%. The overall performance during fusion is however about the same.

The classifiers that were combined to form a majority vote classifier that achieves the

optimised AID accuracy are shown in Table 7.7. Similarly to Table 7.5, for most factor

dimensions, the GA selected higher GMM components, which we have already observed

as giving better performance than lower GMM orders at an individual level, even for SDA

dimensionality reduction.

7.10.3 Neighbourhood component analysis

Neighborhood component analysis (NCA) was proposed by Goldberger et. al. [214]. The

technique is not part of the family of DA techniques, but is also a popular dimensionality

reduction technique, and in various results such as [181], provides better language recognition

results when compared to LDA. Unlike typical DA methods, NCA makes no assumptions about

the shape of class distributions and the boundaries between them. It tries to utilize the power

of k-nearest neighbour (KNN) classification for non-linear boundaries. In contrast to KNN,

NCA is designed to learn a distance metric based on the labelled training data, since standard

metrics such as Euclidean distance may be ineffective for problems such as language or accent

classification. The projection and metric given by NCA minimizes the training error defined

using leave-one-out cross validation, and is optimized so that 1-NN classification performs well

afterwards. Since the final projection given by NCA is meant to perform well on 1-NN, the

actual i-Vectors do not cluster into explicit accent groups as with discriminant analysis based

projections. This can be seen in Figure 7.25.
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Table 7.8: Genetic Algorithm selection for best classifier combination for length-normalized
i-Vectors, NCA projection and 1-NN classification.

K 100
Factors

150
Factors

200
Factors

250
Factors

300
Factors

350
Factors

400
Factors

64 X
128 X
256 X X X X
512 X X X X X
1024 X X X X X
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Figure 7.25: Projection of training data produced by NCA. Although some clustering is visible,
it is not clear to the extent visible in projections based on discriminant analysis. The first three
dimensions of the data obtained by NCA reduction are shown.

When LDA is replaced by NCA for dimensionality reduction, some interesting results

emerge, as shown in Figure 7.26. Firstly, performance is much worse than for SDA and LDA

dimensionality reduction for all GMM orders and factor dimensions. Higher GMM orders get

the best performance for this test set. But the range of performance is very low between 6%

(below chance level) to 50%. When the same GA-based fusion optimization is performed to

find a quasi-optimal combination of classifiers for a majority voting result, we obtain equal
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Figure 7.26: AID classification accuracy with fusion based on GA solution selection for NCA
dimensionality reduction.

performance at 65%, which is of course worse than the SDA and LDA counterparts. A gain of

around 15% from the best single classifier to the fusion system makes this projection the one

that gains most fromm fusion given the poor initial performance of the single classifiers.

The classifiers that were combined to form a majority vote classifier that achieves the

optimised AID accuracy are shown in Table 7.8. Similarly to Table 7.5, for most factor

dimensions, the GA selected higher GMM components, which we have already observed

as giving better performance than lower GMM orders at an individual level, even for NCA

dimensionality reduction.

7.10.4 Combined Projection Fusion

The final complete results are obtained by a fusion of all projection methods for all GMM orders

and factor dimensions. The results for all the approaches discussed so far, including the fused

variants, as well as a combined fusion classifier are shown in Figure 7.27. For the combined

projection fusion, a genetic algorithm was used to find a quasi-optimal set of classifiers to use

for a majority voting result. In this case, there are 140 individual classifiers fed into the GA. The

initial population is of 10,000 individuals, with a generation gap of 0.9, a crossover rate of 0.5,

and a mutation rate of 0.0175. The GA runs for 200 generations.
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Figure 7.27: AID classification accuracy for all individual fusion systems compared with
previous approaches, as well as a complete fusion system (best performance at 88%).

The final choice of classifiers combined to form a majority vote classifier that achieves the

optimised AID accuracy is shown in Table 7.9. Many of the classifiers selected are those for

larger GMM orders, which of course performed well at an individual level when compared to

others. The classifiers from NCA projections, though giving poor performance when compared

with the rest have also been utilized. In total 48 classifiers are selected by the GA solution finder.

7.11 Accent Confusion Analysis (Part 2)

We shall now have a second look at classification confusion and evaluate the benefits of our

fusion system. A confusion matrix showing the correct versus predicted classification of

utterances of the corpus for Approach X is shown in Table 7.12. A list of closest confusions

per accent is given in Table 7.10. The results obtained are much improved over those obtained

in Section 6.6, with an improvement over those obtained in Section 7.9 as well. Also, the

results have maintained an overall association in the way accents are classified when comparing

the classifications to the broad accent geographic formation (see Section 4.2), though a few

confusions have been moved around from Section 7.9. Overall the amount of confused accents

for each accent has been reduced considerably.

The Birmingham accent (North, Midlands) has been confused with the Inner London (South,

London) and Newcastle (far North). The Cornwall accent (South, South West) has been confused
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Table 7.9: The final choice of classifiers combined to form a majority vote classifier that achieves
the optimised AID accuracy.

Method K 100
Factors

150
Factors

200
Factors

250
Factors

300
Factors

350
Factors

400
Factors

LDA

64
128 X X X
256 X X
512 X X X X
1024 X X X X

RLDA

64 X X
128 X
256 X X X
512 X X
1024 X X X X X

SDA

64
128
256 X X X X
512 X
1024 X X X X

NCA

64 X X X X
128 X X
256 X X X
512 X
1024 X X X

Table 7.10: Ordered list of closest confusions per each accent as given by the Approach X
classifier. Where no confusions are made, columns are left empty.

Accent Closest Accents
brm ilo ncl
crn sse nwa brm ean eyk ilo
ean brm crn sse eyk
eyk lan brm nwa ilo sse
gla ncl shl
ilo ean sse brm crn eyk
lan brm eyk nwa gla sse
lvp nwa brm ncl
ncl lvp lan nwa
nwa brm crn gla ncl sse uls
roi brm uls crn
shl gla
sse brm nwa eyk ean crn
uls
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with the Standard Southern English accent followed by Northern Wales and Birmingham. The

Cornwall accent tends to be particularly confusing to the classifiers. The East Anglian accent

is confused with Southern/Midlands accents such as Birmingham, Cornwall and Standard

Southern English, as well as East Yorkshire. The East Yorkshire (North, Mid-North) accent

is confused with the Lancashire (another North, Mid-North accent) and Birmingham (North,

Midlands) accents. Glasgow (Scotland region) is only confused with the Newcastle (North,

Far-North) and Scottish Highlands (Scotland region) accents. The Inner London accent (South,

London), has a number of mixed confusions with accents of a few different regions. Scottish

Highlands (Scotland region) is only confused with the Glasgow accent (the other Scottish region).

The Standard Southern English accent is surprisingly one of the most confused accents, with

confusions made for Birmingham, North Wales, East Yorkshire accents (all mid to far North

accents), and East Anglia and Cornwall accents (the only southern accents). Aside from a

few anomalies however, most of the confusions are related to broad accent and geographical

location.

7.12 Leave-One-Speaker-Out (LOSO) Training

In order to test the effect of using more training data on classifier performance, we also performed

tests where the classifiers were built using all the data available, except for that from a single

speaker (leave-one-speaker-out training). The speaker who had been removed from the training

data was tested, and results were pooled. Our comparison is based on LDA projection followed

by LDA classification, as well as a local fusion based on these classifiers. The results are shown

in Figure 7.28.

Table 7.11: Genetic Algorithm selection for best classifier combination for length-normalized
i-Vectors, LDA projection and LDA classification, under LOSO training conditions.

K 100
Factors

150
Factors

200
Factors

250
Factors

300
Factors

350
Factors

400
Factors

64 X
128 X
256 X X X
512 X X X
1024 X X X X X

The primary result is that the GA-optimized classifier selection results in a fusion performance

of 89% accuracy, which is an increase of 3% over the fusion without LOSO training. This kind of

improvement was expected. A more important result, however, is that all individual classifiers
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Figure 7.28: AID classification accuracy with fusion based on GA solution selection for LDA
dimensionality reduction under LOSO training conditions.

perform reasonably well, and the range of accuracies lies between 63% to 82% i.e. a range of 19%.

This is much less than the range observed without LOSO training, which stood at 36%. The

trend therefore, is that with more training data, the difference in classifiers is possibly minimized.

Another surprising result is that the best single classifiers for different factor dimensions do not

necessarily occur at the higher order GMMs.

The final choice of classifiers combined to form a majority vote classifier that achieves the

optimised AID accuracy is shown in Table 7.11. Though there is a selection from most of the

classifiers based on the large 1024 component GMM, there is also a strong shift towards not

selecting many classifiers or none at all from some factor dimensions (100/200/300/350). There is

also a selection of classifiers with low GMM order for the case of 250 factor dimensions. The

apparent availability of more data for training seems to put what have been gauged as ‘weaker

classifiers’ in contention again. The results obtained here suggest that the optimum model

parameter values seem to depend on the quantity of training data available, and no particular

configuration should be ignored.
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7.13 Summary

In this chapter we have applied the i-Vector paradigm for the problem of accent identification.

We have shown a number of different approaches on how this may be achieved, getting

different results from the same i-Vectors. We have introduced two new approaches to traditional

classification systems. One system is based on an iterative “zooming-in” on classes in contention

for a classification. Weak classes are removed at each iteration and as a result, the projection

provided by discriminant analysis is optimized. This gives better results than standard

classification methods. We have also developed a system of fused classifiers that together

perform better than single classifiers. This shows that different i-Vector configurations learn

different ‘aspects’ of the accent classes, and that the accuracy given by an LDA projection for a

given configuration can be increased by multiple projections and multiple projection methods

based on different i-Vector configurations. Finally, we have also examined the effect of more

training data on the classification results, and showed how more data tends to shift the somewhat

consistent trends observed in all previous experiments. In the next chapter, we shall have a

look at how our accent identification method has been utilized within an automatic speech

recognition system, with a summary of the results obtained in collaboration with researchers

at the University of Birmingham. Following that, we study the performance of our accent

identification system on short utterances (shorter than 30 seconds) and evaluate variations

in performance by revisiting the frontend extraction process to find a better configuration.

We also discuss another enhancement to the classification method, for an additional boost in

performance of the classification system.

178



Chapter 7. Accent Identification in i-Vector Space

Ta
bl

e
7.

12
:C

on
fu

si
on

m
at

ri
x

(i
n

%
)o

fc
or

re
ct

vs
pr

ed
ic

te
d

cl
as

si
fic

at
io

n
of

ut
te

ra
nc

e
fo

r
th

e
14

ac
ce

nt
s

of
th

e
Br

iti
sh

Is
le

s
fo

r
A

pp
ro

ac
h

X
.A

ve
ra

ge
ac

ce
nt

re
co

gn
iti

on
ac

cu
ra

cy
is

of
87

.3
7%

.T
he

di
ag

on
al

,w
hi

ch
re

pr
es

en
ts

th
e

co
rr

ec
t(

no
co

nf
us

io
n)

re
su

lts
is

in
bo

ld
,w

hi
ls

to
ff

-d
ia

go
na

ls
(c

on
fu

si
on

)
eq

ua
lo

r
gr

ea
te

r
th

an
8%

ar
e

m
ar

ke
d

in
re

d.

br
m

cr
n

ea
n

ey
k

gl
a

ilo
la

n
lv

p
nc

l
nw

a
ro

i
sh

l
ss

e
ul

s
br

m
96

.6
7

0.
00

0.
00

0.
00

0.
00

1.
67

0.
00

0.
00

1.
67

0.
00

0.
00

0.
00

0.
00

0.
00

cr
n

1.
67

83
.3

3
1.

67
1.

67
0.

00
1.

67
0.

00
0.

00
0.

00
3.

33
0.

00
0.

00
6.

67
0.

00
ea

n
7.

02
5.

26
78

.9
5

3.
51

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

5.
26

0.
00

ey
k

2.
67

0.
00

0.
00

84
.0

0
0.

00
1.

33
8.

00
0.

00
0.

00
2.

67
0.

00
0.

00
1.

33
0.

00
gl

a
0.

00
0.

00
0.

00
0.

00
96

.6
7

0.
00

0.
00

0.
00

1.
67

0.
00

0.
00

1.
67

0.
00

0.
00

ilo
3.

17
3.

17
4.

76
1.

59
0.

00
82

.5
4

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

4.
76

0.
00

la
n

9.
52

0.
00

0.
00

9.
52

1.
59

0.
00

73
.0

2
0.

00
0.

00
4.

76
0.

00
0.

00
1.

59
0.

00
lv

p
1.

67
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
90

.0
0

1.
67

6.
67

0.
00

0.
00

0.
00

0.
00

nc
l

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

1.
67

5.
00

91
.6

7
1.

67
0.

00
0.

00
0.

00
0.

00
nw

a
4.

76
4.

76
0.

00
0.

00
1.

59
0.

00
0.

00
0.

00
1.

59
84

.1
3

0.
00

0.
00

1.
59

1.
59

ro
i

3.
33

1.
67

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

91
.6

7
0.

00
0.

00
3.

33
sh

l
0.

00
0.

00
0.

00
0.

00
1.

52
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
98

.4
8

0.
00

0.
00

ss
e

10
.4

2
2.

08
4.

17
6.

25
0.

00
0.

00
0.

00
0.

00
0.

00
8.

33
0.

00
0.

00
68

.7
5

0.
00

ul
s

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

10
0.

00

179



Chapter 8
Short Utterance Classification, Frontend

Parameters and AID in ASR

The previous chapter gave a very detailed development of accent identification (AID) under the

i-Vector paradigm. The performance obtained increased steadily from methods prior to the i-

Vector systems, and the fusion techniques we developed boosted AID performance considerably.

To our knowledge, the performance obtained thus far is the best available for acoustic AID

methods on the ABI-1 corpus. The combination of i-Vector modelling and projection methods

like LDA manage to suppress the within-class speaker variation to a considerable level, and as

a result the performance gain for AID is quite significant, and is bigger than gains observed for

other problems like SID and LID.

However, there are a number of issues we have not yet addressed in this thesis. So far we

have evaluated the i-Vector based AID system for test utterances that are 30 seconds long. In

this chapter we will evaluate the performance of our system when test utterances are shorter

in duration. The i-Vector relies on statistical information from frames of an utterance, and we

anticipate degraded performance when using shorter training and testing utterances. We would

like to estimate the degree to which this occurs. Also, we have so far relied on a single frontend

extraction method throughout our experiments. Now that we have constructed a reasonably

good AID classifier, this chapter will test a number of frontend extraction parameters to evaluate

their effect on AID performance. As a consequence of the results observed here, we also propose

further enhancements and obtain further AID classification improvements.

The chapter concluded by looking at the effect of such an AID system for the purposes
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of ASR. This part of the work was done in collaboration with colleagues at the University of

Birmingham. The chapter will give a short overview of the results, and a discussion on the

implications of the results.

8.1 Short Utterance Classification

The nature of the i-Vector system relies in gathering time-invariant sufficient statistics over an

utterance, and to use this information to obtain a point estimate in a total variability subspace.

The subspace itself is estimated by the same statistics during training. Previous i-Vector work

has shown how a limit on the available utterance length (and therefore, frame statistics for the

utterance) can be a problem for making reliable estimates. Conversely there have also been

cases where additional utterance length gives no further improvement, and chunking utterances

for more i-Vectors for an utterance gives better modelling. The utterances we have used so far

are the longest possible for the ABI-1 corpus i.e. roughly 30 seconds of speech. We therefore

evaluate the performance of the system based on two shorter durations: ten seconds and three

seconds. Therefore, each 30 second utterance is chunked into three utterances of ten seconds

each, or into ten utterances of three seconds each. The process for training or testing the i-Vector

system does not change, except that there are more individual i-Vectors for training and testing.

The first test performed is based on classifying length-normalized i-Vectors, projected via

LDA, and classified with non-iterative LDA. The results for this test for 10 second utterances

are shown in Figure 8.1. There are a number of points to discuss here. The first is the overall

performance from the fused system (fusion optimised by GA, same as for previous 30 second

tests). The reduction of utterance length for training and testing i-Vectors from 30 seconds to 10

seconds results in a performance drop of roughly 11%, from the previous 86% to 75%. Therefore,

the expectation of degraded performance for shorter utterances is obvious.

Another observation we can make is that as with previous testing, a larger number of

components for the GMM used to extract sufficient statistics results in overall better performance.

The best single classifier, prior to fusion, is obtained for 1024 components, with 68% AID accuracy.

Similarly to previous results, the general trend is for lower factor dimensionality gives better

performance, and for this test, peak accuracy for the best single classifier is for 150 factors. Except

for cases of larger numbers of GMM components at 512 and 1024, we can observe more stable

performance across classifiers for different factor dimensionality. This was not observed for 30

second utterances. The overall decline in performance across increasing factor dimensionality
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Figure 8.1: AID classification accuracy for i-Vectors that have been first length normalized and
then projected to a lower dimensionality via LDA. Classification is performed via non-iterative
LDA. Utterance duration is of 10 seconds. The previous result for the same test for 30 second
utterance is shown for comparison.

for individual GMM configurations is not as steep as that observed for longer utterances.

A second test is performed, and this time the training and testing is based on utterances

that are only three seconds long. The results of this test are shown in Figure 8.2. The overall

performance from the fused system is further degraded with the very short three second

utterances, with a drop of roughly 34%, from the previous 86%, down to 52% compared to

the 30 second utterance tests. The performance drops from 75% down to 52%, a difference of

roughly 23% when compared with the results for ten second utterances. It can be observed

how the degradation in performance is non-linear with respect to utterance duration. Similar

patterns of degradation are common, and we are also aware that beyond a certain utterance

length, no further gain in performance may be obtained - this is certainly the case for speaker

verification [215], where performance plateaus after a certain utterance duration, but degrades

(somewhat non-linearly) with short utterances.

Even in this case, GMMs with a higher number of components give the best results overall,

with the best single classifier prior to fusion obtaining 47% AID accuracy with 1024 components

used for the GMM. Lower factor dimensionality also gives the best results, with 100 factors
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Figure 8.2: AID classification accuracy for i-Vectors that have been first length normalized and
then projected to a lower dimensionality via LDA. Classification is performed via non-iterative
LDA. Utterance duration is of 3 seconds. The previous results for the same test for 30 second
and 10 second utterances are shown for comparison.

being used for this same classifier. It can also be observed that the difference in performance

as factor dimensionality increases for a particular GMM configuration is not very steep. The

general observation we gather here is that the factor dimensionality becomes increasingly more

irrelevant as the utterance duration decreases. An additional observation is that mid-range

factor dimensionality of 250 to 300 gives better performance in setups with a lower order GMM.

These are different to the results obtained for longer utterance training and testing, and further

highlight the need for appropriate parameter selection for the i-Vector systems.

If we look at gains observed over the best single classifiers by the fusion process, we see that

for ten second utterances, the performance jumps from 68% to 75% (a jump of 7%). In the case

of three second utterance, the performance jumps from 47% to 52% (a jump of 5%). In the case

of 30 second utterances, the jump observed was of 7%, from 79% to 86%. It is interesting how

for 30 and ten second utterances, the jump obtained by fusion is equivalent, and only degrades

for three second utterances. Short duration utterances clearly remain a problem for the i-Vector

domain, especially in the context of AID, which relies, perhaps even more than SID and LID, on

differences in phonetic realisation of equivalent phrases or utterances.
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8.2 Fronted Feature Extraction

The work presented in [153] evaluates AID under GMM-UBM classification. The features were

modelled using inter-session variability compensation as described earlier in Section 3.6.3.

The best AID performance for long utterances of 30s obtained was of roughly 60%. However,

the work observed how different sub-bands are more useful than others for AID, with most

information required for AID observed in the region of 0.34-3.44 kHz. This work motivated us

to look into possible performance gains for different frontend configurations coupled with our

very robust i-Vector based AID system.

We test three particular parameters of our MFCC extraction: the number of coefficients to

extract, the number of filters in our filterbank, and the maximum bandwidth up to which the

filterbank extends. So far, all the experiments performed to this point have kept these values

constant, extracting 13 MFCCs over 30 filters that spread up to a bandwidth of 11.025 kHz, and

we will take this system to be the reference to which we compare other combinations. The

number of MFCCs extracted per frame was varied between 13 and 19. The number of filters

used was varied between 20, 30 and 40. The maximum bandwidth up to which the filters

extend was varied between 4 kHz, 8 kHz and 11.025 kHz. In total, there are 18 possible frontend

extraction configuration.

Each extraction configuration is passed through the same process of training an i-Vector

extractor for different i-Vector configurations (35 in total). We do not analyse the results of

individual classifiers — this would obfuscate the results we really want from this experiment,

that is the effect of frontend extraction parameters. Therefore, we only consider the fused results

of each frontend system. The first result is shown in Figure 8.3, where the notation used e.g.

13/30/11025 refers to coefficients/filters/bandwidth respectively. The default configuration of

13/30/11025 performs reasonably well. However, there are multiple configurations that perform

better. In particular, the group of results with a bandwidth of 8 kHz gives the best overall

performance. Fusion from SDA performs better with a 13/20/8000 configuration, whilst fusion

from LDA performs better with a 13/30/8000 configuration. Interesting, a particular system of

13/30/4000 from the 4 kHz group performs better than our default system.

The second result is shown in Figure 8.4. This is an equivalent experiment, except that it

is performed for utterances of ten seconds duration. The default configuration of 13/30/11025

performs reasonably well. However, the group of results with a bandwidth of 8 kHz give

superior performance overall. Roughly equivalent performance is observed for the 13/20/8000
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Figure 8.3: AID classification accuracy for i-Vectors that have been first length normalized
and then projected to a lower dimensionality via a LDA and SDA projection. Classification is
performed via non-iterative LDA. Utterance duration is of 30 seconds. The reference result
configuration is marked 13/30/11025, which represents the default frontend configuration used
so far in previous chapters.

Figure 8.4: AID classification accuracy for i-Vectors that have been first length normalized
and then projected to a lower dimensionality via a LDA and SDA projection. Classification is
performed via non-iterative LDA. Utterance duration is of 10 seconds. The reference result
configuration is marked 13/30/11025, which represents the default frontend configuration used
so far in previous chapters.
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and 13/30/8000 configurations. This corroborates the results observed with 30 second utterances.

Conversely, the results for 4 kHz bandwidth are very poor for the ten second utterances.

Figure 8.5: AID classification accuracy for i-Vectors that have been first length normalized
and then projected to a lower dimensionality via a LDA and SDA projection. Classification
is performed via non-iterative LDA. Utterance duration is of 3 seconds. The reference result
configuration is marked 13/30/11025, which represents the default frontend configuration used
so far in previous chapters.

The second result is shown in Figure 8.5. This is an equivalent experiment, except that it is

performed for utterances of three seconds duration. The default configuration of 13/30/11025

does not perform badly. However, the observations made in previous tests also apply here,

and the 8 kHz bandwidth group is the best of all three. The best result is obtained with the

13/20/8000 configuration, and since this occurs for the previous experiments on longer duration

utterances, we take this to be the best global configuration for AID on the ABI-1 corpus. Again,

the results for 4 kHz bandwidth are very poor when compared to other groups.

8.2.1 Multiple Frontend and Projection Fusion

Considering the fact that we have 18 different frontend configurations for a particular projection

method, and that each configuration further subdivides into 35 different i-Vector configurations,

a further test that we can perform is to fuse all the systems together, for a total of 630 ‘weak’

classifiers. Further more, the 630 ‘weak classifiers’ are available for every projection we utilize,

of which there are four, resulting in a total of 2520 individual classifiers. We use the term ‘weak’
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very loosely here. Each of these systems is of course, a complete i-Vector system, which is not

usually considered a ‘weak’ classifier. But within the context of using an ensemble of 2520

different systems, we can refer to each system as being a ‘weak’ learner.

We do not perform fusion on this entire block altogether. Instead, we perform fusion for

every projection individually, and the heuristic solutions from each projection are combined

together as is. To perform fusion of each projection, the genetic algorithm is setup with each

“chromosome” as a binary vector of 630 entries, with each binary entry indicating whether a

particular classifier output should be considered in the majority vote (1) or not (0). The initial

population is of 1000 individuals, with a generation gap of 0.9, a crossover rate of 0.5, and a

mutation rate of 0.0175. The GA runs for 200 generations.

The results (in confusion matrix form) for this fusion are presented at the end of this chapter

in Tables 8.2, 8.3 and 8.4 for 30 second, 10 second and three second utterances respectively. The

average AID accuracy obtained is 90.18%, 80.16% and 57.02% for 30 second, 10 second and 3

second utterance respectively. If we look at gains observed over the results in the previous

section, in the case of 30 second utterances, the jump observed was of 2%, from 88% to 90%

(when compared to results in Section 7.10.4). For ten second utterances, the performance jumps

from 75% to 80% (a jump of 5%) and in the case of three second utterance, the performance jumps

from 52% to 57% (a jump of 5%). A summary of performance of each individual accent based

on different utterance lengths is presented in Figure 8.6. The accents are sorted in descending

order of AID accuracy, from “easier” to classify to “harder” to classify accents according to 30

second tests.

It is interesting to observe that the accents of the Scottish Highlands/Glasgow/Ulster/Republic

of Ireland (rhotic accents) and Liverpool/Cornwall (lightly rhotic accents) are the easier accents

to classify, whereas all other accents, which are mostly non-rhotic are harder to classify (based

on the rhotic/non-rhotic classification of English dialects in the 1950s [216]. It is also interesting

to note that the order of best classified accents changes when the utterance length changes. The

worst performing classification is for Standard Southern English on 30 second and 10 second

utterances, whilst for three second utterances, Birmingham proves to be the hardest accent to

identify. The best performing classification is for Scottish Highlands for all utterance durations.

The Glasgow accent is equally identifiable at 100% for 30 second utterances.

There is a mix of broad geographical locations across Figure 8.6. It is interesting to note that

Scottish and Irish accent regions are located in the first half of the chart, together with two other

northern-mid-northern accents (Liverpool/Birmingham). Only one southern accent (Cornwall)
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Figure 8.6: AID classification accuracy for individual accents, sorted by AID accuracy.

is in the first half of the chart. In the bottom half, there is a broader mix of accent regions. The

majority of southern accents (Standard Southern English, East Anglia, Inner London) are in the

bottom half of the chart. This suggests that southern accents are generally harder to distinguish.

However we also find Wales, as well as two northern/mid-northern accents (East Yorkshire and

Newcastle) in the bottom half.

Given the nature of fusion with multiple frontends, projection methods, and i-Vector

parameters, this performance is only achieved with the creation of multiple i-Vector estimates

for a given utterance. This tends to slow classification down when done in a linear fashion,

and therefore, for more practical use, it is suggested that each feature extraction method, and

consequently each i-Vector is estimated in some parallel processing architecture. Whilst this

kind of processing is becoming common in speech processing nowadays, with the utilisation of

graphical processing units, we do not do so in this thesis. However, we emphasize the point

that such a frontend is not impractical.

8.3 AID for Speech Recognition

One of the problems in speech recognition is the influence accented speech has on recognition

word error rate. An ASR system adapted to a particular speaker or accent group can, of course,

mitigate this problem. However, within the context of deploying a speech recognition for use with
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multiple speakers and multiple accents, it is not always possible to have a prior adapted model

that is specific to a particular accent group. This problem has been studied before, and many

different proposals have been made, including adapting pronunciation models [217, 218, 219],

creating accent-independent models by incorporating training data from multiple accents [220],

the incorporation of accent information in HMM decision tree clustering [220], adaptation of

features [221], utilizing features that discriminate across accents [222], and careful selection of

training data from varied material sources [223, 224].

In work [3] that came out of a collaboration with colleagues at the University of Birmingham,

a new approach was proposed. The approach was to have specific ASR models tailored at

recognising speech of individual accents. During recognition, an initial analysis is made from

the first seconds of data, and AID is performed to determine the most likely accent, and therefore,

the specific model to use for speech recognition. The work in this thesis is not concerned with

the creation of accent-specific ASR models (read [3] for details of this), but on the utilization,

and advantages of our i-Vector based AID system for this particular purpose, when compared

to other, more traditional AID techniques.

Two AID techniques were tried. The first was a phonotactic AID system based on parallel

phone recognition followed by language modelling (PPRLM). This requires phone recognition,

vectorization and an SVM backend to learn and discriminate between accents. The second

technique was the i-Vector AID system being developed in this thesis. At the time of the

experiments in [3], the AID accuracy of these systems were at 19.30% and 18.95% respectively,

with the i-Vector AID system having been presented earlier in [10]. The performance was

therefore roughly equivalent on AID for the ABI-1 corpus.

Although we do not deal with the adaptation technique itself, it is important to understand

the different kinds of adaptation performed to evaluate the importance and relevance of AID to

ASR. Six different types of adaptation are performed, which we elicit below:

• Baseline (B0) performance — a speech recognition system is trained on the WSJCAM0

corpus. This ASR system is then used to perform recognition of one long (40 second)

utterance of speech per speaker in the ABI corpus.

• SSE adaptation (B1) performance — the speech in the WSJCAM0 corpus can be considered

close to the standard southern English (SSE) accent. In order to make sure that the ASR

system we want to adapt is not influenced by task/corpus shift, the baseline is adapted

with SSE data before prior testing recognition of the same long utterance of speech per
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speaker. This gives an indication of dataset shift on recognition performance.

• AID-dependent model through “correct” accent knowledge (B2) — in this recognition

test, it is assumed that we know which accent is associated with each tested utterance,

and the ASR system adapted to that particular accent is used. This experiment gives a

theoretical peak performance when the actual accent is known prior to recognition (an

“oracle” system).

• Unsupervised speaker adaptation (S0) — is it better to perform speech recognition with

an accent-adapted model for arbitrary speakers of that accent, or is it better to have

speaker-specific ASR models with no explicit regard for general accent? In this experiment,

recognition is performed on MLLR-adapted ASR models.

• AID-dependent model through i-Vector decision (A0) and phonotactic decision (A1) —

in this recognition test, the accent for a test utterance is determined by the i-Vector or

phonotactic based AID systems, and the ASR system adapted to that particular accent is

used.

• AID-dependent model followed by unsupervised speaker adaptation (BS) and (AS) — for

each speaker, model selection is performed using either “correct” accent (BS) or using

phonotactic AID (AS). The selected accent model is then adapted further to the individual

speaker with unsupervised MLLR adaptation.

Table 8.1: Comparison of results for all ASR experiments.

Experiment Data from test speaker (seconds) WER(%)
B0 — 26.0
B1 — 28.7
B2 — 14.7
S0 48.0 20.37
S0 101.5 18.75
S0 136.0 18.99
S0 221.0 17.83
A0 43.2 15.2
A1 43.2 15.3
BS 43.2 13.7
AS 43.2 14.1

A summary of results from these experiments is given in Table 8.1. A number of very

interesting results emerge. Out of the baseline systems (B0, B1 and B2), B2 which used the

“correct” accent model for recognition gives a word error rate (WER) of 14.7%. This is clearly

much lower than results for B0 and B1, demonstrating that accent-specific modelling (as expected)
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will give better performance in recognition. Despite a rough AID classification error of almost

20%, A0 and A1 give very close performance at 15.2% and 15.3% WER respectively. Performing

unsupervised speaker adaptation (S0) gives varying degrees of performance depending on

how much speaker data is used for adaptation, but even with maximal adaptation data of 221

seconds, performance is still worse than for AID selection methods. The combination of accent

model selection followed by speaker adaptation (BS for “correct” model selection and AS for

AID model selection) gives some slight improvement with error rates dropping to 13.7% and

14.1% respectively. The results show how the performance in AID systems is a good motivator

to apply AID to utterances prior to accent-dependent model recognition, despite the inherent

error of AID classifiers. It seems that wrongly selected accent models (due to AID errors) are

still providing a selection that is “close” in accent space to the “correct” accent, and hence the

word error rate does not increase much. Furthermore, AID can now be performed without

requiring a seemingly more complicated AID system such as a phonotactic PPRLM system, but

an acoustic approach is sufficient.

It is interesting to break down these results according to individual accents. An extract of

these results by accent are shown in Figure 8.7, which is extracted directly from [3]. The results

are ordered with the baseline system B0 as a reference from worst to best word error rate. By

looking at the performance of baseline systems B0 and B1, it is easy to see that there is a wide

range of WER depending on which accent is analysed. The best WER is of course located at the

SSE accent, which is the closest accent group to the original WSJCAM0 corpus used for training

the baseline ASR system. Performance degrades depending on how close or far the accent is

to SSE. On the other hand, the range in WER is much narrower across all accents from the

B2, A0, A1 and AS systems, which are all dependent on accent-specific models being selected.

Though there is still a common trend of WER decreasing from left to right (suggesting more

adaptation data is required, or that the particular accent is hard for recognition purposes), this

range appears smooth with respect to what is observed in B1, B0 and S0.

The main requirement in this study is that a 43 second utterance (around 30 seconds of actual

speech data) was required for model selection. This is of course quite long, and it would be ideal

to obtain reliable model selection on short duration utterances. The results earlier on in this

chapter focus on this aspect of short duration classification. Given that the ASR performance

seems insensitive to AID accuracy with a 20% error margin, we can already presume that the

results obtained for 10 second AID (with a similar 20% error margin) are already sufficient for

this purpose, although this has not been evaluated experimentally yet. With further progress, it
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Figure 8.7: Comparison of ASR results by accent [3].

might even be possible to obtain a reliable model selection based on just a few seconds (e.g.

three seconds) of data, which would be a good achievement for applying acoustic AID to ASR

systems.

Whilst this approach was being tested, there was an issue on whether the comparisons

being made are “fair“ with respect to the different amounts of data available for speaker or

accent-based adaptation. The offline accent-based ASR models had data running into around 5

hours for adaptation. On the other hand, speaker based adaptation had much less data, with

a cap of around 220 seconds. However, the key focus of this study was to demonstrate that
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reliable accent model selection can be performed in “real-time” with a small amount of data.

The consequence is that major WER gains can be achieved with a 30 second cut by selecting a

reliable ASR model. By demonstrating that the same AID performance available in [10, 3] is

now possible with 10 second cuts, the argument of augmenting an acoustic AID classifier for

ASR by model selection is strengthened even further. However, without experimentation, we

do not know whether similar advantages can be obtained with three second cuts. The current

performance of around 57% AID accuracy may be too low to be incorporated into an ASR

system. However, we expect that with further boosting this result, the combination of acoustic

AID methods for model selection in ASR becomes even more practical.

8.4 Summary

This chapter served to refine the work in this thesis. We investigated the effect of using

different length utterances for training and testing on the performance of our i-Vector system.

As expected, performance degrades with shorter utterances. We then looked at the effect of

changing frontend filterbank parameters and assessed the effect on AID performance. It was

noticed that there is considerable variation in performance from configuration to configuration.

Also, when a multi frontend and multi-configuration i-Vector system was used to fuse many

‘weak’ classifiers together, performance was optimised further. The results presented are, as far

as we can tell, the state-of-the-art for acoustic AID on the ABI-1 corpus. Finally, we looked at

an initial study of utilising acoustic AID for model selection in ASR. The results shown here

are promising, and with further advances in AID accuracy on short utterances, we can expect

this proposal to be practical for ASR design. We found that the correct accent identity is not

strictly required for model selection in ASR. An error margin of around 20% for a typical AID

classifier constructed in this thesis had only a small effect on WER in the ASR experiments

conducted in our collaborative experiments with the University of Birmingham. This suggests

that using an accent that is “close” to the correct accent is good enough for model selection.

This is advantageous, and we can presuppose the possibility of including a vector showing

confidence in the closest (say two or three) accents for an utterance as part of the frontend

to the ASR system, thereby incorporating the model selection as part of the feature frontend,

rather than as a separate module. This may have practical implications for the deployment

of large-scale ASR systems for multiple languages, where multiple accent models for each

language may not be desirable.
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This chapter concludes the work in this thesis, and the following chapter will conclude the

thesis with a final discussion.
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Chapter 9
Conclusion

This thesis has presented novel research in the field of automatic gender and accent identification

using acoustic methods. The premise of identification from speech relies on mapping acoustic

correlates from speech to characteristic categories such as speaker, language, gender and accent.

The thesis began by proposing more robust techniques for gender classification, but the bulk

of it has focused on acoustic methods for accent identification. Starting from first principles,

data-driven experimentation guided the work, resulting in a highly optimised AID system,

giving state-of-the-art performance on the ABI-1 corpus. The main focus was primarily on the

application of standard methods to AID, in order to identify baseline performance and assess

the difficulties of the problem. The thesis then made use of the i-Vector paradigm for AID,

identifying the fact that performance, though reasonable, is not on par with other applications of

the i-Vector paradigm in SID, LID etc. For this reason, a comprehensive investigation was made

by assessing dimensionality reduction projections, i-Vector configuration parameters, frontend

features, as well as classification techniques. The performance in AID varies considerably

depending on the specific configuration from the feature extraction stage, all the way up to the

classification methodology, and by the end of the thesis, we consider a system made up by fusing

the outputs of many ‘weak’ classifiers. The term ‘weak’ should be considered loosely here, as

each of these ‘weak’ classifiers is usually sufficient for other problems such as SID and LID. We

feel this thesis provides sufficient evidence that this is not the case for AID. Furthermore, with

colleagues at the University of Birmingham, we experimented with the use of acoustic methods

of AID for the purpose of ASR applications, demonstrating practicable use given the optimised

performance obtained in this research.

This chapter concludes the thesis. We first given an overview of each chapter. Following
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this, we provide a broad discussion on the achievements and results. We then give some insight

into possible future work arising from this thesis, and mention some important requirements

which we feel are necessary to develop this field further.

9.1 Thesis Overview

The introduction to this thesis (Chapter 1) introduces the field of category identification from

speech, which is described as a signal which conveys multiple layers of information to the

listener. Given that the thesis focuses mainly on accent identification, we define the idea of

accents as understood in this thesis. Mention is made of the state of research in this field, the

increasing interest in the problem, and a brief mention of what seems to be problematic in AID

— speaker variability. Much of the work in this thesis focuses on discovering the extent to which

this problem can be mitigated within the i-Vector paradigm. Specific research questions are

listed, and we feel this thesis has provided some degree of an answer to each.

Chapter 2 provides a background to theory in speech processing and machine learning that

is essential to understand and work in the different aspects of this thesis. An overview of speech

production in humans is given, and how speech can be processed using a frontend system to

produce the feature vectors required for the work in this thesis. Furthermore, we demonstrate

a number of classical feature modelling techniques which are at the basis of more elaborate

modelling schemes described later, and utilised throughout the thesis. Finally, some treatment

of classical dimensionality reduction techniques is given, as well as a simplified overview of

genetic algorithms, which is utilized throughout our work for classifier fusion purposes.

Chapter 3 is a literature review of relevant material to this thesis. It starts by giving an

overview of the understanding of human and animal speech perception, and different theories

of perception. The chapter then shifts to describing actual systems in literature for category

identification from speech, including GID, SID, LID and AID. Particular mention is made of

phonotactic systems and acoustic systems. Following this, the chapter goes into some detail on

the latest advancements in the field over the last decade, with work on variability compensation,

inter-session compensation, joint factor analysis, and the i-Vector paradigm. The chapter ends

with an overview of prosody and supra-segmental information extraction from speech.

Chapter 4 is a short description of the different corpora utilised for the experiments in this

thesis, namely the ‘TIMIT Acoutic-Phonetic Continuous Speech Corpus’, the ‘ABI-1 Accents of

the British Isles Corpus’, and the ‘WSJCAM0 Cambridge Wall Street Journal Corpus’.
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Chapter 5 is a self-contained chapter on our work in GID. We provide an analysis of the

main acoustic correlate of gender (pitch). The investigation leads to the idea that there are

regions of pitch within each particular gender which together form a more complex model of

pitch distribution across both genders. The data suggests that the female population has more

of this pitch variability than the male population. In order to apply the right pitch distribution

for modelling and classification, we consider the use of MFCCs as providing a codebook for

acoustic “context”. Within each context, a specific pitch model is built. Pitch from a particular

frame can then be classified by first considering the best fitting context from both the male

and female trained models, and pitch, as a gender detector, is evaluated only within the pitch

distributions for that particular context. Results show how performance is improved, and

demonstrate that the system provides robustness to GID for mismatched training and testing

corpora. Furthermore, a pitch-shifting mechanism is devised to try and refine GID when the

baseline and context-based gender classifiers fail to agree. However, not much improvement

over the context-dependent classifier was noticed here.

Our investigation into AID starts in Chapter 6. The first approach assessed is a standard

GMM-UBM system for AID, with what is considered to be traditional feature extraction

for AID/LID. No form of inter-session compensation is applied to the features. The second

approach is to extend the GMM-UBM system with modifications to the feature vectors to

include some prosodic information from pitch and first formant. Some performance gains are

observed. The third approach extends the standard GMM-UBM system, where each accent

class is modelled by multiple GMM-UBM systems, and each of the systems is specific to a

particular long-term prosodic context. However, this rather cumbersome extension leads to

no gain. In fact, performance deteriorates. The fourth approach makes use of a GMM-SVM

system, which is a direct extension of the first GMM-UBM system, with the addition of an SVM

classifier to classify supervectors extracted from an adapted UBM per utterance. The accent

classes themselves are represented by a single supervector estimated from a GMM trained

from all accent training data for the class. The results were surprising in that the classification

performance deteriorates considerably. The fifth experiment goes a step back and models each

class by multiple supervectors, one per utterance. This technique yields better performance

than the GMM-UBM system, but only after dimensionality reduction via PCA and LDA is

performed on the supervectors. This is the first indication of how variability due to speaker

differences is very problematic in the AID problem.

Chapter 7 is dedicated to our work on AID within the i-Vector framework. We briefly
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describe how AID, (similarly to SID and LID) can be approached with this framework. The

first approach we present here is to perform basic i-Vector based classification of accents using

LDA for dimensionality reduction as well as for classification of the i-Vectors. Performance

is reasonably good, and is considerably better than all other previous approaches. However,

contrary to what happens in tasks such as SID and LID, the error is still high. In a second

approach, we change the classification function to QDA, and observe poorer performance,

which is surprising given tat QDA is a more powerful/flexible classifier. This result leads us to

try out another approach, this time with support vector machines (which were already shown to

perform well on dimensionality reduced supervectors). Though the results obtained are better

than for QDA classification, they are not better than those obtained with LDA classification.

This suggests an upper limit on classification performance for dimensionality-reduced i-Vectors.

At this point, we present a proposal of an iterative-LDA/QDA classifier, where at each iteration

of the classification, the weakest accent class is removed, and the LDA projection for a smaller

set of classes can be optimized. This classification method leads to some improvements, and is

an indication that the separation between classes is still a hard problem for AID. In the second

part of the chapter, we assess the positive effect of i-Vector length normalization, which gives

some general improvements on classification rates. We then analyze the effect of different

dimensionality reduction techniques as alternatives to LDA for speaker variability compensation.

Together with multiple i-Vector parameter configurations, we build a fused classifer that gives

considerable performance gains, with around 88% AID accuracy for 30 second utterances.

Furthermore, we look at how the amount of training data effects classification performance, and

observe some gains when each speaker is tested individually, with the rest of the corpus used

for training. The optimisations and additions to a standard i-Vector pipeline provide us with a

huge leap in performance compared to a standard i-Vector system, and the proposals in this

chapter are all intended to mitigate, as far as possible, the effects of speaker variation, which is

the main problem for acoustic methods of AID.

In the final part of this thesis (Chapter 8), we have a look at various aspects of AID that are

worth investigating now that a very good acoustic AID technique is available. Particularly, we

first evaluate what happens when shorter utterances are used. The study revolves around what

are standard utterance durations found in literature: 30 seconds, 10 seconds and 3 seconds.

Performance degrades on shorter utterances as expected. We then examine the effect of changes

to the feature extraction system, where we modify a number of filter-bank parameters. The

results show varying degrees of performance, and that the parameters selected for AID so

far are not optimal. With these results, we perform an additional layer of fusion, where all
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feature extraction combinations with all i-Vector parameter combinations and all projection

techniques possible are put together, for a total of 2520 classifiers being considered for fusion.

The results are good, especially for short utterances, with 90%, 80% and 57% AID accuracy being

reported for 30 second, 10 second and 3 second utterances respectively. The last part of this

chapter is about the use of such an AID system for ASR purposes. The work here was done in

collaboration with colleagues at the University of Birmingham who were working on adapted

models of speech recognition to specific speaker sets and accents. We do not work directly on

this aspect in this thesis. However, an early version of our i-Vector AID system with around

80% AID accuracy on 30 second utterances was used as one of the two AID systems tested for

model selection in ASR. Our involvement was at the AID level, and in the experimental design,

where a number of experiments were designed to set baselines, and a comparison of the effect

of different AID systems, together with assumed “correct” accents. The results confirmed that it

is indeed very advantageous to perform model selection via AID for ASR systems. The WER

gains are impressive. The advantage of using the AID system being proposed is that our system

does not rely on any transcription or phone recognition, and is therefore suitable within the

ASR task, when the ASR system should decode speech into a sequence of phonemes. Given the

improvements in our AID system between the time of these experiments and the completion of

this thesis, the usefulness of this scenario is only enhanced further.

9.2 Progress in ABI-1 AID Accuracy

This thesis has focused particularly on applying the i-Vector paradigm to the AID problem. It is

good to look at the progress of AID on the ABI-1 corpus over some well known work on the

same corpus. This is shown in Table 9.1. The results here contain a different implementation

of GMM-UBM and GMM-SVM systems between our work and the work in [4]. Inter-session

compensation was not applied to GMM-UBM and GMM-SVM systems in this thesis. Also, our

largest GMM-UBM architecture was based on 1024 components and not on 4096 as in [4]. It

is very encouraging to see that the best i-Vector system in this work comes very close to the

best AID results recorded for the ABI-1 corpus (via ACCDIST), which is based on knowledge of

vowel/phoneme transcriptions to work. It is also clear that the i-Vector AID system developed

here obtains much better performance than the fused acoustic system in [4], and performs

(surprisingly) even better than the acoustic-phonotactic fused system in this same work.
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Table 9.1: Comparison of AID results along for the ABI-1 corpus. The most important results
are highlighted in bold. The asterisk (*) indicates that results are reported only for the SPA
passage of each speaker (out of 3 passages in total).

System
AID Accuracy [4] (%)

(University of Birmingham) AID Accuracy (%)

GMM-UBM 56.11 49.47
GMM-SVM 67.72 63.16

GMM-uni-gram 60.12 —
GMM-bi-gram 52.12 —
Acoustic-fused 73.6 —

Phonotactics 74.05 —
Acoustic-Phonotactic-fused 88.8 —

ACCDIST-Cor.dist. 93.17* —
ACCDIST-SVM 95.18* —

Human 58.24* —
i-Vector LDA — 73.95
i-Vector QDA — 65.38
i-Vector SVM — 74.15
i-Vector iter. — 78.25

i-Vector LDA fused — 85.96
i-Vector RLDA fused — 85.50
i-Vector SDA fused — 85.73
i-Vector NCA fused — 65.38

i-Vector projection fused — 87.37
i-Vector frontend/projection fused — 90.18

9.3 Machine Learning the Accents of the British Isles

The previous chapters have discussed in great detail the AID performance and confusion

matrices of each test, with final results for different utterance lengths. Another aspect of this

work that is worth examining is whether the “machine” has truly learnt something about the

accents of the British Isles are, and how they are related to each other. Figure 9.1 gives a visual

summary of each accent region, and the top two confusions for the errors in AID accuracy for

each accent.

The results can be given some geographical interpretation. The Scottish accents (blue region)

report no errors. In the Irish region (green region), ULS is confused with ROI only. ROI in

return is also confused with ULS, albeit some confusion with BRM is present. There is only one

Welsh accent in the database (red region). The first confusion is with a geographically close

BRM accent from the England region (yellow region), and the ULS accent from the Irish region.

These two confusions are roughly equidistant in opposite directions. Going into the English

region, CRN is confused with SSE/ILO, which are both Southern. Similarly EAN is confused

with SSE/CRN. The NCL accent is confused primarily with EYK (the closest region), though
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strangely with NWA, which is quite far away. However, the northern nature of the NCL accent

may explain the confusion with NWA, and not with any other English accent to the south. The

exact same observation can be made for the LAN accent, which was also confused with the EYK

and NWA accents. The LVP accent is only confused with the NWA accent, and these are very

close to each other. The AID system seems to point out that BRM/ULS are closer to NWA than

NWA is to the LVP accent. The EYK accent is confused with LAN (close accent) and BRM. Here

again, the results suggest that BRM seems closer to EYK than NCL to EYK.

Figure 9.1: The accents of the British Isles as learnt by the AID system in this thesis. Each accent
region is marked with the top two accents that have brought about errors in AID classification.
Some accents, like SHL, GLA, ULS and LVP have not been confused with any other (100%
accuracy), or with only one accent at most. SSE is not tied to a particular region, but as a marker
of standard English accent in the south, and is present for reference.
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These observations definitely seems to suggest a good correlation of confusions with the

actual geographical location and broad regions within the British Isles, and encourage the view

that the acoustic AID system has indeed captured, the relative “distance” between accents.

9.4 Future Work

In the introduction to the thesis we listed a number of questions that encompassed the theme

and aim of the thesis. We feel we can give a response to each at this point, and discuss how this

can lead to future work in the field:

1. We have shown that whilst GID is pretty much considered to be a “solved” problem, there

are still ways to enhance performance for mismatched conditions of training and test

utterances.

2. We have shown that it is very much possible to achieve very robust AID results without

relying on transcriptions and phoneme recognition as part of the frontend to the AID

system.

3. The traditional i-Vector system needs to be fine tuned in order to obtain the best performance

possible for AID, and the range of performance for various i-Vector systems in this thesis

shows how simply applying the traditional i-Vector system to AID is far from sufficient.

We have provided an in-depth investigation into this and have provided a guide to

building the best i-Vector system for ABI-1 AID.

4. Our investigation has led us to concluded that we can perform very reliable AID using

just short-term feature vectors, so long as a number of different frontends, projection, and

i-Vector parameters are considered and fused.

There will always be room for improvement for the AID problem. We anticipate that with

refinements to the i-Vector model that tackle a number of assumptions about the model, some

enhancements will be seen in the future. The main area which would ideally improve is with

respect to short duration utterances. Not only do we want AID to perform well on short

utterances as a standalone system, but there is great promise of utilizing such a system within

the architecture of ASR systems, as we have shown in in the previous chapter.

The ABI-1 corpus was recorded entirely from speakers who had lived all their life in a

particular accent region. We expect therefore, that the AID problem will be even harder when
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applied to a more realistic scenario in which speakers’ accents are made up of various aspects

of different accent regions as they migrate from one area to another. In this scenario, AID

might usefully be regarded as a continuous-space problem, rather than defined in fixed accent

categories as given in the ABI-1 corpus.

Another area that needs investigation, is the relationship between accents and speakers,

and how AID and SID technology can be used in tandem to build better and more robust SID

systems. We would have liked to investigate this area in this thesis, but there is currently no

dataset which we know of that combines a sufficient amount of data of regional accents of a

country with enough speakers to pose a problem for current SID algorithms. With regards to the

ABI-1 corpus, 100% SID accuracy has already been reported using a baseline GMM-UBM SID

system [153] for the standard 30 second utterances. We feel that there is a need to investigate

the possibility of whether accents are hard to spoof or not. Spoofing is an area of research in

speaker identification and verification. Perhaps the speaking style (partly determined by accent)

is hard to spoof in combination with voice mimicry, and robust acoustic AID algorithms could

be utilized as part of the solution. This requires the collection of an appropriate corpus which is

so far lacking. Provided this is made available at some point, it will give rise to interesting and

pertinent avenues of research.
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