478 research outputs found

    Control of chaos in nonlinear circuits and systems

    Get PDF
    Nonlinear circuits and systems, such as electronic circuits (Chapter 5), power converters (Chapter 6), human brains (Chapter 7), phase lock loops (Chapter 8), sigma delta modulators (Chapter 9), etc, are found almost everywhere. Understanding nonlinear behaviours as well as control of these circuits and systems are important for real practical engineering applications. Control theories for linear circuits and systems are well developed and almost complete. However, different nonlinear circuits and systems could exhibit very different behaviours. Hence, it is difficult to unify a general control theory for general nonlinear circuits and systems. Up to now, control theories for nonlinear circuits and systems are still very limited. The objective of this book is to review the state of the art chaos control methods for some common nonlinear circuits and systems, such as those listed in the above, and stimulate further research and development in chaos control for nonlinear circuits and systems. This book consists of three parts. The first part of the book consists of reviews on general chaos control methods. In particular, a time-delayed approach written by H. Huang and G. Feng is reviewed in Chapter 1. A master slave synchronization problem for chaotic Lur’e systems is considered. A delay independent and delay dependent synchronization criteria are derived based on the H performance. The design of the time delayed feedback controller can be accomplished by means of the feasibility of linear matrix inequalities. In Chapter 2, a fuzzy model based approach written by H.K. Lam and F.H.F. Leung is reviewed. The synchronization of chaotic systems subject to parameter uncertainties is considered. A chaotic system is first represented by the fuzzy model. A switching controller is then employed to synchronize the systems. The stability conditions in terms of linear matrix inequalities are derived based on the Lyapunov stability theory. The tracking performance and parameter design of the controller are formulated as a generalized eigenvalue minimization problem which is solved numerically via some convex programming techniques. In Chapter 3, a sliding mode control approach written by Y. Feng and X. Yu is reviewed. Three kinds of sliding mode control methods, traditional sliding mode control, terminal sliding mode control and non-singular terminal sliding mode control, are employed for the control of a chaotic system to realize two different control objectives, namely to force the system states to converge to zero or to track desired trajectories. Observer based chaos synchronizations for chaotic systems with single nonlinearity and multi-nonlinearities are also presented. In Chapter 4, an optimal control approach written by C.Z. Wu, C.M. Liu, K.L. Teo and Q.X. Shao is reviewed. Systems with nonparametric regression with jump points are considered. The rough locations of all the possible jump points are identified using existing kernel methods. A smooth spline function is used to approximate each segment of the regression function. A time scaling transformation is derived so as to map the undecided jump points to fixed points. The approximation problem is formulated as an optimization problem and solved via existing optimization tools. The second part of the book consists of reviews on general chaos controls for continuous-time systems. In particular, chaos controls for Chua’s circuits written by L.A.B. Tôrres, L.A. Aguirre, R.M. Palhares and E.M.A.M. Mendes are discussed in Chapter 5. An inductorless Chua’s circuit realization is presented, as well as some practical issues, such as data analysis, mathematical modelling and dynamical characterization, are discussed. The tradeoff among the control objective, the control energy and the model complexity is derived. In Chapter 6, chaos controls for pulse width modulation current mode single phase H-bridge inverters written by B. Robert, M. Feki and H.H.C. Iu are discussed. A time delayed feedback controller is used in conjunction with the proportional controller in its simple form as well as in its extended form to stabilize the desired periodic orbit for larger values of the proportional controller gain. This method is very robust and easy to implement. In Chapter 7, chaos controls for epileptiform bursting in the brain written by M.W. Slutzky, P. Cvitanovic and D.J. Mogul are discussed. Chaos analysis and chaos control algorithms for manipulating the seizure like behaviour in a brain slice model are discussed. The techniques provide a nonlinear control pathway for terminating or potentially preventing epileptic seizures in the whole brain. The third part of the book consists of reviews on general chaos controls for discrete-time systems. In particular, chaos controls for phase lock loops written by A.M. Harb and B.A. Harb are discussed in Chapter 8. A nonlinear controller based on the theory of backstepping is designed so that the phase lock loops will not be out of lock. Also, the phase lock loops will not exhibit Hopf bifurcation and chaotic behaviours. In Chapter 9, chaos controls for sigma delta modulators written by B.W.K. Ling, C.Y.F. Ho and J.D. Reiss are discussed. A fuzzy impulsive control approach is employed for the control of the sigma delta modulators. The local stability criterion and the condition for the occurrence of limit cycle behaviours are derived. Based on the derived conditions, a fuzzy impulsive control law is formulated so that the occurrence of the limit cycle behaviours, the effect of the audio clicks and the distance between the state vectors and an invariant set are minimized supposing that the invariant set is nonempty. The state vectors can be bounded within any arbitrary nonempty region no matter what the input step size, the initial condition and the filter parameters are. The editors are much indebted to the editor of the World Scientific Series on Nonlinear Science, Prof. Leon Chua, and to Senior Editor Miss Lakshmi Narayan for their help and congenial processing of the edition

    Bifurcations of piecewise smooth flows:perspectives, methodologies and open problems

    Get PDF
    In this paper, the theory of bifurcations in piecewise smooth flows is critically surveyed. The focus is on results that hold in arbitrarily (but finitely) many dimensions, highlighting significant areas where a detailed understanding is presently lacking. The clearest results to date concern equilibria undergoing bifurcations at switching boundaries, and limit cycles undergoing grazing and sliding bifurcations. After discussing fundamental concepts, such as topological equivalence of two piecewise smooth systems, discontinuity-induced bifurcations are defined for equilibria and limit cycles. Conditions for equilibria to exist in n-dimensions are given, followed by the conditions under which they generically undergo codimension-one bifurcations. The extent of knowledge of their unfoldings is also summarized. Codimension-one bifurcations of limit cycles and boundary-intersection crossing are described together with techniques for their classification. Codimension-two bifurcations are discussed with suggestions for further study

    Small-scale instabilities in dynamical systems with sliding

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Physica D: Nonlinear Phenomena . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Physica D: Nonlinear Phenomena , Vol. 239 Issues 1-2 (2010), DOI: 10.1016/j.physd.2009.10.003We demonstrate with a minimal example that in Filippov systems (dynamical systems governed by discontinuous but piecewise smooth vector fields) stable periodic motion with sliding is not robust with respect to stable singular perturbations. We consider a simple dynamical system that we assume to be a quasi-static approximation of a higher-dimensional system containing a fast stable subsystem. We tune a system parameter such that a stable periodic orbit of the simple system touches the discontinuity surface: this is the so-called grazing-sliding bifurcation. The periodic orbit remains stable, and its local return map becomes piecewise linear. However, when we take into account the fast dynamics the local return map of the periodic orbit changes qualitatively, giving rise to, for example, period-adding cascades or small-scale chaos

    Qualitative modeling of chaotic logical circuits and walking droplets: a dynamical systems approach

    Get PDF
    Logical circuits and wave-particle duality have been studied for most of the 20th century. During the current century scientists have been thinking differently about these well-studied systems. Specifically, there has been great interest in chaotic logical circuits and hydrodynamic quantum analogs. Traditional logical circuits are designed with minimal uncertainty. While this is straightforward to achieve with electronic logic, other logic families such as fluidic, chemical, and biological, naturally exhibit uncertainties due to their inherent nonlinearity. In recent years, engineers have been designing electronic logical systems via chaotic circuits. While traditional boolean circuits have easily determined outputs, which renders dynamical models unnecessary, chaotic logical circuits employ components that behave erratically for certain inputs. There has been an equally dramatic paradigm shift for studying wave-particle systems. In recent years, experiments with bouncing droplets (called walkers) on a vibrating fluid bath have shown that quantum analogs can be studied at the macro scale. These analogs help us ask questions about quantum mechanics that otherwise would have been inaccessible. They may eventually reveal some unforeseen properties of quantum mechanics that would close the gap between philosophical interpretations and scientific results. Both chaotic logical circuits and walking droplets have been modeled as differential equations. While many of these models are very good in reproducing the behavior observed in experiments, the equations are often too complex to analyze in detail and sometimes even too complex for tractable numerical solution. These problems can be simplified if the models are reduced to discrete dynamical systems. Fortunately, both systems are very naturally time-discrete. For the circuits, the states change very rapidly and therefore the information during the process of change is not of importance. And for the walkers, the position when a wave is produced is important, but the dynamics of the droplets in the air are not. This dissertation is an amalgam of results on chaotic logical circuits and walking droplets in the form of experimental investigations, mathematical modeling, and dynamical systems analysis. Furthermore, this thesis makes connections between the two topics and the various scientific disciplines involved in their studies

    Analysis and control of nonlinear phenomena in electrical drives

    Get PDF
    PhD ThesisElectrical motors are key to the growth of any modern society. In order to ensure optimal utilisation of the motors, the shaft speed and armature current must be controlled. Currently, the most efficient way of achieving both speed and current control in electrical motors is through power electronic switching, thus making the system both nonlinear and time varying. The combination of electric motors and control electronics is referred to as electric drives. Due to the inherent nonlinear nature of electrical drives, the system is prone to complex dynamical phenomena including bifurcations, chaos, co-existing attractors and fractal basin boundaries. The types of nonlinear phenomena that occur in some of the more common electrical drive systems, namely permanent magnet dc (PMDC) drives, series connected dc (SCDC) drives and switched reluctance motor (SRM) drives, are considered for analysis in this project. The nominal steady state behaviour of these drives is a periodic orbit with a mean value close to the reference value. But as some system parameters are being varied, the nominal orbit of the system referred to as the period-1 orbit, may lose its stability leading to the birth of new attracting orbit that is periodic, quasi-periodic or chaotic in nature. The most common technique for performing stability analysis of a periodic orbit is the Poincaré map approach, which has been successfully applied in DC-DC converters. This method involves reducing the continuous time dynamical system into a discrete time nonlinear iterative map and the periodic orbit into a fixed point. The stability of the periodic orbit then depends on the eigenvalue of the Jacobian matrix of the map evaluated at the fixed point. However, for some power electronic based system the nonlinear map cannot be derived in closed form due to the transcendental nature of the equation involved. In this project, the recently introduced Monodromy matrix approach is employed for the stability analysis of the periodic orbit in electrical drives. This method is based on Filippov’s method of differential inclusion and has been successfully applied in the stability analysis of periodic orbits in both low order and higher order DC-DC converters. This represents the first application of the technique in electrical drives. The Monodromy matrix approach involves computing the State Transition Matrix (STM) of the system around the nominal orbit including the STM at the switching manifold (sometimes referred to as the Saltation matrix). Also, by manipulating some of the parameters in the Saltation matrix, it is possible to control the instabilities and thus extend the system parameter range for nominal period-1 operation. The experimental validation of the nonlinear phenomena in a proportional integral (PI) controlled PMDC drive, which is absent in literature, is presented in this thesis. The system was implemented using dsPIC30F3010 which is a low cost and high performance digital signal controller.Petroleum Technology Development Fund (PTDF) of Nigeri

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Mean field modelling of human EEG: application to epilepsy

    Get PDF
    Aggregated electrical activity from brain regions recorded via an electroencephalogram (EEG), reveal that the brain is never at rest, producing a spectrum of ongoing oscillations that change as a result of different behavioural states and neurological conditions. In particular, this thesis focusses on pathological oscillations associated with absence seizures that typically affect 2–16 year old children. Investigation of the cellular and network mechanisms for absence seizures studies have implicated an abnormality in the cortical and thalamic activity in the generation of absence seizures, which have provided much insight to the potential cause of this disease. A number of competing hypotheses have been suggested, however the precise cause has yet to be determined. This work attempts to provide an explanation of these abnormal rhythms by considering a physiologically based, macroscopic continuum mean-field model of the brain's electrical activity. The methodology taken in this thesis is to assume that many of the physiological details of the involved brain structures can be aggregated into continuum state variables and parameters. The methodology has the advantage to indirectly encapsulate into state variables and parameters, many known physiological mechanisms underlying the genesis of epilepsy, which permits a reduction of the complexity of the problem. That is, a macroscopic description of the involved brain structures involved in epilepsy is taken and then by scanning the parameters of the model, identification of state changes in the system are made possible. Thus, this work demonstrates how changes in brain state as determined in EEG can be understood via dynamical state changes in the model providing an explanation of absence seizures. Furthermore, key observations from both the model and EEG data motivates a number of model reductions. These reductions provide approximate solutions of seizure oscillations and a better understanding of periodic oscillations arising from the involved brain regions. Local analysis of oscillations are performed by employing dynamical systems theory which provide necessary and sufficient conditions for their appearance. Finally local and global stability is then proved for the reduced model, for a reduced region in the parameter space. The results obtained in this thesis can be extended and suggestions are provided for future progress in this area
    corecore